
Symbiflow & VPR: An
Open-Source Design Flow for
Commercial and Novel FPGAs
Kevin E. Murray
University of Toronto

Tim Ansell
Google

Keith Rothman
Google

Alessandro Comodi
Antmicro

Mohamed A. Elgammal
University of Toronto

Vaughn Betz
University of Toronto

Abstract—As the benefits of Moore’s Law diminish, computing performance and efficiency gains
are increasingly achieved through specializing hardware to a domain of computation. However
this limits the hardware’s generality and flexibility. Field Programmable Gate Arrays (FPGAs),
microchips which can be re-programmed to implement arbitrary digital circuits, enable the
benefits of specialization while remaining flexible. A challenge to using FPGAs is the complex
computer aided design flow required to efficiently map a computation onto an FPGA.
Traditionally these design flows are closed-source and highly specialized to a particular vendor’s
devices. We propose an alternate data-driven approach which uses highly adaptable and
re-targettable open-source tools to target both commercial and research FPGA architectures.
While challenges remain, we believe this approach makes the development of novel and
commercial FPGA architectures faster and more accessible. Furthermore, it provides a path
forward for industry, academia, and the open-source community to collaborate and combine
their resources to advance FPGA technology.

MOORE’S LAW has tracked our ability to
perform increasingly efficient and complex com-
putation over the past 55 years, enabling general
purpose devices like CPUs (and more recently
GPUs) to continually improve performance and
power efficiency. However as the traditional ben-
efits of manufacturing process technology scaling

diminish, so are the performance and efficiency
gains of these devices. At the same time, de-
mand for computation from domains like machine
learning and wireless signal processing continues
to rapidly increase.

This has led computer architects to investigate
domain-specific computing architectures, which

IEEE Micro Published by the IEEE Computer Society c© 2020 IEEE 1



focus on efficiently implementing a specific do-
main of related computational applications. While
such approaches offer significant benefits, these
are largely derived from their specialization and
lack of flexibility. Furthermore, developing such
architectures is expensive (designing and fabbing
a custom chip may cost hundreds of millions of
dollars), and is risky (e.g. what if some unsup-
ported operation becomes required?). As a re-
sult relatively few application domains are stable
enough and garner sufficient financial support for
this approach.

Field-Programmable Gate Arrays (FPGAs)
present an alternative approach which combines
flexibility and general applicability, with the per-
formance and efficiency benefits of Domain Spe-
cific Architectures (DSAs). Instead of designing
a DSA which must then be manufactured as an
Application Specific Integrated Circuit (a pro-
cess which usually takes years), a DSA can be
implemented and re-programmed onto an FPGA
in a few hours or days. As shown in Figure 1,
an FPGA consists of programmable logic blocks
(which can implement arbitrary boolean logic
functions), data storage (Flip-Flops and BRAMs)
and a programmable routing fabric to intercon-
nect them. This enables an FPGA to be quickly
re-programmed to implement an arbitrary digital
circuit.

The architecture of FPGAs themselves con-
tinues to evolve in many ways, such as the
integration of increasingly heterogeneous blocks
such as digital signal processing blocks, diverse
I/O controllers, embedded Networks-on-Chip and
more. The evolution of FPGAs and the cre-
ation of FPGAs with unique features to benefit
new domains is hindered by the very complex
Computer-Aided Design (CAD) system needed to
map a high-level computation description to the
millions of configuration bits which control the
FPGA. The creation of such tooling is a daunting
task: FPGA vendors such as Xilinx and Intel
employ more software engineers than hardware
engineers in their FPGA divisions to develop their
(closed-source) CAD systems [1]. Furthermore,
without a prototype CAD system for each FPGA
architecture of interest, an FPGA architect cannot
quantitatively evaluate new architectural ideas.

In this work we discuss the SymbiFlow
project, which seeks to create an open-source

CLB Routing WireBRAM

LU
T...

...

...

...

LU
T...

...

...

...

..
.

...

...

...

...

