IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS. VOL. XX, NO. YY, 2019 1

Optimizing FPGA Logic Block Architectures for
Arithmetic

Kevin E. Murray*, Jason Luu*, Matthew J. P. Walker*, Conor McCulloughf, Sen Wang’, Safeen Huda*, Bo Yanf,
Charles Chiasson*, Kenneth B. Kent', Jason Anderson*, Jonathan Rose*, Vaughn Betz*
* Dept. of Electrical and Computer Engineering, University of Toronto
t Faculty of Computer Science, University of New Brunswick

Abstract—Hardened adder and carry logic is widely used
in commercial FPGAs to improve the efficiency of arithmetic
functions. There are many design choices and complexities
associated with such hardening including: circuit design, FPGA
architectural choices, and the CAD flow. However these choices
have seen little study, and hence we explore a number of pos-
sibilities. We also highlight front-end elaboration optimizations
that help ameliorate the restrictions placed on logic synthesis by
hardened arithmetic. We show that hard adders and carry chains
increase performance of simple adders by a factor of four or
more, but on larger benchmark designs that contain arithmetic
improve overall performance by 15%. Our results also show
that for complete application circuits simple hardened ripple-
carry adders perform as well as more complex carry-lookahead
adders. Our best non-fracturable LUT architecture with hard-
ened arithmetic yields 12% better area-delay product than ar-
chitectures without hardened arithmetic. We also investigate the
impact of fracturable LUTs and their interaction with hardened
arithmetic. We find that fracturable LUTs offer significant (12-
15%) area reductions, which are complementary to the delay
reductions of hardened arithmetic. Therefore our best fracturable
LUT architectures which use two bits of hardened arithmetic
achieve 25% better area-delay product than non-fracturable LUT
architectures without hardened arithmetic.

Index Terms—TField programmable gate arrays, Digital arith-
metic, Logic design, Design automation

I. INTRODUCTION

A key FPGA architecture question is which functions should
be hardened and which should be left for implementation in
the soft logic [1]. Hardening a function makes an FPGA more
efficient if the function occurs often in applications, and there
is a large advantage when it is implemented in hard, rather than
soft, logic. As adder-type arithmetic functions appear often and
hardened adders are much faster than soft adders, commercial
devices commonly have hardened adder and/or carry logic and
routing [2]-[5].

There are many degrees of freedom in the electrical and
architectural design of hard adder logic, and in the software
used to map a complete application to such structures. While
commercial devices use a wide variety of hardened adder
circuits and architectures (indicating there is no general agree-
ment on the best options), there has been little published work
that explores the trade-offs of different hardening choices, or
on the software flow used to map arithmetic to these structures.
We study a number of these choices and determine their impact
on the performance and area of both micro-benchmarks and
complete designs. Some examples include: First, how should
adders and LUTs interact? For instance, should there be fast

(but less flexible) adder inputs, or are flexible (but slower)
inputs coming from LUTs preferable? Second, what are the
trade-offs in terms of performance and area between large,
fast, multi-bit adders, and smaller, slower, but more flexible,
single-bit adders? Third, should adjacent hard adder units use
dedicated links for carry signals crossing soft logic block
boundaries (which constrains the placement problem) or use
the more flexible regular routing fabric? Fourth, how should
hard adders be integrated with a fracturable LUT (a large
LUT that can be split into two smaller LUTs)? Does this
effect how many bits of arithmetic should be associated with
each LUT? These are important questions an architect must
answer when embedding hard adders with soft logic, and we
present quantitative measurements of the impact of each of
these decisions.

Previous work in this area began in the early 1990’s, when
Hsieh et al. [6] described the Xilinx 4000 FPGA that had
soft logic blocks that were capable of implementing two
independent adder bits per block. They employed dedicated
carry logic and routing from adjacent logic blocks for the carry
signals. Woo [7] proposed adding additional flexibility to the
fast carry links between logic blocks to enable flexible tree-
based mappings of addition/subtraction/comparison functions.
Both Hseih and Woo targeted older FPGAs that had relatively
fewer and smaller lookup tables in the logic block compared
to the latest FPGAs.

Xing proposed implementing carry lookahead adders (in an
FPGA architecture that contains just ripple adders) by using
soft logic to do the carry lookahead operation [8]. His case
study on the Xilinx 4000 series FPGAs show that this ap-
proach is limiting because of the large area and delay penalty
that results when soft logic is involved in carry lookahead
computations. Hauck [9] evaluated different implementations
for FPGA adders including ripple carry, carry-skip, and tree-
based adders. He showed that a Brent-Kung adder achieves a
3.8 times speedup vs. the basic ripple carry adder for 32-bit
addition, at the expense of between 5 to 9.5 times more area
for the adder. Parandeh-Afshar has studied the implementation
of compressor trees in commercial architectures [10], and
proposed adding hardened compressors to soft logic blocks
to speed up multi-input addition with a focus on DSP and
video applications [11]. The benchmarks used in this study
appear to be on the order of a few hundred 6-LUTs [12].

FPGA vendors currently choose different hard arithmetic ar-
chitectures inside their soft logic blocks. The Xilinx Ultrascale

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS. VOL. XX, NO. YY, 2019 2

FPGA family [13] contains a basic ripple carry architecture
where addition can only start on every 8" adder bit (up from
every 4" bit in Virtex 7 [5]). The interaction between the
soft logic and the adder is flexible; the adder can either be
driven by a 6-LUT and a logic block input pin or be driven
by two 5-LUTs (fractured from the 6-LUT) with shared inputs.
Each fracturable 6-LUT drives one bit of arithmetic. The
Intel Stratix V architecture uses a two-level carry-skip adder
architecture [2]. Each soft logic block contains ten 2-bit carry-
skip adders that can be cascaded with dedicated links. Between
two logic blocks, there is an additonal carry-skip stage that
can skip 20 bits of addition. Lewis claims that this adder
results in both a delay improvement and an area reduction
compared to the basic ripple carry adder, as the increase in
logic gates necessary for the carry-skip feature is more than
offset by the area reduction made possible via transistor size
optimization. Each fracturable LUT in Stratix V drives two bits
of arithmetic, with each adder input driven by a 4-LUT with
input sharing constraints [14]. The recent Stratix 10 family
has a similar arithmetic structure but has removed the 20-bit
carry skip hardware [15]. Outside of microbenchmarks, neither
vendor has published, in depth, the impact of the major design
decisions for their hard adder and carry chain architectures.

Prior published work on hardened arithmetic focused on the
implementation of arithmetic structures, and evaluated results
on microbenchmarks like adders and adder trees or very small
designs. A full design, on the other hand, imposes many
other demands on the FPGA and its CAD flow. We seek to
measure the impact of different hard adder choices not only
on microbenchmarks, but also on complete designs with a full
CAD flow.

We published an earlier version of this work in [16]. This
paper extends that work in two important ways by including
1) a new study on fracturable LUT architectures and 2) a
new investigation of arithmetic-heavy benchmarks that exhibit
characteristics in between adder microbenchmarks and general
benchmarks. We also perform additional analysis of how hard
adders change a circuit’s timing path delay distribution.

This paper begins with a description of the base FPGA ar-
chitecture (Section II), hard arithmetic structures (Section III),
and CAD (Section IV) to handle the unique properties of
carry chains. Afterwards, we discuss the effects of hardened
arithmetic starting with the pure-adder microbenchmarks (Sec-
tion V), arithmetic-heavy kernels (Section VI), and then full
application benchmarks (Section VII).

II. BASELINE ARCHITECTURES

The base FPGA architecture used in this study is designed
in a 22nm CMOS process, and is a heterogeneous architecture
with soft logic blocks, simple I/Os, configurable memories and
fracturable multipliers.

The internal connectivity of the blocks is provided by a
50% depopulated crossbar that connects block inputs and BLE
outputs to the BLE inputs. We have chosen a depopulated
crossbar as this is common in most commercial devices [2],
[5]. The depopulated crossbar is composed of four, smaller,
fully populated crossbars as designed by Chiasson [17]; this
depopulation results in the soft logic block inputs being

TABLE 1
ROUTING ARCHITECTURE PARAMETERS.
Parameter Value

Cluster input flexibility (Fc;y,) 0.2
Cluster output flexibility (Fcout) 0.1

Switch block flexibility (Fs) 3
Wire segment length (L) 4
Switch Block Type Wilton
Interconnect Style Single-driver
cin
Soft Logic Block cin
T BLE

40
l';’; 50%
General depopulated
Inputs crossbar .

CéLt
Fig. 1. The base soft logic block consists of 8 BLEs connected by a 50%
depopulated crossbar. Each BLE consist of a LUT and a flip-flop with fast

feedforward and feedback paths reflecting what is commonly found in state-
of-the-art FPGAs.

General
Outputs

cout

divided into four groups of ten logically equivalent pins. The
input pins are evenly distributed on the bottom and the right
sides of the logic block, as this simplifies the layout of the
FPGA.

Table I gives the routing architecture parameters of the
base architecture. In addition to logic blocks the architec-
ture includes hard 32K-bit RAM blocks (with configurable
width/depth) and DSP blocks (36x36 bit multipliers which can
be fractured down to two 18x18 or four 9x9 multipliers). These
values are chosen to be in line with the recommendations of
prior research [17], [18].

