
Quantifying Error: Extending Static Timing
Analysis with Probabilistic Transitions

Kevin E. Murray∗, Andrea Suardi†, Vaughn Betz∗, George Constantinides†
∗ Electrical and Computer Engineering, University of Toronto

† Electrical and Electronic Engineering, Imperial College London
{kmurray,vaughn}@eecg.utoronto.ca {a.suardi,g.constantinides}@imperial.ac.uk

Abstract—Timing analysis is a cornerstone of the digital design
process. Statistical Static Timing Analysis was introduced to
reduce pessimism by modelling device delay variations. However
it ignores circuit logic, which may cause some timing paths
to never or only rarely be sensitized. We introduce a general
timing analysis approach and tool to calculate the probability that
individual timing paths are sensitized, enabling the calculation
of bounding delay distributions over all input combinations. We
show the connection to the well-known #SAT problem and present
approaches to improve scalability, achieving average results 46 to
32% less pessimistic than Static Timing Analysis while running
14.6 to 44.0 times faster than Monte-Carlo timing simulation.

I. INTRODUCTION

Timing analysis, determining how quickly a synchronous
circuit can operate reliably, is a cornerstone of digital design
used to guide optimization and verify performance and cor-
rectness. Static Timing Analysis (STA) [1] is the conventional
approach to performing timing analysis. However increasing
variation due to smaller process technology causes the worst
case delay to deviate significantly from the average case, and
can make conventional STA very pessimistic [2], [3]. Statistical
Static Timing Analysis (SSTA) reduces this pessimism by
modelling device delay variation, allowing designers to sacrifice
a small amount of device coverage (and resulting yield) for
considerable performance improvement [3]. However, like STA,
SSTA calculates the worst case across all input combinations.

We propose a complementary approach which quantifies
the stochastic variation across inputs rather than devices, with
the aim of sacrificing a small amount of input combination
coverage to achieve considerable performance improvement on
the remaining combinations.

This is motivated by applications amenable to approximate
computing, where small errors may be acceptable (e.g. de-
coding lossy video), correctable, or where the input data is
inherently noisy (e.g. sensor readings) and extreme accuracy is
unwarranted [4]. By running devices beyond their strictly robust
operating regimes, it is hoped that better trade-offs between
power, area and performance can be achieved. For instance
[5] studied the impact of ‘overclocking’ arithmetic operators
beyond their ‘maximum’ safe operating frequencies for im-
proved performance, and inspired changes to the architecture
of arithmetic components [6].1

However designing such systems is challenging as their
behaviour is difficult to analyze. This is particularly true at

1In practice the entire design may not be error tolerant (e.g. control signals).
In an overclocking context such signals must have sufficient slack to operate
reliably at the overclocked frequency.

b

a

ec

d

b

a

e

1.0

1.0
1.0

1.0
1.0

Fig. 1: Example circuit and timing
graph with annotated delays.

TABLE I: PATH-DELAY DISTRIBUTION.

Active Path Delay Probability

b→ c→ d→ e 3.0 0.125
a→ d→ e 2.0 0.1875
b→ e 1.0 0.3125

None (constant output) 0.0 0.375

the circuit-level where conventional tools like STA and SSTA
assume worst-case switching behaviour to ensure coverage of
all input combinations. In [5] timing analysis was performed
by hand, a method which is time consuming, error prone and
not scalable. To the best of our knowledge there has been no
generic approach to the timing analysis of this kind of design.

We aim to address this design capability gap by developing
a generalization of STA. Instead of assuming worst-case
switching behaviour to generate a longest path delay bound as
in STA, we determine a bounding delay distribution over all
input combinations.2 Automating this process bridges the gap
between the physical and logic design domains, opening new
avenues for co-design and optimization.

To simplify matters we consider the case where the set
of inputs at cycles i and i + 1 are independent, identically
uniformly distributed and statistically stationary. All these
restrictions can be lifted by appropriate pre-processing without
changing the approach presented in this paper.

