Adaptive FPGA Placement Optimization via
Reinforcement Learning

Kevin E. Murray
Dept. of Electrical & Computer Engineering
University of Toronto, Canada
kmurray @ece.utoronto.ca

Abstract—Developing new or improved optimization heuristics
for Computer Aided Design (CAD) tools is challenging and
time consuming, relying on empirical experimentation and re-
searcher experience. In this work we study how this process can
be improved by using Reinforcement Learning (RL) to learn
effective and adaptive heuristics. Applying these techniques to
Field Programmable Gate Array (FPGA) placement, we show
our RL-enhanced algorithm outperforms the standard VIR 8
placer, achieving a better run-time & quality trade-off (up to
2x faster for equivalent quality). RL enables the placer to more
efficiently explore the solution space and enables it to dynamically
adapt to the specific problem instance being solved. We expect
further application of advanced RL methods will improve these
results, which motivates further exploration of how RL can be
applied in the CAD flow.

Index Terms—Field Programmable Gate Array (FPGA), Elec-
tronic Design Automation (EDA), Computer Aided Design (CAD),
Machine Learning (ML), Reinforcement Learning (RL)

I. INTRODUCTION

Computer Aided Design (CAD) often requires solving
complex large scale optimization problems. The large solution
spaces necessitate the use of heuristics to find good quality
solutions in reasonable run-times. However, the process of
designing these heuristic optimization algorithms is itself
challenging and time consuming. The process typically involves
two stages:

o first, a CAD researcher develops a new algorithm or

algorithm enhancement;

« second, they tune their algorithms’ parameters to produce

suitable quality and run-time trade-offs.
The tuning process is key to producing good results but is often
opaque, relying on the researcher’s intuition/experience (e.g.
which parameters to expose and how to set them) combined
with empirical experimentation. Machine Learning techniques
offer the potential to automate and improve this process.

In this work we investigate the use of Reinforcement
Learning (RL) to improve a Simulated Annealing (SA) based
Field Programmable Gate Array (FPGA) placement algorithm.
Unlike previous work looking at CAD parameter auto-tuning
(which typically wraps around an existing algorithm) [1], [2],
we focus on using Reinforcement Learning to develop policies
(which also adapt online) for use within the optimization
algorithm.

II. REINFORCEMENT LEARNING

Reinforcement Learning is an approach to machine learning
which trains an Agent, through experience, to achieve an
objective by interacting with its environment. The agent

Vaughn Betz
Dept. of Electrical & Computer Engineering
University of Toronto, Canada
vaughn@ece.utoronto.ca

ag . Ot+1
Environment

Fig. 1: Reinforcement Learning Problem.

receives feedback about its performance via a numeric reward,
with the RL agent’s goal being to maximize its total reward. RL
is a very general problem formulation, allowing RL techniques
to be applied to a wide range of problems, including robotics
[3], finding good neural network architectures [4], and website
recommendations [5]. RL techniques have also been shown
to be effective for hard search and decision problems such as
Chess, Go [6], and real time strategy games [7].

Figure 1 outlines the RL problem in more detail. At timestep
t, the agent selects an action a; to perform, from the set of
possible actions .A. At the next timestep the environment is
observed, producing observation o;41. This observation is then
interpreted to produce a reward .41 € R and the agent’s
perception of the environment’s state s;11 (from the set of
possible states &). On the basis of the states and rewards
previously observed the agent selects a new action a;4; to
perform. For more background on RL see [8].

Many RL techniques rely upon estimating action values: the
long-term value of taking a particular action (i.e. considering
both immediate and future rewards). This estimate is often
defined as a function Q(s, a): Sx.A — R. How Q is estimated
from the agent’s experience (action value estimation), along
with how () is used to select the next action (action selection)
are important considerations for many RL algorithms.

An important special case of the RL problem are so-called
K-armed bandit problems. In such problems there is only a
single state (i.e. |S| = 1), and @) becomes a function only of
the actions: Q(a): A — R.

