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ABSTRACT

Most systems that support speculative parallelization, like hardware

transactional memory (HTM), do not support nested parallelism.

This sacrifices substantial parallelism and precludes composing par-

allel algorithms. And the few HTMs that do support nested par-

allelism focus on parallelizing at the coarsest (shallowest) levels,

incurring large overheads that squander most of their potential.

We present FRACTAL, a new execution model that supports un-

ordered and timestamp-ordered nested parallelism. FRACTAL lets

programmers seamlessly compose speculative parallel algorithms,

and lets the architecture exploit parallelism at all levels. FRACTAL

can parallelize a broader range of applications than prior specula-

tive execution models. We design a FRACTAL implementation that

extends the Swarm architecture and focuses on parallelizing at the

finest (deepest) levels. Our approach sidesteps the issues of nested

parallel HTMs and uncovers abundant fine-grain parallelism. As a

result, FRACTAL outperforms prior speculative architectures by up

to 88× at 256 cores.
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1 INTRODUCTION

Systems that support speculative parallelization, such as hardware

transactional memory (HTM) or thread-level speculation (TLS),

have two major benefits over non-speculative systems: they uncover

abundant parallelism in many challenging applications [32, 36] and

simplify parallel programming [51]. But these systems suffer from

limited support for nested speculative parallelism, i.e., the ability to

invoke a speculative parallel algorithm within another speculative

parallel algorithm. This causes three problems. First, it sacrifices

substantial parallelism and limits the algorithms supported by these

systems. Second, it disallows composing parallel algorithms, making

it hard to write modular parallel programs. Third, it biases pro-
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grammers to write coarse-grain speculative tasks, which are more

expensive to support in hardware.

For example, consider the problem of parallelizing a transactional

database. A natural approach is to use HTM and to make each data-

base transaction a memory transaction. Each transaction executes

on a thread, and the HTM system guarantees atomicity among con-

current transactions, detecting conflicting loads and stores on the fly,

and aborting transactions to avoid serializability violations.

Unfortunately, this HTM approach faces significant challenges.

First, each transaction must run on a single thread, but database trans-

actions often consist of many queries or updates that could run in par-

allel. The HTM approach thus sacrifices this intra-transaction, fine-

grain parallelism. Second, long transactions often have large read

and write sets, which make conflicts and aborts more likely. These

aborts often waste many operations that were not affected by the

conflict. Third, supporting large read/write sets in hardware is costly.

Hardware can track small read/write sets cheaply, e.g., using private

caches [32, 56] or small Bloom filters [14, 65]. But these tracking

structures have limited capacity and force transactions that overflow

them to serialize, even when they have no conflicts [11, 32, 65].

Beyond these problems, HTM’s unordered execution semantics are

insufficient for programs with ordered parallelism, where speculative

tasks must appear to execute in a program-specified order [36].

The Swarm architecture [36, 37] can address some of these prob-

lems. Swarm programs consist of timestamped tasks. A task can

create and enqueue child tasks with any timestamp equal to or greater

than its own. Swarm guarantees that tasks appear to execute in time-

stamp order. To scale, Swarm executes tasks speculatively and out

of order. Swarm’s microarchitecture focuses on supporting tasks as

small as a few tens of instructions efficiently, including hardware

support for speculative scheduling and a large speculation window.

By exposing timestamps to programs, Swarm can parallelize

more algorithms than prior ordered speculation techniques, like TLS;

Swarm also supports unordered, HTM-style execution. As a result,

Swarm often uncovers abundant fine-grain parallelism. But Swarm’s

software-visible timestamps can only convey very limited forms

of nested parallelism, and they cause two key issues in this regard

(Sec. 2). Timestamps make nested algorithms hard to compose,

as algorithms at different nesting levels must agree on a common

meaning for the timestamp. Timestamps also over-serialize nested

algorithms, as they impose more order constraints than needed.

For instance, in the example above, Swarm can be used to break

each database transaction into many small, ordered tasks. This ex-

ploits intra-transaction parallelism, and, at 256 cores, it is 21× faster

than running operations within each transaction serially (Sec. 2.2).
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However, to maintain atomicity among database transactions, the

programmer must needlessly order database transactions and must

carefully assign timestamps to tasks within each transaction.

These problems are far from specific to database transactions.

In general, large programs have speculative parallelism at multiple

levels and often intermix ordered and unordered algorithms. Spec-

ulative architectures should support composition of ordered and

unordered algorithms to convey all this nested parallelism without

undue serialization.

We present two main contributions that achieve these goals. Our

first contribution is FRACTAL, a new execution model for nested

speculative parallelism. FRACTAL programs consist of tasks located

in a hierarchy of nested domains. Within each domain, tasks can

be ordered or unordered. Any task can create a new subdomain and

enqueue new tasks in that subdomain. All tasks in a domain appear

to execute atomically with respect to tasks outside the domain.

FRACTAL allows seamless composition of ordered and unordered

nested parallelism. In the above example, each database transaction

starts as a single task that runs in an unordered, root domain. Each

of these unordered tasks creates an ordered subdomain in which it

enqueues tasks for the different operations within the transaction. In

the event of a conflict between tasks in two different transactions,

FRACTAL selectively aborts conflicting tasks, rather than aborting

all tasks in any one transaction. In fact, other tasks from the two

transactions may continue to execute in parallel.

Our second contribution is a simple implementation of FRACTAL

that builds on Swarm and supports arbitrary nesting levels cheaply

(Sec. 4). Our implementation focuses on extracting parallelism at

the finest (deepest) levels first. This is in stark contrast with cur-

rent HTMs. Most HTMs only support serial execution of nested

transactions, forgoing intra-transaction parallelism. A few HTMs

support parallel nested transactions [6, 62], but they parallelize at the

coarsest levels, suffer from subtle deadlock and livelock conditions,

and impose large overheads because they merge the speculative state

of nested transactions [5, 6]. The FRACTAL execution model lets

our implementation avoid these problems. Beyond exploiting more

parallelism, focusing on fine-grain tasks reduces the hardware costs

of speculative execution.

We demonstrate FRACTAL’s performance and programmability

benefits through several case studies (Sec. 2) and a broad evaluation

(Sec. 6). FRACTAL uncovers abundant fine-grain parallelism on

large programs. For example, ports of the STAMP benchmark suite

to FRACTAL outperform baseline HTM implementations by up to

88× at 256 cores. As a result, while several of the original STAMP

benchmarks cannot reach even 10× scaling, FRACTAL makes all

STAMP benchmarks scale well to 256 cores.

