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•Forward: Arrival Times

•Backward: Required Times & Slack

•Linear Time: O(V+E)

Static Timing Analysis (STA)
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•High performance & full featured STA engine

•Supports:

•Maximum (Setup) & Minimum (Hold) Analysis

•Multiple Clocks

•Various Timing Constraints/Exceptions

•False Paths

•Multicycle Paths

•Application defined Timing Graph

•Application defined Delay Calculator
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•STA used extensively to guide 

optimization

•VPR calls STA hundreds of times

•Quartus can spend 25+% run-time 

on STA [1]

•Typically use stale timing 

information

FPGA Design Flow & STA

6[1] M. Hutton et al., “Efficient static timing analysis 

and applications using edge masks,” FPGA, 2005
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•More clock-domains (10s, 100s?)

•More timing corners (1, 2, 4, 8?)

•Increasing design size

•Limited single-threaded 

performance gains

•Increasing CAD flow 

parallelization

•Ahmdal’s law: 4x speed-up limit 

at 25% STA!

Design Flow Pressures on STA Run-Time
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Algorithmic Improvements?

• Bad News: Already linear time!

STA has low Arithmetic Intensity:

•Lots of memory access (edges, 

nodes, times)

•Limited computation (SUM, MAX)

•Try to maximize data re-use!

•Efficient data structures

•Single set of traversals for:

•All clock domains & timing corners

•Setup & Hold Analysis

How to Speed-Up STA?
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STA Parallelization
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•Dependency Structure

•Timing Graph defines 

dependencies

•Must be respected in 

parallelization

•Low Arithmetic Intensity

STA Parallelization Challenges
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Parallel Platforms
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GPU? CPU?
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Data Transfer Limits GPU Speed-up!

Speed-Up

Kernel 6.2x

Overall 0.9x

•Compute: O(V+E)

•Data: O(V+E)
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• Push Arrival Time from Source to Sink

A B C D E

Multiple 

Writers!

Must use locks to synchronize

Expensive Synchronization: Poor Speed-Up
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CPU Parallelization II
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• Pull arrival times from Sources

• Requires bi-directional edges

E F G
Single 

Writer

No Locks!

Less Synchronization: Good Speed-up
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Tatum STA Performance: Tau’15 ASIC Benchmarks
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•Relative to VPR 7 timing analyzer

Tatum STA Performance: Titan Benchmarks
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Improving Optimization
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•Tatum STA Engine

•Full featured & high performance

•15-32x faster than VPR 7 STA with 32 cores

•Already used by:

• VTR 8

• CGRA-ME

•Fast STA enables new possibilities for timing-driven CAD

•4% Fmax in late placement

•Routing, Placement, Clustering, Synthesis, ….

Conclusion
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Thanks! Questions?
Email: kmurray@eecg.utoronto.ca

Tatum Open Source Release:

uoft.me/tatum
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Multi-corner STA
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