III. SIMULATED ANNEALING PLACEMENT FOR FPGAS

FPGAs are microchips consisting of reconfigurable logic and
routing resources, which enable an FPGA to be re-programmed
to implement a wide range of digital circuits. As shown in
Figure 2, the logic, RAM and other resources are grouped
into blocks which are laid out in a grid with routing resources
between them.

One of the major steps in the automated FPGA design flow
is placement, which determines where to place design logic

Logic DSP RAM
— R ¥ —
0o
L OO
0O o
L OO
BREEN
L OO o
Fig. 2: FPGA placement grid
while minimizing the amount of wiring required and critical
path delays. Since design logic can only be placed at locations
where pre-fabricated resources exist, FPGA placement is a

])

])
])
|

discrete optimization problem with many legality constraints.

It is also key to generating a high quality implementation, as
placement is the primary determinant of both routability and
timing.! These considerations have made Simulated Annealing
(SA) a popular algorithm for FPGA placement [9], [10].

As shown in Algorithm 1, SA starts with an initial solution
(Line 2). The annealer then repeatedly generates moves (Line 5)
which perturb the current solution. The associated change in
cost (Line 6) is used to decide whether the move should be
accepted or rejected. SA accepts all moves which decrease cost,
and probabilistically accepts moves which increase cost as a
function of the current temperature (Line 7). Accepting cost
increases allows the annealer to hill climb and escape local
minima. After making M moves (Line 4) the temperature
is decreased (Line 9). This focuses the annealer on cost
improvements (less likely to accept uphill moves), guiding
it to converge to a high quality solution. The process repeats
until the exit conditions are met (Line 10).

Algorithm 1 Simulated Annealing Placement

Require: P;,;; initial placement, 75+ initial temp., M moves per temp.
Returns: An optimized placement

1: function SA_PLACE(P;nit, Tinit, M)

2: P < Pipit, T < Tinit

3 repeat

4 for 1... M do

5 P’ + GENERATE_MOVE(P) > Perturb Solution
6: Acost < EVALUATE_MOVE(P, P’)
7: if PROBABILISTICACCEPT(Acost,T') then
8.
9
0
1

P+ P!

T < UPDATE_TEMP(T)
until EXIT_CONDITION(P, T')
return P

> Accepted Move

> Optimized Placement

A. Placement Moves

It is useful to clarify what a move means in the context of
FPGA placement. Perhaps the simplest type of move is to swap
two blocks of the same type (e.g. two DSP blocks). These
are the types of moves used by the standard VTR placer [11],
which randomly selects a block from the netlist with uniform
probability, and randomly swaps it with another block (or empty
location) of the same type. Random swaps are a ‘complete’
type of move as they ensure any valid placement configuration
can be reached from any other. This is desirable since it means
potentially better configurations are always reachable through
some sequence of moves. Despite this, reaching a significantly
better configuration may be challenging, requiring a large

!Unlike Application Specific Integrated Circuits (ASICs), there are no later
stages (e.g. buffer insertion, gate re-sizing) to fix-up timing issues.

number of swaps (potentially many of them uphill if already
in a deep local minima).

However moves are not limited to simple random swaps.
By exploiting knowledge about the structure of the problem
more powerful and intelligent moves can be applied. For
instance, directed moves [12], [13] use circuit structure, current
placement, and timing information to intelligently move blocks
towards their optimal positions.”> These moves make the
annealer more effective at escaping local minima (by making
larger steps through the solution space), achieving better quality
in fewer moves, which reduces run-time.

An interesting and more general way of viewing these more
intelligent moves is as a set of algorithms the annealer selects
from to improve the current placement. There is no fundamental
restriction on what types of algorithms could be used for
move generation. Moves could be very significant, potentially
encompassing what would traditionally be considered entirely
separate placement algorithms, for instance based on parti-
tioning, assignment or analytic placement techniques [14]. In
this sense annealing acts as a framework for combining these
algorithms together, and as a true meta-heuristic selecting
among their results.