Our key contributions include:
• a new timing analysis formulation to determine bounding

delay distributions across input combinations,
• reduction of this analysis to #SAT,
• techniques to improve scalability on real circuits, and
• experimental comparison with Monte-Carlo simulation.
Section II discusses background and related work. Sec-

tions III and IV present our formulation and implementation.
Sections V and VI describe the experimental methodology and
results. Section VII concludes and outlines future work.

II. BACKGROUND & RELATED WORK

The conventional approach for performing timing analysis is
STA [1]. STA performs a pessimistic analysis by considering
only the topological structure of the circuit, pessimistically
assuming that all signals switch every cycle. This topological
structure is stored as a timing graph:

2This differs from conventional SSTA, where delay distributions are derived
from device and interconnect delay variations.

Definition 1 (Timing Graph)
A directed graph where nodes represent the pins of circuit
elements, edges represent timing dependencies and edge
weights correspond to delays.

The circuit’s primary inputs and state element outputs (e.g.
Flip-Flop q pins) become timing sources: nodes with no fan-in.
We denote the number of timing sources by I . Conversely, the
primary outputs and state element inputs (e.g. Flip-Flop d pins)
become timing endpoints: nodes with no fan-out. An example
timing graph is shown in Fig. 1. The timing sources are inputs
a and b (I = 2), and the output e is the single timing endpoint.

We can now define a timing path:
Definition 2 (Timing Path)
A path in the timing graph between a timing source and timing
endpoint.

STA calculates the delay of the longest (or critical) timing
paths, by calculating the latest (worse-case) arrival time of
signals at each node in the graph. In Fig. 1, the path b→ c→
d→ e is the critical timing path, with a delay of 3.0 units.

Conventional STA always performs a robust analysis (never
underestimating delay), but can be quite pessimistic in practice.
There are two primary sources of pessimism: the use of worst-
case delays and assuming worst-case switching behaviour.

SSTA [3] has been developed to address the pessimism
introduced by worse-casing delay values, which becomes
particularly problematic in the face of increasing device and
interconnect variation. SSTA directly models the statistical
variation of device and interconnect delays, calculating delay
distributions rather than the fixed worst-case delays used by
conventional STA. Directly modelling delay variations reduces
pessimism since worst-case delay combinations (which are
unlikely to occur) can be ignored.3

Both STA and SSTA assume worst-case switching behaviour:
assuming all signals switch every clock cycle. This is not true
in real operation. The most obvious cases are ‘false paths’,
timing paths which are impossible to exercise in practice.

There has been some previous work investigating these issues.
The problem of false paths is discussed in detail in [7], which
presents algorithms for detecting near-critical false paths. In [8],
toggle rate information (similar to vector-less power estimation)
is used to adjust the results of SSTA to reduce pessimism.
However only the average toggling behaviour (i.e. across many
cycles) is considered and the toggling of individual timing
paths can not be distinguished. The problem of re-convergent
paths which cause correlations is also not addressed.

III. EXTENDED STATIC TIMING ANALYSIS FORMULATION

To present the Extended Static Timing Analysis (ESTA)
formulation we begin by defining some terminology.
Definition 3 (Path Sensitization Probability)
The probability of a timing path experiencing a transition
during a single clock cycle.
By associating a delay with each path sensitization we can
build path-delay distributions:

3In practice, the designer chooses an acceptable level of timing yield for
their design, accepting the failure of some devices.

Definition 4 (Path-delay Distribution)
A set of paths, delays, and their associated sensitization
probabilities.

Table I shows the path-delay distribution for the circuit
in Fig. 1, assuming uniform input transition probability. We
observe that the longest path is active only 12.5% of the time,
much less than the other paths. Interestingly no timing paths are
active 37.5% of the time since the output (e) remains constant.

A path-delay distribution is different from the delay dis-
tribution produced by SSTA. Under SSTA the delays are
distributed according to a statistical delay model (i.e. due
to device and interconnect delay variation), while in ESTA
delays are distributed according to the probability of individual
timing paths being activated.4

We can now define the ESTA problem which we focus on
for the remainder of this paper:
Definition 5 (Extended Static Timing Analysis Problem)
Determine the path-delay distributions at all timing endpoints.