A. Non-Fracturable LUTs

Figure 1 illustrates the baseline non-fracturable soft logic
block used in this study, which contains eight Basic Logic
Elements (BLEs), 40 general inputs, eight general outputs,
one cin pin and one cout pin. The BLE consists of a
non-fracturable 6-input LUT with an optionally registered
output pin. There are cin and cout pins into and out of
the BLE, respectively, to drive a hard adder. The specific
details are described in Section III below. There is also a
fast path from the flip-flop output to the LUT input. We also
consider architectures that do not contain hardened arithmetic,
and hence have neither cin nor cout pins.

Our choice of following industry trends on using larger
LUTs has interesting implications in terms of the efficiency of
addition. When implementing arithmetic using only 4-LUTs,
every bit of addition requires one LUT for the sum and
another LUT for the carry. With 5-LUTs and larger, a soft
implementation of arithmetic can be more efficient. Figure 2
shows how three LUTs can implement 2-bits of addition. With
fracturable 6-LUTs, this benefit grows even larger as fracturing
into the two 5-LUTs mode allows implementation of both the
2-bit carry and a sum operation in a single fracturable 6-LUT.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS. VOL. XX, NO. YY, 2019 3

Co

3T —W s
aD
bO

st W s

©

st —W g

]
]
|
]
1
1
1
]
]
I
]
]
]
|
1 1
1
1
]
]
I
]
]
]
]
1
1
1
]
|

Fig. 2. 5-LUTs and larger allow for more flexibility in technology-mapping
addition.

1 1
1 1
| 1
1 1
[:
1 ff 1

Fracturable D> 1

T 1 Outputs

Inputs

Fig. 3. A baseline fracturable Basic Logic Element (fBLE) which contains
one fracturable LUT (fLUT) with optionally registered outputs.

B. Fracturable LUTs

FPGAs have traditionally used non-fracturable LUTSs as
described above. However many modern commercial FPGA
soft logic blocks now employ fracturable LUTs (fLUTs)
to obtain the performance advantages of 6-LUTs with the
area advantages of 4-LUTs [19]. Some academic work has
questioned whether the additional flexibility of fLUTs is worth
their cost [20]. It is notable however, that [20] did not consider
the impact of hardened arithmetic, which we find to be
significant. Fracturable LUTs change the interaction of soft
logic with hard adders and carry chains, so it is important to
evaluate their combined effect.

As much as possible, our fLUT architectures reuses the
same architecture as the non-fracturable case so that we
may compare between these architectures. Instead of BLEs,
our baseline fLUT architecture uses fracturable Basic Logic
Elements (fBLEs) which, as shown in Figure 3, contains one
fracturable LUT (fLUT) with optionally registered outputs.
Unlike the baseline non-fracturable architecture (Figure 1),
which had only one output per BLE, each fBLE has two
independent outputs. Therefore the internal crossbar inside the
soft logic block has an additional eight inputs (local feedbacks)
compared to the non-fracturable case, and the soft logic block
has 16 outputs instead of 8.

Figure 4 shows the baseline fLUT. This fLUT can operate
either as one 6-LUT or two 5-LUTs with four shared inputs.

1 Fracturable LUT '
i Mode: two lut5 1
A :
1 4.
' i luts

! Fracturable LUT
| Mode: one luté

£ |
=

lut5

Fig. 4. Baseline fLUT which operates as either one 6-LUT or two 5-LUTs
with four shared inputs.

TABLE II
DESIGN CHOICES EXPLORED
Architecture Adder Balanced Chain LUT Bits per
Name Prim. Flex. Style LUT
Soft N/A N/A N/A LUT O
Ripple No CLB Carry Ripple Yes Soft LUT 1
CLA No CLB Carry CLA Yes Soft LUT 1
Ripple Ripple Yes Hard LUT 1
CLA CLA Yes Hard LUT 1
UCLA CLA No Hard LUT 1
URipple Ripple No Hard LUT 1
frac_soft N/A N/A N/A fLUT 0
frac_ripple Ripple Yes Hard fLUT 1
frac_2ripple Ripple Yes Hard fLUT 2
frac_uripple Ripple No Hard fLUT 1
frac_2uripple Ripple No Hard fLUT 2

This choice of shared inputs is between that of a Virtex-style
fracturable LUT [13], where all 5 inputs of the 5-LUTS are
shared, and an Intel-style fracturable LUT [14], where 2-inputs
of the two 5-LUTs are shared.

C. Area and Delay Models

Transistor-level design of the base soft logic blocks and
routing architecture are performed with the COFFE tool [17]
and a 22nm CMOS technology. The architecture uses pass
gates; statically controlled pass gates are gate-boosted by
0.2V [21]. The architecture, area, and delay models for the
memories and multipliers are scaled to 22nm from the com-
prehensive 40nm architecture in the VIR 7.0 release.

III. HARD ADDER AND CARRY CHAIN ARCHITECTURES

To evaluate the impact of including hard adders in FPGA
logic blocks we explore different design choices relating to
adder implementation and interaction with the rest of the logic
block. Table II summarizes the different design choices, which
are described in detail below.

A. Adder Primitive

To ensure we fairly compare various hard adder and carry
chain architectures, we carefully electrically designed two hard
adder primitives and hand optimized them at the transistor
level. The first adder primitive is a basic 1-bit full adder. In a
soft logic block, eight of these full adders are linearly chained
together to form a ripple carry chain. Table III shows the
properties of the 1-bit hard full adder used in this study. Area
is measured as minimum width transistor arcas (MWTAS),
using the transistor drive to area conversion equations from
Chiasson [17]. The adder circuitry, LUTs and routing are all
designed with a similar goal of minimizing the area-delay
product of the FPGA, and the cin to cout path of the adder
is particularly optimized for delay as it occurs n-1 times on
an n-bit adder.

The second adder primitive is a 4-bit carry-lookahead adder
(CLA). Each logic block contains two of these 4-bit adders
chained in a ripple carry fashion. Table IV shows the properties
of the 4-bit carry lookahead adder used in this study. The
carry lookahead optimization allows for a faster carry path
(20 ps) compared to a ripple of four 1-bit adders (44 ps)
when performing a 4-bit addition. The CLA design trades off
flexibility (as some bits are wasted if the desired adder length
is not divisible by 4) and area in exchange for speed.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS. VOL. XX, NO. YY, 2019 4

Inputs

Output

6-LUT
Input

cout

Fig. 5. A LUT with balanced adder interaction where both adder inputs are
driven by 5-LUTs.

Inputs Output

Fig. 6. A LUT with unbalanced adder interaction where the 6-LUT drives
only one adder input.

AT ST 57

2

cout s3

Fig. 7. 4-bit CLA with balanced LUT interaction.

TABLE III
PROPERTIES OF THE 1-BIT HARD ADDER.
Property Value
Area 47.7 MWTAs
Delay cin to cout 11 ps
Delay sumin to cout 56 ps
Delay cin to sumout 30 ps
Delay sumin to sumout 83 ps
TABLE IV
PROPERTIES OF THE 4-BIT CARRY LOOKAHEAD ADDER.
Property Value
Area 257 MWTAs
Delay cin to cout 20 ps
Delay sumin to cout 80 ps
Delay cin to sumout LSB 25 ps
Delay cin to sumout MSB 30 ps
Delay sumin to sumout LSB 65 ps
Delay sumin to sumout MSB 82 ps

B. Adder Input Balancing

Figure 5 shows one way the LUT and adder (within a BLE)
may interact. Here, we make use of the observation that a 6-
LUT is constructed with two 5-LUTs and a mux. If that mux is
dropped, then the adder can be driven by two 5-LUTs, where
the LUTs share inputs. If the adder is not used, then another
mux can be used to produce the 6-LUT output. We call this
the balanced LUT interaction, and its underlying rationale is
that a symmetric amount of prior logic for each adder input
may be the most appropriate architecture. Example circuits that
may benefit from this architecture would be applications where
multiplexers select the inputs to an adder. Similar interaction
for the CLA is shown in Figure 7.

Figure 6 shows another LUT-adder interaction architecture
that we will explore. Here, the 6-LUT output drives one of
the adder inputs and the other adder input is driven by one
of the 6-LUT inputs. As with the previous case, if the adder
is not used, then another mux can be used to select the 6-
LUT output. We call this the unbalanced LUT interaction.
We model each additional SRAM-controlled 2-to-1 mux (one
per BLE for the balanced LUT interaction, two per BLE for
the unbalanced LUT interaction) as having 22 ps of delay and
occupying 15 minimum width transistor areas (including the
SRAM configuration bit). The underlying rationale for this
architecture is that there might be an advantage to allowing
a faster input into one side of the adder, which would be
appropriate when speed was an issue.

C. Carry Chain Flexibility

Another class of interesting architectures are those with
hardened adders but no dedicated carry link between logic
blocks. Here, both the cin and cout pin are treated as though
they are regular input and output pins, respectively, in the
inter-block routing architecture. Within the logic block, the
carry signals maintain the same restricted connections. For
architectures that have a dedicated carry link, the carry link
has a delay of 20 ps. For those without a dedicated cin/cout
we add the usual circuitry to allow them to access the right
and bottom side channels of the logic block.

There are a few different ways to implement the starting
location of a multi-bit addition. One can place a mux at every
carry link that can select from logic-0, logic-1, or a carry
signal of a previous stage, but this can incur a significant delay
penalty because every carry link must now go through a mux.
Alternatively, one can place these muxes only on selected carry
links, thus minimizing the overhead of excessive muxing, but
at the cost of having fewer locations where an addition may
begin. This latter approach is typical in commercial devices.
Alternatively, the responsibility for starting an addition can
be implemented in a front-end CAD tool — the tool can pad
the addition with a dummy adder before the LSB (whose
addends are fed by constants) which generates a 0 or a 1
cin for addition and subtraction, respectively. We employ this
approach in this work.

