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Abstract—Static Timing Analysis (STA) is used to evaluate the
correctness and performance of a digital circuit implementation.
In addition to final sign-off checks, STA is called numerous times
during placement and routing to guide optimization. As a result,
STA consumes a significant fraction of the time required for
design implementation; to make progress reducing FPGA compile
times we need faster STA. We evaluate the suitability of both GPU
and multi-core CPU platforms for accelerating STA. On core STA
algorithms our GPU kernel achieves a 6.2 times kernel speed-up
but data transfer overhead reduces this to 0.9 times. Our best
CPU implementation achieves a 9.2 times parallel speed-up on 32
cores, yielding a 15.2 times overall speed-up compared to the VPR
analyzer, and a 6.9 times larger parallel speed-up than a recent
parallel ASIC timing analyzer. We then show how reducing the
run-time cost of STA can be leveraged to improve optimization
quality, reducing critical path delay by 4%.

Keywords—Static Timing Analysis (STA), Parallel Algorithms,
GPU, multi-core CPU, FPGA, Computer-Aided Design (CAD)

I. INTRODUCTION
A common goal when designing a digital circuit is maximiz-

ing its performance; as a result a circuit is analyzed repeatedly
during design to determine its operating frequency.

The most common approach to determine a digital cir-
cuit’s speed is Static Timing Analysis (STA). While STA
is significantly faster than other approaches such as timing
simulation, it is still time-consuming. Consequently designers
and optimization tools often opt to sacrifice accuracy, by
performing STA only ‘occasionally’ during the design process,
to minimize design iteration times. Despite this a placement tool
like VPR will call STA hundreds of times during optimization
[1]. However this still means design decisions are made using
stale (old and possibly now incorrect) timing information. This
leads designers and optimization algorithms (whose decisions
can benefit from accurate timing information) to assume
unnecessarily pessimistic design conditions – resulting in costly
over-design.

Furthermore, design sizes continue to increase rapidly [2],
while improvements in single-threaded CPU performance have
slowed [3]. Additionally, the number of timing analyses required
to fully characterize a design is also increasing due to the
proliferation of timing corners [4], and the growing number
of clock domains [5]. As a result, in commercial FPGA place
and route tools STA typically takes 25% of total run-time,
but may dominate the optimization algorithms when designs
have multiple clocks and timing constraints [6]. Moreover,
modern FPGAs have performance-driven architectural features
such as pulsed latches [7] and interconnect registers [8],
which exacerbate hold-time issues. This requires additional
minimum-delay timing analyses to evaluate, and design tools
to explicitly optimize for hold-time; requiring numerous rapid

calls to STA [9]. Finally, a variety of performant parallel
algorithms have been proposed for FPGA placement [3], [10],
[11], [12] and routing [13], [14], [15], [16]. As these parallel
approaches speed-up the core optimization algorithms, timing
analysis becomes an increasingly dominant portion of run-
time – limiting the achievable speed-up.1 These factors all
make the development of fast and scalable timing analysis
algorithms, which can exploit the parallelism available from
modern computing systems, key to reducing FPGA design
times.

In this paper we focus on the problem of developing efficient
and scalable parallel algorithms for block-based STA. Our
contributions include:

• Memory layout optimizations for STA data structures,
• Parallel algorithms for block-based STA and evalua-

tions on GPUs and multi-core CPUs,
• Techniques to efficiently perform multi-corner and

multi-clock STA,
• Tatum, an open-source reusable STA library built on

our best algorithms,
• Analysis and comparison of Tatum with existing serial

and parallel STA tools, and
• An evaluation of Tatum’s performance when integrated

in an existing placement tool (VPR) to guide its
optimization.

Section II discusses background and related work. Sec-
tions III to V present our GPU and CPU parallel algorithms and
evaluates them within a simplified STA formulation. Sections VI
and VII describe our methods for speeding-up multi-corner
and multi-clock STA, and Section VIII describes and evaluate
our best algorithms within a full-featured STA formulation.
Section IX illustrates how fast STA can be exploited to improve
optimization quality. The conclusion and future work are
presented in Section X.

II. BACKGROUND & RELATED WORK
Related work can be divided into two components: STA

and its related extensions, and parallel algorithms.

A. STA Background
Timing analysis checks whether a digital circuit will operate

correctly, given a set of timing constraints. A typical timing
constraint is the clock period, which requires signals to be
stable before the active clock edge to avoid latching stale data
or inducing meta-stability in data storage elements.

1Most works on parallel placement and routing do not account for time
spent on STA when reporting speed-ups. However STA’s impact is significant.
For instance, at 25% of total run-time STA limits the best-case speed-up of
any parallel placement or routing algorithm to only 4× (Ahmdal’s law).
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STA [17] is the conventional approach for timing analysis.
STA operates on a timing graph, an abstract representation of a
digital circuit where nodes represent the pins of circuit elements
and uni-directional edges represent the timing dependencies
between them. We denotes the number of nodes in the timing
graph as N , and the number of levels after topological sorting
as L. Two classes of STA algorithms have been proposed:
path-based and block-based. Path-based algorithms perform
a detailed analysis of every path in a circuit – offering high
accuracy, but with worst-case exponential run-time. As a result
block-based algorithms, whose computation time grows linearly
with the size of the circuit, are usually used despite their more
pessimistic analysis.

A more recent development has been Statistical STA (SSTA)
[18]. Rather than calculating scalar delays, SSTA calculates
delay probability distributions to capture the delay impact of
manufacturing process variation. SSTA can be applied with
either path-based or block-based algorithms, and calculated
either analytically, or by Monte Carlo methods.

