
HETRIS: Adaptive Floorplanning for 
Heterogeneous FPGAs

1

Kevin E. Murray and Vaughn Betz



• Heterogeneous FPGA Floorplanner

• Dynamically adapts to targeted FPGA Architecture

• 15.6x faster than prior work

• Open Source

• Investigate nature of heterogeneous FPGA floorplanning

• First evaluation of a heterogeneous FPGA floorplanner on 

realistic benchmarks and architectures

• Comparison to a commercial tool

Overview

2



Increasing FPGA Design Size

3



Increasing FPGA Design Size

3

Need new approaches for scalable 

design implementation



4

Floorplanning



4

Floorplanning



4

Floorplanning



4

Floorplanning



4

Floorplanning



5

• Divide-and-conquer design implementation

• Solve smaller sub-problems (potentially in parallel)

• Re-use existing CAD tools and algorithms

• Improved team-based design

• Required for Partial Reconfiguration

Floorplanning



HETRIS: Heterogeneous Region

6

Implementation System



Hetris: Overview

7

Generate 

Move

Realize 

Floorplan

Evaluate

• Slicing Tree

• Irreducible Realization Lists 

[Cheng & Wong 2006]

• Area & Wirelength Costs



Simulated Annealing

Hetris: Overview

7

Generate 

Move

Realize 

Floorplan

Evaluate

• Slicing Tree

• Irreducible Realization Lists 

[Cheng & Wong 2006]

• Area & Wirelength Costs



Slicing Tree Moves

8



Slicing Tree Moves

8

Exchange 3 & 2



Slicing Tree Moves

8

Exchange 3 & 2

Rotate at c



Slicing Tree Moves

8

Exchange 3 & 2

Rotate at c

Exchange c & 3



• Unique to every location on the FPGA

Handling Heterogeneity: Irreducible Realization Lists

9
Realizations for 5 LB, 1 RAM



• Recursively calculate shapes at each node in the tree [Cheng & Wong 2006]

• Realizations at root encode full floorplans

Realizing Slicing Trees

10



• Recursively calculate shapes at each node in the tree [Cheng & Wong 2006]

• Realizations at root encode full floorplans

Realizing Slicing Trees

10



• Recursively calculate shapes at each node in the tree [Cheng & Wong 2006]

• Realizations at root encode full floorplans

Realizing Slicing Trees

10



• Recursively calculate shapes at each node in the tree [Cheng & Wong 2006]

• Realizations at root encode full floorplans

Realizing Slicing Trees

10



• Recursively calculate shapes at each node in the tree [Cheng & Wong 2006]

• Realizations at root encode full floorplans

Realizing Slicing Trees

10



• Recursively calculate shapes at each node in the tree [Cheng & Wong 2006]

• Realizations at root encode full floorplans

Realizing Slicing Trees

10



• Recursively calculate shapes at each node in the tree [Cheng & Wong 2006]

• Realizations at root encode full floorplans

Realizing Slicing Trees

10



Algorithmic Enhancements

11



Algorithmic Enhancements

11

Exchange 3 & 4



Algorithmic Enhancements

11

Exchange 3 & 4

Common sub-trees



Memoization

•Save intermediate results 

•Re-use instead of re-calculating

Algorithmic Enhancements

11

Exchange 3 & 4

Common sub-trees



Memoization

•Save intermediate results 

•Re-use instead of re-calculating

Lazy Evaluation

•Calculate leaf shapes as needed 

to avoid wasted work

• Important for non-tileable FPGAs

Algorithmic Enhancements

11

Exchange 3 & 4

Common sub-trees



Impact of Algorithmic Enhancements

12

• Titan Benchmarks: 90K – 550K primitives

• Average run-time: 9 minutes @ 32 partitions

Configuration Speed-Up

Baseline 1.0x

Memoization 2.3x

Lazy Evaluation 5.4x

Memoization & Lazy
Evaluation

15.6x



Floorplan Legality

13



• Impractical to forbid illegal solutions

• Cost penalty: Floorplan area outside the device

How to ensure legal solution?

14

One column 

too wide!



• Use separate cost penalties for horizontal and vertical legality

Split Cost Penalty

15



Legal Solution

16



17

Search Space



17

Search Space

Tall & 

Narrow



17

Search Space

Tall & 

Narrow

Short & 

Wide



• Need robust cost penalty

• Dynamically adapt penalty based on legal acceptance rate

• Stall the anneal until legality achieved

Adaptive Legality

18

Horizontal Legality

Achieved

Vertical Legality

Achieved

Stall Begins Stall Ends



Experimental Results

19



• Benchmarks: Titan (90K -

550K primitives)

• Architecture: Stratix IV-like

• Partitioner: Metis

• Packer: VPR

• Floorplanner: Hetris

• Area and Wirelength Optimization

Experimental Setup

20



Floorplan Area and Number of Partitions

21



Floorplan Area and Number of Partitions

21

A moderate number of partitions (up to 32)

yield reasonable overheads



• Scalable benchmark (Cascaded FIR filters)

• Limited by DSP blocks on EP4SGX230 device

• Consider both 1-FIR and 2-FIR instances per partition

Comparison with Quartus II

22

Automated 
Design Flow

Max. FIR Inst. 
1-FIR

Max. FIR Inst. 2-FIR

Quartus II 37 40

Hetris Default 38 44

Hetris High-Effort 39 44



Conclusion and Future Work

24



• Hetris open source FPGA floorplanning tool

• Algorithmic enhancements yielding 15.6x speed-up

• Adaptive optimization techniques to robustly handle legality

• First evaluation of FPGA floorplanning using realistic benchmarks and 

architectures

Conclusion

25



Hetris

• Further algorithmic enhancements

• Timing-driven optimization

• Support for non-rectangular shapes

Design Flow

• Improved automated design partitioning

• Full post-place & route evaluation of floorplanning

Future Work

26



Thanks! Questions?
Email: kmurray@eecg.utoronto.ca

HETRIS Release:

uoft.me/hetris