CLB

Figure 1: Left, an FPGA consisting of Con-
figurable Logic Blocks (CLBs) for computa-
tion and Block RAMs (BRAMs) for storage,
along with programmable routing to interconnect
them. Right, each CLB contains Look-Up Tables
(LUTs) and Flip-Flops (FFs). Routing Muxes are
configured to interconnect elements within each
block, or inter-block routing wires.

CAD flow for FPGAs that can be used not
only to program commercial FPGAs but also to
evaluate new FPGA architectures. This dual goal
creates a challenge. On the one hand, creating a
programming file for a specific FPGA requires
that every device detail is perfectly supported
by the CAD system. On the other hand, for a
CAD system to be able to target a wide range
of FPGA architectures it must be very flexible
and avoid chip-specific coding. We show that a
data-driven approach is possible: SymbiFlow can
fully map designs to the commercial Xilinx Artix
7 devices with open-source synthesis, placement,
routing, and bitstream generation tools that can
still be retargeted to other (existing or novel)
FPGAs. In this work, we quantify the current
feature support and result quality of this flow
when targeting commercial devices. While much
remains to be done, we believe SymbiFlow has
the potential both to allow a much larger com-
munity to develop CAD flows for current FPGAs
and to make the development of new FPGA
architectures faster and more accessible.

Related Work
FPGA CAD flows serve two main purposes:

implementing designs in a completely-specified
FPGA architecture, and quantitatively evaluating
new hardware architectures before their creation.
Each FPGA vendor has a CAD flow for the first
purpose – generating a programming file for their
devices – and several also have CAD flows to

2 IEEE Micro



evaluate new architecture ideas for future mi-
crochips, such as Intel/Altera’s FPGA Modeling
Toolkit (FMT) [2]. These tools are closed source
however, so they cannot be used by academic or
other researchers to test new CAD algorithms,
to investigate new architectures, or to implement
designs on novel FPGAs.

Some interfaces to commercial tools have
been documented, allowing some interaction be-
tween external open source tools and these com-
mercial CAD flows. Torc [3] and RapidSmith II
[4] use Xilinx Design Language (XDL) to pass
intermediate CAD result information to Xilinx’s
(now legacy) ISE CAD flow. RapidWright [5]
uses similar techniques to read and write partial
CAD results to and from Xilinx’s Vivado CAD
tool, enabling customization of some portions
of the design flow. While these interfaces are
helpful to the open source community, they do
not address all usage scenarios. First, device
programming information is not exposed. Second,
the code bases to which they interface are closed,
and the devices targeted are limited to existing
commercial devices. This places limits on how
much the CAD flow can be changed and pre-
cludes investigation of or support for novel FPGA
architectures.

To overcome these limitations, several stan-
dalone open-source frameworks have been cre-
ated. The VTR framework combines Odin II for
verilog synthesis, ABC for technology mapping
and VPR for packing, placement and routing [6].
VPR takes a human-readable description of an
FPGA architecture as input and has been used
for a wide variety of FPGA architecture research
in academia and industry (Altera’s FMT was
originally derived from VPR). VPR/VTR have
also been used as a framework for investigating
many new CAD algorithms, allowing researchers
to implement or modify only their novel part of
the CAD flow.

While VTR has been extensively used for
research, it has historically seen less use for
programing actual devices. VTR-to-Bitstream [7]
proposed a toolchain based on VTR that can
program a Virtex 6 commercial FPGA, using
Xilinx’s tools only for the final programming.
Several start-ups have made private copies of
VPR and developed implementation tool flows
for their devices on top of it – but their tools

Device Model HDL

Yosys
Elaboration

Netlist

VPR
Pack/Place/Route

ABC
Logic Opt./Tech. Map.

FASM

Assembler

Bitstream

Device
Description

Design

CAD Tool
Stage

Figure 2: Design flow.

are closed source. Similarly, several academic
research teams created novel spatial architectures
which use VTR as their CAD flow (e.g. [8]),
but they all required significant custom coding to
create a full device model and programming flow.
This has lead to significant duplicate work accross
these projects. Hence a major recent focus of the
VTR project, and this paper, has been to enhance
the tool flow in a data-driven way to support full
implementation flows for both existing and future
novel FPGAs with little (or ideally no) custom
coding. The OpenFPGA project further builds
on the VTR infrastructure to allow automatic
layout of a full FPGA, enabling a complete idea-
evaluation-layout-programming flow [9].