Due to their lower computational complexity many indus-
trial design flows, and most optimization tools, use block-based
algorithms. We focus on block-based STA, but our techniques
can be directly extended to block-based SSTA.

B. Parallel Timing Analysis
Several approaches have been taken to parallelize timing

analysis on CPUs. Distributed approaches partition the circuit
into pieces which can be processed by multiple machines [19],
[20], using message passing for synchronization and commu-
nication. Scalability is typically limited by the partitioning
overhead [20]. In [21] an enhanced sampling method for Monte-
Carlo based SSTA is presented, which is trivially parallelized.
OpenTimer [22] presents a static timing analyzer using pipeline
parallelism, and is evaluated in Section VIII-A.

Several works have looked at accelerating timing analysis
on GPUs. A path-based STA engine, formulated as a Sparse-
Matrix Vector Product problem is presented briefly in [23],
however it requires O(N2) memory for a circuit of size N ,
which limits scalability. [24] describes a GPU accelerated
path-based SSTA implementation using the Monte Carlo
approach. However, path-based Monte Carlo SSTA is very
computationally expensive making it impractical in many
industrial design flows, and too expensive to call repeatedly in
an optimizer. [25] describes a GPU SSTA algorithm using a
dynamic batch construction algorithm. CASTA [26] presents
a GPU-based STA implementation and is compared to our
approach in Section IV-B.

Unlike previous work, we develop multiple parallel CPU
algorithms, account for data transfer when evaluating GPUs,
consider simultaneous multi-corner and multi-clock analysis,
and evaluate our algorithms in an optimization tool on a variety
of large benchmark circuits.

III. BASELINE IMPLEMENTATION
It is a large effort to develop a full featured timing analysis

engine for each parallel algorithm and compute platform. Hence
we first consider a simplified timing analysis formulation which
captures the key algorithmic characteristics of STA. We develop
several STA engine variants to compare a wide variety of
parallel approaches. These simplified engines calculate node
arrival/required times for single-clock circuits using a pre-
calculated delay model. In Section VIII we create and evaluate
a full featured parallel timing engine (Tatum) built on the
most promising approach, which supports multiple-clocks and
additional timing constraints like false and multicycle paths.

TABLE I. PERFORMANCE OF MEMORY OPTIMIZATIONS

Data Layout Speed-Up

AoS 1.00
SoA 1.44

SoA & Re-Order Edges 1.61
SoA & Re-Order Nodes 3.98

SoA & Re-Order Edges + Nodes 5.40

Geomean across neuron, openCV,
denoise, and gaussianblur
benchmarks.

The baseline CPU algorithm is shown in Algorithm 1.

Algorithm 1 Baseline Serial Algorithm
Require: G levelized timing graph to analyze

1: function SERIALWALK(G)
2: L← NUMLEVELS(G)
3: for ` ∈ (0 · · ·L− 2) do . Forward traversal
4: for node ∈ LEVELNODES(G, `) do
5: FWDTRAVERSENODEPUSH(node)
6: for ` ∈ (L− 2 · · · 0) do . Backward traversal
7: for node ∈ LEVELNODES(G, `) do
8: BWDTRAVERSENODEPULL(node)

The timing graph (levelized by a topological sort) is
first traversed in the forward direction one level at a time
(Line 3), ensuring predecessor nodes have valid arrival times.
FWDTRAVERSENODEPUSH, which walks the out-going edges
to update the arrival time of downstream nodes, is then called
on each node in the level (Line 5). The graph is traversed
similarly in the backward direction to calculate required times
(Lines 6 to 8).

A. Memory Layout Optimizations
The graph traversals in Algorithm 1 have a relatively

small amount of computation (arrival/required time calculation)
compared to data access (graph nodes and edges). As a
result, memory access patterns and caching behaviour are
key to achieving high performance. We implemented several
optimizations to improve this behaviour:
Struct-of-Arrays We change the memory layout from Array-

of-Structs (AoS) (e.g. where a node’s arrival time, required
time and out-going edges are located in adjacent memory)
to Struct-of-Arrays (SoA) (e.g. where the arrival times of
all nodes are located in adjacent memory).

Re-order Edges We re-order timing graph edges to match
the expected traversal order based on the levelization.

Re-order Nodes We similarly re-order timing graph nodes.
Table I shows the impact of these optimizations, which

improve spatial and temporal locality of the timing graph. Indi-
vidually, SoA layout and re-ordering edges provide moderate
improvements, while re-ordering nodes causes a significant
improvement. These optimizations combine to yield an overall
5.4× speed-up.2 All following comparisons are made with this
optimized implementation unless otherwise noted.

IV. PARALLEL STA ON GPUS
GPUs are a popular platform for compute acceleration, due

to their potential high performance if many threads can be
utilized effectively. GPU accelerated FPGA placement [12] and
routing [16] techniques have been proposed, so evaluating their
ability to accelerate STA is warranted. A GPU consists of a

2Re-ordering nodes and edges is done once based on the timing graph
structure, and takes less time than a full timing analysis. Therefore the re-
ordering run-time overhead is trivial in CAD tools like VPR which perform
hundreds of timing analyses.
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large number of simple compute units, which execute a unique
thread but usually share a common control flow [27]. Subsets
of the compute units can communicate quickly using a shared
local memory, while compute units outside the subset must
communicate through slower global memory [27].

A. GPU Algorithm
To evaluate the suitability of GPUs, we focus on accelerating

the timing graph traversals. These traversals are the most time-
consuming part of STA, accounting for ∼ 90% of the run-
time in the optimized CPU implementation. We accelerate the
forward traversal (the backward traversal is similar).

