
Tatum: Parallel Timing Analysis for 
Faster Design Cycles and 

Improved Optimization

1

Kevin E. Murray and Vaughn Betz



Timing Analysis

2

𝑡𝑐𝑞 + 𝑡𝑐𝑜𝑚𝑏 + 𝑡𝑠𝑢 ≤
1

𝑓𝑚𝑎𝑥

D Q D Q

𝑡𝑐𝑞 𝑡𝑠𝑢

𝑡ℎ𝑙𝑑

𝑡𝑐𝑜𝑚𝑏

𝑡𝑐𝑞 + 𝑡𝑐𝑜𝑚𝑏 ≥ 𝑡ℎ𝑙𝑑



Timing Analysis

2

D Q D Q

𝑡𝑐𝑞 𝑡𝑠𝑢

𝑡ℎ𝑙𝑑

𝑡𝑐𝑜𝑚𝑏



Timing Analysis

2

D Q D Q

𝑡𝑐𝑞 𝑡𝑠𝑢

𝑡ℎ𝑙𝑑

𝑡𝑐𝑜𝑚𝑏

2
3
1



Timing Analysis

2

D Q D Q

𝑡𝑐𝑞 𝑡𝑠𝑢

𝑡ℎ𝑙𝑑

𝑡𝑐𝑜𝑚𝑏

2
3
1



•Forward: Arrival Times

•Backward: Required Times & Slack

•Linear Time: O(V+E)

Static Timing Analysis (STA)

3



•Forward: Arrival Times

•Backward: Required Times & Slack

•Linear Time: O(V+E)

Static Timing Analysis (STA)

3

Forward



•Forward: Arrival Times

•Backward: Required Times & Slack

•Linear Time: O(V+E)

Static Timing Analysis (STA)

3

0

0

Forward



•Forward: Arrival Times

•Backward: Required Times & Slack

•Linear Time: O(V+E)

Static Timing Analysis (STA)

3

0

0 0

Forward



•Forward: Arrival Times

•Backward: Required Times & Slack

•Linear Time: O(V+E)

Static Timing Analysis (STA)

3

0

0 0 1

Forward



•Forward: Arrival Times

•Backward: Required Times & Slack

•Linear Time: O(V+E)

Static Timing Analysis (STA)

3

0

0 0 1

0

1

Forward



•Forward: Arrival Times

•Backward: Required Times & Slack

•Linear Time: O(V+E)

Static Timing Analysis (STA)

3

2=max(1,2)
0

0 0 1

0

1

Forward



•Forward: Arrival Times

•Backward: Required Times & Slack

•Linear Time: O(V+E)

Static Timing Analysis (STA)

3

2=max(1,2)

2

0

0

0 0 1

0

1

Forward



•Forward: Arrival Times

•Backward: Required Times & Slack

•Linear Time: O(V+E)

Static Timing Analysis (STA)

3

2=max(1,2)

3=max(3,1)
2

0

0

0 0 1

0

1

Forward



•Forward: Arrival Times

•Backward: Required Times & Slack

•Linear Time: O(V+E)

Static Timing Analysis (STA)

3

2=max(1,2)

3=max(3,1)
2

0

0

0 0 1

0

1

Forward

Backward



Tatum

4



•High performance & full featured STA engine

•Supports:

•Maximum (Setup) & Minimum (Hold) Analysis

•Multiple Clocks

•Various Timing Constraints/Exceptions

•False Paths

•Multicycle Paths

•Application defined Timing Graph

•Application defined Delay Calculator

Tatum

5



•High performance & full featured STA engine

•Supports:

•Maximum (Setup) & Minimum (Hold) Analysis

•Multiple Clocks

•Various Timing Constraints/Exceptions

•False Paths

•Multicycle Paths

•Application defined Timing Graph

•Application defined Delay Calculator

Tatum

5



•STA used extensively to guide 

optimization

•VPR calls STA hundreds of times

•Quartus can spend 25+% run-time 

on STA [1]

•Typically use stale timing 

information

FPGA Design Flow & STA

6[1] M. Hutton et al., “Efficient static timing analysis 

and applications using edge masks,” FPGA, 2005

Pack

Place

Route

Signoff

STA

Netlist



•STA used extensively to guide 

optimization

•VPR calls STA hundreds of times

•Quartus can spend 25+% run-time 

on STA [1]

•Typically use stale timing 

information

FPGA Design Flow & STA

6[1] M. Hutton et al., “Efficient static timing analysis 

and applications using edge masks,” FPGA, 2005

Pack

Place

Route

Signoff

STA

Netlist



•More clock-domains (10s, 100s?)

•More timing corners (1, 2, 4, 8?)

•Increasing design size

•Limited single-threaded 

performance gains

•Increasing CAD flow 

parallelization

•Ahmdal’s law: 4x speed-up limit 

at 25% STA!

Design Flow Pressures on STA Run-Time

7



•More clock-domains (10s, 100s?)

•More timing corners (1, 2, 4, 8?)

•Increasing design size

•Limited single-threaded 

performance gains

•Increasing CAD flow 

parallelization

•Ahmdal’s law: 4x speed-up limit 

at 25% STA!

Design Flow Pressures on STA Run-Time

7



Algorithmic Improvements?

• Bad News: Already linear time!

STA has low Arithmetic Intensity:

•Lots of memory access (edges, 

nodes, times)

•Limited computation (SUM, MAX)

•Try to maximize data re-use!