Nextpnr [10] is another open source FPGA
placement and routing tool that has been created
to enable a complete open-source FPGA imple-
mentation flow for the Lattice Ice40 and ECP5
devices. Unlike VTR, its main purpose is to target
existing commercial FPGA architectures with an
open-source flow; as such it is more amenable to
custom coding.

In this work we detail Symbiflow: enhance-
ments to VPR and a data-driven bitstream gen-
erator that allow a complete open-source imple-
mentation flow for a Xilinx Artix 7 commercial
device, without significant custom coding. We
believe this new flow fills an important gap by
enabling rapid creation of full implementation
CAD flows for both existing and new FPGA
devices.

Design Flow
The open source design flow we focus on

is shown in Figure 2. The end-user provides
a behavioural specification of the computations
they wish to perform in a Hardware Description

May/June 2020 3

https://symbiflow.github.io/


Language (HDL). This description is then trans-
formed by several tools to map the computation
to the target architecture, finally producing a bit-
stream used to configure the FPGA. This mapping
occurs in several stages.

First, Yosys converts the behavioural HDL
into a circuit consisting of soft logic (boolean
equations) and hard architectural primitives (like
adders, multipliers, and RAMs). For hard primi-
tives Yosys’ technology mapping library lowers
generic HDL operations (such as addition) to
architecture specific primitives (e.g. full adders).1

The soft logic is then optimized by ABC and tech-
nology mapped to the primitive computational
elements (e.g. LUTs).

VPR then takes the technology mapped netlist
along with a detailed model of the FPGA device
and determines where to place each circuit ele-
ment (placement) and how to interconnect them
(routing) while minimizing the wiring required
and maximizing circuit speed. The resulting cir-
cuit implementation is then converted to a low
level FPGA Assembly (FASM) description which
can be directly translated into the binary bitstream
which programs an FPGA.

Specifying Architectures
FPGA architectures can be described at vari-

ous levels of detail, as shown in Figure 3. While
the lower level descriptions are more complete
they are also unstructured, making it impractical
to have CAD tools target them directly. Instead
CAD tools operate on a ‘Device Model’ which
captures the key information about an FPGA
architecture/device in a structured manner. This
allows tools to effectively optimize and imple-
ment designs based on the targeted device model.
In our data-driven approach, the Device Model
serves as an Intermediate Representation (IR)
which can model a range of hypothetical and
commercial FPGA devices.

FPGA architects developing new architectures
often take a top-down approach, using high-level
descriptions to quickly describe and evaluate a
wide range of architectures and architectural pa-
rameters. These descriptions leave many aspects
under-specified, leaving it up to the tools to au-
tomatically fill in the details (i.e. the ‘Elaborate’

1Further lowering is later performed to ensure primitives match
the VPR device model.

Arch

Device Model

Detailed Description

Process Technology & Mask Layout

Architecture:
LUT Size (K), Cluster Size (N ),
Channel Width (W ), Switch Block (Fs)
Connection Block (Fc), Wire Types

CAD:
Netlist Primitives, Block Types,
Device Grid, RR Graph, Bitstream

Circuit:
Routing Wires, Muxes,
Buffers, SRAM

Fabrication:
Transistors, Vias,
Metal Layers

A
bs

tra
ct

D
et

ai
le

d

Figure 3: FPGA Architecture Representation.

Device
Model (IR)

CAD
Flow

Benchmarks

Designs

Area/Speed

Bitstreams

Elaborate

Extract

Arch 1

Arch n

Device 1

Device n

Architecture Evaluation

Design Implementation

Top-Down

Bott
om

-U
p

Figure 4: Architecture and Implementation Flows.

step in Figure 4). This approach is highly produc-
tive for architecture exploration and research, and
if an FPGA device matches the data model well, it
can produce a reasonably accurate Device Model.
For instance in [11] we used VPR to model
commercial Intel Stratix IV FPGAs. However
this method can make it challenging to precisely
model the details of a specific device.