The timing graph is processed one level at-a-time using two
kernels as shown in Figure 1. In the segmented additive map
kernel, each thread is assigned a single edge and calculates
the edge arrival time by adding the source node arrival time
(Level i− 1) and the edge delay. Next, in the segmented max
reduction kernel, each thread is assigned a sink node (at Level
i) and performs a maximum reduction over all incoming edge
arrival times.

The key benefit of this approach is the exposure of a
large amount of parallelism to the GPU when calculating edge
arrival times. This results in better load-balancing compared to
processing the timing graph in a strictly node-at-a-time manner,
since the work done per edge is effectively constant. This also
improves performance by reducing code divergence (divergent
branching), which is inefficient on GPUs [27]. The edge and
node data is re-ordered as in Section III-A to ensure coalesced
memory accesses, and speculatively loaded into local memories
for fast access.

6 1 5 2 3 7 4 0Edge Delays

6 10 3 5
Source Node
Arrival Times Level i− 1

12 7 11 12 13 10 9 5
Calculated Edge

Arrival Times

11 13 9 10
Calculated Sink

Node Arrival Times Level i

Segmented
Additive

Map Kernel

Segmented
Max Reduction

Kernel

Map
Thre

ad

Reduce

Thread

Fig. 1. GPU calculation of level i arrival times.

B. GPU Experimental Results
1) Experimental Methodology: Both the CPU and GPU

implementation are evaluated using a selection of large bench-
marks from the Titan FPGA benchmark suite [28] run on
an Intel Q9550 (45nm ‘Yorkfield’) processor, and NVIDIA
GTX780 (28nm ‘GK110’) GPU. The GPU algorithm is
implemented using OpenCL, and minimizes wall-clock time by
overlapping computation and data transfer. Reported run-times
are the sum over all kernel invocations required to evaluate the
timing graph, and are averaged over 100 runs.

2) Experimental Results: Table II shows the performance
results. Comparing first the CPU and GPU Kernel times, we
observe the GPU significantly outperforms the CPU by 6.2×.
However, taking into account the time spent on data transfer
between the host CPU and GPU, the GPU implementation
is slower, taking 12% longer to complete. The data transfer
overhead is significant and dominates overall run-time, on
average accounting for 85% of the GPU’s wall-clock time.

On a per-benchmark basis it is clear that the GPU imple-
mentation’s performance varies widely. This is largely tied

TABLE II. GPU PERFORMANCE

Benchmark CPU Opt.
(P=1) GPU Kernel GPU Total Transf.

Frac.

neuron 0.014 0.006 (2.33×) 0.031 (0.45×) 0.81
openCV 0.046 0.014 (3.30×) 0.077 (0.60×) 0.82

bitcoin miner 0.179 0.007 (24.46×) 0.090 (1.97×) 0.92
sparcT1 chip2 0.124 0.013 (9.52×) 0.107 (1.16×) 0.88

LU230 0.100 0.020 (5.02×) 0.108 (0.92×) 0.82

GEOMEAN 0.068 0.011 (6.17×) 0.076 (0.89×) 0.85

Time in seconds, speed-up relative to optimized CPU baseline in brackets.

TABLE III. GPU SPEED-UP COMPARISON

GPU Kernel vs
CPU Baseline (P=1)

GPU Kernel vs
CPU Opt. (P=1)

GPU Total vs
CPU Opt. (P=1)

This Work 33.3× 6.2× 0.9×
CASTA [26] 12.9×

Blank values unreported.

to the size of the benchmark and the number of levels in
the timing graph. The GPU implementation performs better
on larger benchmarks, with the bitcoin_miner benchmark
achieving the largest speed-up (2.0× overall, 24.5× kernel
only). Compared to the other benchmarks bitcoin_miner
has substantially fewer (and wider) levels in the timing graph.
This increases the work per kernel invocation, improving
GPU utilization and providing more opportunity to overlap
computation and data transfer.

Data transfer dominates the compute time, even though the
GPU implementation overlaps computation and data transfer.
The small amount of computation and large data transfer time
means there is relatively little opportunity for overlap to occur.
The largest amount of overlap occurs on bitcoin_miner
where overlapping data transfer reduced wall clock time by
11%.

Table III summarizes the achieved GPU speed-ups and
compares them with [26]. Comparing only GPU Kernel
execution time, our method achieved a larger speed-up (33.3×
vs 12.9×) than [26] when compared to baseline CPU imple-
mentations. However using an optimized CPU implementation
(Section III-A) our achieved speed-up shrinks to 6.2×. This
is a smaller speed-up than [26] but is against a more realistic
baseline.3 Including data-transfer times (GPU Total) further
decreases our speed-up to 0.9×. Data-transfer times are
important, since they dominate the Kernel execution time, but
are not discussed in [26].

3) Conclusion: While our results show that GPUs are
amenable to accelerating the core kernels of block-based STA,
the data transfer overhead dominates the computation resulting
in a net slow down. Fundamentally, unlike many popular
algorithms accelerated by GPUs, block-based STA is a linear-
time algorithm – requiring a linear amount of data to be
transferred. This limits (in the Ahmdal’s law sense) the overall
performance of the GPU.4

Given that our GPU implementation considered only a
simplified STA kernel, a more full-featured STA engine
(supporting multiple-clocks, more complex delay models and
timing exceptions) would likely perform worse, due to increased
code-divergence, increased load-imbalance between threads and
additional data transfer overhead.

3The CPU baseline in [26] contained GPU specific modifications, and was
not optimized for CPU execution.

4Even if the GPU kernel run-time was reduced to zero the average speed-up
would be only 1.05× for the benchmarks in Table II.
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V. PARALLEL STA ON CPUS
As shown in Section IV, while GPUs show promising

performance on the core computational kernels, the overhead
of marshalling data between the CPU and GPU is prohibitively
expensive. We now focus on parallel STA algorithms targeting
multi-core CPUs. By parallelizing on a CPU we avoid the
data-transfer overhead associated with an off-chip accelerator.
This also allows easier integration with existing CPU-based
data structures and optimization algorithms, which can call
STA a very large number of times.

