Adaptive FPGA Placement
Optimization via Reinforcement
Learning

Kevin E. Murray and Vaughn Betz

@ UNIVERSITY OF TORONTO
.Y FACULTY or APPLIED SCIENCE &« ENGINEERING

nnnnn

Reinforcement Learning & CAD

@ UNIVERSITY OF TORONTO
.Y FACULTY or APPLIED SCIENCE &« ENGINEERING

&7
S

nnnnn

CAD Tool Development: Human-in-the-loop

Large solution space — Use heuristics

CAD Tool Development: Human-in-the-loop

Large solution space — Use heuristics

CAD Tool Development: Human-in-the-loop

Large solution space — Use heuristics

|dea

CAD Tool Development: Human-in-the-loop

Large solution space — Use heuristics

|dea

N

CAD Tool Development: Human-in-the-loop

Large solution space — Use heuristics

Evaluate

gea TN

CAD Tool Development: Human-in-the-loop

Large solution space — Use heuristics

Evaluate

gea TN

CAD Tool Development: Human-in-the-loop

Large solution space — Use heuristics

Evaluate

gea TN

CAD Tool Development: Human-in-the-loop

Large solution space — Use heuristics

Evaluate

|dea

CAD Tool Development: Human-in-the-loop

Large solution space — Use heuristics

Evaluate

|dea

With human-in-the-loop:
*Slow
® Simple heuristics, limited tool parameters (to keep tractable)

= eTune for average case (can’t investigate every benchmark design)

3

CAD Tool Development: Reinforcement Learning (RL)

Reward

= Nk

Tool ‘gﬁ\/@é E@Q}%

(

With RL:
* Human out of the loop!
®|_earn better heuristics: exploit more information, more parameters

®*Online adaptation — better than average case

CAD Tool Development: Reinforcement Learning (RL)

Q.
D
Q)

)

=

With RL.:

r
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

* Human out of the loop!
®|_earn better heuristics: exploit more information, more parameters

®*Online adaptation — better than average case

FPGA Placement

@ | UNIVERSITY OF TORONTO
J FACULTY or APPLIED SCIENCE « ENGINEERING

FPGA Placement Logic DSP RAM

FPGA: 4 ECENENE /.

* Pre-fabricated programmable blocks EEOEREEOE

and routing BEIEEE B

* Can implement wide range of CROEEEE I B[] E
designs

H D III]

EELEwELE

Placement Considerations:
® Key step for timing (no later fix up)

® Routing architecture dependent
®* Many legality constraints
® Discrete optimization

5 ® Large designs (millions of netlist primitives)

Simulated Annealing (SA) Placement

®* Modify placement by making ‘moves’

® Accept/Reject move based on:

® Cost change

® Temperature (hill climbing)

Move Generation
Many possible types of moves!

Move Generation
Many possible types of moves!

Simple: random swap

Move Generation
Many possible types of moves!

Simple: random swap

Move Generation
Many possible types of moves!

Simple: random swap Smart: directed move to ‘good’
location (wirelength, timing)

Move Generation
Many possible types of moves!

Simple: random swap Smart: directed move to ‘good’
location (wirelength, timing)

Move Generation
Many possible types of moves!

Simple: random swap Smart: directed move to ‘good’
location (wirelength, timing)

Complex: Analytic

Move Generation
Many possible types of moves!

Simple: random swap

Complex: Analytic

Smart: directed move to ‘good’
location (wirelength, timing)

Move Generation
Many possible types of moves!

Simple: random swap

Complex: Analytic

Smart: directed move to ‘good’
location (wirelength, timing)

Complex: Assignment

Move Generation
Many possible types of moves!

Simple: random swap

Complex: Analytic

Smart: directed move to ‘good’
location (wirelength, timing)

Complex: Assignment

Move Generation
Many possible types of moves!