2 MOTIVATION

We motivate FRACTAL through three case studies that highlight

its key benefits: uncovering abundant parallelism, improving pro-

grammability, and avoiding over-serialization. Since FRACTAL sub-

sumes prior speculative execution models (HTM, TLS, and Swarm),

all case studies use the FRACTAL architecture (Sec. 4), and we com-

pare applications written in FRACTAL vs. other execution models.

This approach lets us focus on the effect of different FRACTAL fea-

tures. Our implementation does not add overheads to programs that

do not use FRACTAL’s features.

2.1 Fractal uncovers abundant parallelism

Consider the maxflow problem, which finds the maximum amount

of flow that can be pushed from a source to a sink node in a network

(a graph with directed edges labeled with capacities). Push-relabel

is a fast and widely used maxflow algorithm [18], but it is hard

to parallelize [8, 48]. Push-relabel tags each node with a height. It

initially gives heights of 0 to the sink, N (the number of nodes) to the

source, and 1 to every other node. Nodes are temporarily allowed to

have excess flow, i.e., have more incoming flow than outgoing flow.

Nodes with excess flow are considered active and can push this flow

to lower-height nodes. The algorithm processes one active node at

a time, attempting to push flow to neighbor nodes and potentially

making them active. When an active node cannot push its excess

flow, it increases its height to the minimum value that allows pushing

flow to a neighbor (this is called a relabel). The algorithm processes

active nodes in arbitrary order until no active nodes are left.

To be efficient, push-relabel must use a heuristic that periodically

recomputes node heights. Global relabeling [18] is a commonly

used heuristic that updates many node heights by performing a

breadth-first search on a subset of the graph. Global relabeling takes

a significant fraction of the total work, typically 10–40% of instruc-

tions [3].

Since push-relabel can process active nodes in an arbitrary order,

it can be parallelized using transactional tasks of two types [48, 49].

An active-node task processes a single node, and may enqueue

other tasks to process newly-activated nodes. A global-relabel task

performs a global relabel operation. Each task must run atomically,

since tasks access data from multiple neighbors and must observe a

consistent state. We call this implementation maxflow-flat.

We simulate maxflow-flat on systems of up to 256 cores. (See

Sec. 5 for methodology details.) At 256 cores, maxflow-flat scales

to 4.9× only. Fig. 1a illustrates the reason for this limited speedup:

while active-node tasks are short, each global-relabel task is long,

and queries and updates many nodes. When a global-relabel task

runs, it conflicts with and serializes many active-node tasks.

Fortunately, each global-relabel task performs a breadth-first

search, which has plentiful ordered speculative parallelism. FRAC-

TAL lets us exploit this nested parallelism, running the breadth-first

Core 0
Core 1
Core 2
Core 3
Core 4
Core 5
Core 6
Core 7

Time

(a) maxflow-flat

Time

Tasks

Active node

Global relabel

Aborted
Core 0
Core 1
Core 2
Core 3
Core 4
Core 5
Core 6
Core 7

(b) maxflow-fractal

Figure 1: Execution timeline of (a) maxflow-flat, which con-

sists of unordered tasks and does not exploit nested parallelism,

and (b) maxflow-fractal, which exploits the nested ordered

parallelism within global relabel.
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ent maxflow versions on 1–

256 cores.

search in parallel while maintaining its atomicity with respect to

other active-node tasks. To achieve this, we develop a maxflow-

fractal implementation where each global-relabel task creates

an ordered subdomain, in which it executes a parallel breadth-first

search using fine-grain ordered tasks, as shown in Fig. 2. A global-

relabel task and its subdomain appear as a single atomic unit with

respect to other tasks in the (unordered) root domain. Fig. 1b il-

lustrates how this improves parallelism and efficiency. As a result,

Fig. 3 shows that maxflow-fractal achieves a speedup of 322×

at 256 cores (over maxflow-flat on one core).

FRACTAL is the first architecture that effectively exploits maxflow’s

fine-grain nested parallelism: neither HTM, nor TLS, nor Swarm

can support the combination of unordered and ordered parallelism

maxflow has. Prior software-parallel push-relabel algorithms at-

tempted to exploit this fine-grain parallelism [3, 48, 49], but the

overheads of software speculation and scheduling negated the bene-

fits of additional parallelism (in maxflow-fractal, each task is 373

cycles on average). We also evaluated two state-of-the-art software

implementations: prsn [8] and Galois [48]. On 1–256 cores, they

achieve maximum speedups of only 4.9× and 8.3× over maxflow-

flat at one core, respectively.

2.2 Fractal eases parallel programming

Beyond improving performance, FRACTAL’s support for nested par-

allelism eases parallel programming because it enables parallel com-

position. Programmers can write multiple self-contained, modular

parallel algorithms and compose them without sacrificing perfor-

mance: when a parallel algorithm invokes another parallel algorithm,

FRACTAL can exploit parallelism at both caller and callee.

In the previous case study, only FRACTAL was able to uncover

nested parallelism. In some applications, prior architectures can also

exploit the nested parallelism that FRACTAL uncovers, but they do

so at the expense of composability.

Consider the transactional database example from Sec. 1. Con-

ventional HTMs run each database transaction in a single thread,

and exploit coarse-grain inter-transaction parallelism only. But each

database transaction has plentiful ordered parallelism. FRACTAL can

exploit both inter- and intra-transaction parallelism by running each

transaction in its own ordered subdomain, just as each global relabel

runs in its own ordered subdomain in Fig. 2. We apply both ap-

proaches to the silo in-memory database [61]. Fig. 4 shows that, at

256 cores, silo-fractal scales to 206×, while silo-flat scales

to 9.7× only, 21× slower than silo-fractal.
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Figure 4: Speedup of silo

versions on 1–256 cores.
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Figure 5: silo-swarm uses

disjoint timestamp ranges for

different database transactions,

sacrificing composability.

Fig. 4 also shows that silo-swarm, the Swarm version of silo,

achieves similar performance to silo-fractal (silo-swarm is

4.5% slower). Fig. 5 illustrates silo-swarm’s implementation: the

transaction-launching code assigns disjoint timestamp ranges to

transactions (10 contiguous timestamps per transaction in Fig. 5),

and each transaction enqueues tasks only within this range (e.g.,

10–19 for TXN 2 in Fig. 5). silo-swarm uses the same fine-grain

tasks as silo-fractal, exposing plentiful parallelism and reducing

the penalty of conflicts [36]. For example, in Fig. 5, if the tasks at

timestamps 13 and 24 conflict, only one task must abort, rather than

any whole transaction.