A. CPU Algorithm A: Levelized Locks
The first parallel algorithm is a parallel extension of the

serial baseline (Algorithm 1). The timing graph is still processed
one level at a time, but the nodes within each level are processed
in parallel. To avoid race-conditions while updating arrival times
(when a node pushes arrival time updates to its successors), we
synchronize access using fine-grained per-node locking. There
is no race-condition when updating node required times as the
uni-directional timing graph ensures only one thread updates
a node’s required time (by pulling the required time updates
from its predecessors).

B. CPU Algorithm B: Levelized No-Locks
The observation that the parallel backward traversal can cal-

culate required times without explicit locking synchronization,
suggests the same can be done while calculating arrival times
during the forward traversal. This would reduce synchronization
costs and improve scalability. However, to do this efficiently,
we must modify the timing graph to be bi-directional; each
edge in the graph must store both its source and sink nodes.
The memory costs associated with this are small and evaluated
in Section V-D.

The improved levelized walk algorithm is shown in Algo-
rithm 2. During the forward traversal the levels are processed

Algorithm 2 Levelized walk with no locks
Require: G levelized timing graph to analyze

1: function PARALLELLEVELIZEDWALKNOLOCKS(G)
2: L← NUMLEVELS(G)
3: for ` ∈ (1 · · ·L− 1) do . Forward traversal
4: parallel for node ∈ LEVELNODES(G, `) do
5: FWDTRAVERSENODEPULL(node)
6: for ` ∈ (L− 2 · · · 0) do . Backward traversal
7: parallel for node ∈ LEVELNODES(G, `) do
8: BWDTRAVERSENODEPULL(node)

serially (Line 3), but nodes within the level are processed in
parallel (Line 4) using a pull based arrival time calculation.

Algorithm 3, updates the arrival time of a node. It iterates
through a node’s input edges (Line 2) and uses the bi-directional
timing graph to identify the source node driving the edge (Line
3). It then calculates the arrival time from that edge (Line 4)
and updates the arrival time for the current node (Line 5).5
Since only a single thread updates a node no locks are required
for synchronization.

C. CPU Algorithm C: Dynamic
While the levelized algorithm presented in Section V-B

eliminates explicit locking, it still relies on implicit barriers
after each parallel for in Algorithm 2 to synchronize across
levels.

To avoid this per-level synchronization we developed a
dynamic graph walk algorithm. Instead of walking the graph in

5For SSTA, statistical addition/max operators would be used.

Algorithm 3 Forward node traverse with no locks
Require: nsnk the timing graph node to process

1: function FWDTRAVERSENODEPULL(nsnk)
2: for ein ∈ INEDGES(nsnk) do
3: nsrc ← SOURCE(ein) . Bidir. edge to predecessor
4: α← ARR(nsrc) + DELAY(ein)
5: ARR(nsnk)← MAX(ARR(nsnk), α) . Single writer

a strictly levelized manner, each node is processed only when
its dependencies are satisfied. Once a node’s dependencies are
satisfied, it is added to a queue of nodes to be processed. Worker
threads then pop nodes off the queue to process.6 Rather than
use high-overhead locks we opt for a lock-free approach, using
an atomic compare-and-swap operation to avoid race conditions
when updating dependencies.

D. CPU Experimental Results
1) Experimental Methodology: The various STA algorithms

are evaluated on the same benchmarks used in Section IV-B.
All algorithms are implemented in C++, and run on an Intel
Xeon E5-1620 (32nm ‘Sandy Bridge’, 4 cores). Results are the
average across 100 runs.

It should be noted that the simplified timing analysis formu-
lation evaluated here performs limited work per-node. Therefore
the synchronization overhead is high, limiting the absolute
parallel speed-ups. A more full-featured timing analyzer which
performs more computation per node will scale better (as shown
in Sections VI and VIII). However, this pessimistic scenario
allows us to differentiate and evaluate the relative scalability
of these algorithms in a high stress setting.

2) Results: The performance of the parallel algorithms are
shown in Table IV.

The ‘Levelized Locks’ algorithm (Section V-A) achieves
only limited speed-up (1.13×). Closer examination showed
the forward traversal achieved no parallel speed-up – the
synchronization enforced by locking effectively serialized the
traversal.

By avoiding locks with a bi-directional timing graph,
‘Levelized No-Locks’ (Section V-B) produces better results,
achieving an average speed-up of 1.92×. Avoiding the syn-
chronization cost of locks (by ensuring only a single writer
per-node) improves scalability.

The ‘Dynamic algorithm’ (Section V-C) performs signifi-
cantly worse, running 4× slower than the serial algorithm. The
cost of tracking when a node’s dependencies are satisfied, and
enqueuing nodes to be processed is substantial and dominates
the computation.

To determine how close these algorithms come to the
best-case performance we implemented an additional ‘No
Dependencies’ algorithm. This algorithm performs the same
amount of work as the other algorithms, but ignores the
dependencies between timing graph nodes.7

The ‘No Dependencies’ algorithm achieves an average
speed-up of 2.32×. This speed-up is less than linear, indicating
that memory (rather than computation and synchronization) is
the remaining bottleneck. The ‘Levelized No-Locks’ algorithm
achieves a speed-up only 21% less than ‘No Dependencies’,
showing the levelized approach can extract nearly all of the
parallelism available. The remaining 21% difference consists

6This is performed efficiently using Cilk Plus task spawning [29], which
uses per-thread queues and work-stealing to avoid load imbalance.