However designing such a system which selects among
numerous other algorithms is inherently challenging. It is
unclear when or how often the different move types should
be used. Likely, which type of move will be effective will
be situationally dependent, for instance depending on circuit
structure and target technology (which varies across designs),
the current optimization progress, and the run-time budget.
These factors, combined with the large number of possibly
diverse move types likely makes it intractable for a human
algorithm designer to tune this type of system well. As a result,
to control complexity move generators are typically statically
configured with limited coupling to the rest of the optimizer.

IV. REINFORCEMENT LEARNING ENHANCED MOVE
GENERATOR

To address this challenge we will apply RL to learn effective
policies for controlling more powerful and flexible move
generators, aiming to make the optimizer more adaptable. For
instance, enabling the optimizer to adapt to both the static
characteristics of the problem instance (e.g. circuit structure),
and the evolving dynamics of the optimization process (e.g.
which types of moves are most productive, which regions of the
circuit would benefit from further optimization). This allows
the optimizer to focus effort where it is most needed, and
explore the solution space more effectively.

An illustration of our RL-enhanced move generator is shown
in Figure 3. The ‘Agent’ chooses between several different
types of moves. In this case selecting a different type of block
to be randomly swapped. The impact of the move is not known
to the agent until after it has been performed.

After selecting a move type, the blocks are swapped and
the move evaluated using the existing tool infrastructure to
calculate the associated change in cost (A.,s:). The annealer
then determines whether the move is accepted or rejected
(Algorithm 1 Line 7) as usual. The A_,s; and whether the

2For instance, the commercial Quartus placer uses > 10 different types of
directed moves [13].

Move Types

=
<

Move
Evaluation

Fig. 3: RL-based move generator.

move was accepted or rejected (i.e. reverted) are provided to
the agent to calculate the reward. Based on this feedback, over
time the agent learns which move types yield high reward and
focuses the placers’ effort there.

A. Reward Formulation

To guide the agent towards the desired behaviour we must
formulate a reward which captures this intent. The agent will
then attempt to maximize this reward through its actions.

One reward formulation we considered was:

ey
Since placement is a minimization problem (we seek decreases
in wirelength and timing costs), but the agent (by convention)
seeks to maximize reward, we use the negative of the cost
change. Intuitively, this seems to capture our goal: for moves
which decrease cost the agent’s actions are affirmed (with a
positive reward), while for moves which increase cost the agent
is penalized (negative reward).

However, we found Equation (1) did not perform well in
practise. In particular, the agent prefered move types which
had low probability of producing negative rewards. A common
example of this is moving IO blocks. Since IO connectivity is
not the dominant factor in the placer’s cost functions, and given
that many IO configurations have similar cost, this allowed
the agent to avoid the (potentially) large negative rewards
associated with moving other (more significant) block types.

Furthermore, as optimization progresses, it becomes harder
to find moves which decrease cost (since the circuit is becoming
increasingly well optimized), and correspondingly easier to
find moves which increase cost (although such moves become
more likely to be rejected as the anneal progresses). This leads
the agent to become very risk-averse, focusing on actions with
limited chance of a downside — even though it would ultimately
be more productive to propose a number of moves with high
probability of negative reward (which are likely to be rejected)
in the hope of finding some moves which decrease cost.

To better capture this intent we used an alternative reward

defined as:
- *Acost
‘7o

This reward formulation does not penalize the agent for
proposing moves which are ultimately rejected by the annealer.
By reducing the downside the agent becomes more exploratory
and focuses on proposing moves which ultimately lead to cost
improvements. It is interesting to note this formulation has

Tt = — Acost

if accepted
P)

if rejected

another advantage: the sum of all rewards is equal to the total
cost change of the circuit, which is our ultimate goal.