D. Bits of Addition per LUT
For fLUT architectures each fLUT can produce two inde-

pendent outputs. This makes it possible to include a second
bit of addition in the fLUT with minimal cost. Figure 8

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS. VOL. XX, NO. YY, 2019 5

1-bit add
Dual 5-LUT Mode

2-bit add
! Dual 5-LUT Mode then Further Fracture

|

Dual
4-LUT

luts

— Dual
4-LUT

luts

Fig. 8. fLUT with adder 1-bit vs. 2-bit balanced.

Verilog Circuits

FPGA
Architecture
Description

File

Quality of Results

Fig. 9. The VIR CAD flow
contrasts the balanced 1-bit adder fLUT on the left with the
balanced 2-bit adder fLUT on the right. The balanced 2-bit
adder requires that each 5-LUT further fracture down to two 4-
LUTs, with most inputs shared, in order to supply the requisite
four addends to the adder.

IV. CAD

In this section, we describe the CAD tools we use and
the significant enhancements they required to explore the
architectures described in the previous sections. We can not
use commercial FPGA CAD tools to evaluate our proposed
architectures, as they are closed-source (and hence can not
be modified), and do not support re-targeting to proposed
FPGA architectures. Instead, we employ the VTR 7.0 [22]
CAD flow, which can target a wide range of user-described
FPGA architectures. The VTR CAD flow is open-source which
allows us to modify and enhance it to ensure it optimizes well
for the architectures we will evaluate.

The VTR CAD flow is illustrated in Figure 9. The two key
inputs are a circuit described in Verilog and a description of the
FPGA architecture in a human-readable text file. The circuit is
elaborated by Odin II and ABC [23] performs logic synthesis
to produce a technology-mapped netlist of device atoms such
as LUTs, FFs and basic multipliers. VPR then packs these
atoms into logic, RAM and DSP blocks, places those blocks,
and routes connections between them. Finally, VPR computes
the area and delay of that final, physical mapping. Below we
detail the modifications and enhancements required to enable
hardened adders and carry chains.

A. Elaboration and Logic Optimization

In our initial experiments targeting hardened adders, we
discovered a surprising and unexpected downside: when front-
end elaboration inserts hardened adders into the circuit, it
creates a boundary in the elaborated circuit that cannot be
crossed by ABC’s logic synthesis. Furthermore, the hardened
logic is a “black box” and hence invisible to ABC and cannot
be optimized. This boundary reduces the effectiveness of basic

TABLE V
EFFECT OF ODIN II OPTIMIZATIONS. ALL VALUES ARE NORMALIZED TO
THE BASE CASE WITH NO OPTIMIZATIONS.

Circuit DHR ULR Both Both

CLB CLB CLB Delay

arm_core 0.97 0.95 0.94 0.92
bgm 1.00 0.80 0.80 0.87
blob_merge 0.91 0.99 0.91 0.55
boundtop 0.92 099 090 1.00
LUSPEEng 0.84 099 0.83 1.01
LU32PEEng 0.83 099 082 098
mcml 1.00 0.91 0.91 0.94
mkSMAdapter4dB 1.00 089 0.89 092
or1200 0.90 092 0.86 1.09
raygentop 0.93 094 087 092
sha 1.00 099 099 1.03
stereovision0 1.00 0.80 0.80 0.95
stereovision1 0.99 079 079 098
stereovision2 1.00 0.97 0.97 1.01
geomean 0.95 0.92 0.88 0.93
stdev 0.06 0.08 0.06 0.13

logic synthesis optimizations such as common sub-expression
elimination. We observed that ABC was able to reduce the
number of soft adders when these boundaries were not in
place, and that multiple copies of adders with the same inputs
were left intact when hardened adders were used. We also
attempted to use the “white box” feature of ABC [24]; while
this made the functionality of the hard logic visible, it also led
to ABC converting it into regular soft logic and hence was not
suitable.

To compensate for reduced down-stream optimization, we
implemented two new optimizations in Odin II: the removal
of duplicate hard adders and unused logic removal. Both these
optimizations are generalized to all hard blocks and are not
exclusive to hard adders. Duplicate hard block reduction is a
simplified version of common sub-expression elimination. If
all of the input pins of any two hard blocks anywhere in the
circuit are found to be the same, the duplicate hard block can
be removed and its fanout attached to the other hard block.

In a typical CAD flow, logic synthesis is responsible for
sweeping away unused logic because synthesis optimizations
can sometimes reveal unused logic. ABC is unable to do this
for hard blocks as it optimizes exclusively based on logic
expressions, and views hard blocks as black boxes. Hence we
augmented Odin II to sweep away unused hard and soft logic
based purely on circuit connectivity.

We quantified the impact of the new optimizations, using
the experimental methodology described subsequently in Sec-
tion VII but with adders always hardened. These experiments
covered four cases for the optimization settings in Odin II:
None, DHR (duplicate hard logic removal), ULR (unused logic
removal), and All (both DHR and ULR enabled).

Table V shows the impact of these optimizations on the
benchmark circuits described in Section VII; most circuits
benefit from both optimizations. In this work we use the
geometric average to summarize results, as it equally weights
each benchmark. On average, duplicate hard logic removal
and unused logic removal reduce the logic blocks required by
a circuit by 5% and 8%, respectively, while their combination
reduces logic blocks required by 12% and the critical path
delay by 7%.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS. VOL. XX, NO. YY, 2019 6

1.20
1.15

5
£ 110
[
29 105
O]
§ & 1.00 1 A
= 0.95
T O
g £ 090 ~
2 g P
0.80 : : : : : ,
0 10 20 30 40 50 60 70

Hard Adder Threshold (bits)

Fig. 10. Circuit speed vs. hard adder threshold. Results are the average across
14 benchmarks and normalized to the soft implementation.

1.20
1.15
1.10 S~
1.05 \

h o S * ry

1.00
0.95
0.90
5 0.85
2

0.80

malized Geomean Area

0 10 20 30 40 50 60 70
Hard Adder Threshold (bits)

Fig. 11. Average total area of different hard adder thresholds normalized to
the soft architecture.

B. Threshold of When to Use Hard Adders

While using hardened adder and carry logic is clearly
beneficial for wide arithmetic structures, for small adders the
flexibility provided by soft logic might actually prove superior
as hard adders impose a boundary across which it is difficult
for logic synthesis to optimize. We define the hard adder
threshold as the size, in bits, of addition/subtraction above
which the CAD flow will implement it with hard adders and
below/equal to which the function is implemented in soft logic.

Figure 10 shows the impact on delay of different hard adder
thresholds when we target the ripple carry architecture. The
x-axis shows the hard adder threshold in bits. The y-axis
shows the geometric mean of the delay over the 14 circuits
of Table V. There is a general trend towards achieving a
minimum mean delay at a threshold of around 12 bits.

Figure 11 shows the area impact of different hard adder
thresholds. The x-axis is again the hard adder threshold, while
the y-axis shows geometric mean of the total area for all
benchmarks. The area consumed using an architecture with
hard adders is on average more than that of an equivalent
architecture without carry chains. We see a gradual drop in
area with an increasing hard adder threshold; area drops from
10% above the soft adder architecture with a hard adder thresh-
old of 0, to 3% above with a threshold of 12. Interestingly,
preliminary measurements we made on commercial FPGAs
showed using carry chains in the CAD flow reduced area;
we therefore suspect that with further improvements in logic
synthesis the remaining 3% area penalty could be eliminated.

Considering area and delay, the best hard adder threshold is
approximately 12 bits. This threshold is used for all subsequent
results unless otherwise noted.

C. Packing

The packing stage of the CAD flow is responsible for
grouping technology-mapped atoms such as LUTs, hard adder
bits, flip-flops, and memory slices, into complex logic blocks.

Fig. 12. Example of transitive connections.

When a logic block contains carry chains, adder atoms must
be placed inside the logic block in an order that respects the
restrictive carry links. The packer should also make use of
the architecture-specific features that allow the LUTs and flip-
flops to interact with the adder.

AAPack, the packer inside VPR 7.0 is an interconnect-
aware packing algorithm [25] that recognizes and respects
the various pin constraints that arise with different LUT and
adder interactions. The carry chain itself is specified using
the “molecule” feature in AAPack that allows the architect to
specify how certain atoms must be packed together.

In our initial experiments with microbenchmarks (mostly
pure adders fed by, and feeding into registers), we discovered
that the packing algorithm in VPR 7.0 was imperfect in a
number of cases. Figure 12 shows an example of the simple
input circuits that caused a problem. The adders in this figure
form a carry chain so they will be packed together into a logic
block. If the flip-flops cannot be packed into the same logic
block as the adders, then the packer will see these flip-flops
as completely unrelated to each other because they do not
share common nets. These flip-flops may then be separated
and packed with other logic, which is undesirable as it makes
it impossible to place all the logic clusters containing these
registers close to the adder. We modified the packer to consider
atoms that have transitive connectivity with the current logic
block being packed. In this particular example, the flip-flops
that drive the adder are transitively connected via the carry
chain so the packer gives them higher attraction to each
other than to other unconnected logic. With this modification,
circuits such as that illustrated in Figure 12 were packed well.

