HETRIS: Adaptive Floorplanning for Heterogeneous FPGAs

Kevin E. Murray and Vaughn Betz
Department of Electrical and Computer Engineering
University of Toronto, Ontario, Canada
Email: {kmurray,vaughn}@eecg.utoronto.ca

Abstract—Floorplanning is an approach to improve the scal-
ability of existing CAD algorithms, facilitate team-based design,
and also plays an important role in partial reconfiguration. This
work introduces HETRIS, a new automated floorplanning tool
for heterogeneous FPGAs. HETRIS uses an adaptive legality
approach to target arbitrary FPGA architectures. It includes
enhancements enabling it to run on average 15.6x faster than
previous work, while producing denser floorplans than a com-
mercial tool. Using HETRIS we perform the first evaluation of
an FPGA floorplanner using real-world benchmarks, allowing us
to investigate the relationship between partitioning, floorplanning
and FPGA architecture.

I. INTRODUCTION

Designing FPGA-based systems is a time-consuming pro-
cess, particularly as ever increasing design sizes lead to
multi-hour CAD run-times [1], and many design iterations.
Floorplanning, which allocates specific parts of a design to
dedicated regions on a device, is one approach to address
these challenges. Floorplanning enables a divide-and-conquer
approach to the physical implementation of large designs
by decoupling them spatially. This enables efficient parallel
compilation, and is also beneficial for team-based design,
enabling independent design and optimization before final
integration. Floorplanning is also an important part of partial
reconfiguration design flows. In this paper we:

e Present HETRIS', a new automatic floorplanning tool
targeting arbitrary FPGA architectures with an adaptive
and scalable legality approach,

o Investigate the structure of the FPGA floorplanning
solution space and its relation to FPGA architecture,

e Perform the first evaluation of FPGA floorplanning
using realistic benchmarks, and

e Compare HETRIS to a commercial tool when floor-
planning at high resource utilization.

II. FLAT COMPILATION VS. FLOORPLANNING

In the conventional FPGA CAD flow, compilation is
performed in a ‘flat” manner, where both logical and physical
synthesis can optimize across the entire design®. Flat compil-
ation gives tools global visibility, potentially enabling better
optimization results. However, given the large solution space
and heuristic nature of CAD tools this may not produce the
best result. In a floorplanning design flow the system is divided
into partitions which can be implemented independently. This
has the potential to guide the tools towards a better solution,
but can also restrict cross-boundary optimizations.

Consider a design of cascaded FIR filters. The implementa-
tion produced by Altera’s Quartus II 12.1 CAD system using
flat compilation is shown in Fig. la. Given that each FIR filter
is only connected to the preceding and following filters, one
would expect them to be well localized. While this is true in

'HETerogeneous Region Implementation System
2For instance, placement can place a primitive at any legal location.

978-1-4673-9091-0/15/$31.00 (© 2015 IEEE

i
(a) FIR filter cascade. Each (b) Cropped view showing the critical
filter has a unique colour. paths (highlighted blue) of the five most
critical instances.

Fig. 1: Quartus II flat implementation of a FIR filter cascade in a
Stratix IV EP4SGX230 device.

many cases, it is clear that the flat compilation process results
in significant smearing between instances. In particular, the five
most timing critical instances shown in Fig. 1b are stretched
out significantly, limiting the achievable clock period.

In scenarios like this the designer’s intuition that each
instance can be localized can be used to improve the result.
Manually floorplanning a variation of the FIR filter cascade
improved the achievable operating frequency from 375 MHz
to 417MHz (+11%). Manual floorplanning was also found to
improve frequency in [2], and is promoted by FPGA vendors
[3, 4, 5] as a method to address timing closure issues.

Floorplanning is also beneficial for team-based design,
allowing design teams, which often already collaborate and
partition the RTL design, to extend this partitioning to the
physical implementation. This enables independent parallel
physical implementation reducing turn-around-time, and also
helps reduce coupling between components, potentially reduc-
ing the number of design iterations. Floorplanning is also a
required step in partial reconfiguration design flows [6, 7],
where it is used to define the fixed interface between the static
and reconfigurable parts of the design.

Manual floorplanning is a time consuming process, motivat-
ing the effort to automate it. While automated floorplanning for
ASICs has been well studied (see [8]) the FPGA floorplanning
problem is significantly more difficult. FPGA floorplanning
tools must handle the discrete and heterogeneous types of pre-
fabricated FPGA resources, unlike ASICs where there is a
single continuous resource (silicon area). This requires custom
FPGA floorplanning tools.

ITII. FLOORPLANNING FLOW & PREVIOUS WORK

The design flow we use for floorplanning is shown in
Fig. 2. Initially, a flat technology mapped netlist is produced
by logic synthesis. The netlist is then partitioned®, either
by an automated tool or by the user. Once partitioned, the
netlist is packed into functional blocks (logic, RAM etc.)
while respecting partitioning constraints. We perform packing

3 Another possibility would be to perform partitioning before logic synthesis.

FPGA i
" H

Partitioner o
(Metis) '
|
=
H

Packer

(VPR)
Resource '
Requirements. :
Floorplanner !
(HETRIS) S

Fig. 2: Floorplanning flow used to evaluate HETRIS.

fffffffff

(a) Slicing tree and relative par- (b) The three realizations in an
tition placement. Dashed lines re- IRL located at (0, 0) requiring 5
late internal nodes and cut-lines. LB and 1 RAM.

Fig. 3: Slicing Tree and IRL example.

before floorplanning so we have accurate partition resource
requirements*. The floorplanning tool takes as input the target
FPGA architecture, netlist connectivity, netlist partitions and
partition resource requirements. It then attempts to find a valid
floorplan, reporting a solution if found.