Since Swarm does not provide architectural support for nested par-

allelism, approaching FRACTAL’s performance comes at the expense

of composability. silo-swarm couples the transaction-launching

code and the code within each transaction: both modules must know

the number of tasks per transaction, so that they can agree on the se-

mantics of each timestamp. Moreover, a fixed-size timestamp makes

it hard to allocate sufficient timestamp ranges in complex applica-

tions with many nesting levels or where the number of tasks in each

level is dynamically determined. FRACTAL avoids these issues by

providing direct support for nested parallelism.

Prior HTMs have supported composable nested parallel transac-

tions, but they suffer from deadlock and livelock conditions, impose

large overheads, and sacrifice most of the benefits of fine-grain par-

allelism because each nested transaction merges its speculative state

with its parent’s [5, 6]. We compare FRACTAL and parallel nesting

HTMs in detail in Sec. 7, after discussing FRACTAL’s implemen-

tation. Beyond these issues, parallel nesting HTMs do not support

ordered parallelism, so they would not help maxflow or silo.

2.3 Fractal avoids over-serialization

Beyond forgoing composability, supporting fine-grain parallelism

through manually-specified ordering can cause over-serialization.

Consider the maximal independent set algorithm (mis), which,

given a graph, finds a set of nodes S such that no two nodes in S are

adjacent, and each node not in S is adjacent to some node in S.

mis can be easily parallelized with unordered, atomic tasks [54].

We call this implementation mis-flat. Each task operates on a

node and its neighbors. If the node has not yet been visited, the task

visits both the node and its neighbors, adding the node to the set and

marking its neighbors as excluded from the set. mis-flat creates

one task for each node in the graph, and finishes when all these tasks

have executed. Fig. 6 shows that, on an R-MAT graph with 8 million

nodes and 168 million edges, mis-flat scales to 98× at 256 cores.
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mis-flat misses a source

of nested parallelism: when

a node is added to the set,

its neighbors may be vis-

ited and excluded in paral-

lel. This yields great bene-

fits when nodes have many

neighbors. mis-fractal de-

fines two task types: include

and exclude. An include task

checks whether a node has al-

ready been visited. If it has not,

it adds the node to the set and

creates an unordered subdomain to run exclude tasks for the node’s

neighbors. An exclude task permanently excludes a node from the

set. Domains guarantee a node and its neighbors are visited atom-

ically while allowing many tasks of both types to run in parallel.

Fig. 6 shows that mis-fractal scales to 145× at 256 cores, 48%

faster than mis-flat.

Swarm cannot exploit this parallelism as effectively. Swarm can

only guarantee atomicity for groups of tasks if the program specifies

a total order among groups (as in silo). We follow this approach

to implement mis-swarm: every include task is assigned a unique

timestamp, and it shares its timestamp with any exclude tasks it

enqueues. This imposes more order constraints than mis-fractal,

where there is no order among tasks in the root domain. Fig. 6 shows

that mis-swarm scales to 117×, 24% slower than mis-fractal, as

unnecessary order constraints cause more aborted work.1

In summary, conveying the atomicity needs of nested parallelism

through a fixed order limits parallel execution. FRACTAL allows pro-

grams to convey nested parallelism without undue order constraints.

3 FRACTAL EXECUTION MODEL

Fig. 7 illustrates the key elements of the FRACTAL execution model.

FRACTAL programs consist of tasks in a hierarchy of nested domains.

Each task may access arbitrary data, and may create child tasks as it

finds new work to do. For example, in Fig. 7 task C creates children D

and E. When each task is created, it is enqueued to a specific domain.

Semantics within a domain: Each domain provides either unordered

or timestamp-ordered execution semantics. In an unordered domain,

FRACTAL chooses an arbitrary order among tasks that respects

parent-child dependences, i.e., children are ordered after their par-

ents. For example, in Fig. 7, task C’s children D and E must appear

to run after C, but task D can appear to run either before or after task

E. These semantics are similar to TM’s: all tasks execute atomically

and in isolation.

In an ordered domain, each task has a program-specified time-

stamp. A task can enqueue child tasks to the same domain with any

timestamp equal to or greater than its own. FRACTAL guarantees that

tasks appear to run in increasing timestamp order. If multiple tasks

have the same timestamp, FRACTAL arbitrarily chooses an order

among them. This order always respects parent-child dependences.

Timestamps let programs convey their specific order requirements,

e.g., the order that events need to run in a simulator. For example,

1mis-swarm’s order constraints make it deterministic, which some users may find

desirable [9, 23].
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Figure 7: Elements of the FRACTAL execution model. Arrows

point from parent to child tasks. Parents enqueue their children

into ordered domains where tasks have timestamps, such as A’s

and M’s subdomains, or unordered domains, such as the other

three domains.

in Fig. 7, the timestamps of tasks F, G, L, and H ensure they ap-

pear to run in that fixed order. These semantics are the same as

Swarm’s [36].

Semantics across domains: Each task can create a single subdo-

main and enqueue tasks into it. For example, in Fig. 7, task B creates

a new subdomain and enqueues F and G into it. These tasks may

themselves create their own subdomains. For example, F creates a

subdomain and enqueues I into it.

FRACTAL provides strong atomicity guarantees across domains

to allow parallel composition of speculative algorithms. All tasks in

a domain appear to execute after the task that creates the domain and

are not interleaved with tasks outside their domain. In other words,

any non-root domain together with its creator appears to execute as a

single atomic unit in isolation. For example, since F is ordered before

G in B’s subdomain, all tasks in F’s subdomain (I, J, and K) must

appear to execute immediately after F and before G. Furthermore,

although no task in B’s subdomain is ordered with respect to any task

in D’s subdomain, tasks in B’s and D’s subdomains are guaranteed

not to be interleaved.

Tasks may also enqueue child tasks to their immediate enclosing

domain, or superdomain. For example, in Fig. 7, K in F’s subdomain

enqueues L to B’s subdomain. This lets a task delegate enqueuing

future work to descendants within the subdomain it creates. A task

cannot enqueue children to any domain beyond the domain it belongs

to, its superdomain, and the single subdomain it may create.

3.1 Programming interface

We first expose FRACTAL’s features through a simple low-level

C++ interface, then complement it with a high-level, OpenMP-style

interface that makes it easier to write FRACTAL applications.