A. Using #SAT to Calculate Probabilities

To calculate a path-delay distribution we need to determine
the delays and sensitization probabilities of different timing
paths. The delay of a path can be calculated by traversing
the timing graph and adding up the annotated delays, but
calculating path sensitization probabilities is more involved.

We first define an activation function:
Definition 6 (Activation Function)
A Boolean function which evaluates to true whenever a path
is sensitized by a transition (which could be a glitch or static
value).

Given an activation function f with support size |f | (i.e.
the number of variables f depends on) we can calculate its
sensitization probability as:

p = #SAT (f)/2|f | (1)

where #SAT (f) represents the number of satisfying assign-
ments to f , and 2|f | represents the total number of possible
assignments.

#SAT is a well established problem in theoretical computer
science closely related to Boolean satisfiability (SAT) [9].
Where SAT seeks to find a satisfying assignment to a Boolean
function, #SAT seeks the number of satisfying assignments.
There are a number of algorithms for solving #SAT which
are more efficient than naively enumerating the satisfying
assignments with SAT [9].

Provided we can build appropriate activation functions for
the paths under analysis we can use Eq. (1) to calculate
their sensitization probabilities. A path with zero sensitization
probability is by definition a false path.

B. Transition Model

To analyze a circuit we need to model the different signal
transitions which can occur. While different models are possible,
we model four types of transitions: R (rising), F (falling), H
(high), and L (low), where H and L correspond to signals

4While we use a deterministic delay model for each timing edge in this
work, there is no limitation preventing the use of a statistical delay model.

a

b
c

Fig. 2: AND gate

TABLE II: AND GATE TRANSITIONS.

a b c

R R R
R F F
R H R
R L L

a b c

F R F
F F F
F H F
F L L

a b c

H R R
H F F
H H H
H L L

a b c

L R L
L F L
L H L
L L L

which remain static and do not change. As an example, consider
the AND gate in Fig. 2. For this simple circuit we can
enumerate the possible output transitions, as shown in Table II.

Temporary glitches are modelled by their final transition. For
example a low signal which temporarily glitches high before
returning to low would be modelled as a F transition.

C. Combining Activation Functions

We can now define a timing tag, which intuitively corre-
sponds to the delay of a transition along a particular path:
Definition 7 (Timing Tag)
A tuple (τ, ν, f) ∈ Q×{R,F,H,L}×(B2I → B), correspond-
ing to a path and transition combination. τ is the arrival time,
ν the signal transition, and f the activation function.
For example, a tag (15, R, x1 ∧ x2) corresponds to a rising
transition with an arrival time of 15 units, which occurs only
when the Boolean function x1 ∧ x2 evaluates true. Since f is
a general Boolean function encoding all the scenarios where
the timing tag applies, false and re-convergent paths can be
accounted for by constructing f appropriately.

Consider the AND gate from Fig. 2. If we have two timing
tags ta and tb arriving at the gate inputs and a gate delay of
δAND we can construct the corresponding output tag tc as:

tc = (δAND +max(ta.τ, tb.τ),

AND(ta.ν, tb.ν),

ta.f ∧ tb.f)
(2)

where δAND + max(ta.τ, tb.τ) is the latest arrival time of
a transition at the output, AND(ta.ν, tb.ν) is the resulting
transition (e.g. determined from Table II), and ta.f ∧ tb.f is
the logical conjunction (AND) of the input activation functions.

More generally for a K-input gate with delay δgate imple-
menting the logic function h(x1, x2, . . . , xK) and incoming
tags t1, t2, . . . , tK the output tag tgate can be defined as:

tgate = (δgate +max(t1.τ, t2.τ, . . . , tK .τ),

H(t1.ν, t2.ν, . . . , tK .ν),

t1.f ∧ t2.f ∧ . . . ∧ tK .f)
(3)

where H(ν1, ν2, . . . , νK) is the transition function derived
from the logic function h()5. Eq. (3) produces an STA-like
delay estimate which is a safely pessimistic upper-bound,
ensuring no paths will be underestimated. The activation
function is specified as the conjunction of all the incoming tag
activation functions, since all the tags must arrive to generate
the corresponding arrival time and output transition.