D. Placement and Routing

VPR 7.0 has place-and-route functionality for carry chain
exploration. The architecture description file allows any logic
block pin to connect to the general inter-block routing and/or
to use a special dedicated connection to a specific pin on
a specific other logic block. In this work, when we explore
dedicated carry chain links they run vertically — the cout pin
of one logic block can only connect to the cin pin of the logic
block immediately below it. When such dedicated connections
are specified, VPR 7.0 automatically not only generates the
appropriate edges in the routing resource graph to represent
this direct routing possibility, but also constrains the placement
algorithm to keep any blocks that are part of a hardened carry
chain in the correct relative position (in our case vertically
adjacent) throughout placement.

For logic blocks without hard carry chains, it is possible
to change which BLE performs which function during the
routing stage of the CAD flow — making the outputs logically
equivalent. However if hard carry chains are used the order
of BLEs is fixed, and the outputs of BLEs using their carry

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS. VOL. XX, NO. YY, 2019 7

function are not logically equivalent. VPR 7.0, does not allow
us to selectively switch off output pin logical equivalence in
cases when the carry links are used by the BLEs. Hence, for
correctness, we do not allow any BLE swaps, thus removing
all output logical equivalence. Turning off logical equivalence
for all outputs will lead to a slight pessimism on the routability
of the soft logic only architecture vs. that of the hard adder
architectures. To quantify this we evaluated the soft logic only
architecture both with and without output equivalence enabled,
and found the impact on delay and area was < 3% on the VTR
benchmarks. Since the effect is small (compared to the impact
of architectural modifications) this restriction will not change
the architecture conclusions. Furthermore, to compensate for
the restriction, each output pin can directly access two sides
of the logic block, and hence both a vertical and a horizontal
channel, ensuring the pins still have access to a diverse set of
routing wires.

V. MICROBENCHMARK RESULTS

In this section we explore the impact of the different ways of
supporting arithmetic in an FPGA architecture when evaluated
on simple adder microbenchmarks. Here, each circuit is an
adder of N bits, where N ranges from one to 127. Both the
inputs and outputs of the adder are registered, so the critical
path delay measured is a direct function of the adder combi-
national logic delay. These registered adders are implemented
using the flow described in Section IV. In this section the hard
adder threshold (Section IV-B) is disabled in order to measure
the impact of the different architectures at small bit widths.

Figure 13 shows the impact on critical path delay vs. width
of addition, for the Soft, Ripple and CLA architectures, where
the critical path delay is averaged over three placement seeds.
In addition, two variants of the Ripple and CLA architectures
are included, labelled no CLB carry, in which the general-
purpose interconnect is used to implement carry links be-
tween soft logic blocks, rather than using dedicated carry
links. Figure 14 shows the results for the fracturable LUT
architectures. The unbalanced architectures are not included
here as their performance difference vs. balanced is negligible
on the microbenchmarks.

These results show trends that we generally expect, in
that delay grows linearly with adder size, and that the more
hardened architectures are faster.

In the extreme case, for 127 bit addition, it is interesting to
note that a pure soft adder is ten times slower than the fastest
(CLA) adder. For 32-bit addition, the hard adders provide
a 3.4-fold speedup over the soft adder. The no CLB carry
architectures have delay values in between fully hard and fully
soft adder architectures. While the CLA architecture is the
fastest of all, ripple carry is only 19% slower for 32 bit adders,
and 42% slower even for 127 bit addition. A ripple architecture
can sustain 400 MHz operation for even a 96-bit addition.

When adders are implemented in soft logic, CAD noise
can have a significant impact on delay. The effect of this
noise is evident in the figure when observing the delay of
additions ranging from 17 bits to 25 bits for the soft logic
architecture, where delays for additions of similar size can
vary significantly as a result of CAD (in this case packer)

16

14 —-Soft

—<Ripple No CLB Carry
CLA No CLB Carry

-=-Ripple

CLA /

B
ISERN)

Delay (ns)

o N B OO

0 20 40 60 80 100 120 140
Size of Addition (# bits)

Fig. 13. Delay vs. adder length for various non-fracturable architectures.

18

16 -&-frac_soft -#-frac_2ripple -@- frac_ripplel

14
12

Delay (ns)

0 20 40 60 80 100 120 140
Size of Addition (# bits)

Fig. 14. Delay vs. adder length for various architectures with fracturable
LUTs.

noise. For hard adders, the lack of CAD flexibility forces
a predictable physical design, thus greatly reducing CAD
noise for these microbenchmarks. The combination of higher
and more predictable performance provided by hard adders,
especially those with hard inter-CLB links, is very desirable.

The data from this experiment also shows that a 3-bit
addition implemented in soft logic is actually slightly faster
than any of the hard-logic adders, further motivating the CAD
hard adder thresholds described in Section IV-B.

Table VI shows the tile area for a logic block (including
both inter and intra-block routing) in each architecture. Here
we observe that the inclusion of hard adders increase tile area
by < 2.5% over their respective baseline architectures. The
delay, logic block count and area for implementing a 32-bit
adder are also shown in Table VI. The architectures with hard
adders are all substantially faster than the soft architectures,
they also use fewer CLBs than the baseline Soft architecture
and hence (with the exception of frac_ripple and frac_uripple)
are more area efficient.

TABLE VI
32-BIT ADDER DELAY & AREA.

32-bit Addition

. Tile Area Delay Total Area
Architecture (10 MTWA) (ns) CLBs (10 MTWA)
soft 19.84 3.94 18 357.06
cla 20.25 0.93 16 324.05
ucla 19.92 0.83 16 318.77
ripple 20.14 1.14 16 32225
uripple 19.90 1.03 16 318.34
frac_soft 23.06 3.74 14 322.77
frac_ripple 23.06 1.06 16 368.92
frac_uripple 23.37 1.15 16 373.86
frac_2ripple 23.40 1.08 14 327.64
frac_2uripple 23.62 1.01 14 339.71

Tile Area is the geomean across application benchmarks (Sec-
tion VII) and so includes both logic and realistic routing area.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS. VOL. XX, NO. YY, 2019 8

14 o x%ﬁ
12 @

@

—o—cla

—e—ripple

Critical Path Delay (ns)

4 soft

|| At

0 10 20 30 40 50 60
Size of Addition (# Bits)

Fig. 15. Delays across the architectures on depth 3 adder trees.

—m— frac_soft

—e— frac_2ripple

—e— frac_ripple

Critical Path Delay (ns)

Size of Addition (# bits)

Fig. 16. Delays across the architectures on depth 3 adder trees.
VI. ARITHMETIC KERNEL RESULTS

This section explores the impact of hardened adders and
carry chains on arithmetic kernels that are more complex
than a pure adder, but would still only be part of a full user
application. Intuitively, we expect that when a circuit becomes
more complex, with interactions between different types of
logic, then the differences between the different architectures
may be reduced. The hard adder threshold (Section IV-B) is
disabled in this section to enable evaluation of the different
architectures at small bit widths.

A. Adder Trees

Adder trees are frequently used to implement functions like
filters and dot products. Figures 15 and 16 shows the perfor-
mance of a depth three adder tree (which can add 8 numbers)
for non-fracturable and fracturable architectures respectively.
The critical path now consists of the concatenation of several
ripple carry stages and 2 or 3 input to sumout stages. Each
LUT before an adder input must be configured as a wire,
so the LUT is wasted. The performance of the balanced and
unbalanced architectures are the same; hence only balanced is
shown. The hard carry lookahead adder is no faster than the
ripple adder for these adder trees, as now the sum-generation
logic has a larger impact. All the hard implementations are
faster than the soft implementation for adders of 4 or more
bits, with the gain widening to 4x at 48 bits for depth-3
adder trees. The soft implementation uses essentially the same
number of logic blocks as the hard versions for adder trees
with 8-bit or smaller additions, as the adder trees provide more
opportunities for a synthesis tool to make use of the 6-LUTs
than a simple adder does. Again this highlights that using soft
logic for small adders is a very reasonable choice. However,
for large additions of 48-bits, soft logic requires 67% more
logic blocks than the hard architectures.

B. Multiplication by a Constant

Another important arithmetic kernel is multiplication by a
constant, which can be efficiently implemented using addition,
subtraction and wired-shifts. These microbenchmarks imple-

TABLE VII
GEOMETRIC MEAN OF DELAY AND NUMBER OF CLBS FOR CONSTANT
MULTIPLICATION (128 RANDOMLY SELECTED CONSTANTS).

Arch Crit Delay (ns) Num CLB
soft 6.68 21.9
cla 3.07 17.8
ucla 2.95 17.8
ripple 3.28 17.5
uripple 3.14 17.5
frac_soft 6.62 15.4
frac_ripple 3.39 18.3
frac_uripple 3.70 20.0
frac_2ripple 3.54 10.1
frac_2uripple ~ 3.79 12.5

ment 16-bit multiplication using different constants; the inputs
and outputs to the combinational multiplier are registered.

Table VII shows the geometric average of performance
and number of CLBs for different architectures across 128
multiply-by-constant circuits. The soft adder architecture is
over twice as slow as the hard adder architectures, the same
ratio as that of the 16-bit pure adder benchmark. The carry-
lookahead architectures are 7% faster than the single-bit adder
ones, again matching the 16-bit pure adder benchmark. The
unbalanced hard adder architectures are slightly faster than
the balanced architectures, as the constant multiplier circuits
have some critical paths that are longer than others and the
unbalanced architecture can give slightly faster resources to
these paths. Hard adders reduce CLB count versus soft adders
by approximately 24%.