•Efficient data structures

•Single set of traversals for:

•All clock domains & timing corners

•Setup & Hold Analysis

How to Speed-Up STA?

8



Algorithmic Improvements?

• Bad News: Already linear time!

STA has low Arithmetic Intensity:

•Lots of memory access (edges, 

nodes, times)

•Limited computation (SUM, MAX)

•Try to maximize data re-use!

•Efficient data structures

•Single set of traversals for:

•All clock domains & timing corners

•Setup & Hold Analysis

How to Speed-Up STA?

8



STA Parallelization

9



•Dependency Structure

•Timing Graph defines 

dependencies

•Must be respected in 

parallelization

•Low Arithmetic Intensity

STA Parallelization Challenges

10

High Logic Depth Deeply Pipelined



•Dependency Structure

•Timing Graph defines 

dependencies

•Must be respected in 

parallelization

•Low Arithmetic Intensity

STA Parallelization Challenges

10

High Logic Depth Deeply Pipelined



•Dependency Structure

•Timing Graph defines 

dependencies

•Must be respected in 

parallelization

•Low Arithmetic Intensity

STA Parallelization Challenges

10

High Logic Depth Deeply Pipelined



Parallel Platforms

11

GPU? CPU?



GPU Parallelization

12

Speed-Up

Kernel 6.2x

Overall 0.9x



GPU Parallelization

12

Data Transfer Limits GPU Speed-up!

Speed-Up

Kernel 6.2x

Overall 0.9x



GPU Parallelization

12

Data Transfer Limits GPU Speed-up!

Speed-Up

Kernel 6.2x

Overall 0.9x

•Compute: O(V+E)

•Data: O(V+E)



CPU Parallelization I

13

• Push Arrival Time from Source to Sink

A B C D E



CPU Parallelization I

13

• Push Arrival Time from Source to Sink

A B C D E

Multiple 

Writers!



CPU Parallelization I

13

• Push Arrival Time from Source to Sink

A B C D E

Multiple 

Writers!

Must use locks to synchronize



CPU Parallelization I

13

• Push Arrival Time from Source to Sink

A B C D E

Multiple 

Writers!

Must use locks to synchronize

Expensive Synchronization: Poor Speed-Up



CPU Parallelization II

14

• Pull arrival times from Sources

• Requires bi-directional edges

E F G



CPU Parallelization II

14

• Pull arrival times from Sources

• Requires bi-directional edges

E F G
Single 

Writer



CPU Parallelization II

14

• Pull arrival times from Sources

• Requires bi-directional edges

E F G
Single 

Writer

No Locks!



CPU Parallelization II

14

• Pull arrival times from Sources

• Requires bi-directional edges

E F G
Single 

Writer

No Locks!

Less Synchronization: Good Speed-up



Performance Results

15



Tatum STA Performance: Tau’15 ASIC Benchmarks

16

•Self-relative speed-up



Tatum STA Performance: Tau’15 ASIC Benchmarks

16

•Self-relative speed-up



Tatum STA Performance: Tau’15 ASIC Benchmarks

16

•Self-relative speed-up



•Relative to VPR 7 timing analyzer

Tatum STA Performance: Titan Benchmarks

17



•Relative to VPR 7 timing analyzer

Tatum STA Performance: Titan Benchmarks

17



•Relative to VPR 7 timing analyzer

Tatum STA Performance: Titan Benchmarks

17



Improving Optimization

18



Placement Critical Path Optimization

19

A B C Up-to-date

Timing Info



Placement Critical Path Optimization

19

A B C

Initial

Critical Path

Up-to-date

Timing Info



Placement Critical Path Optimization

19

A B C

A B C

New Actual 

Critical Path

Initial

Critical Path

Placer still thinks 

Critical Path

Up-to-date

Timing Info

Stale

Timing Info



Placement Critical Path Optimization

19

A B C

A B C

New Actual 

Critical Path

A B C

Actual Critical 

Path Degraded!

Initial

Critical Path

Placer still thinks 

Critical Path

Up-to-date

Timing Info

Stale

Timing Info

Stale

Timing Info



Placement Critical Path Optimization

19

A B C

A B C

New Actual 

Critical Path

A B C

Actual Critical 

Path Degraded!

Initial

Critical Path

Placer still thinks 

Critical Path

Up-to-date

Timing Info

Stale

Timing Info

Stale

Timing Info



20



VPR Placement & STA Frequency

21



VPR Placement & STA Frequency

21

+5% CPD

• Modify VPR to focus on Critical Paths during late placement



VPR Placement & STA Frequency

21

-4%

CPD

+5% CPD

• Modify VPR to focus on Critical Paths during late placement



VPR Placement & STA Frequency

21

-4%

CPD

+5% CPD

2.5x Speed-up

• Modify VPR to focus on Critical Paths during late placement



VPR Placement & STA Frequency

21

-4%

CPD

+5% CPD

2.5x Speed-up

• Modify VPR to focus on Critical Paths during late placement



Conclusion

22



•Tatum STA Engine

•Full featured & high performance

•15-32x faster than VPR 7 STA with 32 cores

•Already used by:

• VTR 8

• CGRA-ME

•Fast STA enables new possibilities for timing-driven CAD

•4% Fmax in late placement

•Routing, Placement, Clustering, Synthesis, ….

Conclusion

23



Thanks! Questions?
Email: kmurray@eecg.utoronto.ca

Tatum Open Source Release:

uoft.me/tatum



Backup

25



Multi-corner STA

26