Low-level interface: Listing 1 illustrates the key features of the

low-level FRACTAL interface by showing the implementation of the

mis-fractal tasks described in Sec. 2.3. A task is described by its

function, arguments, and ordering properties. Task functions can take

arbitrary arguments but do not return values. Tasks create children by

calling one of three enqueue functions with the appropriate task func-

tion and arguments: fractal::enqueue places the child task in

the same domain as the caller, fractal::enqueue_sub places the

4



void exclude(Node& n) {
n.state = EXCLUDED;

}

void include(Node& n) {
if (n.state == UNVISITED) {
n.state = INCLUDED;
fractal::create_subdomain(UNORDERED);
for (Node& ngh: n.neighbors)
fractal::enqueue_sub(exclude, ngh);

}
}

Listing 1: FRACTAL implementation of mis tasks.

void include(Node& n) {
if (n.state == UNVISITED) {
n.state = INCLUDED;
forall (Node& ngh: n.neighbors)
ngh.state = EXCLUDED;

}
}

Listing 2: Pseudocode for FRACTAL implementation of mis’s
include using the high-level interface.

child in the caller’s subdomain, and fractal::enqueue_super

places the child in the caller’s superdomain. If the destination do-

main is ordered, the enqueuing function also takes the child task’s

timestamp. This isn’t the case in Listing 1, as mis is unordered.

Before calling fractal::enqueue_sub to place tasks in a sub-

domain, a task must call fractal::create_subdomain exactly

once to specify the subdomain’s ordering semantics: unordered, or

ordered with 32- or 64-bit timestamps. In Listing 1, each include

task may create an unordered subdomain to atomically run exclude

tasks for all its neighbors. The initialization code (not shown) creates

an include task for every node in an unordered root domain.

Task enqueue functions also take one optional argument, a spatial

hint [35], which is an integer that abstractly indicates what data the

task is likely to access. Hints aid the system in performing locality-

aware task mapping and load balancing. Hints are orthogonal to

FRACTAL. We adopt them because we study systems of up to 256

cores, and several of our benchmarks suffer from poor locality with-

out hints, which limits their scalability beyond tens of cores.

High-level interface: Although our low-level interface is simple,

breaking straight-line code into many task functions can be tedious.

To ease this burden, we implement a high-level interface in the style

of OpenMP and OpenTM [7]. Table 1 details its main constructs,

and Listing 2 shows it in action with pseudocode for include.

Nested parallelism is expressed using forall, which automatically

creates an unordered subdomain and enqueues each loop iteration

as a separate task. This avoids breaking code into small functions

like exclude. These constructs can be arbitrarily nested. Our actual

syntax is slightly more complicated because we do not modify the

compiler, and we implement these constructs using macros.2

4 FRACTAL IMPLEMENTATION

Our FRACTAL implementation seeks three desirable properties. First,

the architecture should perform fine-grain speculation, carrying

out conflict resolution and commits at the level of individual tasks,

not complete domains. This avoids the granularity issues of nested

2 The difference between the pseudocode in Listing 2 and our actual code is that we have

to tag the end of control blocks, i.e., using forall_begin(...) {...} forall_-

end();. This could be avoided with compiler support, as in OpenMP.

Function Description

forall
Atomic unordred loop. Enqueues each iteration as

as a task in a new unordered subdomain.

forall_ordered

Atomic ordered loop. Enqueues tasks to a new

ordered subdomain, using the iteration index as a

timestamp.

forall_reduce Atomic unordered loop with a reduction variable.

forall_reduce_ordered Atomic ordered loop with a reduction variable.

parallel Execute multiple code blocks as parallel tasks.

parallel_reduce
Execute multiple code blocks as parallel tasks,

followed by a reduction.

enqueue_all
Enqueues a sequence of tasks with the same (or no)

timestamp.

enqueue_all_ordered
Enqueues a sequence of tasks with a range of

timestamps.

task

Starts a new task in the middle of a function.

Implicitly encapsulates the rest of the function into

a lambda, then enqueues it. Useful to break long

functions into smaller tasks.

callcc

Call with current continuation [59]. Allows calling

a function that might enqueue tasks, returning

control to the caller by invoking its continuation.

The continuation runs as a separate task.

Table 1: High-level interface functions.

64-tile, 256-core chip

Core Core Core Core

L1I/D L1I/D L1I/D L1I/D

L2

L3 sliceRouter

Tile organization

Task unit
Mem / IO

M
e
m

/ 
IO

Mem / IO

M
e
m

/ IO

Tile

Figure 8: 256-core Swarm chip and tile configuration.

parallel HTMs (Sec. 7). Second, creating a domain should be cheap,

as domains with few tasks are common (e.g., mis in Sec. 2.3). Third,

while the architecture should support unbounded nesting depth to

enable software composition, parallelism compounds quickly with

depth, so hardware only needs to support a few concurrent depths.

To meet these objectives, our FRACTAL implementation builds on

Swarm, and dynamically chooses a task commit order that satisfies

FRACTAL’s semantics. We first describe the Swarm microarchitec-

ture, then introduce the modifications needed to support FRACTAL.

4.1 Baseline Swarm microarchitecture

Swarm uncovers parallelism by executing tasks speculatively and

out of order. To uncover enough parallelism, Swarm can speculate

thousands of tasks ahead of the earliest unfinished task. Swarm

introduces modest changes to a tiled, cache-coherent multicore,

shown in Fig. 8. Each tile has a group of simple cores, each with its

own private L1 cache. All cores in a tile share an L2 cache, and each

tile has a slice of a fully-shared L3 cache. Every tile is augmented

with a task unit that queues, dispatches, and commits tasks.

Swarm hardware efficiently supports fine-grain tasks and a large

speculation window through four main mechanisms: low-overhead

hardware task management, large task queues, scalable data-depen-

dence speculation techniques, and high-throughput ordered commits.
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Hardware task management: Tasks create child tasks and enqueue

them to a tile using an enqueue instruction with arguments stored in

registers. Each tile’s task unit queues runnable tasks and maintains

the speculative state of finished tasks that cannot yet commit. Each

task is represented by a task descriptor that contains its function

pointer, arguments, timestamp, and spatial hint [35].

Cores dequeue tasks for execution from the local task unit. Task

units can dispatch any available task to cores, however distant in

program order. Dequeuing initiates speculative execution at the task’s

function pointer and makes the task’s timestamp and arguments

available in registers. A core stalls if there is no task available.