Both the fracturable and non-fracturable architectures with
hard adders improve critical path delay. However the results
for logic block counts are quite different. The soft fracturable
architecture uses fewer logic blocks than the non-fracturable
soft architecture and less than the non-fracturable architec-
tures with hardend adders. Interestingly, the 1-bit fracturable
LUT architectures use more logic blocks. This is due to the
complexity of the logic block causing more registered input
opportunities to be missed by the CAD tool. However, the 2-bit
fracturable LUT architectures are substantially more efficient,
using significantly fewer logic blocks than all other archi-
tectures (up to 42% compared to non-fracturable hardened
architectures and 34% compared to the baseline fracturable
architecture) while achieving similar delay.

C. FIR Filters

FIR filters are widely used in DSP applications, are rich
with arithmetic, and are well suited for implementation on
FPGAs. We study the impact of hardened adders and carry
chains on direct-form FIR filters with 18-bit word widths that
consist of shift registers of input data feeding DSP blocks that
in turn feed adder trees. We vary the number of taps on the
filter and compare the results of pipelining vs. no pipelining
in the adder tree.

Figures 17 and 18 show the effect on critical path delay
as we increase the number of taps of a combinational FIR
filter for non-fracturable and fracturable architectures respec-
tively. Only the balanced hard architectures are shown as the
unbalanced variants have essentially the same performance.
Figures 19 and 20 shows the same effect with FIR filters with
deeply pipelined adder trees. For the non-pipelined filters, hard
adders are substantially faster than soft adders, but the various
hard adder architectures show almost identical performance.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS. VOL. XX, NO. YY, 2019

10 W soft
8 —e—ripple
T my

0 10 20 30 40 50 60

—o—cla

Critical Path Delay (ns)

Number of Taps

Fig. 17. Delays across the architectures on non-pipelined FIR filters.

—=— frac_soft
—e— frac_2ripple
frac_ripple

Critical Path Delay (ns)
s
}%

0 15 20 25 30 35 40 45 50 55

Number of Taps

Fig. 18. Delays across the architectures on FIR filters with no pipelining.

However the gap between soft and hard adders is not as
large for the fracturable architectures. With the pipelined
filters, hardened carry chains do not improve speed over soft
arithmetic as the critical path has moved into the multipliers.

Figures 21 and 22 shows the effect on logic block count
as we increase the number of taps of non-pipelined FIR
filters for the non-fracturable and fracturable architectures
respectively. Figures 23 and 24 shows the same effect with
pipelining. Architectures with hard adders show lower CLB
counts than soft adders, but the absolute CLB counts are
quite different between the fracturable and non-fracturable
architectures. Interestingly both frac_soft and frac_ripple are
quite close in CLB count, but both are substantially lower
than the non-fracturable architectures. This underscores our

6

IS

w

soft

—e—ripple

~

—o—cla

Critical Path Delay (ns)

IR
g

0 10 20 30 40 50 60
Number of Taps
Fig. 19. Delays across the architectures on FIR filters with pipelined adder
trees.

B
S
3
s N —.— frac_soft
Q 3 —e— frac_2ripple
3 (X) >(X) >X) >(X) frac_ripple
T 2 A
[
£ @ ®

1 @

10 15 20 25 30 35 40 45 50 55

Number of Taps

Fig. 20. Delays across the architectures on FIR filters with pipelining.

400

350

300

250
soft

Num CLB

200
—e—ripple
150 —e—cla

100

0 10 20 30 40 50 60
Number of Taps

Fig. 21. Logic block counts across the architectures on non-pipelined FIR
filters.
250 I I I I
200 ‘) A)
0 a e
8
g 10 —a— frac_soft
“é —e— frac_2ripple
£ 100 frac_ripple
£
5
=
50
10 15 20 25 30 35 40 45 50 55

Number of Taps

Fig. 22. Logic block counts across the architectures on FIR filters with no
pipelining.

earlier observation that fracturable LUTs are much more area
efficient at implementing soft adders than non-fracturable, thus
lowering the area curve. Notably, using 2-bits of addition per
fLUT is again the most efficient. This indicates that two bits
of arithmetic achieves better utilization of the fLUT in front
of the adders than the one bit case.

VII. APPLICATION CIRCUIT RESULTS

We now focus on evaluating the different hard adder vari-
ants using full application benchmarks. These allow us to
evaluate the overall quality of the different implementation
approaches, considering overall delay and area. Architectures
which minimize the area-delay product are the most efficient.
The complete design benchmarks we use are from the VIR 7.0

600
N

500 (89

400 ®
o
3
o
£ 300 soft
5
2 —e—ripple

200 —e—cla

100

0
0 10 20 30 40 50 60

Number of Taps

Fig. 23. Logic block counts across the architectures on pipelined FIR filters.

@®

250
. @
|
o 200 —=— frac_soft
S —e—frac_2ripple
£ 150 frac_ripple
E
5
= 100

50

0

10 15 20 25 30 35 40 45 50 55

Number of Taps

Fig. 24. Logic block counts across the architectures on FIR filters with
pipelining.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS. VOL. XX, NO. YY, 2019 10

TABLE VIII
BENCHMARK STATISTICS WHEN MAPPED TO RIPPLE ARCHITECTURE.
Circuit Num Max Avg Add/LUT
6LUTs Add Add Ratio
Len Len

bgm 5438 25 9.3 0.17
blob_merge 3754 13 120 048
boundtop 309 19 7.2 0.11
LUSPEEng 3241 47 11.1 0.15
LU32PEEng 8235 47 11.9 0.11
meml 24302 65 475 0.26
mkSMAdapter4dB 431 33 6.9 0.24
or1200 534 65 239 019
raygentop 580 32 11.8 0.33
sha 309 33 240 0.15
stereovision0 2920 18 112 035
stereovision] 2388 19 6.4 0.30
stereovision2 13843 32 239 1.26
geomean 2109 31 13 0.25

release, specifically, all circuits larger than 1000 6-LUTs!. We
will refer to these as the VTR+ benchmarks. The geometric
average primitive count across the 13 circuits is 11,700. The
benchmarks are full application circuits, which include a
variety of arithmetic operations including addition, subtraction,
and multiplication which can make use of hardened adders.

Table VIII provides statistics on these benchmarks, and
includes the number of addition/subtraction functions found in
the benchmarks on the Ripple architecture. The table columns
list the number of 6-LUTs, the length of the longest adder
chain in bits, the average adder chain length, and the ratio
of adder bits to LUTs. The benchmarks exhibit a wide range
in the number and length of addition/subtraction functions.
The geometric mean of the ratio of adder bits divided by the
number of 6-LUTs is 0.25, indicating arithmetic is plentiful
and hence it is reasonable to include hard adder circuitry
in every CLB. The widest addition/subtraction generated in
these benchmarks is 65 bits, which corresponds to a 64-bit
operation (as the first bit must always be used to generate
the carry-in signal). The geometric mean of the longest addi-
tion/subtraction lengths is 31 bits. The most adder-intensive
circuit is stereovision2 with 1.26 adders per LUT. These
measurements correspond well with other modern bench-
marks. For the Titan benchmarks (with the SPARC cores
excluded because they have almost no adders at all) [26], the
geometric average of the fraction of LUTs in arithmetic mode
and the maximum of length of addition/subtraction are 0.22
and 35.8, respectively.

We use the standard VIR 7.0 CAD flow, augmented as
described in Section IV, to determine the minimum routable
channel width (W,,;,) for each circuit. The router is then
invoked again with a channel width of 1.3 X W,,;, to mea-
sure critical path delay and area. Area measurements are in
minimum-width-transistor-area units. Area is computed as the
total number of soft logic blocks (CLBs) multiplied by the
area of a soft logic tile, where this tile includes both the
logic cluster and inter-cluster interconnect area. The hard adder
threshold is set to 12, as this yields the best area-delay results
in Section IV-B. Each of the circuits was mapped to the soft
logic and hard carry chain architectures described in Table II.

I'A large ARM processor core is also included, and the mkDelayWorker32B
benchmark is excluded as it caused ABC to crash.

TABLE IX
DELAY FOR DIFFERENT HARD ADDER ARCHITECTURES, NORMALIZED TO
THE SOFT LOGIC ARCHITECTURE.

Arch 32-bit Add Application Circuits
Delay Delay
Ripple 0.29 0.85
U-Ripple 0.26 0.87
CLA 0.24 0.85
U-CLA 0.21 0.85
TABLE X

QOR OF THE VTR+ BENCHMARKS ON DIFFERENT CARRY CHAIN
ARCHITECTURES. VALUES ARE THE GEOMETRIC MEAN OF VTR+
CIRCUITS NORMALIZED TO THE SOFT ADDER ARCHITECTURE.

Arch Area Min W Num Delay Area-Delay
CLB Product
Ripple 1.04 0.97 .03 0.85 0.88
URipple 1.03 0.92 .03 0.87 0.90
CLA 1.06 0.96 1.04 0385 0.90
UCLA 1.04 091 1.03 0.85 0.88

A. Contrasts between Microbenchmarks, Kernels & Applica-
tions

An interesting first comparison is to assess the impact of
hard adders on application circuits vs. microbenchmarks. We
use a 32-bit adder as a representative microbenchmark, as
this is close to the average size of the longest adders in the
application circuits. Table IX shows the geometric average
critical path delay for each of the non-fracturable architectures
normalized to the non-fracturable soft logic architecture. An
isolated 32-bit adder sees a compelling delay reduction of
71% to 79% with hard carry architectures, while application
circuits see much smaller (but still very significant) delay
reductions of 13% to 15%, depending on the hard carry ar-
chitecture. The arithmetic kernels mostly had delay reductions
between these extremes: from no delay reduction for deeply
pipelined FIR filters to 50% for constant multiplication and
non-pipelined FIR filters, to as much as 80% for adder trees.
This is a common outcome in the hardening of any kind
of circuit — the final impact on critical path delay in more
complex applications is limited because other paths in the
design quickly become more critical than the adder. On the
application circuits, the best delay improvement achieved by
hardening adders is 15%, for the U-CLA architecture. Observe,
however, that the other simpler hardened adder architectures
benefit circuit speed almost as much.