D. Condition Functions

Eq. (3) describes how to propagate timing tags through a
gate (or wire6), allowing us to construct timing tags – including

5H() can be determined by evaluating h() twice; first at the initial and then
at the final values of the input transitions (e.g. 0 then 1 for a R transition).

6Wires can be treated as single-input ‘gates’ implementing logical identity.

their associated activation functions – by walking through the
timing graph. However we still require some base activation
functions at timing sources, and a method to specify their
transition probabilities.

We can accomplish this by defining a set of Boolean
conditioning functions at each timing source. For the simplest
case of uniform probability we can define the following
conditioning functions:

fR(x, x
′) = x ∧ x′ fF (x, x

′) = x ∧ x′

fH(x, x′) = x ∧ x′ fL(x, x
′) = x ∧ x′

(4)

where intuitively x and x′ represent the current and next state of
the source. Each function in Eq. (4) corresponds to a particular
transition occurring on the source.

Note each condition function in Eq. (4) is satisfied 25% of
the time (e.g. #SAT (fR)

2|fR| = 1
4), assuming uniformly random x

and x′. This yields a uniform probability for each transition. In
general arbitrary conditioning functions can be used, allowing
for non-uniform probabilities and correlations between sources.

By combining Eq. (3) with condition functions such as those
in Eq. (4) we can propagate timing tags from timing sources
to timing endpoints. The probabilities of the tags at all timing
endpoints can then be calculated using Eq. (1) to construct the
path-delay distributions – completing the ESTA analysis.

IV. ESTA IMPLEMENTATION

We have developed a tool to perform ESTA. The tool is
written in C++ and uses Binary Decision Diagrams (BDDs) [10]
(via the CUDD library [11]) to represent the netlist logic and
timing tag activation functions. BDDs allow easy manipulation
of Boolean functions and enable #SAT to be solved efficiently
once the BDD is constructed [9].

A. Calculating Timing Tags

The basic procedure to calculate a node’s output timing tags
is shown in Algorithm 1. Provided with the set of tags arriving
at each of the K inputs, we enumerate the Cartesian product
of the input tag sets (line 3) to consider all possible cases of
input transitions and arrival times. Lines 4-6 evaluate a specific
set of CaseTags (one tag per input) according to Eq. (3). For
each case the resulting tag is recorded (line 7), and the full set
of output tags returned (line 8) for use by downstream nodes.

Algorithm 1: ESTA Node Traversal

Require: In(1)
tags, ..., In

(K)
tags sets of tags on each input, δ input

to output delay, h node logic function
1: function TRAVERSENODE(In(1)

tags, ..., In
(K)
tags, δ, h)

2: Outtags ← ∅
3: for each CaseTags ∈ In(1)

tags × ...× In
(K)
tags do

4: τ ← δ + MAX(CaseTags[0].τ, ..., CaseTags[K].τ)
5: ν ← H(CaseTags[0].ν, ..., CaseTages[K].ν)
6: f ← CaseTags[0].f ∧ ... ∧ CaseTags[K].f
7: Outtags.APPEND((τ, ν, f))

8: return Outtags

a

b

c

t = 1 t = 2

δ

Fig. 3: Input filtering example. The arrival time at c is 1 + δ, but STA or a
naive ESTA implementation will report 2 + δ.

After all nodes in the timing graph have been processed the
tags at all endpoints can be evaluated with #SAT to build the
path-delay distributions.

B. Input Filtering

Consider the timing diagram in Fig. 3 for the AND gate
from Fig. 2. Initially, both inputs (a, b) are high, producing
a high output (c). At t = 1 input a falls, producing a falling
transition on the output c with some delay. The later transition
on input b at t = 2 produces no change in the output c, since
input a remained low controlling the output. In this case input
a can be said to ‘filter’ transitions on input b.

While Algorithm 1 handles these cases correctly, it does
so in an unnecessarily pessimistic manner; always using the
latest arrival time, even if the associated transition would be
filtered and have no effect. To counteract this, as each input
arrives we restrict the node logic function to the input’s post-
transition value. We can then use Boolean difference to identify
subsequently arriving input transitions which do not affect
the output. Such input tags are ignored during arrival time
calculation, removing the unnecessary pessimism.