It is also worth considering how this reward function treats
hill climbing moves (which increase cost, but are accepted
by the annealer). In this case the agent receives a negative
reward which, if a common result, will lead the agent away
from proposing that move type. It is unclear whether this is
a good choice. Hill climbing moves are helpful for escaping
local minima, so penalizing them may not be ideal. On the
other hand, it does guide the agent away from unproductive
move types, allowing it to focus on more productive types.
B. Estimating Action Values

Our agent’s action space is shown in the first row of Table L.
Each action corresponds to swapping a random block of a
particular type. The FPGA architecture we targeted has four
block types, but in general there could be arbitrary types of
moves (such as those described in Section III-A). The agent
only needs to know the number of potential move types; it
does not need to know what they do, or how they work. The
agent learns to use them effectively by trying them out and
observing the resulting rewards.

As the second row of Table I shows, our agent has only
a single state, and hence treats the move type selection
problem as a K-armed bandit problem [8]. This is a significant
simplifying assumption, and we believe extending the state
space will allow the agent to recognize different situations
(e.g. optimization progress, previous moves, circuit structure)
and respond accordingly. However this is left for future work
(Section VI).

One aspect of the move type selection problem which differs
from many conventional RL problems is that the problem
statistics are non-stationary. That is, the distributions of rewards
offered by the different move types evolves over time as
optimization progresses. For instance, a particular move type
may offer the highest expected reward early in placement
optimization, but later becomes sub-optimal (i.e. when the
placement is better optimized). It is therefore important for
our agent to continually adapt to the changing dynamics of the
move type rewards.

To estimate the value of taking each potential action, our
agent uses a tabular () function which stores the current
estimated reward of taking a particular action a;. After
performing action a; and receiving reward .1 the @ value
is updated as:

Qar) = Q(ar) + arir1 — Q(ay)) 3)
where 711 — Q(a;) corresponds to the ‘error’ between the
received reward and the current estimate, and « is the size of
step taken to reduce the error.

In order to track the evolving reward statistics we weight
the rewards of recent moves more heavily using a weighted
exponential average. We correspondingly set « as:

a=1—losn/M 4)
where M is the number of moves per temperature, and ~ is
the fraction of weight given to moves which occurred > M
moves ago.> We empirically found small y values (0.1 to 0.001)

3+ controls the ‘length’ of the agent’s memory. As ~ approaches 1 the
agent has the longest term memory (Q approaches the average of all previous
moves). At v = 0 the agent has the shortest term memory (@ equals the
reward of the previous move).

TABLE I: Agent State and Action Spaces

Space Values
Action (A) {IO, Logic, DSP, RAM}
State (S) {so}
x10-%
3 Logic RAM DSP

0.0 0.5 1.0 15 2.0 25 3.0 35 4.0
Move Number x10°

Fig. 4. Agent’s perceived action values (()) during early
placement on the LUSPEEng benchmark.

performed best as they focus the agent on tracking the shorter
term dynamics of which move types were most effective. We
expect an expanded state representation (Section VI) will be
needed to effectively capture longer term trends.

Figure 4 illustrates how the agent’s () estimates change
during early placement with v = 0.1.* We can see that the
@ values for each move type change rapidly as placement
proceeds. It is interesting to note the ‘best’ (highest @ value)
move type changes in an oscillatory fashion, alternating
between the different block types (Logic, DSP and RAM).

Previous work has found this approach (cyclically optimizing
different block types) to be an effective heuristic [15], [16].5 Tt
is particularly noteworthy that in previous work this heuristic
was manually programmed into the placers by their developers.
In contrast, we provided no such heuristic guidance to our
placer. The agent learned this technique by itself, based on its
experience and the feedback provided by the reward function.
This points toward the potential of using RL to find new
improved heuristics and reduce the development effort required
to build high quality CAD tools.