Large task queues: The task unit has two main structures: (i) a

task queue that holds task descriptors for every task in the tile, and

(ii) a commit queue that holds the speculative state of tasks that have

finished execution but cannot yet commit. Together, these queues

implement a task-level reorder buffer.

Task and commit queues support tens of speculative tasks per

core (e.g., 64 task queue entries and 16 commit queue entries per

core) to implement a large window of speculation (e.g., 16384 tasks

in the 256-core chip in Fig. 8). Nevertheless, because programs can

enqueue tasks with arbitrary timestamps, task and commit queues

can fill up. Tasks that have not been dequeued and whose parent

has committed can be spilled to memory to free task queue entries.

Queue resource exhaustion can also be handled by either stalling the

enqueuer or aborting higher-timestamp tasks to free space [36].

Scalable data-dependence speculation: Swarm uses eager (undo-

log-based) version management and eager conflict detection using

Bloom filters, similar to LogTM-SE [65]. Swarm always forwards

still-speculative data read by a later task. On a conflict, Swarm aborts

only descendants and data-dependent tasks.

High-throughput ordered commits: Finally, Swarm adapts the vir-

tual time algorithm [34] to achieve high-throughput ordered commits.

Tiles periodically communicate with a central arbiter (e.g., every

200 cycles) to discover the earliest unfinished task in the system. All

tasks that precede this earliest unfinished task can safely commit.

This scheme can sustain multiple task commits per cycle on average,

efficiently supporting ordered tasks as short as a few tens of cycles.

45 2

64-bit 

timestamp Dispatch cycle Tile ID

64-bit

tiebreaker

128 bits

23 ++

23, 45:2

=

Figure 9: Swarm VT con-

struction.

Swarm maintains a consistent

order among tasks by giving

a unique virtual time (VT) to

each task when it is dispatched.

Swarm VTs are 128-bit integers

that extend the 64-bit program-

assigned timestamp with a 64-bit

tiebreaker. This tiebreaker is the

concatenation of the dispatch cy-

cle and tile id, as shown in Fig. 9. Thus, Swarm VTs break ties

among same-timestamp tasks sensibly (prioritizing older tasks), and

they satisfy Swarm’s semantics (they order a child task after its par-

ent, since the child is always dispatched at a later cycle). However,

FRACTAL needs a different schema to match its semantics.

4.2 Fractal virtual time

FRACTAL assigns a fractal virtual time (fractal VT) to each task.

This fractal VT is the concatenation of one or more domain virtual

times (domain VTs).

23 56:4

23 56:4

56:4

32 bit

tiebreakers
64-bit

timestamp

32-bit timestamp

Unordered

+

+

= 96 bits

= 64 bits

= 32 bits

Figure 10: Domain VT formats.

23, 45:2 57:4
96 bits 32 bits

64-bit ordered
domain virtual time

Unordered domain
virtual time

Four unordered domain virtual times

56:4

4 × 32 bits

76:1 94:389:2

Figure 11: Example 128-bit

fractal VTs.

Domain VTs order all tasks in a domain and are constructed simi-

larly to Swarm VTs. In an ordered domain, each task’s domain VT is

the concatenation of its 32- or 64-bit timestamp and a tiebreaker. In

an unordered domain, tasks do not have timestamps, so each task’s

domain VT is just a tiebreaker, assigned at dispatch time.

FRACTAL uses 32-bit rather than 64-bit tiebreakers for efficiency.

As in Swarm, each tiebreaker is the concatenation of dispatch cy-

cle and tile id, which orders parents before children. While 32-bit

tiebreakers are efficient, they can wrap around. Sec. 4.4 discusses

how FRACTAL handles wrap-arounds. Fig. 10 illustrates the possible

formats of a domain VT, which can take 32, 64, or 96 bits.

Fractal VTs enforce a total order among tasks in the system. This

order satisfies FRACTAL’s semantics across domains: all tasks within

each domain are ordered immediately after the domain’s creator and

before any other tasks outside the domain. These semantics can be

implemented with two simple rules. First, the fractal VT of a task

in the root domain is just its root domain VT. Second, the fractal

VT of any other task is equal to its domain VT appended to the

fractal VT of the task that created its domain. Fig. 11 shows some

example fractal VT formats. A task’s fractal VT is thus made up of

one domain VT for each enclosing domain. Two fractal VTs can be

compared with a natural lexicographic comparison.

Fractal VTs are easy to support in hardware. We use a fixed-width

field in the task descriptor to store each fractal VT, 128 bits in our

implementation. Fractal VTs smaller than 128 bits are right-padded

with zeros. This fixed-width format makes comparing fractal VTs

easy, requiring conventional 128-bit comparators. With a 128-bit

budget, FRACTAL hardware can support up to four levels of nesting,

depending on the sizes of domain VTs. Sec. 4.3 describes how to

support levels beyond those that can be represented in 128 bits.

Fig. 12 shows fractal VTs in a system with three domains: an

unordered root domain, B’s subdomain (ordered with 64-bit time-

stamps), and D’s subdomain (unordered). Idle tasks do not have

tiebreakers, which are assigned on dispatch. Any two dispatched

tasks can be ordered by comparing their fractal VTs. For example,

F (in B’s subdomain) is ordered after B, but before M (in D’s sub-

domain). FRACTAL performs fine-grain speculation by using the

B

A

C

M
G H

E

D

B’s subdomain
D’s subdomainF

45:2 0

— 0

78:6 0

37:3 0

42:1 0

45:2 1, 51:4

45:2 2, 71:5

45:2 4, —
Root

domain VTs

Subdomain VTs

Root domain

78:6 — 0

Unused bits 

zeroed out

Idle

task
T

Legend

Unset tiebreaker

Figure 12: Fractal VTs in action.
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Figure 13: Starting from Fig. 12, zooming in allows F to create and enqueue to a subdomain by shifting fractal VTs.

total order among running tasks to commit and resolve conflicts

at the level of individual tasks. For example, although all tasks in

B’s subdomain must stay atomic with respect to tasks in any other

domain, FRACTAL can commit tasks B and F individually, without

waiting for G and H to finish. FRACTAL guarantees that B’s subdo-

main executes atomically because G and H are ordered before any

of the remaining uncommitted tasks.