Table X shows the quality of results (QoR) of each archi-
tecture normalized to the soft logic architecture. All values
are the geometric averages across all application benchmarks,
normalized to the soft adder architecture. The columns from
left to right are the architecture, the total soft logic area
including routing, minimum channel width, number of used
soft logic blocks, critical path delay, and area-delay product.
The CLA architecture increases area slightly (by between 1%
and 2%) compared to ripple, but cuts delay by roughly the
same amount, leading to an area-delay product that is very
close to that of the ripple architectures.

B. Circuit-by-Circuit Analysis

Table XI provides a circuit-by-circuit breakdown comparing
the U-CLA and Soft architectures. The columns from left to
right are the benchmark name followed by the ratio of the U-
CLA/Soft values for critical path delay, the total soft logic area
including routing, and the number of LUTs on the critical path.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS. VOL. XX, NO. YY, 2019 11

TABLE XI
CIRCUIT-BY-CIRCUIT BREAKDOWN COMPARING THE U-CLA
ARCHITECTURE TO THE SOFT ARCHITECTURE.

Circuit Delay Area LUTson CLA cout on
Crit Path Crit Path
LU32PEEng 0.76 1.05 0.62 26
mcml 0.55 1.05 0.25 144
or1200 0.65 .11 0.15 19
sha 0.57 1.04 0.25 10
stereovision2 0.85 0.77 0.07 1
blob_merge 0.97 1.04 0.89 0
boundtop 0.95 1.02 0.89 0
LUSPEEng 0.82 1.04 0.64 0
mkSMAdapter4B 1.01 1.11 0.86 0
bgm 1.17 1.13 1.00 0
raygentop 0.97 .11 N/A 0
stereovision0 0.94 1.02 1.00 0
stereovisionl 1.07 1.10 N/A 0
geomean 0.85 1.04 046 -
stdev 0.19 0.09 036 -

The last column is the number of hard adders on the critical
path for the U-CLA architecture. On average, the delay of the
circuits is reduced by 15% and the critical path LUT depth
is cut by more than 50%, but there are 3 distinct classes of
circuits that show markedly different behaviour.

For the top 5 circuits hard adders are on the critical path, and
we obtain a large delay reduction of 33%. It is interesting to
note that despite having the lowest adder to LUT ratio (11% in
Table VIII), the LU32PEEng design still obtains a significant
24% delay reduction. Clearly, even when adders are a smaller
portion of the design logic addition operations can still be
timing-critical. This illustrates that even circuits with relatively
low arithmetic intensity still benefit from hard adders.

The next 4 circuits (blob_merge, boundtop, and LUSPEEng,
and mkSMAdapter4B) have reductions in the critical path
LUT depth of 19% when targeting the U-CLA architecture,
even though no hard adders occur on their critical paths. This
indicates that adder logic was likely timing critical in the
Soft architecture?, but has sped up enough to move off the
critical path in the U-CLA architecture. Interestingly, while
these 4 circuits have an average LUT depth that is 19% lower
when targeting U-CLA vs. Soft, the average delay reduction
across the 3 designs is only 7%. We believe this illustrates an
interesting trade-off when hard carry chains are added to an
FPGA: by limiting the flexibility of the packer and placer, the
carry chains have increased the average routing delay per LUT
level on non-adder paths, and this costs some of the speed gain
one would expect from reducing the logic on the critical path
with hard adders.

Finally, there are four circuits where the LUT depth is not
significantly reduced and where there is not a significant delay
reduction, indicating adders were not very timing-critical in
even the Soft architecture. Two of these circuits (raygentop
and stereovisionl) have hard multipliers as their critical paths
so they show less variation in speed vs. carry architecture, as
one would expect.

C. Impact of Hard Adders on Path Delay Distribution

As noted above, the introduction of fast hard adders can
change the character and distribution of a circuit’s timing path
delays. While the foremost factor is the movement of addition

2Ideally we would examine the Soft implementation of a design to directly
determine if its critical path included addition, but as ABC does not preserve
node names, we cannot trace LUTs back to specific HDL operations.

103

102 4

3

O 10! §
10°

Equal
101 . Non-Adder Path
Adder Path

Ripple Delay (ns)

100 10' 10% 103
Count

Soft Delay (ns)

Fig. 25. Endpoint path delay comparison for or1200 benchmark on the Soft
and Ripple architectures

related timing paths out of the slower soft logic and into the
faster hard adders (which typically reduces LUT depth on the
critical path), several other factors can also induce changes
including: technology mapping (due to limited optimization
across the adders), packing (due to differences in logic block
structure and flexibility), and placement (due to restrictions
keeping long carry chains in a fixed relative position).
Figure 25 shows how the timing path delay characteristics
of the ori200 design vary between the Soft and Ripple
architectures. Here we see the path delays of Ripple have
been shifted down compared to the Soft architecture. It is
interesting to note that many timing paths not involving adders
also see improvement. Another factor beyond those listed
above is the impact of timing driven optimizations, which re-
focus optimization effort on these non-adder paths as they
are now more timing critical (i.e. no longer dominated by
addition related timing paths). It is also worth noting that
while the critical timing paths on the Ripple architecture still
include adders, the path delays are dominated by other non-
adder primitives (e.g. LUTs) and routing. Finally, there are a
number of other near critical timing paths not involving adders,
which indicate the CAD flow has successfully balanced the
competing requirements of the various timing paths.

D. Simple vs. High Performance Adder Architectures

An FPGA architect must choose between smaller, more
flexible, slower adders vs. larger, less flexible, faster adders.
On these complete circuits, the results reaffirm the importance
of hard adders but show that different hard adder granularities
(1-bit ripple or a more expensive 4-bit CLA) remain reasonable
architectural choices. This is an unexpected result, as Table III
and Table IV show markedly different area and delay char-
acteristics between 1-bit and 4-bit hard adders, respectively
— the ripple adder has 19% more delay for 32-bit addition.
One would normally expect that architectures with 1-bit adders
would result in smaller circuits that are also slower, yet the
area and delay results on complete circuits exhibit this trend
only very weakly. Clearly the benefit of a very fast adder for
long word-length additions is greatly diluted by the presence
of all the logic surrounding adders in complete designs.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS. VOL. XX, NO. YY, 2019 12

TABLE XII
QOR FOR ARCHITECTURES WITH SOFT INTER-CLB LINKS. VALUES ARE
THE GEOMETRIC MEAN OF VTR + CIRCUITS NORMALIZED TO THE
EQUIVALENT ARCHITECTURE WITH DEDICATED INTER-CLB LINKS.

Arch 32-bit VTR+ VTR+ VTR+

Add Delay Area Area-Delay
Delay Product
Ripple 241 1.07 0.99 1.06
U-Ripple 2.31 1.05 0.99 1.04
CLA 2.49 1.04 0.99 1.03
U-CLA 212 1.04 0.99 1.03

E. Adder Input Balancing

We now turn to consider how best to integrate the LUT and
arithmetic circuitry. The balanced approach of splitting the 6-
LUT into two 5-LUTSs, where each 5-LUT drives a different
adder input has good symmetry. The unbalanced approach of
using the 6-LUT to drive one adder input and a small mux to
select BLE input pins for the other adder input offers richer
LUT functionality feeding the adder input (six pins compared
to five for the balanced case) but worse symmetry. It is thus
unclear which of these two approaches is better. Note also
that commercial FPGAs differ in their approach: Intel’s Stratix
V [14] and Stratix 10 [15] FPGAs support a balanced style,
while Xilinx’s Virtex 7 [5] and Ultrascale [13] FPGAs allow
both unbalanced and balanced styles.

The second column of Table IX shows the normalized
delay values for each of the different architectures on the
application circuits. The delays for all architectures are similar,
achieving an approximately 15% delay reduction. We therefore
conclude that both balanced and unbalanced architectures
achieve approximately the same overall delay.

Table X shows the balanced and unbalanced architectures
require virtually the same CLB count, indicating that the
packer can fill both architectures with roughly the same
amount of logic per CLB, despite the fact that the balanced
architectures can use a LUT on each input of an adder instead
of only one input. Interestingly, the unbalanced architectures
require a channel width that is 4% lower, on average. This
is due to the fact that the unbalanced architecture can use all
6 inputs of a BLE when in adder mode, while the balanced
architectures can use only 5 — the packer has more freedom
on what to pack with the adder in the unbalanced architecture
and reduces the number of signals to route between clusters.
The net impact is that while the unbalanced architectures
require slightly more logic area due to their extra 2:1 mux per
BLE, they reduce overall area by 1% by reducing the required
amount of inter-cluster routing.