C. Tag Merging

In the worst case Algorithm 1 can produce O(`K) output
tags where ` is the maximum number of tags across all K
inputs. While the number of tags produced is often smaller in
practice it can still grow large – particularly since the output
tags of a node become the inputs to subsequent nodes.

To counteract this rapid growth, we can merge tags together.
Suppose we have the tags t1, t2, . . . , tn with the same transition
ν. We can produce a new tag tmerged which approximates the
original tags:

tmerged = (max(t1.τ, t2.τ, . . . , tn.τ),

ν,

t1.f ∨ t2.f ∨ . . . ∨ tn.f)
(5)

We ensure a safely pessimistic approximation by using the
maximum arrival time, and only merging tags with the same
transition. The activation function of the merged tag is the
logical disjunction (OR) of the original tags, since any of the
tags could produce this bounding transition.

Note the approximation is exact if the original tags have the
same delay. Our implementation always merges such tags.

D. Run-Time/Accuracy Trade-Offs

Although precise tag merging helps, for larger circuits the
number of tags (and hence run-time) can grow prohibitively
large. Accordingly we have also developed several different

techniques to trade-off accuracy for reduced run-time. They
all rely on Eq. (5) to safely merge tags.
Fixed Delay Binning: Merges output tags within a delay bin

of size d. For instance at d = 100 tags with delays 75,
80, 110, 120, 155 would be reduced to 80 and 155.

Adaptive Binning: Merges input tags to limit the size of the
Cartesian product evaluated at a node to at most m, by
iteratively re-binning the input tags at larger bin-sizes.

Percentile Binning: Merges output tags which can not gen-
erate s-percentile critical paths. For example, s = 0.05
would ensure no merging occurred on the top 5% of
critical paths, while all other tags would be merged.

In practice these various techniques can be used in combination.

E. Computational Complexity

The computational complexity of our ESTA implementa-
tion is dominated by two components: evaluating tags, and
constructing BDDs. The complexity of evaluating a Cartesian
product of tag sets (excluding BDD construction) is O(LK),
where L is the maximum number of tags on any node input.
This must be done across all n nodes in the timing graph,
taking O(nLK) time. Constructing BDDs in the worst case
takes O(2nvars) time, where nvars is the number of Boolean
variables. For the conditioning functions in Eq. (4), nvar = 2I .
The resulting complexity of ESTA is O(nLK + 4I).

For typical circuits K is bounded by a small constant and L
can be controlled with the methods in Section IV-D. As a result
run-time is typically dominated by BDD construction. However
in practice decreasing L also reduces BDD construction time,
since fewer BDDs covering more of the input space (which
are typically simpler to encode) are required.

While ESTA’s worst-case complexity is similar to exhaustive
simulation, O(n4I), ESTA’s typical complexity is far lower in
practice. In particular, constructing BDDs to evaluate #SAT is
far more efficient than enumerating a vast input space.7

V. EVALUATION METHODOLOGY

To evaluate our ESTA implementation we compare it against
post-place-and-route timing simulation performed with Mentor
Graphics Modelsim SE 10.4c. The evaluation flow used is
shown in Fig. 4. We take in a circuit netlist which is mapped
onto a 40nm 6-input Look-Up-Table (6-LUT) based FPGA
using VPR [12] to generate an SDF file with both logic and
routing delays. The SDF file is then used to annotate identical
delays in both Modelsim and ESTA. To avoid unrealistic glitch
filtering Modelsim was run using the transport delay model.

A. Monte-Carlo Simulation

While exhaustive simulation is useful for verification it
quickly becomes impractical, since the number of cases to be
simulated grows as O(4I). To enable the evaluation of larger
benchmarks, and provide a more realistic run-time comparison
to ESTA, we also developed a Monte-Carlo (MC) based
simulation framework for calculating path-delay distributions.

It is important to distinguish between the strength of
guarantees that MC and ESTA provide. ESTA guarantees it will

7For example, exhaustive simulation of clma, requires evaluating > 10249

sets of input transitions; counting the satisfying assignments is far faster.