C. Action Selection: Exploration versus Exploitation

Once the agent has an estimate of the value of potential
actions it must select which action to perform. The agent faces
to two competing factors:

« exploring the set of potential actions (A) to improve its

action value estimates ((Q), and

« performing high pay-off actions to maximize reward.
This is typically referred to in the RL literature as the explo-
ration versus exploitation trade-off [8]. Failing to sufficiently
explore possible actions means the agent’s value estimates will
not reflect the true values — leading to poor choices. However
each exploratory action also has a cost, since it is not spent
making further progress towards the goal.

E-Greedy action selection is one approach to handle this
trade-off. With this technique, the agent mostly selects the
highest value (greedy) action — the action it believes will yield
maximum reward. However for some fraction of actions ¢

“i.e. placing 90% of weight on the most recent M moves.

SIntuitively, after optimizing the placement of a particular block type (e.g.

DSPs), it is likely the placement of other block types (e.g. Logic, RAM) could
be improved to account for the first type’s new placement.

w
=)

N
%)

—+— Wirelength
Crit. Path Delay
Num. Moves

g
=)

=
%)

Metric Value (Normalized)

|
|
v

0.5

0.3 0.4 0.5 0.6 0.7 0.8
Place Time (Normalized, log scale)

Fig. 5: Run-time trade-off for varying degrees of exploration
() with v = 0.001, normalized to the default VTR 8 placer.
Results are the average over the same benchmark circuits
following the methodology of Section V.

09 1.0

the agent instead performs a random exploratory action. In
stationary RL problems (where the rewards of actions do not
evolve) it is common to decrease £ over time, to focus on
exploitation, once action value estimates have converged. In
our case, the reward statistics are non-stationary so we use a
fixed € .

Figure 5 shows how varying the fixed ¢ changes the obtained
Quality of Result (QoR) and run-time. First looking at QoR,
we observe varying € has only a small impact impact on
Wirelength (WL) and Critical Path Delay (CPD) for most of
it’s range (0.9 to 0.005).° Despite this some exploration is key
for good QoR, as decreasing ¢ (below 0.0005 and particularly
to 0.0) significantly degrades QoR. For very small € the agent
performs insufficient exploration (resulting in misleading action
value estimates) which leads the agent to myopically focus on
sub-optimal move types.

It was surprising such small ¢ values (e.g. 0.005) did not
cause more significant QoR degradation, as they make the
agent more exploitative/greedy and hence likely to get stuck
in local minima. One reason for this is the agent’s relatively
short term ‘memory’ (Section IV-B), which means it tends to
forget about historical action performance (whether poor or
successful). This ensures the agent continues to adapt, which
also makes the agent inherently explorative. Additionally, the
move generation process still has a random component, as the
locations blocks are moved to are chosen randomly.

Now considering run-time, we also see in Figure 5 that
decreasing ¢ achieves a significant 2.0x to 2.8 run-time
reduction for € from 0.005 to 0.0001. Figure 5 also shows the
total number of moves the annealer performs (Num. Moves),
which tends to decrease with ¢. Making the agent more
exploitative (decreasing ¢) focuses it on high pay-off move
types, which quickly improves the placement in fewer moves.
The annealer then exits when it detects no further quality
improvement seems likely [9], reducing run-time.

V. RESULTS

We evaluate our RL-enhanced placer (Section IV) on the
standard VTR benchmark circuits targeting the k6_frac_
N10_frac_chain_mem32K_40nm FPGA architecture [11].
We exclude small benchmark circuits with < 10K primitives,

®Interestingly, CPD degrades more slowly than WL which is desirable.
FPGA designers are typically more concerned with timing than wirelength —
so long as their design remains routable.

and average results over three random number generator seeds
to reduce algorithmic noise. We compare to the standard VTR
8 placer [11], with two variants of our algorithm using different
agents:

« Random: selects a block type to move at random (ignoring
any learned action values)

o RL: selects the block type to move based on action
values (exploiting learned action values) using an e-greedy
approach.