FE. Utility of Inter-CLB Carry

Dedicated carry links between logic blocks improve the
speed of long adders significantly, as shown in Figure 13,
but their use constrains the placement engine to keep long
adders in a fixed relative placement, which may lengthen the
wiring between other blocks. Table XII compares the QoR
of architectures with soft inter-CLB carry links (i.e, routed
using the general-purpose interconnect) normalized to their
corresponding architectures with hard inter-CLB carry links.
The first column is the architecture. The second column shows
normalized delays for the 32-bit addition micro benchmark.
The next three columns show the normalized geometric mean
of delay, area, and area-delay product over the VTR+ bench-

TABLE XIII
FRACTURABLE LUT APPLICATION BENCHMARK RESULTS. VALUES ARE
THE GEOMEAN OVER BENCHMARKS, NORMALIZED TO THE FRACTURABLE
SOFT ARCHITECTURE.

Arch Crit Path Total Used Num Area Delay
Delay Soft Area CLB Product
frac_ripple 0.85 1.10 1.10 0.94
frac_uripple 0.85 1.13 .12 097
frac_2ripple 0.84 1.02 1.01 0.85
frac_2uripple 0.82 1.04 1.02 085

marks. Using soft inter-CLB links increases the delay of
a 32-bit adder by 2.3x on average across the hard adder
architectures, but increases the delay of the VTR+ designs by
only 5%. The area cost of hard inter-CLB carry is negligible,
as little hardware needs to be added to support them, and
as their use does not significantly increase the required inter-
CLB channel width, despite the constraint they create on the
placement engine.

We expect that the impact of hard inter-CLB carry links is
a strong function of the number of adder bits per logic block.
Fewer bits per block means more inter-CLB links are required
for an addition of a given size, which in turn may have a bigger
impact on delay. Therefore, we believe that architectures with
8 adder bits per logic block (e.g. Ultrascale [13]) will benefit
more from hard inter-CLB links than architectures with 20 bits
per block (e.g. Stratix 10 [15]).

G. Bits of Addition per LUT

Table XIII compares the different fracturable LUT carry-
chain architectures normalized to the fracturable soft archi-
tecture to study the impact of the number of addition bits
per LUT. We see that critical path delay is fairly consistent
across architectures with a reduction of 15% to 18% vs. the
soft fracturable LUT architecture. The area numbers are quite
different, with 2-bits of addition per fraturable LUT exhibiting
a much lower area overhead (2% to 4% more area than soft),
while 1-bit of addition per fracturable LUT uses 10% to
13% more area vs. soft. We therefore conclude that 2-bits of
addition per fracturable LUT is a better architecture than 1-bit
because it provides both slightly better delay and significantly
better area, reducing area delay product by 15% vs. soft.

H. Per Circuit Breakdown for frac_2uripple

Table XIV shows a circuit-by-circuit breakdown of our re-
sults on for frac_2uripple, our best architecture. By providing
absolute values, this table serves as a comparison point for
future studies. The columns from left to right are: circuit name,
minimum channel width, critical path delay in ns, number of
soft logic blocks, and total soft logic area including routing in
number of minimum width transistors.

1. Summary

Table XV compares our best hard adder architectures with
soft LUT and fracturable LUT architectures. For the soft
adder architectures critical path delay is similar, while both
hard adder architectures reduce critical path delay by 15-
16%. However the fracturable LUTs significantly reduce the
number of CLBs required by 12-15%. This reduces area but
is slightly tempered by a higher minimum channel width. As
a result the combination of fracturable LUTs with 2-bits of
hardened addition per LUT improves area-delay product by
25% compared to a soft (non-fracturable) LUT architecture.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS. VOL. XX, NO. YY, 2019 13

TABLE XIV
CIRCUIT-BY-CIRCUIT BREAKDOWN OF THE BEST (FRAC_2URIPPLE)
ARCHITECTURE.
Circuit Min W Crit Pathk Num Soft
Delay CLB Area
bgm 104 22.39 3744 8.84-107
blob_merge 96 8.35 620 1.42-107
boundtop 68 5.51 262 5.51 -10°
LUSPEEng 122 66.12 2440 6.08 - 107
LU32PEEng 172 66.72 8225 2.33-10%
meml 142 37.36 8211 2.14-108
mkSMAdapter4B 78 4.89 192 4.19-10°
or1200 98 7.49 295 6.92-106
raygentop 90 452 198 4.56 - 108
sha 70 6.64 241 5.15-108
stereovisionQ 62 3.57 1051 2.14-107
stereovisionl 120 5.27 1033 2.57-107
stereovision2 146 11.28 2063 5.51-107
TABLE XV

FRACTURABLE-LUT VS. NON-FRACTURABLE LUT ARCHITECTURE
RESULTS. VALUES ARE THE GEOMEAN OVER THE APPLICATION CIRCUITS.

Arch Crit Path Total Used Num Area Delay
Delay Soft Area CLB Product
Soft 1.00 1.00 1.00 1.00
Ripple 0.85 1.04 1.02 088
frac_soft 1.02 0.85 073 0.86
frac_2uripple 0.84 0.88 0.74 0.75

There is an important caveat that this comparison is not
completely fair because the number of inputs to the CLBs are
kept constant when in reality the ideal number of inputs to a
CLB with non-fracturable LUTs should be lower than that for
fracturable even if the underlying logic elements themselves
have the same number of inputs. Hence our area results for the
non-fracturable LUT architectures could likely be somewhat
improved with cluster input count retuning. Overall however,
the case for a fracturable LUT architecture with 2-bits of hard
arithmetic per LUT is compelling.

VIII. CONCLUSIONS AND FUTURE WORK

This study covered a broad range of different implementa-
tions of hard adders, carry chains and fracturable LUTs within
an FPGA soft logic block. Our results show that hardening
adders and carry chains significantly improves the perfor-
mance of arithmetic operations (69-79% delay reduction on
microbenchmarks), and improves average application circuit
delay by 13-16%. While more complex architectures harden-
ing a carry-lookahead adder improve standalone adder speed,
we found that simpler hardened ripple-carry adders perform
just as well on complete application circuits. We found the
additional flexibility of fracturable LUT based architectures
enabled them to be more area efficient (12-15% compared
to non-fracturable). Fracturable LUTs and hardened adders
and carry chains are complementary and the combination can
improve both area and delay. We found 2-bits of addition to
be particularly well matched to fracturable LUT architectures,
yielding an overall area-delay product improvement of 25%
compared to a non-fracturable architecture without hardened
arithmetic.

Our results show that hardened arithmetic is an important
consideration when evaluating soft logic block architectures,
and in particular fracturable LUTs. It is therefore important
for future work studying these areas to consider the impact
of hardened arithmetic. Fracturable LUTs in particular have
a large design space, so it would be interesting future work

to consider how different fracturable LUT architectures would
interact with arithmetic. It would also be interesting to consider
the impact of re-tuning the number of inputs to the logic block
for these architectures. Another direction for future work is to
focus on improving logic synthesis when hardened adders are
used; ideally ABC would be upgraded to understand the logic
within hard adders and optimize across their boundaries. Fi-
nally, we expect that using hardened adders will reduce power
consumption for arithmetic operations, however it would be
useful to quantify this impact, and determine whether any of
the proposed hard adder architectures would be better suited
to low power FPGAs.

ACKNOWLEDGMENT

We gratefully acknowledge the funding support of NSERC,
Intel, the New Brunswick Innovation Foundation, CMC Mi-
crosystems, the Semiconductor Research Corporation, and
Texas Instruments.

REFERENCES

[1] J. Rose, “Hard vs. Soft: The Central Question of Pre-Fabricated Silicon,”
IEEE ISMVL, pp. 2-5, 2004.

[2] D. Lewis et al., “Architectural Enhancements in Stratix V,” in ACM
FPGA, 2013, pp. 147-156.

[3] J. Greene et al., “A 65nm Flash-Based FPGA Fabric Optimized for Low
Cost and Power,” in ACM FPGA, 2011, pp. 87-96.

[4] Lattice Semiconductor, “LatticecECP3 Family Handbook,”
d12lxohwf1zsq3.cloudfront.net/documents/HB 1009.pdf, 2013.

[5] Xilinx Inc., “7 Series FPGAs Configurable Logic Block User Guide,”
http://www.xilinx.com/support/documentation/user_guides/ug474_
7Series_CLB.pdf, 2013.

[6] H.-C. Hsieh et al., “Third-Generation Architecture Boosts Speed and
Density of Field-Programmable Gate Arrays,” in IEEE CICC, 1990, pp.
31-2.

[7] N.-S. Woo, “Revisiting the Cascade Circuit in Logic Cells of Lookup
Table Based FPGAs,” in ACM FPGA, 1995, pp. 90-96.

[8] S. Xing and W. W. Yu, “FPGA Adders: Performance Evaluation and
Optimal Design,” IEEE Design & Test of Computers, vol. 15, no. 1, pp.
24-29, 1998.

[9] S. Hauck, M. Hosler, and T. Fry, “High-Performance Carry Chains for
FPGA’s,” IEEE TVLSI, vol. 8, no. 2, pp. 138-147, 2000.

[10] H. Parandeh-Afshar, A. Neogy et al., “Compressor tree synthesis on
commercial high-performance fpgas,” ACM TRETS, vol. 4, no. 4, pp.
39:1-39:19, Dec. 2011.

[11] H. Parandeh-Afshar, P. Brisk, and P. Ienne, “A Novel FPGA Logic Block
for Improved Arithmetic Performance,” in ACM FPGA, 2008, pp. 171-
180.

[12] H. Parandeh-Afshar, P. Brisk, and P. Ienne, “Efficient Synthesis of
Compressor Trees on FPGAs,” in IEEE ASP-DAC, 2008, pp. 138-143.