7While ‘No Dependencies’ does not produce a correct analysis (due to
race-conditions), it produces an upper-bound on the achievable performance
since no synchronization is performed.

4



TABLE IV. SPEED-UP OF CPU PARALLEL ALGORITHMS

Benchmark
Levelized

Locks
(P=4)

Levelized
No-Locks

(P=4)

Dynamic
(P=4)

No Dep.
(P=4)

neuron 0.98 1.70 0.26 2.21
openCV 1.09 1.87 0.28 2.43

bitcoin miner 1.22 2.04 0.27 2.37
sparcT2 chip2 1.25 1.94 0.27 2.31

LU230 1.13 2.06 0.18 2.31

GEOMEAN 1.13 1.92 0.25 2.32

Speed-up relative to (serial) optimized CPU baseline.
P is the number of processor cores.

TABLE V. TIMING GRAPH MEMORY USAGE

Benchmark Uni-Directional Edges Bi-Directional Edges

neuron 63.4 (0.72%) 103.8 (1.19%)
opencv 147.7 (0.71%) 237.9 (1.14%)
denoise 125.4 (0.87%) 204.0 (1.41%)

gaussianblur 645.1 (0.78%) 1,071.6 (1.30%)

Memory in MB. Percentage of VPR’s memory in brackets.

of both the effect of the timing graph’s dependency structure
which can not be parallelized, and the overhead of using implicit
barriers for synchronization.

The memory required to store bi-directional and uni-
directional edges in the timing graph is shown in Table V.
While storing bi-directional edges increases the timing graph
size by 63% on average, the timing graph is a small fraction
of a CAD tool’s memory usage. For instance in VPR this
corresponds to an increase of less than 0.5%. Combined with
the improved speed-ups achieved with ‘Levelized No-Locks’
this represents a good trade-off.

VI. MULTI-CORNER TIMING ANALYSIS
An additional challenge facing digital design is the rapid

increase in the number of timing corners to analyze [4], both
for sign-off and to drive optimization in multi-corner aware
tools [30]. From a computational perspective analyzing multiple
corners simultaneously should be beneficial, since it increases
the amount of work performed per node, better amortizing
the data access and synchronization costs. Results are again
collected on a 4-core Intel Xeon E5-1620 processor.

A. Parallel
Figure 2 illustrates the impact of increasing the number of

timing corners (T ) on run-time.
All parallel algorithms exhibit similar slopes which are

substantially lower than those of the ‘Serial’ algorithm, meaning
their speed-ups improve as T (work per node) increases. For
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Fig. 2. Multi-corner STA performance for openCV at P = 4.

instance the ‘Levelized No-Locks’ algorithm improves its speed-
up from 1.7× at T = 1 to 3.8× at T = 32 (a nearly linear
speed-up with 4 cores).

The ‘Dynamic’ algorithm has substantial synchronization
overhead (Section V-D), and is always dominated by ‘Levelized
No-Locks’ The per-node synchronization performed by the
‘Dynamic’ algorithm substantially outweighs the benefit of
avoiding the per-level barriers used by ‘Levelized No-Locks’.

It is interesting to note that performing a combined multi-
corner analysis is inherently more efficient than the ‘Naive’
approach of traversing the timing graph for each corner
analyzed. For example, the ‘Naive’ method runs 32× longer
at T = 32 compared to T = 1, while the ‘Serial’ algorithm
at T = 32 runs only 22.4× longer (since it traversed the
timing graph only once). The difference is more substantial for
the parallel algorithms, since their scalability improves as the
amount of work increases. For instance, ‘Levelized No-Locks’
at T = 32 runs 8.7× faster than ‘Naive’.

B. SIMD
Processing multiple timing corners in parallel also exposes

potential new data-level parallelism, since each basic operation
(addition, max etc.) can be applied element-wise to a vector
of values. This can be performed efficiently using the Single
Instruction Multiple Data (SIMD) instructions found on many
modern processors [27]. The Intel Xeon E5-1620 processor
targeted supports 8-way SIMD on 32-bit values.

Using SIMD further improves scalability, flattening out
the slopes of all algorithms in Figure 2. This results in larger
speed-ups compared to ‘Serial’, with the ‘Dynamic SIMD’ and
‘Levelized No-Locks SIMD’ algorithms achieving speed-ups
of 3.2× and 6.2× respectively at T = 32 using 4 cores.

C. Analysis within Fixed CAD Run-Time Budgets
In practise STA is often performed with a fixed CAD run-

time budget. This could be a fixed portion of run-time dedicated
to STA within an optimization tool, or a design engineer’s
constraint to evaluate a proposed design change (e.g. overight).
In both cases the thoroughness of the analysis is limited by
what can fit within the run-time budget.

Since the scalability of the parallel techniques improve as
work-load increases this changes the trade-offs. For instance, in
the same fixed-time budget required by ‘Naive’ to analyze
2.2 corners, ‘Serial’ analyzes 7.1 corners, ‘Levelized No-
Locks’ analyzes 24.6 corners, and ‘Levelized No-Locks SIMD’
analyzes 32 corners. This means with 4 cores, ‘Levelized
No-Locks’ and ‘Levelized No-Locks SIMD’ can respectively
analyze 11.2× and 14.5× more corners than ‘Naive’, enabling
designers and optimization tools to perform a much more
detailed analysis than would otherwise be possible.

VII. MULTI-CLOCK TIMING ANALYSIS
So far, we have only considered timing analysis with a

single clock. We now consider a full featured timing analyzer
which supports advanced features such as multi-clock timing
analysis and timing exceptions. Modern designs make use of a
large number of clock domains, for instance, FPGA designs
can use tens to hundreds of clock domains [5]. As a result,
performing efficient timing analysis in the presence of multiple
clock domains is important [6].