Run-time and QoR are both important metrics when evalu-
ating and comparing placement algorithms. Most placement
algorithms have some tuneable parameters which allow a trade-
off between run-time and quality. This is useful since different
run-time/quality trade-offs may be desirable at different stages
of the design. For instance, early in the design process design
engineers may value faster turn-around time at the cost of some
quality, but at later stages (e.g. during final timing closure)
may be willing to spend additional run-time for improved
quality. Therefore the entire run-time/quality trade-off curve
of a placement algorithm is of interest. Figure 6 shows the
run-time versus quality trade-offs for WL and CPD achieved
by the different algorithms.

For the VTR 8 placer, this was achieved by varying the
number of moves per temperature (M in Algorithm 1), which
is the best run-time/quality trade-off parameter as determined by
the original developers. As M is decreased the placer performs
fewer moves which decreases run-time, at the cost of some
QoR. While the quality degradation is initially moderate it
rises quickly for run-time below 0.4, as the solution space is
not being explored sufficiently to find a good solution.

Our placer using the RL-enhanced move generator (RL
Agent) outperforms the VTR 8 placer, achieving a better trade-
off — particularly at low run-times. This was achieved by
varying € and « at the same values of M used by the VTR
8 placer. The RL Agent curve is shifted left (better run-time)
and below (better quality) the VTR 8 curve, running up to 2x
faster at equivalent quality.

The improvements are more pronounced at low run-times
where a small number of moves are being made. Here the
RL Agent significantly out performs VIR 8, achieving results
which are otherwise unachievable by the VTR 8 placer in
the same run-time budget. The RL Agent is able to focus the
placer’s efforts on high reward moves, which is particularly
valuable when only limited exploration is possible. At higher
run-times, the improvement is less pronounced, likely because
enough moves are performed for the standard placer to sample
these high reward moves.

To verify our agent is responsible for these improvements
Figure 6 also includes results for a ‘Random Agent’ which
uses the same move generator, but randomly selects the type
of move to perform (i.e. ignores any learned action values).
The Random Agent performs uniformly worse than both our
RL Agent and VTR 8. This shows these improvements are
not simply due to an improved move generation mechanism,
but are a result of the RL agent’s ability to learn and adapt as
optimization proceeds.

To further illustrate this, we can look at how the agent’s
move proposal distribution changes as shown in Figure 7. First,

15

b ~+- VTR 8
! Random Agent

1.4 -— RL Agent
3 |
E 50% |
© 1.3 faster_!
£ <
S
£
£1.2
o
c
[
I
S11

1.0 S

20% fasler\ T
0.2 0.3 0.4 0.5 0.6 0.7 0.80.91.0
Place Time (Normalized, log scale)
1.20 :
i --+- VTR 8
‘ Random Agent

’?31.15 i —e— RL Agent
N H
= i
£ 3
21.10 \
>
©
o
a
£1.05
©
a
©
2
5 1.00

0.95

0.2 0.3 0.4 0.5 0.6 0.7 0.80.91.0
Place Time (Normalized, log scale)

Fig. 6: Pareto optimal run-time versus quality trade-offs on the
VTR Benchmarks (> 10K primitives, geomean over 3 seeds).
Run-time and quality metrics are normalized to the VTR 8
default settings.

comparing across the different benchmarks circuits we can see
the agent chooses to emphasize moves of different types on
different circuits. For instance on mcml it focuses primarily
on moving Logic blocks (> 80% of all proposed moves),
with less than 4% of moves spent on DSP blocks. In contrast,
stereovision?2 has a more even distribution, with 33%
DSP moves, 48% Logic moves, and 19% 10 moves.