Netlist

VPR

SDF

ESTA Modelsim

Compare

Fig. 4: Evaluation Flow.

TABLE III: NORMALIZED CRITICAL PATH
DELAYS WITH FALSE PATHS.

STA MC ESTA

s298 1.000 0.981 0.981
clma 1.000 0.959 0.984 †
frisc 1.000 0.965 0.999 *

elliptic 1.000 0.974

* ESTA upper-bound, †MC optimistic

always produce safely pessimistic upper bounds of path-delay
distributions. MC can not provide any such guarantees.

In the MC framework we uniformly generate random sets
of input transitions to sample the input space. This sampling
procedure was run for 48 hours on each benchmark. All quality
comparisons are based on the more accurate 48-hour sample,
while run-times are determined by finding the smallest sample
size which meets some convergence criteria.

Since it is impractical to exhaustively simulate large circuits
we determine convergence based on sample statistics. We define
convergence based on the max-delay probability, as this is
the delay region of interest when considering timing errors.
Intuitively we define convergence as when we are confident
the sample probability of the maximum-delay varies by less
than 5% across multiple samples. More formally:
Definition 8 (MC Max-Delay Convergence)
Let p̂ be the sample probability of activating maximum delay
paths. Given a sample with max-delay probability confidence
interval [LB,UB] at 0.99 confidence, we say the sample has
converged if UB−LB

p̂ < 0.05.
The Monte-Carlo run-times reported include only the simula-

tion run-time, and exclude the large amount of post-processing
required to extract useful transition and delay information.

B. Benchmarks

We evaluate ESTA on the 20 largest MCNC benchmarks
[13] which are listed in Table IV. Any state elements (e.g.
flip-flops) were replaced with primary inputs and outputs.

C. Metrics

To compare the Quality of Results (QoR) between STA,
ESTA and MC we used the Earth Mover’s Distance (EMD)
metric [14], commonly used to compare image histograms.
EMD corresponds to the minimal amount of ‘work’ required
to transform one discrete distribution into another.

To account for different critical path delays across bench-
marks we normalize EMD by the EMD between MC and STA.
The resulting normalized EMD ∈ [0, 1] describes how closely
the MC distribution is approximated. A value of 1 corresponds
to an STA-like analysis (worst-case switching behaviour), and
a value of 0 corresponds to the MC distribution (true switching
behaviour). For each benchmark we report the run-time for
determining the maximum delay across all outputs and the
normalized EMD of the resulting path-delay distribution.

VI. RESULTS

Using the experimental methodology from Section V and
the implementation from Section IV we perform several
experiments to investigate the characteristics of ESTA. Unless

0 1000 2000 3000 4000 5000 6000 7000
Delay (ps)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

STA (cdf)
MC (cdf)

ESTA d=100 m=106 (cdf)

ESTA d=100 m=104 (cdf)

Fig. 5: Maximum delay CDF plots on the spla benchmark.

otherwise noted ESTA was run with d = 100ps. Results
were collected on a Xeon E5-2643v3 machine with 256GB of
memory.

A. Verification

To verify the correctness of our ESTA tool we exhaustively
compared with Modelsim on a set of small micro-benchmarks
including simple logic circuits, ripple-carry adders and array
multipliers. We verified for all possible input transitions, that
ESTA agreed with simulation’s output transitions and produced
an upper-bound of the simulation delay.

B. Maximum Delay Estimation

By running both MC, STA, and ESTA (with percentile
binning) we can investigate the impact of false-paths. While
most circuits in the MCNC20 benchmarks produced the same
critical path delay in all tools, the existence of false paths
caused divergence on the benchmarks in Table III. ESTA was
able to identify the true critical path delay on the s298 and
clma benchmarks, and confirm false paths exist on frisc.8

Notably on clma MC reported an unsafe (optimistic) delay
– indicating the worst-case path was never sampled. This
illustrates the utility of ESTA’s strong guarantees; it never
underestimates delay.