To implement designs targeting commercial
FPGAs and produce valid bitstreams (i.e. the bot-
tom half of Figure 4) requires modelling the target
device with bit-level accuracy. This requires a
bottom-up approach which constructs the Device
Model from the low-level device details (i.e. the
‘Extract’ step in Figure 4). With such a Device
Model the CAD flow in Figure 2 can then be used
to map applications to that device.

Recently, these low-level device descriptions
have become available for some FPGAs, includ-
ing Lattice’s ICE and ECP5 families, and Xilinx’s
Artix 7. These low-level descriptions provide
detailed information about the FPGA structure
(logic and how routing resources interconnect),

4 IEEE Micro



and how their use is described in the bitstream.
However as noted previously, merely having ac-
cess to the low-level details is insufficient to
successfully target these devices. The CAD flow
requires higher-level context and structure to cor-
rectly implement and effectively optimize appli-
cations for the device. The process of convert-
ing these low-level device descriptions into the
higher-level Device Model can be challenging, as
the low-level details are relatively unstructured.
This process is typically performed through a
combination of automated processing and human-
driven modelling (‘Extract’ in Figure 4). While
much of this work can be re-used within a
particular device family (or potentially across
related families from a particular vendor), each
vendor makes a variety of different architectural,
implementation and terminology choices. The
broadness and significance of these differences
have often been at the root of concerns about
whether flexible architecture agnostic tools like
VPR can target commercial FPGAs.

Enhancements to Target Commercial FPGAs
A variety of new tools and enhancements are

required in order to enable a fully open-source
FPGA tool flow which can be re-used and re-
targeted to multiple devices.

VPR Enhancements In order to support
commercial devices we have extend VPR’s de-
vice model and flexibility to capture the details
required to produce valid bitstreams. The changes
include:

• Generic device grids (to model the precise
layouts of commercial devices) [6],

• Support for loading the detailed routing archi-
tecture from a file (rather than building it from
a high-level specification) [6],

• Non-configurable routing graph edges (to
model multi-segment and non-linear wiring)
[6],

• Support for routing clocks on dedicated clock
networks, and

• Extensions to timing analysis to capture clock
network delays and fan-out related loading
effects.

Device Model Extraction As described
above, low-level device databases exist for some

Low-Level
Device DB

Timing
DB

Form
Channels

Symbiflow
DB

Construct
RR graph

Create
Tiles

Model
Blocks

Build Timing
Model

Device Model

Raw Device
Data

Intermediate
Data

Processing
Stage

Device
Description

Figure 5: Architecture Model Generation.

commercial FPGAs but are very low-level and
unstructured. This makes them an unsuitable
description for place and route tools which
aim to optimize higher-level characteristics
like resource usage, wirelength and timing.
It is therefore necessary to extract additional
higher-level structural information which tools
like VPR can target.

Figure 5 illustrates the major steps in Symb-
iflow required to convert the low-level device
database for Xilinx’s Artix 7 family into an
appropriate Device Model for use in VPR. The
resulting Device Model captures all the details
correctly and includes the higher-level structural
information required for effective place and route
optimizations.

The first step involves extracting higher-level
structural information about the inter-block rout-
ing network (Form Channels). For instance, it is
important to align the block and routing network
coordinate systems, which ensures both the placer
and router have aligned understandings of what
components of the device are physically close
together.

The second step (Construct RR Graph) builds
the Routing Resource (RR) Graph describing
what routing wires exist between blocks and how
they interconnect. Each routing resource is also
annotated with information about its location and
the characteristics of the switches to which it con-
nects. Some routing architecture details also need
to be translated to fit in the RR Graph description.
For instance, the Artix 7 family includes ‘U’-
shaped wires which are converted into three linear
wires connected by non-configurable edges.

The third step (Create Tiles) defines the rout-

May/June 2020 5



ing interface between the RR Graph and the
different block types (e.g. CLBs, BRAMs) within
the FPGA. It also constructs the device grid
which specifies what block types exist at each co-
ordinate in the FPGA, and tags them with FASM
metadata used by the assembler to relocate their
configuration bits within the bitstream.