Several works have previously addressed FPGA floorplan-
ning. Cheng and Wong [9] present an FPGA floorplanner
based on Simulated Annealing (SA) using slicing trees to
represent the relative partition positions. A slicing tree is
a full binary tree (see Fig. 3a) where leaf nodes represent
partitions, and internal nodes represent either vertical (V') or
horizontal (H) cuts. Cheng and Wong introduce Irreducible
Realization Lists (IRLs) to convert a slicing tree into an exact
floorplan. An individual ‘realization’ is a rectangular region at a
particular device location satisfying some resource requirements.
A realization is ‘irreducible’ if it is the area minimal realization
for its aspect ratio. An IRL consists of ‘irreducible realizations’
with various aspect ratios (see Fig. 3b). Cheng and Wong
showed how an internal node’s IRL can be efficiently calculated
from the IRLs of its children. This can be applied recursively to
a slicing tree to generate an exact floorplan. Cheng and Wong
also use a vertical compaction technique to legalize vertically
illegal solutions.

In [10] an ASIC floorplanner is used for floorplanning,
followed by network flow based post-processing to re-allocate
heterogeneous resources. A greedy back-tracking algorithm
is proposed in [11], but suffers from high complexity. [12]
presents an interesting multi-layered approach which attempts
to minimize wasted resources when partitions are unbalanced.
[13] uses techniques similar to [9], but generates slicing trees
using a partitioner and performs coarser resource allocation.
Floorplanning for partial reconfiguration is considered in [14,
15, 16].

4The complex legality requirements of modern FPGA architectures makes
it difficult to predict the required resources from only the input netlist.

IV. ALGORITHM OVERVIEW & RUN-TIME IMPROVEMENTS

HETRIS builds upon [9], since it appears to be the most
general and robust approach. It uses SA as the outer optimiza-
tion algorithm operating on slicing trees, and uses IRLs to
realize floorplans. At every move, the slicing tree is realized
and the resulting floorplan’s legality, area and wirelength are
evaluated.

One of the key operations is converting from the abstract
floorplan representation (e.g. slicing trees) to a concrete
floorplan realization with precise locations and dimensions.
We propose several enhancements to the IRL algorithm used
by Cheng and Wong [9]. More detail is provided in [17].

A. Slicing Tree IRL Evaluation as Dynamic Programming
Although not originally presented as such, Cheng and

Wong’s IRL-based slicing tree evaluation algorithm can be

re-formulated as a case of dynamic programming [18] since:

1) The problem exhibits optimal substructure. The IRL
at each internal node of the slicing tree is calculated
by combining the IRLs of its children.

2) There exist overlapping subproblems. Different an-
nealing moves may require calculation of the same
IRL.

These insights can be exploited to further optimize run-time.

B. IRL Memoization

The first optimization we propose is to memoize IRLs
(subproblems) across SA moves. This avoids re-calculating
IRLs multiple times during the anneal’.

One potential concern about memoizing IRLs is the mem-
ory required. In HETRIS, the look-up is implemented as a
dynamically sized cache, enabling a space-time trade-off.

C. Lazy IRL Calculation

In Cheng and Wong’s work they pre-calculate IRLs for
every partition (leaf node in the slicing tree) at every unique
location in the FPGA. This requires O(wphpWinaz Hmag) time,
where w,, and h, are the dimensions of the basic tile while
Winae and Hp, 4, are the maximum dimensions of a realization.

Since SA samples only a small part of the solution space,
pre-calculating IRLs for every partition at every location is
unnecessary. Instead we can extend the memoization procedure
to calculate the IRLs of leaf nodes only as required. This ‘lazy
calculation’ avoids calculating unused IRLs. This is particularly
relevant for modern FPGA devices which are not tile-able®.

D. Evaluation

To evaluate the presented run-time improvements, we
evaluated the performance of HETRIS by selectively enabling
the memoization and lazy evaluation optimizations. Table I
illustrates the effectiveness of these optimizations, showing
an average 15.6x speed-up. On a per-benchmark basis the
best speed-ups (e.g. 31.3x on des90) are obtained on small
benchmarks, while the speed-up decreases on larger benchmarks
(minimum 7.2x on gsm_switch) due to the larger portion
of time spent on wirelength evaluation. The quality of results
(QoR) for all algorithmic variations in Table I are identical,
since identical IRLs are calculated.

SCheng and Wong [9] pre-calculated TRLs for leaf nodes, effectively
memoizing only the base-case of the recursion.

STn this situation w, = W and hy, = H so the resulting complexity would
be O(W?2H?), where W and H represent the device width and height —
prohibitively expensive for large devices.

TABLE I: Run-time of IRL memoization and lazy calculation opti-
mizations on 17 Titan benchmarks. Each benchmark was partitioned
into 32 parts and floorplanned on a tile-able Stratix IV-like architecture.
The algorithm in [9] corresponds to ‘Exhaustive Memoize Leaves’.