The multi-traversal approach to multi-clock timing analysis
traverses the timing graph for each pair of launch and capture
clock domains. However, as discussed in Section III-A, the
memory accesses to traverse the timing graph are expensive.
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Fig. 3. Self-relative parallel speed-up on Tau’15.

A better method is the tagged approach where the timing
graph is traversed only once (reducing memory access costs),
with all clock domains handled simultaneously. This requires
tagging each arrival/required time with the associated clock
domain, and propagating them through the timing graph.

While the tagged approach has the same asymptotic compu-
tational complexity as the multi-traversal approach, it is more
efficient by a constant factor and performs better in practise.
Furthermore, the tag-based approach makes it straight forward
to efficiently analyze clocks localized to only a portion of the
timing graph (avoiding useless work), and to handle timing
exceptions (such as inter-domain false paths). We evaluate the
performance of the tag-based approach in Section VIII-B.

VIII. TATUM
Guided by the preceeding results, we developed Tatum, an

open-source C++ library suitable for integration with CAD
tools. Tatum provides facilities for application defined timing
graphs and delay calculation.8 These capabilities facilitate the
creation of timing-aware CAD tools and the development of
timing-aware optimization algorithms. Tatum supports multi-
clock timing analysis and timing exceptions.

Tatum, uses the most performant CPU parallel algorithm
(‘Levelized No-Locks’ from Section V-B), uses the tagged
approach (Section VII) to perform multi-clock timing analysis,
and uses Cilk Plus [29] for parallelization.

A. Comparison to OpenTimer
To evaluate the efficacy of Tatum’s parallelization methods

we compare its scalability with OpenTimer [22], an ASIC
oriented tool which to the best of our knowledge is the only
other open-source parallel static timing analyzer.

We evaluate Tatum and OpenTimer on the Tau 2015 ASIC
Timing Contest benchmarks [31]. The smallest benchmarks
with fewer than 105 timing nodes (N ≤ 105) are excluded, as
they are too small to benefit from parallelization. We report
the self-relative speed-up achieved when fully recalculating the
timing graph, averaged over 100 runs. Run-time results were
collected with two Intel E5-2683 v4 CPUs (14nm ‘Broadwell’,
16 cores), for a total of 32 cores.

As Figure 3 shows, OpenTimer achieves a maximum speed-
up of 1.2×, and does not scale beyond 8 cores. OpenTimer’s
speed-up is limited by its parallelization method, a fixed task-
based pipeline [22], which yields at most an O(1) constant-
factor speed-up as the number of cores increases [32].

8Tatum’s source code is available at: https://kmurray.github.io/tatum.

TABLE VI. VPR MULTI-CLOCK STA RUN-TIME DURING PLACEMENT

Benchmark Timing
Graph Nodes Clocks Classic

VPR Tatum P = 1 Tatum P = 32

stereo vision 416,747 4 93.7 39.6 (2.37×) 4.8 (19.7×)
sparcT1 core 513,974 3 78.9 39.6 (1.99×) 4.8 (16.5×)

minres 1,278,986 3 268.1 127.9 (2.10×) 10.5 (25.6×)
sparcT2 core 1,566,943 3 402.6 132.7 (3.03×) 11.6 (34.6×)
gsm switch 2,666,350 5 979.2 273.7 (3.58×) 18.6 (52.6×)

LU230 3,038,632 3 1,218.8 416.4 (2.93×) 40.7 (30.0×)
mes noc 3,261,440 10 1,855.9 383.4 (4.84×) 29.7 (62.5×)

LU Network 3,355,076 21 1,494.0 427.5 (3.49×) 28.7 (52.0×)
sparcT1 chip2 3,765,406 3 1,099.4 446.4 (2.46×) 35.7 (30.8×)
bitcoin miner 4,513,409 3 1,891.4 943.6 (2.00×) 66.1 (28.6×)

directrf 4,902,870 3 2,365.5 1,066.5 (2.22×) 86.2 (27.4×)

GEOMEAN 2,081,093 4 673.7 248.5 (2.71×) 21.1 (32.0×)

Time in seconds; Speed-up relative to ‘Classic VPR’ in brackets.
P = number of cores used for STA; P = 32 uses two sockets.

In contrast, Figure 3 shows Tatum scales to at least 32
cores, achieving a maximum speed-up of 8.3×. Tatum’s data-
parallel approach scales as O(N/L) as the number of cores
increases. This means Tatum has a desirable property: its speed-
up improves as design size (N ) increases.

While Tatum is more scalable than OpenTimer, it scales
sub-linearly with the number of cores due to:

• the inherently unparallelizable work (i.e. dependencies
between nodes in different levels, L), and

• the communication and synchronization costs inherent
to real computing systems.

B. Evaluation in VPR
We next integrated Tatum into the VPR FPGA CAD tool,

which repeatedly calls STA to guide optimization [33]. We
compare Tatum’s performance (and verify correctness) against
the classic VPR timing analyzer.9

We report both the run-time spent on STA and total run-
time while placing the Titan FPGA benchmarks [28], which
are large designs ranging in size from 90K to 1.8M netlist
primitives. The results were again collected on a system with
dual Intel E5-2683 v4 CPUs (32 cores).

1) STA Run-Time: Table VI shows the STA run-time results
on the multi-clock subset of Titan benchmarks. With a single
core (P = 1) Tatum runs 2.7× faster than Classic VPR,
showing the tagged approach (Section VII) performs better
on multi-clock circuits. With 32 cores Tatum runs 32× faster.