Fractal VTs also make it trivial to create a new domain. In hard-

ware, enqueuing to a subdomain simply requires including the par-

ent’s full fractal VT in the child’s task descriptor. For instance, when

B enqueues F in Fig. 12, it tags F with (45:2; 1)—B’s fractal VT

(45:2) followed by F’s timestamp (1). Similarly, enqueues to the

same domain use the enqueuer’s fractal VT without its final domain

VT (e.g., when A enqueues C, C’s fractal VT uses no more bits than

A’s), and enqueues to the superdomain use the enqueuer’s fractal VT

without its final two domain VTs.

In summary, fractal VTs capture all the information needed for

ordering and task enqueues, so these operations do not rely on

centralized structures. Moreover, the rules of fractal VT construction

automatically enforce FRACTAL’s semantics across domains while

performing speculation only at the level of fine-grain tasks—no

tracking is done at the level of whole domains.

4.3 Supporting unbounded nesting

Large applications may consist of parallel algorithms nested with

arbitrary depth. FRACTAL supports this unbounded nesting depth

by spilling tasks from shallower domains to memory. These spilled

tasks are filled back into the system after deeper domains finish.

This process, which we call zooming, is conceptually similar to

the stack spill-fill mechanism in architectures with register win-

dows [30]. Zooming in allows FRACTAL to continue fine-grain spec-

ulation among tasks in deeper domains, without requiring additional

structures to track speculative state. Note that, although zooming is

involved, it imposes negligible overheads: zooming is not needed in

our full applications (which use two nesting levels), and it happens

infrequently in microbenchmarks (Sec. 6.3).

Zooming in spills tasks from the shallowest active domain, which

we call the base domain, to make space for deeper domains. Suppose

that, in Fig. 12, F in B’s subdomain wants to create an unordered

subdomain and enqueue a child into it. The child’s fractal VT must

include a new subdomain VT, but no bits are available to the right

of F’s fractal VT. To solve this, F issues a zoom-in request to the

central arbiter with its fractal VT.

Fig. 13 illustrates the actions taken during a zoom-in. To avoid

priority inversion, the task that requests the zoom-in waits until the

base domain task that shares its base domain VT commits. This

guarantees that no active base domain tasks precede the requesting

task. In our example, F waits until B commits. Fig. 13a shows the

state of the system at this point—note that F and all other tasks in B’s

subdomain precede the remaining base-domain tasks. The arbiter

broadcasts the zoom-in request and saves any timestamp component

of the base domain VT to an in-memory stack. In Fig. 13a, the base

domain is unordered so there is no timestamp for the arbiter to save.

Each zoom-in proceeds in two steps. First, all tasks in the base

domain are spilled to memory. For simplicity, speculative state is

never spilled. Instead, any base-domain tasks that are running or

have finished are aborted first, which recursively aborts and elimi-

nates their descendants. Fig. 13b shows the state of the system after

these aborts. Note how D’s abort eliminates M and D’s entire sub-

domain. Although spilling tasks to memory is complex, it reuses

the spilling mechanism already present in Swarm [36]: task units

dispatch coalescer tasks that remove base-domain tasks from task

queues, store them in memory, and enqueue a splitter task that will

later re-enqueue the spilled tasks. The splitter task is deprioritized

relative to all regular tasks. Fig. 13c shows the state of the system

once all base-domain tasks have been spilled. A new splitter task, S,

will re-enqueue D and E to the root domain when it runs.

In the second step of zooming in, the system turns the outermost

subdomain into the base domain. At this point, all tasks belong to

one subdomain (B’s subdomain in our example), so their fractal VTs

all begin with the same base domain VT. This common prefix may

be eliminated while preserving order relations. Each tile walks its

task queues and modifies the fractal VTs of all tasks by shifting

out the common base domain VT. Each tile also modifies its canary

VTs, which enable the L2 to filter conflict checks [36]. Overall, this

requires modifying a few tens to hundreds of fractal VTs per tile

(in our implementation, up to 256 in the task queue and up to 128

canaries). Fig. 13d shows the state of the system after zooming in.

B’s subdomain has become the base domain. This process has freed

32 bits of fractal VT, so F can enqueue I into its new subdomain.

Zooming out reverses the effects of zooming in. It is triggered when

a task in the base domain wants to enqueue to its superdomain. The

enqueuing task first waits until all tasks preceding it have committed.

Then, it sends a zoom-out request to the central arbiter with its fractal

VT. If the previous base domain was ordered, the central arbiter pops

a timestamp from its stack to broadcast with the zoom-out request.

Zooming out restores the previous base domain: Each tile walks

its task queues, right-shifting each fractal VT and adding back the
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base domain timestamp, if any. The restored base domain VT has its

tiebreaker set to zero, but this does not change any order relations

because the domain from which we are zooming out contains all the

earliest active tasks.

Avoiding quiescence: As explained so far, the system would have

to be completely quiesced while fractal VTs are being shifted. This

overhead is small—a few hundred cycles—but introducing mecha-

nisms to quiesce the whole system would add complexity. Instead,

we use an alternating-bit protocol [60] to let tasks continue running

while fractal VTs are modified. Each fractal VT entry in the system

has an extra bit that is flipped on each zoom in/out operation. When

the bits of two fractal VTs being compared differ, one of them is

shifted appropriately to perform the comparison.

4.4 Handling tiebreaker wrap-arounds

Using 32-bit tiebreakers makes fractal VTs compact, but causes

tiebreakers to wrap around every few tens of milliseconds. Since

domains can exist for long periods of time, the range of existing

tiebreakers must be compacted to make room for new ones. When

tiebreakers are about to wrap around, the system walks every fractal

VT and performs the following actions:

(1) Subtract 231 (half the range) with saturate-to-0 from each

tiebreaker in the fractal VT (i.e., flip the MSB from 1 to 0,

or zero all the bits if the MSB was 0).

(2) If a task’s final tiebreaker is 0 after subtraction and the task is

not the earliest unfinished task, abort it.

When this process finishes, all tiebreakers are < 231, so the system

continues assigning tiebreakers from 231.

This exploits the property that, if the task that created a domain

precedes all other active tasks, its tiebreaker can be set to zero

without affecting order relations. If the task is aborted because its

tiebreaker is set to 0, any subdomain it created will be squashed. In

practice, we find this has no effect on performance, because, to be

aborted, a task would have to remain speculative for far longer than

we observe in any benchmark.

4.5 Putting it all together

Our FRACTAL implementation adds small hardware overheads over

Swarm. (Swarm itself imposes modest overheads to implement spec-

ulative execution [36].) Each fractal VT consumes five additional

bits beyond Swarm’s 128: four to encode its format (14 possibilities),

and one for the alternating-bit protocol. This adds storage overheads

of 240 bytes per 4-core tile. FRACTAL also adds simple logic to each

tile to walk and modify fractal VTs—for zooming and tiebreaker

wrap-arounds—and adds a shifter to fractal VT comparators to han-

dle the alternating-bit protocol.