External Lazy Lazy Exhaustive Exhaustive
Benchmark Net Count Memoize Memoize Memoize Memoize
All (min) Leaves (min) All (min) Leaves (min)
gsm_switch 241,048 22.06 44.45 67.59 157.86
sparcT2_core 182,698 17.86 48.47 61.69 154.65
mes_noc 115,606 66.78 212.36 251.83 619.05
minres 112,234 7.63 19.82 41.59 92.39
dart 108,408 13.77 40.87 65.55 155.53
SLAM_spheric 82,370 7.00 22.26 45.44 104.33
denoise 76,377 16.10 52.80 82.86 214.34
cholesky_bdti 74,921 7.42 21.94 47.14 113.23
segmentation 73,086 11.04 37.53 73.35 162.80
sparcT1_core 70,874 5.36 16.20 47.53 102.61
bitonic_mesh 61,110 3.73 6.28 33.88 70.10
openCV 60,981 4.34 10.44 40.56 82.26
stap_qrd 51,755 17.15 58.47 69.02 179.87
des90 37,368 2.38 5.02 36.50 74.55
stereo_vision 35,103 2.34 6.73 33.50 69.64
cholesky_mc 32,408 3.14 13.69 41.85 97.33
neuron 31,365 2.71 11.28 32.96 72.83
GEOMEAN 72,148 7.89 22.74 54.01 123.28
GEOMEAN Speed-Up 15.62x 5.42% 2.28x 1.00x

S5 L be

ﬂ
| |
Il
Il

E |

(a) Homogeneous approximation (b) Heterogeneous-aware (illegal)

Fig. 4: Homogeneous approximation and heterogeneous-aware
floorplans for the same slicing tree and benchmark. The homogeneous
approximation underestimates the floorplan area by ~2.5x and
incorrectly predicts that the slicing tree is legal.

V. ANNEALER
An equally important component of HETRIS is the outer
annealing algorithm.

A. Initial Solution

All SA algorithms require an initial solution. In most
previous work, the initial solution is created by solving a
simplified version of the heterogeneous floorplanning problem.
For instance, Cheng and Wong [9] performed initial floor-
planning under a homogeneous approximation which ignores
heterogeneous resource requirements. This enabled them to
reduce run-time by starting their heterogeneous resource-aware
annealer at a lower temperature.

After re-implementing their approach we found the initial
solution was no better than starting from an arbitrary initial
solution. We believe this is related to the benchmarks and
architectures being evaluated. We are using real FPGA circuits
to evaluate the floorplanner (Section VIII). In contrast, [9]
adapted ASIC floorplanning benchmarks by assuming each
partition had heterogeneous resource requirements closely
matching the underlying FPGA architecture.

Assuming such a close match is unrealistic. On realistic
benchmarks, the homogeneous approximation breaks down (c.f.
Figs. 4a and 4b) — reducing the effectiveness of any initial
floorplanning. As a result HETRIS constructs an arbitrary initial
solution and directly begins resource-aware floorplanning.

B. Annealing Schedule & Moves
The annealing schedule is based on VPR’s [19], which
adjusts the cooling rate based on the acceptance rate (), the

fraction of moves accepted), and terminates when the average
cost per net becomes a small fraction of the temperature. Also
similar to VPR, we perform O(N) moves per temperature;
where N is the number of partitions to be floorplanned. The
annealer uses exchange and rotation moves, which can explore
all slicing trees [9].

C. Base Cost Function

An important aspect of any annealer are the cost functions
used to evaluate candidate solutions. We define the base cost
functions as those used to evaluate the quality of a solution,
while cost penalties (Section VII-B) penalize illegality to guide
the annealer to a valid solution.

The base cost of a solution S is calculated according to:

AREA(S)

A fac
norm

EXTWL(S
() +Ifac

Ernorm norm

BASECOST(S) = Afqc INTWL(S) (1)

where AREA, EXTWL, and INTWL are the same cost compo-
nents used in [9], and correspond to the area of the floorplan,
the centre-to-centre half-perimeter wirelength (HPWL), and an
estimate of internal wirelength within a partition, related to
region aspect ratio (lx’i‘?}ﬁ).

The various factors (e.g. Ayq.) are user adjustable weights
used to control the relative importance of the different cost
components. Each cost component is normalized by the
respective normalization factor (e.g. A, orm), Whose value is the
average of the cost component across the randomized moves
made to determine the initial temperature. This ensures each

. . AREA(S)
normalized quantity (e.g. m) is dimensionless with a

value of 1.0 on a typical solution.

VI. SOLUTION SPACE STRUCTURE
Given the space of possible solutions, we can view the
annealer as traversing a cost surface defined by the base cost
function in Eq. (1). Fig. 5 illustrates the explored solution
space, allowing us to make several interesting observations.

A. FPGA Architecture and Solution Space Structure

Firstly, solutions are only found at specific discrete locations,
creating ‘families’ of solutions along curves of constant width.
Secondly, within each family of solutions, a large number of
floorplans with different heights are found, indicating that a
floorplan’s height is easier to adjust than its width. Thirdly,
solutions with small aspect ratios (i.e. tall and narrow, along
the left side of Fig. 5) tend to have smaller area.

These characteristics are artifacts of the targeted column-
based FPGA architecture. Families of solutions arise since only
some region widths will support the required resource types.
Consider a region such as the one shown in Fig. 6. Expanding
horizontally can be quite disruptive, since it can substantially
change both the quantity and type of resources available. In
contrast expanding vertically only incrementally changes the
quantity of resources available. This makes it more difficult
for the annealer to vary a floorplan’s width. Finally, tall and
narrow floorplans tend to minimize the number of columns
with excess/unused resources, minimizing area.

VII. AN ADAPTIVE APPROACH TO LEGALITY
Real FPGA devices have a fixed-outline, causing some
solutions to be ‘illegal’, since they fall outside of the device.
One approach is to disallow illegal solutions entirely. However,
this is difficult to achieve. In particular, without exhaustive
evaluation, it is not obvious how to generate a guaranteed legal
initial solution or ensure that a potential move will be legal.