Figure 4 shows how Tatum’s performance scales with the
number of cores. Tatum achieves an average speed-up of 15.2×
on the full Titan benchmark set with 32 cores, and an average
speed-up of 7.7× on the single-clock subset of the Titan
benchmarks.

2) Total Run-Time: Table VII shows the results for total
placement run-time. With VPR’s classic timing analyzer STA
accounts for 10% of total run-time on average, with multi-clock
circuits spending up to 22% of run-time on STA. When VPR
is run using Tatum’s parallel timing analysis total placement
run-time is reduced by 11%.

IX. IMPROVING OPTIMIZATION
CAD tools like VPR have been tuned to minimize the

amount of run-time spent on STA [1]; instead making opti-
mization choices using stale timing information.

Since Tatum reduces the run-time overhead of maintaining
up-to-date timing information it is worth considering whether
this can improve optimzation quality. To this end we modified
VPR’s placement algorithm to exploit more accurate timing
information.

9VPR’s classic analyzer performs a serial levelized graph traversal (Algo-
rithm 1) and uses the multi-traversal approach to multi-clock analysis.
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Fig. 4. Tatum Performance Scaling over Classic VPR STA.

TABLE VII. VPR PLACEMENT TOTAL RUN-TIME

Benchmark Timing
Graph Nodes Clocks STA

Updates VPR Classic VPR Tatum
(P = 32)

VPR Tatum
Speed-Up

stereo vision 416,747 4 143 7.1 (22.0%) 5.6 (1.9%) 1.26×
neuron 451,916 1 143 6.7 (10.7%) 6.1 (1.9%) 1.10×

sparcT1 core 513,974 3 125 8.7 (15.1%) 7.5 (1.4%) 1.16×
cholesky mc 615,925 1 148 10.4 (11.6%) 9.4 (2.3%) 1.10×

SLAM spheric 756,307 1 170 21.3 (8.7%) 19.7 (1.5%) 1.08×
des90 779,404 1 140 14.4 (11.4%) 13.0 (1.7%) 1.11×

segmentation 980,309 1 193 31.3 (9.7%) 30.0 (5.8%) 1.04×
dart 1,137,708 1 126 20.9 (10.3%) 19.0 (1.2%) 1.10×

stap qrd 1,248,502 1 224 60.2 (7.8%) 56.2 (1.0%) 1.07×
minres 1,278,986 3 135 32.1 (13.9%) 27.9 (1.0%) 1.15×

openCV 1,281,693 1 146 25.6 (11.2%) 23.0 (1.3%) 1.11×
cholesky bdti 1,392,239 1 185 40.1 (9.4%) 36.8 (1.4%) 1.09×
bitonic mesh 1,409,553 1 127 32.6 (9.6%) 29.8 (1.0%) 1.09×
sparcT2 core 1,566,943 3 141 58.7 (11.4%) 52.2 (0.5%) 1.12×

denoise 2,068,769 1 245 115.5 (5.7%) 112.0 (2.8%) 1.03×
gsm switch 2,666,350 5 142 109.8 (14.9%) 94.0 (0.5%) 1.17×

LU230 3,038,632 3 176 182.7 (11.1%) 163.4 (0.6%) 1.12×
mes noc 3,261,440 10 142 183.9 (16.8%) 153.7 (0.5%) 1.20×

LU Network 3,355,076 21 166 202.7 (12.3%) 178.6 (0.5%) 1.13×
sparcT1 chip2 3,765,406 3 143 203.9 (9.0%) 186.3 (0.4%) 1.09×
bitcoin miner 4,513,409 3 272 355.8 (8.9%) 325.8 (0.5%) 1.09×

directrf 4,902,870 3 254 489.4 (8.1%) 452.0 (0.5%) 1.08×
gaussianblur 11,554,254 1 150 1,143.5 (1.6%) 1,127.3 (0.2%) 1.01×

GEOMEAN 1,591,104 2 162 55.2 (10.0%) 49.8 (1.0%) 1.11×

Time in minutes; Percentage of time spent on STA in brackets.
P = number of cores used for STA; P = 32 uses two sockets.

A. Algorithmic Enhancements
We focus on critical path optimizations during VPR’s final

placement optimization stage: the ‘quench’ phase of the anneal,
where only modifications which improve quality are accepted.
All other placement steps use the standard VPR formulation.

During the quench, we call STA after each move (swap of
blocks) to ensure the optimizer has a fully accurate view of
the move’s timing impact. Interestingly, with VPR’s default
move generator and cost formulation this resulted in no net
improvement in critical path delay.

To improve efficiency we biased the move generator to
pick blocks which are connected to highly critical connections
(criticality > 0.7). We also set a high criticality exponent
(50) and timing trade off (0.99) to focus the optimization on
improving the critical path, and used a small region limit (1)
to generate small incremental modifications to the circuit. We
observed that VPR’s connection-based criticality timing cost
formulation [1] fails to provide accurate guidance to reduce the
critical path in this final optimization, as its connection oriented
approach does not directly evaluate the critical path delay. At
this final stage of fine-tuning, focusing on specific paths is key
to improving results, and we modified the timing cost function
during the quench to directly optimize the circuit’s critical
path delay. Finally, we exit the quench when no moves have
resulted in cost improvements for a significant period of time
(indicating the system has frozen out and reached a minima),
or the standard VPR move limit is reached.

