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Evaluating FPGA Architectures and CAD

Must quantitatively compare:
® FPGA Architectures
®* FPGA CAD Algorithms

Benchmarks often neglected

Good benchmarks:

Benchmarks

CAD Flow

® Exploit device characteristics (i.e. hard blocks)

® Comparable to modern device sizes
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State of FPGA Benchmarks

MCNC20 (1991)
® <1% of StratixV

® No Hard Blocks
VTR (2012)

® < 5% of Stratix V
® Few Hard Blocks

Even smaller on future devices
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Why Don’t We Have Better Benchmarks?

Academic tools cannot handle real designs Vendor tools are too restrictive
® Limited HDL support ® Limited to Vendor’s Architectures
® No IP Cores (Vendor, 3™ party) ® Cannot modify CAD algorithms
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Options?

-—
Upgrade academic tools ‘ Y L r SVJ vaj
® Add support for wide range of HDLs
® Create an IP library
¢
& ! =

® A huge investment!
Exploit vendor tool strengths? @ ‘n

® Hybrid CAD flow '

Vendor

Academic rh

User defined
FPGA Architecture




Hybrid CAD Flow & Benchmarks




Building a Hybrid CAD Flow

Analysis & Elaboration :I Quartus II

Technology Mapping :l Quartus II

————————— —» Post Technology Map Netlist:
® LUTs, Flip-Flops, Multipliers etc.

Placement VPR

Routing
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Building a Hybrid CAD Flow

:I Quartus II

Analysis & Elaboration

Technology Mapping

:| Quartus II

VPR

—» Post Technology Map Netlist:

LUTs, Flip-Flops, Multipliers etc.



Titan Flow Capabilities & Limitations

Experiment Modification VTR Titan Titan Flow Method
Device Floorplan Yes Yes Architecture file
Inter-cluster Routing Yes Yes Architecture file
Clustered Block Size / Yes Yes Architecture file
Configuration
Intra-cluster Routing Yes Yes Architecture file
LUT size / Combinational Yes Yes ABC re-synthesis

Logic Element

New RAM Block Yes Yes Architecture file (up to 16K depth*)
New DSP Block Yes Yes  Architecture file (up to 36 bit width*)
New Primitive Type Yes No No method to pass black box through
Quartus I1

* Maximum for Stratix IV
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Titan 23 Benchmarks
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Neural Network Control Systems

23 Benchmarks Signal Processing
. o . Communications SHA Hashing
Wide range of application domains R Srting
Microprocessor DSP
All make use of hard blocks (DSPS, RAMS) Radar Processing

Communication Switch
On Chip Network

9OK to 1.9M netliSt primitives Matrix Decompasition Multi_core

Image Processing
Total Netlist Primitives Per Benchmark

Titan23
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Titan 23 Benchmarks
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Benchmark Detalls

Benchmark Primitive Types
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Benchmark Detalls
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VPR and Quartus Il Comparison




VPR and Quartus Il Flows

CStratix IV

Quartus
Fit

Analysis & Elaboration

Technology Mapping

Packing

Placement

Routing

Quartus
Map
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VPR and Quartus Il Flows

HDL

Analysis & Elaboration

_ Quartus
& Stratix IV . Map
Technology Mapping User Defined
FPGA Arch.
- p

Packing Packing

Quartus Placement Placement VPR
Fit

Routing Routing
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Titan Compatible Architecture

Primitive Description
e Architecture must use same

primitives as logic synthesis lcell comb LUT and Full
Adder
dffeas Register
* Can be grouped into arbitrary nlab cell LUT RAM
blocks
mac_mult Multiplier
mac_out Accumulator
ram_block RAM Slice
io {i,o}buf I/0 Buffer
ddio {in,out} DDR1I/0O
pll Phase Locked
Loop
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Stratix IV Architecture Capture
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Based on EP4SE820
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Routing Network:
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Architecture Detalls
LLAB

® Detailed internal connectivity
® Full instead of partial crossbars

® Extra carry chain connectivity

MoK & M144K RAM Blocks

® All modes and sizes

® Approximated mixed-width modes

DSP Blocks

¢ All Stratix IV multiplier/accumulator modes

® Extra routing flexibility for packing

share_in carry_in

reg_cascade_in

~ A sharein cin
_) B
1 Icell_comb
*—
1 H—lelocal0
DDCO sumout D Q T
B0 combout dffeas + 1 H—leoutoa
“Fo —]sdata o]
1 1 «—| H—leoutOb
sga{e cout
share_inter_out
carry_inter_out
reg_cascade_
inter_out
sharein cin
et Icell_comb
D T U lelocald
sumout D Q
combout dffeas 1
1 o1 }—leoutla
DE mj N |sdata I
D o }—leoutlb
slaare cout

share_out camy_out reg_cascade_out

ALM Internal Connectivity
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Benchmark Completion