The fourth step (Model Blocks) creates a
model of the logic and internal routing within
each block type. For instance, it would model
the resources available within a CLB (e.g. LUTs,
FFs, Adders) and the connectivity between them.
These components are all tagged with FASM
metadata used to drive bitstream generation.

These steps are sufficient to generate a func-
tionally correct Device Model, which captures the
low-level details of the device and can be used
with VPR to implement designs and generate
valid bitstreams for real Artix 7 devices. However,
additional information is required to enable VPR
to optimize circuit implementations well.

To enable timing-driven optimization it nec-
essary to provide a timing model for the various
architecture components (routing wires, LUTs,
FFs etc.). This is done by creating a timing model
(‘Build Timing Model’) from a database of timing
information extracted from Vivado. The timing
model is used by Tatum [12], VPR’s Static Tim-
ing Analysis (STA) engine, for timing analysis
and to drive timing-based optimizations.

Additionally, at each stage it is necessary to
extract higher-level information to enable VPR
to effectively optimize the use of various routing
and logic resources. For example, grouping the
numerous wires in the RR graph into a smaller
number of ‘types’ which share similar electrical
and connectivity characteristics (e.g. rare but fast
long wires, common but slower and more flexible
short wires), enables VPR to trade-off which
signals use the different wire types.

Generic Bitstream Assembler To create a
generic bitstream assembler, a generic FPGA
assembly (FASM) format was devised. FASM is
a textual format which lists ‘features’ to enable
within the FPGA fabric. A feature might be the
LUT truth-table, or the input wire selected by
a routing mux. Generally a FASM feature will
enable 1 or more bits, and may also require
that 1 or more bits remain cleared in the output

bitstream.
FPGA bitstream contents can be roughly bro-

ken down into three categories: primitive block
configurations (e.g. LUTs, FFs), intra-block rout-
ing muxes and inter-block routing muxes. During
Device Model extraction, information about the
FASM features associated with each of these
categories are tagged as metadata on the relevant
components. The corresponding FASM features
are then set based on component usage in the
final design implementation.

Verification and Correctness
Multiple levels of verification have been per-

formed to ensure the resulting bitstreams are
functionally correct on various example and
benchmark designs. This includes programming
the bitstreams onto real devices and testing func-
tionality (e.g. manually, or using Built In Self
Test), re-importing the produced implementation
into Vivado, and formally verifying the equiva-
lence of the post-synthesis and post-place-and-
route netlists.

Flow Quality
To quantitatively evaluate the quality and run-

time of our open-source design flow we compare
it in two scenarios: one where VPR understands
the higher level structure of the architecture,
and another which captures the full details of a
commercial Xilinx device.

In the first scenario we use a mixed open and
closed source flow, where we use Intel’s Quartus
(closed-source) for logic synthesis and technol-
ogy mapping, and either Quartus or VPR (our
open-source place and route tool) to perform the
physical implementation.2 In this scenario VPR
targets a somewhat abstracted model [6] of Intel’s
Stratix IV FPGA family, since the low level
details of Stratix IV are unavailable. Both tools
are used to implement the Titan benchmark suite
[11], which consists of modern large scale bench-
marks (90K-1.9M netlist primitives) which use all
the types of heterogeneous resources available in
the Stratix IV family. Table 1 shows that com-
pared to Quartus, VPR uses similar amounts of
logic (LABs) and requires a comparable amount
of run-time to implement all designs. However

2This allows us to evaluate only the impact of placement and
routing (since the same synthesis result is used).

6 IEEE Micro

https://github.com/SymbiFlow/fasm
https://github.com/SymbiFlow/fasm


Table 1: VPR 8 Quality and Run-time targeting
Stratix IV Model on Titan Benchmarks

LABs Routed
WL

Routed
CPD

Pack
Time

Place
Time

Route
Time

Total
Time

0.95 1.26 1.20 1.18 1.00 0.34 0.83

Geomean of 20 mutually implementable Titan benchmarks [11],
normalized to Intel Quartus 18.0 [6].

