
Adaptive FPGA Placement 
Optimization via Reinforcement 

Learning

1

Kevin E. Murray and Vaughn Betz



Reinforcement Learning & CAD

2



CAD Tool Development: Human-in-the-loop 

3

Large solution space → Use heuristics



CAD Tool Development: Human-in-the-loop 

3

Large solution space → Use heuristics



CAD Tool Development: Human-in-the-loop 

3

Idea

Large solution space → Use heuristics



CAD Tool Development: Human-in-the-loop 

3

Tool

Idea

Large solution space → Use heuristics



CAD Tool Development: Human-in-the-loop 

3

Tool

Idea
Evaluate

Large solution space → Use heuristics



CAD Tool Development: Human-in-the-loop 

3

Tool

Idea
Evaluate

Large solution space → Use heuristics



CAD Tool Development: Human-in-the-loop 

3

Tool

Idea

Tune

Evaluate

Large solution space → Use heuristics



CAD Tool Development: Human-in-the-loop 

3

Tool

Idea

Tune

Evaluate

Large solution space → Use heuristics



With human-in-the-loop:

•Slow

•Simple heuristics, limited tool parameters (to keep tractable)

•Tune for average case (can’t investigate every benchmark design)

CAD Tool Development: Human-in-the-loop 

3

Tool

Idea

Tune

Evaluate

Large solution space → Use heuristics



With RL:

•Human out of the loop!

•Learn better heuristics: exploit more information, more parameters

•Online adaptation → better than average case

CAD Tool Development: Reinforcement Learning (RL)

4

Tool

Idea

Act

Reward



With RL:

•Human out of the loop!

•Learn better heuristics: exploit more information, more parameters

•Online adaptation → better than average case

CAD Tool Development: Reinforcement Learning (RL)

4

Tool

Idea

Act

Reward

Tool



FPGA Placement

5



FPGA:

• Pre-fabricated programmable blocks 

and routing

• Can implement wide range of 

designs

FPGA Placement

6

Logic RAMDSP

Placement Considerations:

• Key step for timing (no later fix up)

• Routing architecture dependent

• Many legality constraints

• Discrete optimization

• Large designs (millions of netlist primitives)



• Modify placement by making ‘moves’

• Accept/Reject move based on:

• Cost change

• Temperature (hill climbing)

Simulated Annealing (SA) Placement

7



Many possible types of moves!

Move Generation

8



Many possible types of moves!

Move Generation

8

Simple: random swap



Many possible types of moves!

Move Generation

8

Simple: random swap



Many possible types of moves!

Move Generation

8

Simple: random swap Smart: directed move to ‘good’ 

location (wirelength, timing) 



Many possible types of moves!

Move Generation

8

Simple: random swap Smart: directed move to ‘good’ 

location (wirelength, timing) 



Many possible types of moves!

Move Generation

8

Simple: random swap Smart: directed move to ‘good’ 

location (wirelength, timing) 

Complex: Analytic



Many possible types of moves!

Move Generation

8

Simple: random swap Smart: directed move to ‘good’ 

location (wirelength, timing) 

Complex: Analytic



Many possible types of moves!

Move Generation

8

Simple: random swap Smart: directed move to ‘good’ 

location (wirelength, timing) 

Complex: Analytic Complex: Assignment



Many possible types of moves!

Move Generation

8

Simple: random swap Smart: directed move to ‘good’ 

location (wirelength, timing) 

Complex: Analytic Complex: Assignment



Many possible types of moves!

Move Generation

8

Simple: random swap Smart: directed move to ‘good’ 

location (wirelength, timing) 

Complex: Analytic Complex: Assignment

Many considerations:

• Frequencies of different moves

• Situation dependent?

• Move ‘strength’ vs run-time



Many possible types of moves!

Move Generation

8

Simple: random swap Smart: directed move to ‘good’ 

location (wirelength, timing) 

Complex: Analytic Complex: Assignment

Many considerations:

• Frequencies of different moves

• Situation dependent?

• Move ‘strength’ vs run-time



Actions: moved different block types

Reward:

•Accepted: -Δcost

•Rejected: 0

Agent:

•Estimates value of actions

•Selects action to take

RL Move Generator

9

Action/Move

‘Agent’

Move 

Evaluation

Logic

RAM

DSP

A
c
c
/R

e
j

Δ
c
o

s
t



Estimating Action Values

10

Move

• Values of action are not stationary!



Estimating Action Values

10

Move

• Values of action are not stationary!



Estimating Action Values

10

Move

• Values of action are not stationary!

Logic
RAM DSP



Estimating Action Values

10

Move

• Values of action are not stationary!

Logic
RAM DSP

Agent determines ‘good’ 

move types online!



• ε-greedy: Mostly greedy (exploit), occasionally random (explore)

• ε: fraction of exploratory moves

Action Selection: Exploration vs Exploitation

11



• ε-greedy: Mostly greedy (exploit), occasionally random (explore)

• ε: fraction of exploratory moves

Action Selection: Exploration vs Exploitation

11

Exploit to save 

run-time



• ε-greedy: Mostly greedy (exploit), occasionally random (explore)

• ε: fraction of exploratory moves

Action Selection: Exploration vs Exploitation

11

No exploration 

harms quality

Exploit to save 

run-time



• VTR Benchmarks (10K-165K primitives), 3 seeds

Quality/Run-time Comparison

12



• VTR Benchmarks (10K-165K primitives), 3 seeds

Quality/Run-time Comparison

12

VTR Default



• VTR Benchmarks (10K-165K primitives), 3 seeds

Quality/Run-time Comparison

13



• VTR Benchmarks (10K-165K primitives), 3 seeds

Quality/Run-time Comparison

14



• VTR Benchmarks (10K-165K primitives), 3 seeds

Quality/Run-time Comparison

15



• VTR Benchmarks (10K-165K primitives), 3 seeds

Quality/Run-time Comparison

15

Same quality

20% faster



• VTR Benchmarks (10K-165K primitives), 3 seeds

Quality/Run-time Comparison

15

Same quality

20% faster

Better quality

50% faster



• RL-enhanced Simulated Annealing based FPGA Placer

• RL agent controlled move generator

• Learns on-line what types of moves are productive

• Improves run-time/quality trade-offs

• Particularly at low run-times

Conclusion

16



•More types of moves

•Other reward formulations (e.g. cost run-time)?

•Agent:

•Less greedy action selection (soft-max)?

•Use more state information: Circuit & Optimizer statistics

•Learn:

•Off-line agent training

•Other RL algorithms (e.g. Temporal Difference Learning, Policy 

Gradients)

•Explore RL elsewhere in CAD flow

Future Work

17



Thanks! Questions?
Email: kmurray@eecg.utoronto.ca



Backup

19



Exploration vs Exploitation: Critical Path Delay

20



• VTR Benchmarks (10K-165K primitives), 3 seeds

Quality/Run-time Comparison: Critical Path

21



Estimating Action Values: Time Scale

22

L
o
n
g
 T

im
e

-s
c
a
le

S
h
o
rt

 T
im

e
-s

c
a
le



Reinforcement Learning (RL) for CAD: Challenges

23

Long CAD Run-times

• Must exploit limited experience

Long delayed rewards

• Core challenge of RL

• CAD has well defined objectives

Nested black-box optimization

• CAD optimization already difficult to interpret/debug

• Nested optimization makes interpretability more challenging