== Width Limit
Height Limit
— Minimum Area 140

3.0

g
o

o

o)
)
Average Floorplan Cost

N

ed FPGA Device Area

o
=

Aspect Ratio

Fig. 5: Base cost surface visualization of explored points in the
solution space of the stereo_vision benchmark, targeting a tile-
able Stratix IV like architecture. Each point corresponds to a specific
aspect ratio (z-axis) and area (y-axis). Colour represents solution
cost. Hyperbolic curves correspond to solutions with the same width.
Diagonal rays correspond to solutions with the same height. An area
of 1.0 corresponds to the device size. ‘Width Limit’ and ‘Height
Limit’ represent the device dimensions. ‘Minimum Area’ is the area
required if partitions are ignored. The shaded triangular-shape denotes
the region of legal solutions. No legal solutions were found in this
run. The nearly legal solutions clustered along ‘Width Limit’ are one
column wider than the device.

Increase
RAM quanity

Add new
LB type

Add new DSP
and LB types

[0 O O
|
|
[D)0 O O O

Fig. 6: Different resource types and quantities are available from
expanding a region vertically or horizontally.

As a result HETRIS allows illegal solutions. This also has the
benefit of allowing the annealer to escape local minima by
transitioning through illegal parts of the solution space.

One of the key issues with allowing illegal solutions is
ensuring a legal solution is eventually found. To accomplish
this, we use a cost penalty to penalize illegal solutions.

A. An Adaptive Approach

One of the considerations when designing a cost penalty is
how it should be scaled and evolve during the anneal. The cost
penalty must balance two competing factors: ensuring a legal
solution is found, and minimizing any impact on the QoR.

It is also desirable for the cost penalty to be robust across
a range of FPGA architectures and benchmarks. Rather than

Vertically
Illegal Area

¥

N

SANNNSNYY
SANNINNNY
SNNNANN Y
ANSANANS NS

7

7724 Horizontally
Illegal Area

N

$

7

Device

SINNNNNNNNN
NN
NNNNNNNNY

ANANSANANS

Floorplan
/.22 Bounding Box

Fig. 7: Example of horizontal and vertical illegal areas.

expose many tuning parameters, we propose an adaptive cost
penalty which adjusts’ to the target architecture and benchmark.
This allows the tool to adapt its focus on quality versus legality
based on the problem difficulty.

B. Cost Penalty

Our complete cost function is given by Eq. (2), where H
and V7, are the current penalty factors, and HORIZILL(S) and
VERTILL(S) measure the horizontally or vertically illegal area
of a solution (see Fig. 7).

HoORIZILL(S)
H’!LUTVVL

VERTILL(S))
‘/WLUTTVL

Interestingly two adaptive parameters, Hy,. and Vyg., are
required to produce a robust cost penalty. Using a single
parameter causes the annealer to become stuck in an illegal
state, since it penalizes vertical and horizontal illegality equally.
This prevents transitions from an illegal state in one dimension
into a (temporarily) illegal state in the other.

The penalty factors are increased during the anneal based
on how successful the annealer is at finding legal solutions.
The idea of ‘success’ is captured by the legal acceptance rate
metric (Ajegqr), the number of legal moves accepted by the
annealer. A A\jcgq; of O implies no legal solutions have been
found, while a value of 1 implies all accepted moves were legal.
We also define A}, gal 3 the target legal acceptance rate, and
Alegal_horiz (Megal_vert) as the horizontally (vertically) legal
acceptance rate.

The value of Hy, is updated according to Eq. (3) at the
end of each temperature. V. is updated similarly.

CosT(S) = BASECOST(S) + Hyqc + Ve

Hfac . P2)\legalihoriz(T) S 0.1X}

scale legal
Hfac . -Pscale 0'1)\76gal <)\legaLhoriz(T) <A (3)

legal
Hfac)\legalihm‘iz(T) 2)\Tegal

Hfa,c =

Pscq1e 1s a constant controlling how quickly the penalty factor
increases. If the legal acceptance rate is below the target
then Hy,. increases exponentially, otherwise it remains fixed.
Empirically we have found Ps.q. in the range 1.005 to 1.2
performs well. Larger values may prematurely freeze the
annealer in an illegal state, while smaller values take longer
to converge. Aj, gar 18 typically set to 1.0, ensuring the cost
penalties will increase until only legal solutions are accepted.

C. Adjusting the Cooling Rate

One challenge is ensuring the penalties become effective
(of sufficient magnitude to influence the acceptance rate) while
the annealer can still hill-climb to a legal solution.

We accomplish this by augmenting the annealing schedule
based on the legal acceptance rate. The new temperature update
is shown in Algorithm 1. With this cooling schedule the annealer

This is similar to the concept of self-adapting evolutionary algorithms [20],
and to the adaptive annealing schedule used in VPR [19].

Algorithm 1 Augmented Adaptive Annealing Schedule

1: function UPDATETEMPSTALL(T', A, Ajegals)\z‘egal)
2 Thew < UPDATETEMP(T, A) © Similar to VPR [19]
3 if0.1<X<0.9 > Stall only mid-anneal
4: if Ajegar < 0.8 A7 4 > Far from target
5: a <+ 0.99
6 Thew < T - > Stall
7 return 7).,

EEEECE:

G
B

(a) A nearly-legal floorplan, only (b) A legal floorplan targeting the
one column wider than the device. same device.

Fig. 8: A ‘hard’ problem for the stereo_vision benchmark with
16 partitions, targeting a device only 1.22x larger than minimum.

‘stalls” (o = 0.99) if the legal acceptance rate is too small®. At
the beginning (A > 0.9) and end (A < 0.1) of the anneal the
original schedule is used, since stalling would be unproductive.