VPR’s implementations use approximately 26%
more wiring and operate 20% slower than those
produced by Quartus. These results show that
when our tools comprehend the overall device
(including higher-level structure) their implemen-
tation and optimization algorithms achieve good
run-time and reasonable result quality compared
to a highly tuned architecture specific tool like
Quartus.

In the second scenario we use the fully open-
source Symbiflow (with VPR) design flow shown
in Figure 2 to target a Xilinx Artix 7 device
for which the full low-level device details are
available, and compare the results with Xilinx’s
closed-source Vivado 2017.12 tool suite.3

The results are shown in Table 2. Here we see
that Symbiflow uses roughly double the amount
of logic (CLBs) to implement these designs, and
produces circuits which have 2.3× longer critical
paths. A significant portion of this gap is due
to logic synthesis and technology mapping, with
Vivado producing smaller and better optimized
netlists.4 From a tool run-time perspective Symb-
iflow’s average run-time is lower than Vivado’s.
Symbiflow spends less time on synthesis, more
time on placement and completes routing faster
than Vivado.

It is important to note that the result in Table 2
are achieved while targeting the full details of
Artix 7, and as a result produce valid bitstreams
which can be programmed onto an Artix 7 device
without any closed-source tooling. We believe
that many of the run-time and quality issues can
be alleviated through either improving the mod-
elling of Artix 7’s high-level characteristics, or
improving the adaptability of VPR’s algorithms.

3Note the reported critical path delays are calculated by
Vivado’s timing analyzer for both design flows.

4When Vivado uses the same netlist as VPR, VPR uses 24%
fewer CLBs than Vivado (indicating Vivado packs the design
less densely than VPR) and the critical path delay gap reduces
to 1.6×.

Conclusion & Future Work
FPGAs offer a compelling approach to achiev-

ing the performance, power and cost benefits of
domain specific architectures while retaining the
flexibility to adapt to changing computational re-
quirements and supporting a wide range of appli-
cation domains. However the complex CAD flow
required to target FPGAs has hindered progress
in this direction. We believe open-source tools for
FPGAs are an important step towards addressing
this challenge, allowing the broader academic,
commercial and open-source communities to pool
their efforts in order to advance this technology.

We’ve show that with a data-driven approach,
it is possible to create architecture agnostic tools,
like VPR, which can target the full details of
commercial FPGAs and produce valid bitstreams.
These same tools enable FPGA architects to
experiment with and evaluate new FPGA ar-
chitectures, while also providing a ready-made
functional CAD flow for targeting such devices.

However there is plenty of work still to
be done. When architectures match VPR’s data
model well, it is possible to achieve reasonable
implementation quality and run-time (Table 1).
However for architectures which do not match
well the results are more mixed. It will be
important to continue improving the quality of
architecture captures given to VPR, and continue
extending VPR’s device model to allow better
descriptions of such architectures.

Working from low-level device descriptions is
challenging as many of the important structural
characteristics of an FPGA architecture are im-
plicit. This requires complex processing and man-
ual efforts to extract this higher-level structure
from the low-level data, but is key to achieving
high quality optimization and reasonable run-
times. If vendors provided this higher-level device
information along with their chips this effort
would be eased significantly.

Finally, there remains significant room for
improving the quality and run-time of VPR’s op-
timization algorithms. There are many identified
areas for improvement [6] which we hope the
community will collaborate together to enhance.

Acknowledgements
This work was funded in part by Google,

the NSERC/Intel Industrial Research Chair in

May/June 2020 7



Table 2: Symbiflow & VPR Quality and Run-time on Artix 7 (XC7A50TFGG484)