FRACTAL makes small changes to the ISA: it modifies the enqueue

instruction and adds a create_subdomain instruction. Task en-

queue messages carry a fractal VT without the final tiebreaker (up

to 96+5 bits) compared to the 64-bit timestamp in Swarm.

Finally, in our implementation, zoom-in/out requests and tiebreaker

wrap-arounds are handled by the global virtual time arbiter (the unit

that runs the ordered-commit protocol). This adds a few message

types between this arbiter and the tiles to carry out the steps in each

of these operations. The arbiter must manage a simple in-memory

stack to save and restore base domain timestamps.

Cores

256 cores in 64 tiles (4 cores/tile), 2 GHz, x86-64 ISA; 8B-wide

ifetch, 2-level bpred with 256×9-bit BHSRs + 512×2-bit PHT,

single-issue in-order scoreboarded (stall-on-use), functional unit

latencies as in Nehalem [52], 4-entry load and store buffers

L1 caches 16 KB, per-core, split D/I, 8-way, 2-cycle latency

L2 caches
256 KB, per-tile, 8-way, inclusive, 7-cycle latency

32 lines per fractal VT canary

L3 cache
64 MB, shared, static NUCA [38] (1 MB bank/tile),

16-way, inclusive, 9-cycle bank latency

Coherence MESI, 64 B lines, in-cache directories

NoC
8×8 mesh, 128-bit links, X-Y routing, 1 cycle/hop when going

straight, 2 cycles on turns (like Tile64 [64])

Main mem 4 controllers at chip edges, 120-cycle latency

Queues

64 task queue entries/core (16384 total),

16 commit queue entries/core (4096 total),

128-bit fractal VTs

FRACTAL

instructions

5 cycles per enqueue/dequeue/finish_task

2 cycles per create_subdomain instruction

Scheduler Spatial hints with load balancing [35]

Conflicts

2 Kbit 8-way Bloom filters, H3 hash functions [13]

Tile checks take 5 cycles (Bloom filters) + 1 cycle per

timestamp compared in the commit queue

Commits Tiles send updates to GVT arbiter every 200 cycles

Spills
Coalescers fire when a task queue is 85% full

Coalescers spill up to 15 tasks each

Table 2: Configuration of the 256-core system.

Application Input
1-core runtime

(B cycles)

S
w

a
rm

color [33] com-youtube [39] 0.968

msf [54] kron_g500-logn16 [4, 21] 0.717

silo [61] TPC-C, 4 whs, 32 Ktxns 2.98

S
T

A
M

P
[4

2
]

ssca2 -s15 -i1.0 -u1.0 -l6 -p6 10.6

vacation -n4 -q60 -u90 -r1048576 -t262144 4.31

genome -g4096 -s48 -n1048576 2.26

kmeans -m40 -n40 -i rand-n16384-d24-c16 8.75

intruder -a10 -l64 -s32768 2.12

yada -a15 -i ttimeu100000.2 3.41

labyrinth random-x128-y128-z5-n128 4.41

bayes -v32 -r4096 -n10 -p40 -i2 -e8 -s1 8.81

maxflow [8] rmf-wide [18, 29], 65 K nodes, 314 K edges 16.7

mis [54] R-MAT [15], 8 M nodes, 168 M edges 1.34

Table 3: Benchmark information: source implementations, in-

puts, and execution time on a single-core system.

5 EXPERIMENTAL METHODOLOGY

Modeled system: We use a cycle-accurate, event-driven simula-

tor based on Pin [40, 47] to model FRACTAL systems of up to

256 cores, as shown in Fig. 8, with parameters in Table 2. Swarm

parameters (task and commit queue sizes, etc.) match those from

prior work [35, 36, 37]. We use detailed core, cache, network, and

main memory models, and faithfully simulate all speculation over-

heads (e.g., running misspeculating tasks until they abort, simulating

conflict check and rollback delays and traffic, etc.). Our 256-core

configuration is similar to the Kalray MPPA [22]. We also simulate

smaller systems with square meshes (K×K tiles for K ≤ 8). We keep

per-core L2/L3 sizes and queue capacities constant across system

sizes. This captures performance per unit area. As a result, larger

systems have higher queue and cache capacities, which sometimes

cause superlinear speedups.

Benchmarks: Table 3 reports the benchmarks we evaluate. Bench-

marks have 1-core run-times of about 1 B cycles or longer. We
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Perf. vs serial Avg task length

Nesting type@ 1-core (cycles)

flat fractal flat fractal

maxflow 0.92× 0.68× 3260 373 unord ֒→ ord-32b

labyrinth 1× 0.62× 16 M 220 unord ֒→ ord-32b

bayes 1× 1.11× 1.8 M 3590 unord ֒→ unord

silo 1.14× 1.10× 80 K 3420 unord ֒→ ord-32b

mis 0.79× 0.26× 162 115 unord ֒→ unord

color 1.06× 0.80× 633 96 ord-32b ֒→ ord-32b

msf 3.1× 1.73× 113 49 ord-64b ֒→ unord

Table 4: Benchmarks with parallel nesting: performance of 1-

core flat/fractal vs tuned serial versions (higher is better),

average task lengths, and nesting semantics.

use three existing Swarm benchmarks [35, 36], which we adapt to

FRACTAL; FRACTAL implementations of the eight STAMP bench-

marks [42]; and two new FRACTAL benchmarks: maxflow, adapted

from prsn [8], and mis, adapted from PBBS [54].

Benchmarks adapted from Swarm use their same inputs [35, 36].

msf includes an optimization to filter out non-spanning edges effi-

ciently [9]. This optimization improves absolute performance but

reduces the amount of highly parallel work, so msf has lower scala-

bility than the unoptimized Swarm version [36].

STAMP benchmarks use inputs between the recommended “+”

and “++” sizes, to achieve a run-time large enough to evaluate 256-

core systems, yet small enough to be simulated in reasonable time.

maxflow uses rmf-wide [29], one of the harder graph families

from the DIMACS maxflow challenge [8]. mis uses an R-MAT

graph [15], which has a power-law distribution.