We can also look at how the move proposal distribution
changes during the anneal, showing how the agent adapts
online.” For all benchmarks in Figure 7 the placer initially
focuses its efforts on I0 moves. With blob_merge the agent
then shifts its focus to Logic moves while still performing
a moderate fraction of IO moves. For LUSPEEng the agent
focuses nearly exclusively on Logic moves during the middle
portion of the anneal before it starts performing more DSP and
IO moves towards the end of the anneal. stereovision?2
shows somewhat different behaviour, with the agent splitting
its efforts between Logic and DSP through out the anneal with
an increased focus on DSPs near the end.

VI. CONCLUSION & FUTURE WORK

In conclusion, we’ve presented a RL-enhanced FPGA placer
which uses a RL agent to control how the placer explores the
solution space. The agent controls a more flexible SA move
generator, and learns online what types of moves are productive.

7In contrast, the move proposal distribution of the standard VTR 8 placer is
fixed and statically determined by the frequency of block types in the netlist.

mcml stereovision2

o

o

— 10
Logic
— DsP

o
©
-
Y
<
o
©

°
EY
Fd
s
=
°
Y

°
=
°
=

o

Fraction of Cummulative Moves
o
~

Fraction of Cummulative Moves

°
o
°
°

°
°
°

0.4 0.6 0.8 1.0
Move Number (Normalized)

°
°

0.2 0.4 0.6 0.8 1.0
Move Number (Normalized)

blob_merge LUBPEENg

— 10
08 Logic

|

0.0 0.2 0.4 0.6 0.8
Move Number (Normalized)

Fig. 7: Cumulative number of moves performed during the
anneal for several benchmark cicruits. The RL-enhanced move
generator adapts online to both benchmark characteristics and
optimization progress.

— 10

0.8 Logic
—— DSP
0.6 — RAM

" o

0.2 0.4 0.6 0.8 1.0
Move Number (Normalized)

Fraction of Cummulative Moves
Fraction of Cummulative Moves

°
°

This enables the placer to adapt based on circuit characteristics
and how optimization progresses.

Compared to the VTR 8 placer, our result show the RL-
enhanced placer achieves an improved run-time/quality trade-
off. This allows our placer to achieve the same QoR while
running up to 2x times faster. Our approach is particularly
effective in a low run-time regime where few moves are made,
and performing ‘good’ moves is more beneficial.

This illustrates how RL can be used to make more adaptable
CAD tools and learn effective optimization heuristics with
reduced human design effort. RL offers a very general
framework for formulating these types of problems and so
should be applicable at various stages of the CAD flow.

There are many potential avenues for future work. While
we showed our technique was effective with a relatively small
number of simple moves (based on block type) we believe
using a wider variety of more powerful moves will make the
techniques presented here more effective, as they will give the
agent a broad range of capabilities which it can use to improve
placement quality.

The reward formulations (Section IV-A) have also not been
well explored and can likely be improved. One factor not
accounted for is the run-time impact of different move types,
as some moves may be more computationally intensive than
others. We would like the agent to account for this, enabling
it to effectively trade-off both quality and run-time.

Currently our agent has only a single state (Section IV-B),
which limits its ability to learn longer time scale phenomena and
situationally dependent behaviour. Additional state information
(e.g. circuit and optimizer statistics) would likely help it make
better decisions. The agent also uses e-greedy action selection
(Section IV-C). One drawback of this approach is if several
actions are perceived to have nearly equal value, the agent will
usually greedily select the highest value action. A less greedy
approach to action selection (e.g. soft-max) would likely better
balance the agent’s actions with its perceived action values.

Our agent also only learns online. While we believe online
learning is important (since it allows the agent to adapt to
the current problem characteristics), it means the agent begins
learning from scratch at the start of each placement. We expect
off-line training (e.g. on a suite of benchmark circuits) would
help the agent learn general techniques based on a wider range

of experience which would further improve results. Online
learning could then be used to ensure the agent still adapts to
the specific placement problem.