Benchmark Netlist
Primitives CLBs RAMB18s Crit. Path Delay

(ns)
Synth. Time

(sec)
Pack & Place

Time (sec)
Route Time

(sec)
Assembly Time

(sec)
Total Time

(sec)

picosoc 8,108 895 (1.14×) 3 (1.50×) 18.47 (1.93×) 29.2 (0.49×) 62.0 (8.85×) 11.1 (0.56×) 9.5 (1.19×) 115.9 (0.83×)
murax 4,558 392 (1.23×) 4 (0.67×) 12.22 (1.45×) 18.4 (0.48×) 23.0 (7.67×) 3.9 (0.28×) 9.0 (1.00×) 58.3 (0.58×)

top_bram_n3 3,595 361 (4.25×) 1 (1.00×) 14.56 (3.17×) 14.8 (0.62×) 9.9 (9.86×) 4.2 (0.38×) 6.5 (0.81×) 37.8 (0.49×)
top_bram_n2 2,619 264 (3.72×) 1 (1.00×) 14.07 (2.84×) 13.6 (0.52×) 7.2 (7.16×) 3.0 (0.25×) 6.2 (0.77×) 32.4 (0.40×)
top_bram_n1 1,661 162 (2.49×) 1 (1.00×) 13.36 (2.57×) 11.0 (0.48×) 7.9 (7.86×) 1.2 (0.10×) 5.2 (0.65×) 27.6 (0.36×)

dram_test_64x1d 1,035 115 (1.47×) 0 10.95 (2.12×) 7.8 (0.30×) 6.6 (6.56×) 0.6 (0.06×) 4.3 (0.53×) 21.1 (0.26×)

GEOMEAN 2,902.7 292.2 (2.08×) 1.6 (1.00×) 13.75 (2.27×) 14.5 (0.47×) 13.2 (7.92×) 2.7 (0.21×) 6.5 (0.80×) 41.1 (0.45×)
% TOTAL 32.7% 38.8% 8.0% 14.1% 100.0%

Crit. Path Delay analyzed by Xilinx Vivado 2017.2.
Ratios normalized to Xilinx Vivado 2017.2 in parentheses.

Programmable Silicon, as well as NSERC CGS-
D and Ontario Graduate Scholarships. We would
also like to thank Qinziyue Xu, Xinyi Hou, and
Yangfan Wang for assistance collecting bench-
mark data, as well as the numerous community
members who have contributed to the develop-
ment of VPR and Symbiflow through writing
documentation, filling bugs, and submitting code
fixes and enhancements.

References

1. S. Trimberger, “Three Ages of FPGAs: A Retrospective

on the First Thirty Years of FPGA Technology,” Proc. of

the IEEE, vol. 103, no. 3, pp. 318–331, 2015.

2. D. Lewis, G. Chiu et al., “The StratixTM10 Highly

Pipelined FPGA Architecture,” in Int. Symp. on Field-

Programmable Gate Arrays, 2016, pp. 159–168.

3. N. Steiner, A. Wood et al., “Torc: Towards an Open-

source Tool Flow,” in Int. Symp. on Field Programmable

Gate Arrays (FPGA), 2011, pp. 41–44.

4. T. Haroldsen, B. Nelson, and B. Hutchings, “RapidSmith

2: A Framework for BEL-level CAD Exploration on Xilinx

FPGAs,” in Int. Symp. on Field-Programmable Gate

Arrays (FPGA), 2015, pp. 66–69.

5. C. Lavin and A. Kaviani, “RapidWright: Enabling Cus-

tom Crafted Implementations for FPGAs,” in Int. Symp.

on Field-Programmable Custom Computing Machines,

2018, pp. 133–140.

6. K. E. Murray, O. Petelin et al., “VTR 8: High Performance

CAD and Customizable FPGA Architecture Modelling,”

ACM Transactions on Reconfigurable Technology and

Systems, 2020, To Appear.

7. E. Hung, F. Eslami, and S. J. E. Wilton, “Escaping the

Academic Sandbox: Realizing VPR Circuits on Xilinx

Devices,” in Int. Symp. on Field-Programmable Custom

Computing Machines, 2013, pp. 45–52.

8. DARPA, “Reconfigurable Imaging (ReImagine),” 2016.

[Online]. Available: https://www.darpa.mil/attachments/

Final Compiled ReImagineProposersDay.pdf

9. B. Chauviere, A. Alacchi et al., “OpenFPGA: Complete

Open Source Framework for FPGA Prototyping,” in

Workshop on Open Source Design Automation, 2019.

