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CAD Tool Development: Human-in-the-loop

Large solution space — Use heuristics
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CAD Tool Development: Human-in-the-loop

Large solution space — Use heuristics

Evaluate
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With human-in-the-loop:
*Slow
® Simple heuristics, limited tool parameters (to keep tractable)

= eTune for average case (can’t investigate every benchmark design)
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CAD Tool Development: Reinforcement Learning (RL)
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With RL:
* Human out of the loop!
®|_earn better heuristics: exploit more information, more parameters

®*Online adaptation — better than average case



CAD Tool Development: Reinforcement Learning (RL)
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* Human out of the loop!
®|_earn better heuristics: exploit more information, more parameters

®*Online adaptation — better than average case




FPGA Placement
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FPGA Placement Logic DSP RAM

FPGA: 4 ECENENE /.

* Pre-fabricated programmable blocks EEOEREEOE

and routing BEIEEE B

* Can implement wide range of CROEEEE I B[] E
designs
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Placement Considerations:
® Key step for timing (no later fix up)

® Routing architecture dependent
®* Many legality constraints
® Discrete optimization

5 ® Large designs (millions of netlist primitives)




Simulated Annealing (SA) Placement

®* Modify placement by making ‘moves’

® Accept/Reject move based on:

® Cost change

® Temperature (hill climbing)
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Move Generation
Many possible types of moves!

Simple: random swap Smart: directed move to ‘good’
location (wirelength, timing)

Complex: Analytic Complex: Assignment

Many considerations:

®* Frequencies of different moves

o ° Situation dependent?

& * Move ‘strength’ vs run-time



RL Move Generator Action/Move

Actions: moved different block types

Reward:

® Accepted: -Acost
®*Rejected: 0

Agent:

® Estimates value of actions

® Selects action to take

Move

Evaluation
N— -~




Estimating Action Values
® Values of action are not stationary!
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Move
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® Values of action are not stationary!
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Estimating Action Values
® Values of action are not stationary!

Logic RAM DSP
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Estimating Action Values

® Values of

2y I '
\ Agent determines ‘good’

action are not stationary!

Logic RAM DSP
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Action Selection: Exploration vs Exploitation

® e-greedy: Mostly greedy (exploit), occasionally random (explore)

® ¢: fraction of exploratory moves
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Action Selection: Exploration vs Exploitation
® e-greedy: Mostly greedy (exploit), occasionally random (explore)

® ¢: fraction of exploratory moves
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Quality/Run-time Comparison
VTR Benchmarks (10K-165K primitives), 3 seeds
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Quality/Run-time Comparison
VTR Benchmarks (10K-165K primitives), 3 seeds
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Conclusion

® RL-enhanced Simulated Annealing based FPGA Placer
®* RL agent controlled move generator
® Learns on-line what types of moves are productive

® Improves run-time/quality trade-offs

® Particularly at low run-times
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Future Work

®*More types of moves
®*Other reward formulations (e.g. cost run-time)?
®* Agent:

® | ess greedy action selection (soft-max)?

® Use more state information: Circuit & Optimizer statistics

®| earn:
¢ Off-line agent training

® Other RL algorithms (e.g. Temporal Difference Learning, Policy
Gradients)

®*Explore RL elsewhere in CAD flow
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Thanks! | Questions?
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Backup
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Exploration vs Exploitation: Critical Path Delay
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Quality/Run-time Comparison: Critical Path
VTR Benchmarks (10K-165K primitives), 3 seeds
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Estimating Action Values: Time Scale
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Reinforcement Learning (RL) for CAD: Challenges

Long CAD Run-times
* Must exploit limited experience

Long delayed rewards
* Core challenge of RL
 CAD has well defined objectives

Nested black-box optimization
« CAD optimization already difficult to interpret/debug
* Nested optimization makes interpretability more challenging
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