D. How To Tune A Cost Surface?

For the annealer run in Fig. 5 no legal solution was found,
despite exploring many nearly-legal solutions. One of these is
shown in Fig. 8a, while a legal solution is shown in Fig. 8b.
To transform the illegal floorplan into a legal one, the floorplan
needs to be compressed horizontally and expanded vertically.

Adding the illegality terms to the cost function (Eq. (2))
transforms the shape of the cost surface, meaning the annealer
is no longer directly optimizing the base cost function’. Under
this formulation HETRIS is able to find the legal floorplan
shown in Fig. 8b. Fig. 9 shows that the cost surface now
transitions sharply along the border between legal and illegal
solutions; the nearly legal solutions have significantly higher
cost. Correspondingly this family of solutions is not explored
as extensively. In contrast, the families with legal widths are
explored more extensively, yielding legal solutions.

Fig. 10 shows the behaviour of the annealer over time. The
floorplanner snaps to legal solutions after ~125 temperatures.
Looking at the different cost penalty factors we observe that
H, is more than 3 orders of magnitude larger than V.. Since
their relative magnitude is commensurate with the difficulty
of the legality constraint, this confirms our earlier observation
that horizontal legality is more difficult to achieve.

It is also interesting to note in Fig. 10 that the EXTWL and
INTWL metrics see significant improvement late in the anneal.
Despite the floorplan’s area being essentially fixed, HETRIS
finds new slicing trees with equivalent area but improved region
shapes (INTWL) and relative positions (EXTWL).

8Note that the annealer does not strictly stall, the temperature always
decreases, so the anneal will eventually terminate.

9This is similar to barrier methods in continuous optimization, and to STUN
a technique to help annealer’s escape local minima [21]. In contrast with STUN
our approach attempts to guide the annealer towards legal solutions, rather
than help it escape local minima.

107

- - Width Limit
Height Limit
— Minimum Area

10°

10%

[
&
g

=

S «— Not Explored

\ N 10!

| Explored -
Nearly-"~~-___
Legal BT

0.5

) 2 1 6 S
Aspect Ratio

Fig. 9: Cost surface visualization at the end of an anneal with the

cost penalty. The benchmark and target FPGA are identical to Fig. 5.

o

o

— AREA

1.6 EXTWL
Late Cost INTWL

Improvements

S

S

Zoom)

Cost

< Horizontal — Area
Legality Achieved EXTWL

i ~
168 Y i R INTWL
""" " wr'/

Vert. Penalty

—= Horiz. Penalty

AN " Vertical Legality
il Achieved

10° > 5600 x
10t difference

VB \
S o8 — e

é 0.6 . Avert legal
P ||| Legality Nhorie et
£ 04 Achieved

E 0.2

\

’ Stall Begins

X

Stall Ends

50 100 150 200 250 300
Temperature Number

Fig. 10: Annealer statistics as a function of time (number of
temperatures) for the stereo_vision benchmark.

VIII. FPGA FLOORPLANNING BENCHMARKS
To evaluate a floorplanning tool, it is important to use
realistic benchmarks. This is particularly important since,
to the best of our knowledge, no previous work on FPGA
floorplanning has used real FPGA benchmark designs!®.
The Titan benchmarks are large realistic FPGA benchmarks,
suitable for floorplanning [1]. However, they assume a flat

compilation flow, and require design partitions to be generated.

Partitioning will have a significant impact on any floorplanning
design flow, so it is important to make good choices. Given
the design dependent nature of partitioning along the logical
hierarchy, we focus on physical partitioning, which can be
performed by tools such as Metis and hMetis [22, 23].

A. Partitioning Considerations

Automated partitioning tools typically attempt to minimize
the (hyper-)graph cut-size, while keeping the different partitions
‘well balanced’. The heterogeneous nature of FPGA resources
complicates balancing, and precludes using hMetis, as it does
not support heterogeneous balance constraints. Metis does
support heterogeneous balance constraints, but requires the
input netlist to be transformed from a hyper-graph into a simple
graph. A variety of netlist transformations have been proposed
[24]. We experimentally found a star net model with the inverse
net fanout as the edge weights produced good partitions.

Several additional netlist transformations are required to
improve Metis’ partitioning quality on heterogeneous designs
and ensure that partitions are legal. These included preventing
Metis from partitioning the primitives representing a single
logical RAM, or complex DSP block. Care must also be taken
with sparse resources (e.g. PLLs) which may not be balanceable
due to their limited quantities. More detail is provided in [17].

IX. EVALUATION METHODOLOGY
This section describes the methodology used to evaluate
HETRIS and empirically investigate the floorplanning problem.

A. Quality of Result Metrics and Comparisons

While we would ideally evaluate the quality of HETRIS by
assessing its overall impact on the CAD flow (i.e. post-routing)
this falls beyond the scope of this work. Instead, like previous
work, we focus on QoR metrics which can be easily measured
directly after floorplanning is complete.

It would be desirable to directly compare HETRIS with
previous work, but this is not possible. Firstly, there is no
consistent set of benchmarks or target architectures used for
evaluating FPGA floorplanning algorithms. In particular, the
benchmarks used in [9] were never publicly released and are no
longer available [25]. Secondly, to the best of our knowledge
no previous work has released their floorplanning tools, making
direct comparison impossible.

While the algorithms presented in many previous works are
important contributions, the heuristic nature of these approaches
makes the actual implementation a key component. To help
address these issues, we have publicly released the source code
for HETRIS along with the full set of floorplanning benchmarks
(with partitions) and target architectures used at http://www.
eecg.utoronto.ca/~vaughn/software.html.

10A1l previous work has either used synthetically generated benchmarks
[11, 12], or various adapted ASIC floorplanning benchmarks [9, 10, 13], which
as noted in Section V-A can lead to misleading results.

bl MK
% DSP

> B

40 60 80 100
Number of Partitions ()

Fig. 11: Resource requirements as a function of partition size. Values
are the normalized geometric mean across benchmarks.