10. D. Shah, E. Hung et al., “Yosys+nextpnr: an Open

Source Framework from Verilog to Bitstream for Com-

mercial FPGAs,” in Int. Symp. on Field-Programmable

Custom Computing Machines, 2019.

11. K. E. Murray, S. Whitty et al., “Timing-Driven Titan:

Enabling Large Benchmarks and Exploring the Gap

Between Academic and Commercial CAD,” ACM Trans.

Reconfigurable Technol. Syst., vol. 8, no. 2, pp. 10:1–

10:18, 2015.

12. K. E. Murray and V. Betz, “Tatum: Parallel Timing Anal-

ysis for Faster Design Cycles and Improved Optimiza-

tion,” in Int. Conf. on Field-Programmable Technology

(FPT), 2018.

Kevin E. Murray (S’12) is a PhD Candidate at
the University of Toronto, and has been the lead
developer of the VTR project since 2014. His research
interests include FPGA CAD and Architecture, ma-
chine learning enhanced CAD, and modular hardware
design flows. He received his MASc in ECE, and
BASc in Engineering Science from the University of
Toronto. kmurray@ece.utoronto.ca

Tim Ansell (M’06) is a Software Engineer at Google.
His research interests include open source EDA tool-
ing, open source RTL design, and software speed
hardware accelerator development. He received the
Bachelor of Arts (Philosophy & Cognitive Science)
and Bachelor of Engineering (Information Technology
& Telecommunications) from the University of Ade-
laide. tansell@google.com/me@mith.ro

Keith Rothman is a Software Engineer at Google.
His research interests include open source EDA tool-
ing, open source RTL design, and software speed
hardware accelerator development. He received his
Masters of Science and Bachelor of Science in
Aerospace Engineering from California Polytech-
nic State University - San Luis Obispo. keithroth-
man@google.com

8 IEEE Micro

https://www.darpa.mil/attachments/Final_Compiled_ReImagineProposersDay.pdf
https://www.darpa.mil/attachments/Final_Compiled_ReImagineProposersDay.pdf
mailto:kmurray@ece.utoronto.ca
mailto:tansell@google.com
mailto:me@mith.ro
mailto:keithrothman@google.com
mailto:keithrothman@google.com


Alessandro Comodi is a Software Engineer at
Antmicro. His research interests include FPGAs, EDA
tools, and hardware design methodologies. He re-
ceived his Masters in Computer Science and En-
gineering from the Politecnico di Milano, Italy. aco-
modi@antmicro.com

Mohamed A. Elgammal is a PhD Student at the Uni-
versity of Toronto. His research interests include Re-
inforcement Learning, CAD tools, and FPGAs. He re-
ceived the B.Sc. and M.A.Sc degrees (with Hons.) in
Electronics Engineering from Cairo University, Egypt.
mohamed.elgammal@mail.utoronto.ca

Vaughn Betz (S’88-M’91-SM’17-F’20) is a Pro-
fessor and NSERC/Intel Industrial Research Chair
at the University of Toronto; his research interests
include programmable hardware architectures and
CAD tools. Previously he was Senior Directory of
Software Engineering at Altera Corporation, where he
was one of the architects of the Quartus II CAD sys-
tem and the Stratix and Cyclone FPGA architectures.
He received his PhD in ECE from the University of
Toronto, his MSEE from the University of Illinois at
Urbana-Champaign, and his BSEE from the Univer-
sity of Manitoba. vaughn@ece.utoronto.ca

May/June 2020 9

mailto:acomodi@antmicro.com
mailto:acomodi@antmicro.com
mailto:mohamed.elgammal@mail.utoronto.ca
mailto:vaughn@ece.utoronto.ca

	Related Work
	Design Flow
	Specifying Architectures
	Enhancements to Target Commercial FPGAs
	VPR Enhancements
	Device Model Extraction
	Generic Bitstream Assembler

	Verification and Correctness

	Flow Quality
	Conclusion & Future Work
	References
	Biographies
	Kevin E. Murray
	Tim Ansell
	Keith Rothman
	Alessandro Comodi
	Mohamed A. Elgammal
	Vaughn Betz