C. ESTA and MC Comparison

Fig. 5 plots the maximum path-delay Cumulative Distribution
Functions (CDFs) for spla. STA, which assumes worst-
case switching behaviour, produces a single maximum delay
estimate of 6230ps (the critical path delay) for all cases (p = 1).
In contrast MC, which directly simulates switching behaviour,
produces a path-delay distribution, showing 13% of input
transitions cause no delay (i.e. don’t affect the output), and
only 4% of input transitions produce delays > 5000ps. ESTA is
always safely conservative compared to MC and less pessimistic
than STA, with its CDF always falling between MC and STA.
The form of ESTA’s CDF follows the shape of MC’s CDF,
with larger m producing a more accurate result.

Table IV quantitatively compares ESTA and MC accuracy.
First considering the MC max-delay probability (p̂), we observe
that benchmarks with relatively large max-delay probability
tend to converge, while those with smaller probability (p̂ ≤

8ESTA exceeded memory limits on frisc due to the large number of
nearly critical paths, and exceeded 48 hours run-time on elliptic.

TABLE IV: QUALITY AND RUN-TIME ON THE MCNC20 BENCHMARKS.
Prob. QoR (norm. EMD) Run-time (minutes)

I LUTs MC p̂
ESTA
m=104

ESTA
m=106 MC ESTA

m=104
ESTA
m=106

ex5p 8 740 3.9 · 10−3 0.73 0.37 151.7 0.5 4.6
apex4 9 970 5.9 · 10−3 0.85 0.74 118.1 1.5 8.7

ex1010 10 3093 2.7 · 10−3 0.96 0.85 922.1 5.8 40.4
s298 11 1301 0.87 0.79 5.7 59.4

misex3 14 1158 1.5 · 10−3 0.66 0.46 781.3 5.2 54.9
alu4 14 1173 2.5 · 10−3 0.83 0.46 473.6 2.4 58.9
spla 16 3005 0.40 0.25 6.3 207.1
pdc 16 3627 0.56 0.31 11.3 118.4

apex2 39 1478 6.9 · 10−4 0.33 2068.2 87.1
seq 41 1325 0.34 57.9
des 256 554 1.8 · 10−2 60.7

clma 415 6239 0.92 319.2
tseng 436 798
diffeq 440 871
dsip 460 880 3.5 · 10−2 49.8

bigkey 494 883 1.2 · 10−2 150.6
frisc 905 3028

elliptic 1252 2135
s38584.1 1332 4486 3.2 · 10−3 2829.4
s38417 1545 3465

Blank entries exceeded 48 hours run-time.

10−4) tend not to. Intuitively, it is difficult to determine if a
small p̂ is caused by an inherently rare path, or by insufficient
sample size. This causes MC to converge slowly.

Now considering ESTA m=104 QoR, we see ESTA’s analysis
falls between STA and MC, with normalized EMD ranging
between 0.96 (nearly STA-like) and 0.33 (more MC-like), with
an average of 0.68 across the benchmarks which completed.
Increasing m to 106 reduces the average normalized EMD by
28% to 0.53 on the common benchmarks which completed.

The QoR gap between ESTA and MC is derived from three
factors. First, binning (Section IV-D) introduces additional
pessimism since the true distribution is approximated with
fewer timing tags. Second, Modelsim performs more aggressive
input filtering than ESTA (Section IV-B), since it optimistically
assumes signals are stable before they transition.9 Third,
Modelsim optimistically treats simultaneous transitions at a gate
input with no logical effect (e.g. simultaneous R/F in Table II)
as producing no output transition. To remain safely pessimistic
ESTA models these with an appropriate R/F transition.

The run-time performance of ESTA and MC are also shown
in Table IV. Looking at MC, it converges on only 10 of the
20 benchmarks within 48 hours, and fails to converge even
on benchmarks with few inputs (e.g. s298). ESTA m=104

completed 11 of 20 benchmarks and shows more stable run-
time, completing all of the benchmarks with 41 or fewer inputs
and also the largest benchmark (in terms of logic) clma. For
those benchmarks which completed under both MC and ESTA,
ESTA m=104 and m=106 completed 44.0× and 14.6× faster
than MC respectively. For all benchmarks with > 415 inputs
ESTA run-time exceeded 48 hours during BDD construction.
These results show that ESTA can be used to quickly calculate
bounding path-delay distributions on circuits with a moderate
number of inputs. For example, enabling automated analysis
of the (12 input) overclocking designs considered in [5].