120 140

B. Design Flow

Fig. 2 illustrates the design flow used to evaluate HETRIS.
The initial benchmark netlist is partitioned using Metis. A
modified version of VPR 7.0 [26] then packs the netlist into
functional blocks (Logic, RAM etc.) while respecting parti-
tions'!. The resultant packing is used to determine the resource
requirements of each partition. Finally, HETRIS floorplans the
partitioned netlist onto the targeted FPGA architecture.

C. Target Architecture, Benchmarks and Tool Settings

We target a tile-able version of the Stratix IV architecture
in [1]. To make the architecture tile-able, I/Os were placed in
columns rather than around the device perimeter, and column
spacings were adjusted to follow a repeating pattern'?. The
basic tile of this architecture consists of 336 unique locations,
which is larger than the 100 location tile used in [9]. We then
floorplan the 17 Titan benchmarks listed in Table I [1].

HETRIS’s IRL cache size is left unbounded to ensure all
IRLs are memoized. H o and Vyg are initially set to 10, and
Pscq1e to 1.10. Unless otherwise noted all base cost component
weights (e.g. Afq. in Eq. (1)) are set to one. HETRIS was run
on systems using Intel Xeon E5-2650 (32nm) processors with
64GB of memory.

X. FLOORPLANNING EVALUATION RESULTS
This section performs several different experiments using
the methodology described in Section IX.

A. Impact of Netlist Partitioning on Resource Requirements

Partitioning requires that each functional block contain
elements only from a single partition, which may increase
the required resources. Fig. 11 shows the change in resource
requirements as a function of the number of partitions.

Most resources types show only a minimal increase in
the required quantity. For example LAB and M9K RAM
block requirements increase only 2-3% moving from 1 to 128
partitions. The largest difference is with DSP blocks, which
increase by ~38%. The Stratix IV DSP blocks have strict
connectivity and legality requirements, making them easy for
partitioning to disrupt'?.

'This is achieved by modifying VPR’s packing algorithm to select only
primitives in the same partition as packing candidates for each block.

I2ZHETRIS also supports non-tile-able architectures, which are treated as a
single tile (see Section X-C). We use a tile-able architecture to be consistent
with previous work in [9].

3The following device generations (Stratix V and Virtex 7) use simpler
DSP blocks which would help alleviate this issue [27, 28].

http://www.eecg.utoronto.ca/~vaughn/software.html
http://www.eecg.utoronto.ca/~vaughn/software.html

¢ Area + ExtWL + IntWL
B @ Area

0 20 10 60 80 100 120 140
Number of Partitions (V)

Fig. 12: Geometric mean normalized floorplan area. Error bars denote
the range of areas observed across benchmarks.

B. Floorplanning and the Number of Partitions

The number of partitions used during floorplanning is an
important consideration. Smaller, more numerous partitions
would improve the speed-up of a flow compiling partitions in
parallel, but also may have an impact on area.

Fig. 12 plots the achievable floorplan area against the
number of partitions. For the full cost function, the average
normalized floorplan area increased from 1.0x to 2.6 moving
from 1 to 128 partitions. Running HETRIS in area-driven mode
(setting Eyq. and Iy, in Eq. (1) to zero) achieves a smaller
increase of 2.0x across the same range.

Partitioning into 6 to 32 partitions appears to be a good
choice for typical designs, requiring only a moderate area
overhead (< 1.5x) while still exposing significant potential
parallelism during the design implementation. However, the best
number of partitions is design dependant. Some benchmarks
suffer large overheads with only a handful of partitions, while
others can easily scale up to 64 or 128 partitions.

Varying the number of partitions also allows us to investigate
the scalability of HETRIS. It is important to note that increasing
the number of partitions not only increases the size of the
floorplanning problem but also increases the number of external
nets that must be evaluated by HETRIS. For some benchmarks
HETRIS required more memory than was available on the
machine'®. In such cases the benchmarks are excluded from
the average. Fig. 13 shows the measured run-time of HETRIS
as the number of partitions (V) increases. While the run-time
behaviour is super-linear, it maintains a relatively low average
complexity of O(N!-5%). Since we perform O(N!-33) moves
per temperature (Section V-B) this illustrates the efficacy of the
algorithmic optimizations presented in Section IV at reducing
the average per-move complexity'>. For reference, on average
at 32 partitions, HETRIS runs in only 7.9 minutes, less than
10% of the average time required by Quartus II to perform full
pack, place and route [1].

C. Floorplanning at High Resource Utilization

An important concern is how floorplanning performs at
high resource utilizations. To investigate this, we return to the
FIR filter cascade design (Section II) which can be scaled
to different design sizes. Using this design we can evaluate
HETRIS by determining the maximum number of FIR filter
instances which can fit on a device. The same experiment can

“Most of HETRIS’s memory is used to cache memoized IRLs across moves.

Sizing this cache to the problem would reduce the memory requirements.
5Tn comparison, Cheng and Wong’s IRL realization algorithm takes O (V)

time [9]. Making the overall complexity of the annealer using their algorithm

O(N - N133) = O(N?2-33), substantially larger than what is observed here.

90 -

0 20 40 60 80
Number of Partitions (V)

Fig. 13: HETRIS geomean normalized run-time.

100 120 140

TABLE II: Impact of partitioning on FIR Cascade DSP Requirements
targeting EP4SGX230 (161 DSP blocks). Each FIR instance requires
26 multipliers, constituting 3.25 DSP blocks.