Additionally, our agent uses relatively simple K-armed
bandit-based RL algorithms. While these approaches are fast
and run-time efficient (important since they are used in the
placer’s inner loops) there are a wide variety of more powerful
RL algorithms which could be applied, such as Temporal
Difference Learning and Policy Gradients [8]. We expect more
complex RL techniques will need to be invoked periodically
(to keep their run-time overheads low) with the goal of setting
the general optimization direction. This direction can then be
fine-tuned online with fast RL algorithms like those used in
this work.

Finally, we believe RL techniques can be used with other
CAD algorithms (e.g. analytic placement, negotiated congestion
routing), however the application of RL to such algorithms
remains future work.

ACKNOWLEDGMENTS

The NSERC/Intel Industrial Research Chair in Programmable
Silicon, Huawei, the Canadian Foundation for Innovation, and
an Ontario Graduate Scholarship supported this work.

REFERENCES

[1] C. Xu, G. Liu et al., “A Parallel Bandit-Based Approach for Autotuning
FPGA Compilation,” in ACM/SIGDA Int. Symp. on Field Programmable
Gate Arrays, 2017, pp. 157-166.

[2] N. Kapre, H. Ng et al., “Intime: A machine learning approach for efficient
selection of fpga cad tool parameters,” in ACM/SIGDA Int. Symp. on
Field Programmable Gate Arrays, 2015, pp. 23-26.

[3] J. Kober and J. Peters, Reinforcement Learning in Robotics: A Survey.
Springer International Publishing, 2014, pp. 9-67.

[4] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” ArXiv, vol. abs/1611.01578, 2016.

[5]1 L. Li, W. Chu et al., “A contextual-bandit approach to personalized news
article recommendation,” Int. Conf. on World Wide Web, 2010.

[6] D. Silver, T. Hubert et al., “A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play,” Science, vol. 362,
no. 6419, pp. 1140-1144, 2018.

[7]1 O. Vinyals, I. Babuschkin et al., “Grandmaster level in StarCraft II using
multi-agent reinforcement learning,” Nature, 2019.

[8] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. The MIT Press, 2018.

[9] V. Betz and J. Rose, “VPR: A new packing, placement and routing tool

for FPGA research,” in Field-Programmable Logic and Applications,

1997, pp. 213-222.

M. Hutton, V. Betz, and J. Anderson, “FPGA Synthesis and Physical

Design,” in Electronic Design Automation for IC Implementation, Circuit

Design, and Process Technology, 2nd ed. CRC Press, 2016, ch. 16.

K. E. Murray, O. Petelin et al., “VTR 8: High Performance CAD and

Customizable FPGA Architecture Modelling,” ACM Transactions on

Reconfigurable Technology Systems, 2020, To Appear.

K. Vorwerk, A. Kennings, and J. W. Greene, “Improving simulated

annealing-based fpga placement with directed moves,” Trans. Comp.-

Aided Des. Integ. Cir. Sys., vol. 28, no. 2, pp. 179-192, 2009.

A. Ludwin and V. Betz, “Efficient and Deterministic Parallel Placement

for FPGAs,” ACM Trans. Des. Autom. Electron. Syst., vol. 16, no. 3, pp.

22:1-22:23, 2011.

I. L. Markov, J. Hu, and M. Kim, “Progress and Challenges in VLSI

Placement Research,” Proc. of the IEEE, vol. 103, no. 11, pp. 1985-2003,

2015.

D. Vercruyce, E. Vansteenkiste, and D. Stroobandt, “Liquid: High quality

scalable placement for large heterogeneous FPGASs,” in Int. Conf. on

Field Programmable Technology, 2017, pp. 17-24.

M. Gort and J. H. Anderson, “Analytical placement for heterogeneous

FPGAs,” in Int. Conf. on Field Programmable Logic and Applications,

Aug 2012, pp. 143-150.

(10]

[11]

[12]

[13]

[14]

[15]

[16]