VII. CONCLUSION & FUTURE WORK

In conclusion we have presented ESTA, a new timing
analysis method which accounts for non-worst-case switching

9ESTA can not do the same as it calculates upper bounds on arrival times.
Performing combined min/max delay analysis would improve ESTA’s filtering.

behaviour, calculating safe bounding path-delay distributions
over all input combinations. We showed how the sensitization
probability of timing paths can be calculated using #SAT, al-
lowing path-delay distributions to be constructed. We presented
a BDD-based implementation, including approaches to improve
accuracy and scalability. Finally we performed an experimental
comparison of ESTA and Monte-Carlo based timing simulation,
showing ESTA can on average run 14.6 to 44.0× faster while
achieving results within 53 to 68% of Monte-Carlo, a 46 to
32% reduction in pessimism compared to STA.

There are a variety of directions for future work. The key
algorithmic challenge for ESTA is scalability. The main run-
time bottleneck of our ESTA implementation is solving #SAT.
One avenue for investigation is the use of CNF-based #SAT
solvers instead of BDDs. Another approach is to give up some
of ESTA’s guarantees for improved scalability by approximating
the solution to #SAT [9]. Improved run-time quality trade-offs
(Section IV-D), particularly those that actively consider the
impact on quality would also improve results. For instance
percentile binning, which analyzes only the most critical paths,
may prove a more scalable approach.

There are also open questions driven by the application of
ESTA. While it is possible to model arbitrary correlations and
probabilities in ESTA it is not clear how best to construct
condition functions to model the switching behaviour of state
elements like flip-flops. It would also be useful to combine both
ESTA and SSTA (i.e. a statistical delay model) to determine
the path-delay distribution while considering device-level
delay variation. Finally automated ESTA enables larger scale
investigation of how different circuit implementations impact
the path-delay distribution, which has interesting applications
to approximate computing techniques such as overclocking.

REFERENCES

[1] S. Sapatnekar, “Static timing analysis,” in EDA for IC implementation,
circuit design, and process technology. CRC press, 2006, ch. 6.

[2] S. R. Nassif, “Modeling and forecasting of manufacturing variations,” in
Int. Workshop on Statistical Metrology, 2000, pp. 2–10.

[3] D. Blaauw et al., “Statistical timing analysis: From basic principles to
state of the art,” IEEE TCAD, vol. 27, no. 4, pp. 589–607, 2008.

[4] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in European Test Symp., 2013.

[5] K. Shi et al., “Accuracy-performance tradeoffs on an fpga through
overclocking,” in IEEE FCCM, 2013, pp. 29–36.

[6] ——, “Datapath synthesis for overclocking: Online arithmetic for latency-
accuracy trade-offs,” in DAC, 2014, pp. 190:1–190:6.

[7] D. H. C. Du et al., “On the general false path problem in timing analysis,”
in DAC, June 1989, pp. 555–560.

[8] B. Liu, “Signal probability based statistical timing analysis,” in DATE,
March 2008, pp. 562–567.

[9] C. P. Gomes et al., “Model counting,” in Handbook of satisfiability. IOS
press, 2009, ch. 20.

[10] R. E. Bryant, “Symbolic boolean manipulation with ordered binary-
decision diagrams,” ACM Computing Surveys, vol. 24, no. 3, 1992.

[11] F. Somenzi, “CUDD: CU Decision Diagram package release 2.5.1,”
University of Colorado at Boulder, 2015.

[12] J. Luu et al., “VTR 7.0: Next Generation Architecture and CAD System
for FPGAs,” ACM TRETS, vol. 7, no. 2, pp. 1–30, 2014.

[13] S. Yang, “Logic Synthesis and Optimization Benchmarks User Guide
3.0,” MCNC, Tech. Rep., 1991.

[14] Y. Rubner et al., “The earth mover’s distance as a metric for image
retrieval,” Int. J. of Computer Vision, vol. 40, no. 2, pp. 99–121, 2000.