Required DSP Blocks

Partitioning Effective DSP Number of Partitions Maximum FIR Instances

Methodology per Partition Blocks per FIR on EP4SGX230 on EP4SGX230
Flat — 3.25 1 49

I-FIR per Partition 4 4.00 40 40

2-FIR per Partition 7 3.50 23 46

be performed using Altera’s Quartus II CAD system with a
floorplan generated automatically using ‘floating regions’, or
entered manually. To ensure a fair comparison Quartus II targets
a Stratix IV EP4SGX230 device and HETRIS targets a nearly
identical device with perimeter I/O (making the architecture
non-tileable), and an identical number of LAB, RAM, and DSP
resources arranged in the same number of columns and rows.

The FIR filter cascade design is limited by the available num-
ber of DSP blocks on the device. Table II shows the resource
requirements for the different partitioning configurations as well
as the maximum number of instances that could (theoretically)
fit on the device. The round-off caused by partitioning (since
blocks can not be assigned to multiple partitions) can have
a significant impact on the maximum number of FIR filter
instances that will fit on the device.

TABLE III: Maximum number of FIRs for which legal floorplans
were found in Quartus II and HETRIS. Both the QII partitioned and
HETRIS results used 1-FIR per Partition.

Flow Max FIR Inst. Time (s) Note
QII Flat 49 —
QIT Manual FP 40 2,700.0 Required ‘L’ shaped region
QII Floating Region 37 — Floorplanning time not reported
HETRIS Default 38 53.9
HETRIS High Effort + Ignore IntWL 39 135.3

‘L’-shaped
Region

(a) Manual floorplan requiring an (b) Floorplan generated by HET-
‘L’-shaped region for 40 instances. RIS for 39 instances.

Fig. 14: Densest manual, and automated floorplans, targeting an
EP4SGX230 device. Note that the device aspect ratios are identical
in this case, despite being drawn differently by Quartus and HETRIS.

The results of floorplanning with a single FIR per partition
are shown in Table IIl. Flat compilation packs the most
instances onto the device, primarily because it doesn’t suffer
from partitioning round-off effects. Considering partition based
approaches, only manual floorplanning is able to fit the
maximum number of instances (40). To do so required a non-
rectangular ‘L’ shaped region, highlighted in Fig. 14a. Manual
floorplanning required approximately 45 minutes to identify
a good floorplan and enter it into the tool. Of the automated
methods, Quartus II's floating regions performs worst, fitting
only 37 FIR instances onto the device. HETRIS performs better,
finding solutions for 38 instances by default and for 39 at a
higher effort level and relaxed IntWL (region aspect ratio) cost.
The floorplan for 39 FIR instances generated by HETRIS is
shown in Fig. 14b. As expected, using automated approaches
requires much less time (~20x) than manual floorplanning'®.

TABLE IV: Maximum number of FIRs for which legal floorplans
were found in Quartus II and HETRIS, for different partitionings.

Flow Max. FIR Inst. I-FIR ~ Max. FIR Inst. 2-FIR
QII Floating Region 37 40
HETRIS Default 38 44
HETRIS High Effort + Ignore IntWL 39 44

Table IV shows the impact of the different partitioning
techniques from Table II. HETRIS is able to pack more FIR
instances than Quartus II for both configurations. Overall, the
results show that HETRIS is capable of finding legal floorplans
even in high resource utilization scenarios, and outperforms
Quartus II’s floating regions.

XI. CONCLUSION & FUTURE WORK

We have presented HETRIS, an automated FPGA floor-
planning tool which can dynamically adapt to arbitrary ar-
chitectures to generate legal solutions. We also introduced
run-time optimizations resulting in an average speed-up of
15.6x compared to previous work. We showed the solution
space for modern FPGA architectures is highly non-uniform
and developed adaptive annealing techniques to optimize and
legalize efficiently in this complex space. We performed the
first evaluation of an FPGA floorplanning tool on a set of
real-world FPGA benchmarks targeting realistic architectures.
These evaluations show that HETRIS is effective at creating
optimized FPGA floorplans, and can generate denser floorplans
at high resource utilization than Quartus II.

There are many areas for potential future work. How best
to size the IRL memoization cache to the problem is an
area that requires further study. The bias towards tall and
narrow floorplan regions on column-based FPGAs may have
implications for floorplanning on interposer based FPGAs. In
particular it may be beneficial for the interposer slices to have
a similar (tall and narrow) aspect ratio, which is not the case
on current devices [29]; however further study is required. As
noted in Section X-C, ‘L or ‘T’ shaped regions may be required
to generate legal solutions. This has been studied in ASICs [30],
but it is not clear whether these approaches would be effective
on heterogeneous FPGAs. Additionally, it would be desirable
for such shapes to be automatically selected by the tool without
user intervention. It would also be beneficial for HETRIS to
optimize additional objectives such as timing. Finally, to prove

16The FIR design is straightforward to floorplan manually. A more complex
design would be significantly more difficult to floorplan manually.

out its effectiveness, the impact of floorplanning on post-place
and route QoR should be investigated.

ACKNOWLEDGEMENTS
We would like to thank Jason Luu for his advice on VPR’s
packing algorithm. This work was supported by Altera, the
Government of Ontario, NSERC, the Semiconductor Research
Corporation and Texas Instruments. Computations were per-
formed at SciNet [31].

REFERENCES
[1] K. E. Murray et al., “Timing-Driven Titan: Enabling Large Benchmarks
and Exploring the Gap Between Academic and Commercial CAD,”
TRETS, vol. 8, no. 2, p. 18, 2015.

[2] D. Capalija and T. Abdelrahman, “A High-Performance Overlay Archi-

tecture for Pipelined Execution of Data Flow Graphs,” in FPL, 2013.