Simple: random swap

Complex: Analytic

Many considerations:

® Frequencies of C

_® Situation depend

Ifferent moves

ent?

& * Move ‘strength’ vs run-time

Smart: directed move to ‘good’
location (wirelength, timing)

Complex: Assignment

Move Generation
Many possible types of moves!

Simple: random swap Smart: directed move to ‘good’
location (wirelength, timing)

Complex: Analytic Complex: Assignment

Many considerations:

®* Frequencies of different moves

o ° Situation dependent?

& * Move ‘strength’ vs run-time

RL Move Generator Action/Move

Actions: moved different block types

Reward:

® Accepted: -Acost
®*Rejected: 0

Agent:

® Estimates value of actions

® Selects action to take

Move

Evaluation
N— -~

Estimating Action Values
® Values of action are not stationary!

4y

Move

10

Estimating Action Values
® Values of action are not stationary!

10

Estimating Action Values
® Values of action are not stationary!

Logic RAM DSP

10

Estimating Action Values

® Values of

2y I '
\ Agent determines ‘good’

action are not stationary!

Logic RAM DSP

! J 'H | (r L

I r Ii!'
| H- |

move types online!

Action Selection: Exploration vs Exploitation

® e-greedy: Mostly greedy (exploit), occasionally random (explore)

® ¢: fraction of exploratory moves
0.00

w
U

Wirelength (Normalized)

1.07

W
=)

N
U

N
=)

0.005 0.05 0.90

0.001 ¢
0.01 0.10 0.50

0.3

0.4 0.5 0.6 0.7 0.8 0.91.0
Place Time (Normalized, log scale)

11

Action Selection: Exploration vs Exploitation

® e-greedy: Mostly greedy (exploit), occasionally random (explore)

® ¢: fraction of exploratory moves

w
U

Wirelength (Normalized)

1.07

W
=)

N
U

N
=)

0.00
Exploit to save
0.0001 .
run-time
0.0005 T
0.005 . 0.05 0.90
| IO.OOl | O.I{)l —l 'O.;I.O | 01'5{1
0.3 0.4 0.5 06 0.7 08 091.0

Place Time (Normalized, log scale)

11

Action Selection: Exploration vs Exploitation
® e-greedy: Mostly greedy (exploit), occasionally random (explore)

® ¢: fraction of exploratory moves

0.00
No exploration
397 harms quality
)
g30
©
=
% 2.5}
=
S
2.0
@
= Exploit to save
1.5¢ run-time
0.005 . 0.05 0.90
1.0y | IO'OOI | 0.0 " %10 050
0.3 0.4 0.5 0.6 0.7 0.8 0.91.0

Place Time (Normalized, log scale)

11

Quality/Run-time Comparison
VTR Benchmarks (10K-165K primitives), 3 seeds

1.5

=
N

=
)

Wirelength (Normalized)
= =
= N

(-
o

0.9

—+— VTR 8 (hand tuned)

0.2

0.3

0.4 05 0.6 0.7 0.80.91.0
Place Time (Normalized, log scale)

2.0

12

Quality/Run-time Comparison
VTR Benchmarks (10K-165K primitives), 3 seeds

1.5

—+— VTR 8 (hand tuned)

=
N

=
(O

VTR Default

Wirelength (Normalized)
= =
= N

(-
o
-

0.9

0.2 0.3 0.4 05 0.6 0.7 0.80.91.0
Place Time (Normalized, log scale)

2.0

12

Quality/Run-time Comparison
VTR Benchmarks (10K-165K primitives), 3 seeds

1.5
—+— VTR 8 (hand tuned)

=
N

=
(O

Wirelength (Normalized)
= =
= N

(-
o

0.9

0.2 0.3 0.4 05 0.6 0.7 0.80.91.0
Place Time (Normalized, log scale)