TABLE VIII. IMPACT OF STA FREQUENCY DURING QUENCH

Per-Move STA Single STA

Benchmark WL CPD Place Time
(P = 1)

Place Time
(P = 24) WL CPD Place Time

tseng 1.00 0.97 3.80 2.75 1.00 1.08 0.77
dsip 1.00 0.93 2.97 1.39 1.00 1.07 0.77

diffeq 1.00 1.00 4.15 2.33 1.00 1.02 0.90
bigkey 1.00 0.99 3.21 1.43 1.00 0.99 0.82
s298 1.00 0.95 6.16 3.38 1.00 1.02 0.88
frisc 1.00 0.96 9.79 3.38 1.00 1.14 0.90

elliptic 1.00 0.92 11.36 3.23 1.00 1.08 1.01
s38584.1 1.00 0.98 11.07 2.44 1.00 1.05 1.04
s38417 1.00 0.97 12.11 2.80 1.00 1.04 1.01
clma 1.00 0.94 12.75 3.02 1.00 0.99 1.01
ex5p 1.00 0.97 4.45 3.32 1.00 1.02 1.00
apex4 1.00 0.96 4.78 2.98 1.00 1.09 1.05

misex3 1.00 0.95 4.02 2.10 1.00 1.03 0.95
alu4 1.00 0.97 3.20 1.62 1.00 1.06 0.78
des 1.00 0.99 4.27 1.84 1.00 1.04 0.85
seq 1.00 0.98 3.82 1.80 1.00 1.07 0.84

apex2 1.00 0.97 5.23 2.17 1.00 1.02 0.97
spla 1.00 0.98 9.41 2.63 1.00 1.07 1.06
pdc 1.00 0.95 9.87 2.57 1.00 1.05 0.91

ex1010 1.00 0.97 8.51 2.34 1.00 1.05 0.90

GEOMEAN 1.00 0.96 5.96 2.39 1.00 1.05 0.92

Values normalized to VPR default.
P = number of cores used for STA; P = 24 uses two sockets.

B. Results
Table VIII compares the impact of using stale and up-to-

date timing information while directly optimizing the critical
path during the quench. Results were collected on the MCNC20
benchmarks [34] targeting a K = 4, N = 1 architecture with
length one wires, and were run on a machine with two Intel
Xeon Gold 6146 (14nm ‘Skylake’, 12 cores), for a total of 24
cores. Reported values are the average over 5 placement seeds.

Performing STA during the evaluation of each proposed
move (Per-Move STA) improves Critical Path Delay (CPD)
by 4% on average, and by up to 8% on some circuits
(e.g. elliptic) compared to standard VPR. These CPD
improvements are obtained with no degredation in wirelength
(WL).

To show that these improvements are in fact derived
from frequent timing analysis (rather than the algorithmic
modifications listed above), we also report results where only a
single STA is preformed at the start of the quench (Single STA).
In this scenario, the optimizer is forced to make decisions using
stale timing information. This leads it to over-optimize paths
which originally appeared critical, degrading the actual critical
path by 5% compared to standard VPR.

While we’ve shown that frequent timing analysis can
improve optimization quality, it comes with a run-time overhead
– increasing placement run-time by 5.96×. However, this
overhead is dominated by STA and can be reduced to 2.39×
when Tatum uses 24 cores. This makes the approach suitable for
late stages of the design process (such as final timing closure),
where increasing tool effort is acceptable in return for improved
quality.

We expect these results to improve on heavily pipelined
designs (which are increasingly common), where up-to-date
timing information has also been shown to improve timing
[35].

X. CONCLUSION & FUTURE WORK
Static Timing Analysis is a key element in FPGA design

flows and accounts for a significant fraction of design imple-
mentation time. This fraction threatens to increase further in
the face of growing design sizes and increasingly complex
timing conditions. Furthermore, as other algorithms such as
placement and routing are parallelized serial STA becomes the
dominant run-time component. Therefore speeding-up STA is
fundamental to reducing FPGA design cycle times.
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To address these issues we have investigated a variety of
techniques to speed-up Static Timing Analysis, including data
layout optimizations and parallel algorithms on both GPUs and
CPUs. While GPUs were shown to offer good kernel speed-
ups (average 6.2×), the overhead of data transfer to/from the
host CPU negated the performance improvement. Of the CPU
parallel algorithms, a level-parallel approach performed best,
particularly when synchronization costs are reduced by avoiding
expensive locks and atomic operations. This approach achieved
an average self-relative speed-up of 1.9× with 4 cores.

Analyzing multiple timing corners increases the amount
of work per memory access, improving the speed-up to 3.8×
with 4 cores. Exploiting SIMD techniques further improves the
speed-up to 6.2×. The combination of these methods allows
14.5× more timing corners to be analyzed on 4 cores within a
fixed CAD run-time budget.

Focusing on advanced STA features, we described how
tagged arrival/required times improve performance on multi-
clock circuits by reducing the number of timing graph traversals.

We introduced the open-source Tatum STA library, sup-
porting efficient parallel timing analysis of complex designs
with multiple clocks and timing constraints. Tatum reduces the
barrier to producing timing-aware CAD tools, and has been
adopted as the timing analysis engine in CGRA-ME [36] and
version 8.0 of VTR [37]. We compared Tatum’s performance
with OpenTimer, showing that OpenTimer’s parallel approach
achieves a maximum 1.2× speed-up at 8 cores, while Tatum’s
speed-up increases to 8.3× at 32 cores.

We evaluated Tatum’s performance in VPR, showing that it
runs on average 15.2× faster than VPR’s classic timing analyzer
with 32 cores, and 32× faster on more complex multi-clock
circuits; reducing total placement time of the Titan benchmarks
by 11%.

Finally, we showed how faster timing analysis can be used
to improve optimization results, showing that more frequent
STA can improve critical path delay by 4%.

As Tatum is an open-source re-usable library, we believe it
can be leveraged by other researchers to facilitate the creation of
advanced timing-aware CAD tools. Such tools enable new CAD
algorithm explorations, and a wider variety of more accurate
architectural studies.
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