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• Heterogeneous FPGA Floorplanner

• Dynamically adapts to targeted FPGA Architecture

• 15.6x faster than prior work

• Open Source

• Investigate nature of heterogeneous FPGA floorplanning

• First evaluation of a heterogeneous FPGA floorplanner on 

realistic benchmarks and architectures

• Comparison to a commercial tool

Overview
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Need new approaches for scalable 

design implementation
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• Divide-and-conquer design implementation

• Solve smaller sub-problems (potentially in parallel)

• Re-use existing CAD tools and algorithms

• Improved team-based design

• Required for Partial Reconfiguration

Floorplanning



HETRIS: Heterogeneous Region
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Implementation System



Hetris: Overview

7

Generate 

Move

Realize 

Floorplan

Evaluate

• Slicing Tree

• Irreducible Realization Lists 

[Cheng & Wong 2006]

• Area & Wirelength Costs



Simulated Annealing
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Slicing Tree Moves
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Slicing Tree Moves
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Slicing Tree Moves
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Exchange 3 & 2

Rotate at c

Exchange c & 3



• Unique to every location on the FPGA

Handling Heterogeneity: Irreducible Realization Lists
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Realizations for 5 LB, 1 RAM



• Recursively calculate shapes at each node in the tree [Cheng & Wong 2006]

• Realizations at root encode full floorplans

Realizing Slicing Trees
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Algorithmic Enhancements
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Memoization

•Save intermediate results 

•Re-use instead of re-calculating
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Memoization

•Save intermediate results 

•Re-use instead of re-calculating

Lazy Evaluation

•Calculate leaf shapes as needed 

to avoid wasted work

• Important for non-tileable FPGAs

Algorithmic Enhancements
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Exchange 3 & 4

Common sub-trees



Impact of Algorithmic Enhancements
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• Titan Benchmarks: 90K – 550K primitives

• Average run-time: 9 minutes @ 32 partitions

Configuration Speed-Up

Baseline 1.0x

Memoization 2.3x

Lazy Evaluation 5.4x

Memoization & Lazy
Evaluation

15.6x



Floorplan Legality
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• Impractical to forbid illegal solutions

• Cost penalty: Floorplan area outside the device

How to ensure legal solution?
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One column 

too wide!



• Use separate cost penalties for horizontal and vertical legality

Split Cost Penalty
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Legal Solution
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Search Space
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Search Space

Tall & 

Narrow
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Search Space

Tall & 

Narrow

Short & 

Wide



• Need robust cost penalty

• Dynamically adapt penalty based on legal acceptance rate

• Stall the anneal until legality achieved

Adaptive Legality
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Horizontal Legality

Achieved

Vertical Legality

Achieved

Stall Begins Stall Ends



Experimental Results
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• Benchmarks: Titan (90K -

550K primitives)

• Architecture: Stratix IV-like

• Partitioner: Metis

• Packer: VPR

• Floorplanner: Hetris

• Area and Wirelength Optimization

Experimental Setup
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Floorplan Area and Number of Partitions
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Floorplan Area and Number of Partitions
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A moderate number of partitions (up to 32)

yield reasonable overheads



• Scalable benchmark (Cascaded FIR filters)

• Limited by DSP blocks on EP4SGX230 device

• Consider both 1-FIR and 2-FIR instances per partition

Comparison with Quartus II
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Automated 
Design Flow

Max. FIR Inst. 
1-FIR

Max. FIR Inst. 2-FIR

Quartus II 37 40

Hetris Default 38 44

Hetris High-Effort 39 44



Conclusion and Future Work
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• Hetris open source FPGA floorplanning tool

• Algorithmic enhancements yielding 15.6x speed-up

• Adaptive optimization techniques to robustly handle legality

• First evaluation of FPGA floorplanning using realistic benchmarks and 

architectures

Conclusion
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Hetris

• Further algorithmic enhancements

• Timing-driven optimization

• Support for non-rectangular shapes

Design Flow

• Improved automated design partitioning

• Full post-place & route evaluation of floorplanning

Future Work

26



Thanks! Questions?
Email: kmurray@eecg.utoronto.ca

HETRIS Release:

uoft.me/hetris