2.0
13

Quality/Run-time Comparison
VTR Benchmarks (10K-165K primitives), 3 seeds

1.5

=
N

=
(O

Wirelength (Normalized)
= =
= N

(-
o

0.9

—+— VTR 8 (hand tuned)
Random Agent

0.2

0.3

0.4 05 0.6 0.7 0.80.91.0
Place Time (Normalized, log scale)

2.0

14

Quality/Run-time Comparison
VTR Benchmarks (10K-165K primitives), 3 seeds

1.5

=
N

=
(O

Wirelength (Normalized)
= =
= N

(-
o

0.9

—+— VTR 8 (hand tuned)
Random Agent
—e— RL Agent

0.2

0.3

0.4 05 0.6 0.7 0.80.91.0
Place Time (Normalized, log scale)

2.0

15

Quality/Run-time Comparison
VTR Benchmarks (10K-165K primitives), 3 seeds

1.5

=
N

=
(O

Wirelength (Normalized)
= =
= N

(-
o

0.9

—+— VTR 8 (hand tuned)
Random Agent
—e— RL Agent

Same quality

20% faster

0.2

0.3

0.4 05 0.6 0.7 0.80.91.0
Place Time (Normalized, log scale)

2.0

15

Quality/Run-time Comparison
VTR Benchmarks (10K-165K primitives), 3 seeds

1.5

=
N

=
(O

Wirelength (Normalized)
= =
= N

(-
o

0.9

Better quality
50% faster

—+— VTR 8 (hand tuned)
Random Agent
—e— RL Agent

Same quality
20% faster

0.2

0.3 0.4

0.5

0.6 0.7 0.80.91.0

Place Time (Normalized, log scale)

2.0

15

Conclusion

® RL-enhanced Simulated Annealing based FPGA Placer
®* RL agent controlled move generator
® Learns on-line what types of moves are productive

® Improves run-time/quality trade-offs

® Particularly at low run-times

16

Future Work

®*More types of moves
®*Other reward formulations (e.g. cost run-time)?
®* Agent:

® | ess greedy action selection (soft-max)?

® Use more state information: Circuit & Optimizer statistics

®| earn:
¢ Off-line agent training

® Other RL algorithms (e.g. Temporal Difference Learning, Policy
Gradients)

®*Explore RL elsewhere in CAD flow

17

Thanks! | Questions?

@ | UNIVERSITY OF TORONTO
J FACULTY or APPLIED SCIENCE « ENGINEERING

Backup

| UNIVERSITY OF TORONTO

) FACULTY ofF APPLIED SCIENCE « ENGINEERING

19

[®]
Q
N
©
&
-
o
=
-
©
Q
(]
L
i
(G
('
©
—
+
-
O

Exploration vs Exploitation: Critical Path Delay

N
N

NJ
-

=
o8]

(-]
o)

=
~

pd
N

0.00
.05 90

| __0.001 0.01 q' 010 050
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Place Time (Normalized, log scale)

20

Quality/Run-time Comparison: Critical Path
VTR Benchmarks (10K-165K primitives), 3 seeds

1.5

=
N

=
(O

Critical Path Delay (Normalized)
= =
- N

(-
o

—+— VTR 8 (hand tuned)
Random Agent
—e— RL Agent

0.2

0.3

0.4 05 0.6 0.7 0.80.91.0
Place Time (Normalized, log scale)

2.0

21

Estimating Action Values: Time Scale

= _iD
1p g_clo
= _mult_36
= _memory
0.8
2 H
©
O
n 0.6
QO
& o
= o
(@)
c
3 0.2y
)] = l'.#.;-'-.

g_io

g_clo
= g _mult_36
= _memory

Short Time-scale
Q

Reinforcement Learning (RL) for CAD: Challenges

Long CAD Run-times
* Must exploit limited experience

Long delayed rewards
* Core challenge of RL
 CAD has well defined objectives

Nested black-box optimization
« CAD optimization already difficult to interpret/debug
* Nested optimization makes interpretability more challenging

23

