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With human-in-the-loop:

•Slow

•Simple heuristics, limited tool parameters (to keep tractable)

•Tune for average case (can’t investigate every benchmark design)
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With RL:

•Human out of the loop!

•Learn better heuristics: exploit more information, more parameters

•Online adaptation → better than average case
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FPGA:

• Pre-fabricated programmable blocks 

and routing

• Can implement wide range of 

designs

FPGA Placement
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Logic RAMDSP

Placement Considerations:

• Key step for timing (no later fix up)

• Routing architecture dependent

• Many legality constraints

• Discrete optimization

• Large designs (millions of netlist primitives)



• Modify placement by making ‘moves’

• Accept/Reject move based on:

• Cost change

• Temperature (hill climbing)

Simulated Annealing (SA) Placement
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Many possible types of moves!
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Actions: moved different block types

Reward:

•Accepted: -Δcost

•Rejected: 0

Agent:

•Estimates value of actions

•Selects action to take

RL Move Generator

9

Action/Move

‘Agent’

Move 

Evaluation

Logic

RAM

DSP

A
c
c
/R

e
j

Δ
c
o

s
t



Estimating Action Values
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Move

• Values of action are not stationary!

Logic
RAM DSP

Agent determines ‘good’ 

move types online!



• ε-greedy: Mostly greedy (exploit), occasionally random (explore)

• ε: fraction of exploratory moves

Action Selection: Exploration vs Exploitation
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No exploration 

harms quality

Exploit to save 

run-time



• VTR Benchmarks (10K-165K primitives), 3 seeds

Quality/Run-time Comparison
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• RL-enhanced Simulated Annealing based FPGA Placer

• RL agent controlled move generator

• Learns on-line what types of moves are productive

• Improves run-time/quality trade-offs

• Particularly at low run-times

Conclusion
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•More types of moves

•Other reward formulations (e.g. cost run-time)?

•Agent:

•Less greedy action selection (soft-max)?

•Use more state information: Circuit & Optimizer statistics

•Learn:

•Off-line agent training

•Other RL algorithms (e.g. Temporal Difference Learning, Policy 

Gradients)

•Explore RL elsewhere in CAD flow

Future Work
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Thanks! Questions?
Email: kmurray@eecg.utoronto.ca



Backup
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Exploration vs Exploitation: Critical Path Delay
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• VTR Benchmarks (10K-165K primitives), 3 seeds

Quality/Run-time Comparison: Critical Path
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Estimating Action Values: Time Scale
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Reinforcement Learning (RL) for CAD: Challenges
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Long CAD Run-times

• Must exploit limited experience

Long delayed rewards

• Core challenge of RL

• CAD has well defined objectives

Nested black-box optimization

• CAD optimization already difficult to interpret/debug

• Nested optimization makes interpretability more challenging