[13] Xilinx Inc.,, “UltraScale Architecture Configurable Logic
Block,” https://www.xilinx.com/support/documentation/user_guides/
ug574-ultrascale-clb.pdf, 2017.

[14] Altera Corp., “Logic Array Blocks and Adaptive Logic Modules in
Stratix V Devices,” http://www.altera.com/literature/hb/stratix-v/stx5_
51002.pdf, 2013.

[15] Intel Corp., “Intel Stratix 10 Logic Array Blocks and Adaptive
Logic Modules User Guide,” https://www.intel.com/content/dam/www/
programmable/us/en/pdfs/literature/hb/stratix- 10/ug-s10-lab.pdf, 2018.

[16] J. Luu, C. McCullough et al., “On hard adders and carry chains in
fpgas,” in IEEE FCCM, 2014, pp. 52-59.

[17] C. Chiasson and V. Betz, “COFFE: Fully-Automated Transistor Sizing
for FPGAs,” in IEEE FPT, 2013, pp. 34-41.

[18] I. Kuon and J. Rose, “Area and Delay Trade-Offs in the Circuit and
Architecture Design of FPGAs,” in ACM FPGA, 2008, pp. 149-158.

[19] D. Lewis, E. Ahmed et al., “The Stratix II logic and routing architec-
ture,” in ACM FPGA, 2005, pp. 14-20.

[20] G. Zgheib and P. Ienne, “Evaluating fpga clusters under wide ranges of
design parameters,” in FPL, Sep. 2017, pp. 1-8.

[21] C. Chiasson and V. Betz, “Should fpgas abandon the pass-gate?” in Int.
Conf. on Field programmable Logic and Applications, 2013, pp. 1-8.

http://

http://d12lxohwf1zsq3.cloudfront.net/documents/HB1009.pdf
http://d12lxohwf1zsq3.cloudfront.net/documents/HB1009.pdf
http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf
https://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf
http://www.altera.com/literature/hb/stratix-v/stx5_51002.pdf
http://www.altera.com/literature/hb/stratix-v/stx5_51002.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-lab.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-lab.pdf

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS. VOL. XX, NO. YY, 2019

(22]

(23]

[24]

(25]

[26]

J. Luu, J. Goeders et al., “VTR 7.0: Next Generation Architecture and
CAD System for FPGAs,” ACM Trans. Reconfigurable Technol. Syst.,
vol. 7, no. 2, pp. 6:1-6:30, Jul. 2014.

Berkeley Logic Synthesis and Verification Group, “ABC: A System for
Sequential Synthesis and Verification,” http://www.eecs.berkeley.edu/
~alanmi/abc, 2009.

S. Jang et al., “SmartOpt: An Industrial Strength Framework for Logic
Synthesis,” in ACM FPGA, 2009, pp. 237-240.

J. Luu, J. Rose, and J. Anderson, “Towards Interconnect-Adaptive
Packing for FPGAs,” in ACM FPGA, 2014.

K. E. Murray, S. Whitty et al, “Titan: Enabling large and complex
benchmarks in academic cad,” in Int. Conf. on Field Programmable
Logic and Applications, 2013, pp. 1-8.

Kevin E. Murray (S’12) is a PhD candidate at the
University of Toronto, where he received his BASc
and MASc in 2012 and 2015. He has previously been
a visiting Research Assistant at Imperial College
London, and worked on digital design flows at Ad-
vanced Micro Devices (AMD). His research interests
include FPGA CAD and Architecture, timing anal-
ysis, and modular design flows. He has contributed
extensively to the VTR project since 2012.

Jason Luu is a senior software engineer at Altera.
He received the BASc degree in CE from the Uni-
versity of Waterloo in 2007 and the MASc and PhD
degrees at the University of Toronto in 2010 and
2014 respectively. He has contributed 8 years to
the open source VTR project for FPGA CAD and
architecture research.

Matthew J. P. Walker (S’16) received his BASc
in Computer Engineering from the University of
Toronto in 2017, and is presently a MASc candidate
in Computer Engineering at the same university,
where he is researching CGRA mapping. He has
previously worked at Altera and Intel PSG, and
worked as a summer researcher in 2014 on the VTR
project.

Bo Yan (S’14) received the B.Eng. degree in elec-
tronic and information engineering from Hubei Uni-
versity of Technology, Wuhan, Hubei, China, in
2010, and the M.Sc. degree in computer science,
Fredericton, New Brunswick, Canada, in 2015.

Charles Chiasson (S’08-M’15) received the B.Eng.
degree in electrical engineering from Universit de
Moncton in 2011 and the M.A.Sc. degree in elec-
trical and computer engineering from the University
of Toronto in 2013. He is currently with the Al-
tera Toronto Technology Center, Altera Corporation,
Toronto, ON, Canada.

Kenneth B. Kent (S’96-M’02-SM’13) received his
BSc degree from Memorial University of Newfound-
land, Canada, and MSc and PhD degrees from the
University of Victoria, Canada. He is a professor in
the Faculty of Computer Science at the University
of New Brunswick, and Director of the IBM Centre
for Advanced Studies-Atlantic, Canada. His research
interests are Hardware/Software Co- Design, Virtual
Machines, Reconfigurable Computing, and Embed-
ded Systems. His research groups are key contrib-
utors to widely used software such as the IBM J9

Java virtual machine and the VTR (Verilog-To-Routing) FPGA CAD flow.

Jason Anderson (S’96-M’05) received the B.Sc.
degree in computer engineering from the University
of Manitoba, Winnipeg, MB, Canada, and the Ph.D.
and M.A.Sc. degrees in electrical and computer
engineering (ECE) from the University of Toronto
(U of T), Toronto, ON, Canada. In 1997, he joined
the FPGA Implementation Tools Group, Xilinx, Inc.,
San Jose, CA, working on placement, routing, and
synthesis. He is currently an Associate Professor
with the ECE Department at U of T and holds the
Jeffrey Skoll Chair in Software Engineering. He has

Conor McCullough (S’14) received the B.Eng.
degree in computer engineering from the University
of New Brunswick, Fredericton, NB, Canada, in
2014. He worked as a summer researcher in 2014 on
the VTR project under the supervision of Kenneth
Kent.

Sen Wang (S’ 14) received the B.SC. degree in com-
puter science from Nanjing University of Science &
Technology, Nanjing, Jiangsu, China, in 2009, and
the M.Sc. degree in computer science, Fredericton,
New Brunswick, Canada, in 2014.

Safeen Huda (S’13) received the B.A.Sc. and
M.A.Sc. degrees in electrical engineering from the
University of Toronto, Toronto, ON, Canada in 2009
and 2012, respectively and the Ph.D. degree in
computer engineering in 2017 His research interests
include all the aspects of digital circuit and system
design. Mr. Huda has held the Natural Sciences
and Engineering Research Council of Canada Post-
Graduate Scholarship and the University of Toronto
Fellowship.

authored over 60 papers published in refereed conference proceedings and
journals, and is an inventor on 26 issued U.S. patents. His current research
interests include computer-aided design, architecture and circuits for FPGAs.

Jonathan Rose (F’09) is a Professor with the De-
partment of Electrical and Computer Engineering,
University of Toronto, Toronto, ON, Canada. He has
worked in the area of FPGA CAD and architecture
for over 20 years, including stints at the two major
vendors, Xilinx and Altera, as well as a startup. Prof.
Rose is a Fellow of the ACM and a Foreign Member
of the American National Academy of Engineering.

Vaughn Betz (S’88-M’91-SM’17) Dr. Betz co-
founded Right Track CAD to develop new FPGA
architectures and CAD tools and was its VP of
Engineering until its acquisition by Altera in 2000.
He was at Altera from 2000 to 2011, ultimately
as Senior Director of Software Engineering, and is
one of the architects of both the Quartus I CAD
system and the Stratix I - V and Cyclone I - V
FPGAs. He is a Professor and the NSERC/Intel
Industrial Research Chair in Programmable Silicon
at the University of Toronto, where his research
covers FPGA architecture, CAD, and acceleration of computation using
FPGA:s.

http://www.eecs.berkeley.edu/~alanmi/abc
http://www.eecs.berkeley.edu/~alanmi/abc

	Introduction
	Baseline Architectures
	Non-Fracturable LUTs
	Fracturable LUTs
	Area and Delay Models

	Hard Adder and Carry Chain Architectures
	Adder Primitive
	Adder Input Balancing
	Carry Chain Flexibility
	Bits of Addition per LUT

	CAD
	Elaboration and Logic Optimization
	Threshold of When to Use Hard Adders
	Packing
	Placement and Routing

	Microbenchmark Results
	Arithmetic Kernel Results
	Adder Trees
	Multiplication by a Constant
	FIR Filters

	Application Circuit Results
	Contrasts between Microbenchmarks, Kernels & Applications
	Circuit-by-Circuit Analysis
	Impact of Hard Adders on Path Delay Distribution
	Simple vs. High Performance Adder Architectures
	Adder Input Balancing
	Utility of Inter-CLB Carry
	Bits of Addition per LUT
	Per Circuit Breakdown for frac_2uripple
	Summary

	Conclusions and Future Work
	References
	Biographies
	Kevin E. Murray
	Jason Luu
	Matthew J. P. Walker
	Conor McCullough
	Sen Wang
	Safeen Huda
	Bo Yan
	Charles Chiasson
	Kenneth B. Kent
	Jason Anderson
	Jonathan Rose
	Vaughn Betz