Benchmarks

Completed
Quartus II 21/23
VPR 14/23

VPR and Quartus Il Benchmark Completion

B Completed ™ Failed Pack m Failed Place Failed Route

an

Tool

VPR

0 5 10 15 20 25

Number of Benchmarks

VPR and Quartus Il Failure Reasons

EVPR mQll

No Device Large Enough

Exceeded 48 Hrs

Failure Reason

Unroutable

0 1 2 3 - 5 6 7

Number of Benchmarks
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Tool Performance vs. Benchmark Size

2500

Time (min)
— - P
S & 8
- - -

3

VPR vs Quartus Il Total Runtime

® VPR Total @ Qll Total

LR,
L
o ofnne © e
200,000 400,000 600,000 800,000

Benchmark Size (Primitive Count)

1,000,000

19



Tool Performance vs. Benchmark Size

VPR vs Quartus Il Total Runtime

® VPR Total @ Qll Total

L
@ o
LR, o
o offne O t
200,000 400,000 600,000 800,000

Benchmark Size (Primitive Count)

1,000,000

19



Tool Memory vs. Benchmark Size

VPR vs Quartus Il Memory Usage

® VPR @ Qll
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Normalized Performance

VPR Performance Normailzed to Quartus Il

m VPR mQll

Pack Time —
Place Time h
Route Time F
Total Time F
Peak Memory —

o 1 2 3 4 5 6 J &8 9 10 11 12 13 14

Mormalized Value

Performance Characteristic
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Normalized Performance
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Normalized Performance

VPR Performance Normailzed to Quartus Il
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Normalized Performance

VPR Performance Normailzed to Quartus Il
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Normalized Performance

VPR Performance Normailzed to Quartus Il

m VPR mQll

13.3 X

Pack Time —SIOWGF

Place Time h
Route Time F 3.4 X slower
Total Time F 2.7 X slower

Peak Memory — 5.1 X higher memory

o 1 2 3 4 5 6 J &8 9 10 11 12 13 14

Mormalized Value

50% faster

Performance Characteristic
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Performance Breakdown

VPR and Quartus Il Performance Breakdown

VPR
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all
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Normalized Quality of Results

VPR Quality of Results Normalized to Quartus I
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Normalized Quality of Results

VPR Quality of Results Normalized to Quartus I
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Impact of Clustering

VPR Wirelength
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Impact of Clustering

VPR Wirelength

23% area

M
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Stratix IV & Academic LUT/FF Flexibility

® Additional flexibility in Stratix IV
architecture allows for denser packing

— LUT DFF

— AN ® (Can be detrimental to Wirelength

Traditional Academic BLE

Icell comb

sumout

combout |—*— dffeas .

AN

ANV AN AN

Stratix IV like Half-ALM
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Stratix IV & Academic LUT/FF Flexibility
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Icell comb
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Stratix IV like Half-ALM

Additional flexibility in Stratix IV
architecture allows for denser packing

Can be detrimental to Wirelength
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Stratix IV & Academic LUT/FF Flexibility

—{ LUT
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Traditional Academic BLE

Icell comb

sumout
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dffeas

ANV AN AN

Stratix IV like Half-ALM

Additional flexibility in Stratix IV
architecture allows for denser packing

Can be detrimental to Wirelength
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Loose Packing, Lower Wirelength
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Conclusion
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Titan Flow

Hybrid CAD Flow

Enables academic tools to use large benchmarks
Titan23 Benchmark Suite

Significantly improves open-source FPGA benchmarks
Comparison of VPR and Quartus II

Stratix IV architecture capture

VPR: 2.7x slower, 5.1X more memory, 2.6X more wire

Identified packing density as an important factor in wirelength
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Future Work

® Timing Driven Comparison
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Thanks! | Questions?

Titan Flow & Titan 23 Benchmarks:

http://uoft.me/titan

Demo Night:
From Quartus to VPR: Converting HDL to BLIF with the Titan Flow
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