“Lattice Semiconductor Design Floorplanning,” Lattice Semiconductor,

2004.

[4] “Best Practices for Incremental Compilation Partitions and Floorplan
Assignments,” Altera Corp., 2012.

[5] “Floorplanning Methodology Guide,” Xilinx Inc., 2012.

[6] “Partial Reconfiguration User Guide,” Xilinx Inc., 2013.

[7] “Design Planning for Partial Reconfiguration,” Altera Corp., 2013.

[8] T.-C. Chen and Y.-W. Chang, “Floorplanning,” in Electronic Design
Automation: Synthesis, Verification and Test, L.-T. Wang et al., Eds.
Morgan Kaufmann, 2009.

[9] L. Cheng and M. D. F. Wong, “Floorplan Design for Multimillion Gate
FPGAs,” TCAD, vol. 25, no. 12, pp. 2795-2805, 2006.

[10] Y. Feng and D. P. Mehta, “Heterogeneous floorplanning for FPGAs,” in
Inter. Conf. on VLSI Design, 2006, p. 6.

[11] J. Yuan et al., “LFF algorithm for heterogeneous FPGA floorplanning,”
in ASP-DAC, 2005, p. 1123.

[12] L. Singhal and E. Bozorgzadeh, “Novel multi-layer floorplanning for
Heterogeneous FPGAs,” in FPL, 2007, pp. 613-616.

[13] P. Banerjee et al., “Fast Unified Floorplan Topology Generation and
Sizing on Heterogeneous FPGAs,” TCAD, vol. 28, no. 5, pp. 651-661,
2009.

[14] L. Singhal and E. Bozorgzadeh, “Multi-layer Floorplanning on a Sequence
of Reconfigurable Designs,” in FPL, 2006, pp. 1-8.

[15] P. Banerjee et al., “Floorplanning for Partial Reconfiguration in FPGAs,”
in Inter. Conf. on VLSI Design, 2009, pp. 125-130.

[16] K. Vipin and S. Fahmy, “Architecture-Aware Reconfiguration-Centric
Floorplanning for Partial Reconfiguration,” in ARC, 2012, pp. 13-25.

[17] K. E. Murray, “Divide-and-Conquer Techniques for Large Scale FPGA
Design,” MASc thesis, University of Toronto, 2015.

[18] T. H. Cormen et al., Introduction to Algorithms, 2nd ed. Cambridge:
MIT Press, 2001.

[19] V. Betz and J. Rose, “VPR: A new packing, placement and routing tool
for FPGA research,” in FPL, 1997, pp. 213-222.

[20] Z. Michalewicz and D. B. Fogel, How to Solve It: Modern Heuristics,
2nd ed. Springer Science & Business Media, 2004.

[21] W. Wenzel and K. Hamacher, “Stochastic Tunneling Approach for Global
Minimization of Complex Potential Energy Landscapes,” Physical Review
Letters, vol. 82, no. 15, pp. 3003-3007, 1999.

[22] G. Karypis and V. Kumar, “A Fast and High Quality Multilevel Scheme
for Partitioning Irregular Graphs,” SIAM Journal on Scientific Computing,
vol. 20, no. 1, pp. 359-392, 1998.

[23] G. Karypis et al., “Multilevel hypergraph partitioning: applications in
VLSI domain,” TVLSI, vol. 7, no. 1, pp. 69-79, 1999.

[24] C.J. Alpert and A. B. Kahng, “Recent directions in netlist partitioning: a
survey,” Integration, the VLSI Journal, vol. 19, no. 1-2, pp. 1-81, 1995.

[25] L. Cheng, Personal Communication, 2014.

[26] J. Luu et al., “VTR 7.0: Next Generation Architecture and CAD System
for FPGAs,” TRETS, vol. 7, no. 2, pp. 1-30, 2014.

[27] Stratix V Device Handbook, Altera Corp., 2014.

[28] 7 Series DSP48EI Slice User Guide, Xilinx Inc., 2014.

[29] K. Saban, “Xilinx Stacked Silicon Interconnect Technology Delivers
Breakthrough FPGA Capacity, Bandwidth, and Power Efficiency,” Xilinx
Inc., 2012.

[30] F. Young et al., “On extending slicing floorplan to handle L/T-shaped
modules and abutment constraints,” TCAD, vol. 20, no. 6, pp. 800-807,
2001.

[31] C. Loken et al., “SciNet: Lessons Learned from Building a Power-efficient
Top-20 System and Data Centre,” Journal of Physics: Conference Series,
vol. 256, no. 1, 2010.

3

—

	Introduction
	Flat Compilation vs. Floorplanning
	Floorplanning Flow & Previous Work
	Algorithm Overview & Run-time Improvements
	Slicing Tree IRL Evaluation as Dynamic Programming
	IRL Memoization
	Lazy IRL Calculation
	Evaluation

	Annealer
	Initial Solution
	Annealing Schedule & Moves
	Base Cost Function

	Solution Space Structure
	FPGA Architecture and Solution Space Structure

	An Adaptive Approach to Legality
	An Adaptive Approach
	Cost Penalty
	Adjusting the Cooling Rate
	How To Tune A Cost Surface?

	FPGA Floorplanning Benchmarks
	Partitioning Considerations

	Evaluation Methodology
	Quality of Result Metrics and Comparisons
	Design Flow
	Target Architecture, Benchmarks and Tool Settings

	Floorplanning Evaluation Results
	Impact of Netlist Partitioning on Resource Requirements
	Floorplanning and the Number of Partitions
	Floorplanning at High Resource Utilization

	Conclusion & Future Work