We fast-forward each benchmark to the start of its parallel region

(skipping initialization), and report results for the full parallel re-

gion. On all benchmarks except bayes, we perform enough runs

to achieve 95% confidence intervals ≤ 1%. bayes is highly non-

deterministic, so we report its average results with 95% confidence

intervals over 50 runs.

6 EVALUATION

We now analyze the benefits of FRACTAL in depth. As in Sec. 2,

we begin with applications where FRACTAL uncovers abundant

fine-grain parallelism through nesting. We then discuss FRACTAL’s

benefits from avoiding over-serialization. Finally, we characterize

the performance overheads of zooming to support deeper nesting.

6.1 Fractal uncovers abundant parallelism

FRACTAL’s support for nested parallelism greatly benefits three

benchmarks: maxflow, as well as labyrinth and bayes, the two

least scalable benchmarks from STAMP.

maxflow, as discussed in Sec. 2.1, is limited by long global-relabel

tasks. Our fractal version performs the breadth-first search nested

within each global relabel in parallel.

labyrinth finds non-overlapping paths between pairs of (start, end)

cells on a 3D grid. Each transaction operates on one pair: it finds

the shortest path on the grid and claims the cells on the path for

itself. In the STAMP implementation, each transaction performs

this shortest-path search sequentially. Our fractal version runs the

shortest-path search nested within each transaction in parallel, using

an ordered subdomain.
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Figure 14: Performance of flat and fractal versions of appli-

cations with abundant nested parallelism, using Bloom filter–

based or Precise conflict detection.

bayes learns the structure of a Bayesian network, a DAG where

nodes denote random variables and edges denote conditional depen-

dencies among variables. bayes spends most time deciding whether

to insert, remove, or reverse network edges. Evaluating each deci-

sion requires performing many queries to an ADTree data structure,

which efficiently represents probability estimates. In the STAMP

implementation, each transaction evaluates and applies an insert/re-

move/reverse decision. Since the ADTree queries performed depend

on the structure of the network, transactions serialize often. Our

fractal version runs ADTree queries nested within each transac-

tion in parallel, using an unordered subdomain.

Table 4 compares the 1-core performance and average task lengths

of flat and fractal versions. flat versions of these benchmarks

have long, unordered transactions (up to 16 M cycles). fractal

versions have much smaller tasks (up to 3590 cycles on average in

bayes). These short tasks hurt serial performance (by up to 38% in

labyrinth), but expose plentiful intra-domain parallelism (e.g., a

parallel breadth-first search), yielding great scalability.

Beyond limiting parallelism, the long transactions of flat ver-

sions have large read/write sets that often overflow FRACTAL’s

Bloom filters, causing false-positive aborts. Therefore, we also

present results under an idealized, precise conflict detection scheme

that does not incur false positives. High false positive rates are not

specific to FRACTAL—prior HTMs used similarly-sized Bloom fil-

ters [14, 43, 53, 65].

Fig. 14a shows the performance of the flat and fractal ver-

sions when scaling from 1- to 256-core systems. All speedups re-

ported are over the 1-core flat version. Solid lines show speedups

when using Bloom filters, while dashed ones show speedups un-

der precise conflict detection. flat versions scale poorly, espe-

cially when using Bloom filters: the maximum speedups across
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all system sizes range from 1.0× (labyrinth at 1 core) to 4.9×

(maxflow). By contrast, fractal versions scale much better, from

88× (labyrinth) to 322× (maxflow).3

Fig. 14b gives more insight into these differences by showing

the percentage of cycles that cores spend on different activities:

(i) running tasks that are ultimately committed, (ii) running tasks

that are later aborted, (iii) spilling tasks from the hardware task

queues, (iv) stalled on a full task or commit queue, or (v) stalled

due to lack of tasks. Each group of bars shows results for a different

application at 256 cores.

Fig. 14b shows that flat versions suffer from lack of work caused

by insufficient parallelism, and stalls caused by long tasks that even-

tually become the earliest active task and prevent others from com-

mitting. Moreover, most of the work performed by flat versions

is aborted as tasks have large read/write sets and frequently con-

flict. labyrinth-flat and bayes-flat also suffer frequent false-

positive aborts that hurt performance with Bloom filter conflict de-

tection. Although precise conflict detection helps labyrinth-flat

and bayes-flat, both benchmarks still scale poorly (to 4.3× and

6.8×, respectively) due to insufficient parallelism.

By contrast, fractal versions spend most cycles executing use-

ful work, and aborted cycles are relatively small, from 7% (bayes) to

24% (maxflow). fractal versions perform just as well with Bloom

filters as with precise conflict detection. These results shows that

exploiting fine-grain nested speculative parallelism is an effective

way to scale challenging applications.

6.2 Fractal avoids over-serialization

FRACTAL’s support for nested parallelism avoids over-serialization

on four benchmarks: silo, mis, color, and msf. Swarm can exploit

nested parallelism in these benchmarks by imposing a total order

among coarse-grain operations or groups of tasks (Sec. 2.3). Sec. 2

showed that this has a negligible effect on silo, so we focus on the

other three applications.

mis, color, and msf are graph-processing applications. Their

flat versions perform operations on multiple graph nodes that

can be parallelized but must remain atomic—e.g., in mis, adding a

node to the independent set and excluding its neighbors (Sec. 2.3).

mis-flat is unordered, while color-flat and msf-flat visit

nodes in a partial order (e.g., color visits larger-degree nodes first).

Our fractal versions use one subdomain per coarse-grain opera-

tion to exploit this nested parallelism (Table 4). The swarm-fg ver-

sions of these benchmarks use the same fine-grain tasks as fractal

but use a unique timestamp or timestamp range per coarse-grain

operation to guarantee atomicity, imposing a fixed order among

coarse-grain operations.

Fig. 15 shows the scalability and cycle breakdowns for these

benchmarks. flat versions achieve the lowest speedups, from 26×

(msf at 64 cores) to 98× (mis). Fig. 15b shows that they are dom-

inated by aborts, which take up to 73% of cycles in color-flat,

and empty cycles caused by insufficient parallelism in msf and mis.

In msf-flat, frequent aborts hurt performance beyond 64 cores.

By contrast, fractal versions achieve the highest performance,

from 40× (msf) to 145× (mis). At 256 cores, the majority of time

3 Note that systems with more tiles have higher cache and queue capacities, which

sometimes cause superlinear speedups (Sec. 5).
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Figure 15: Performance of flat, swarm-fg, and fractal ver-

sions of applications where Swarm extracts nested parallelism

through strict ordering, but FRACTAL outperforms it by avoid-

ing undue serialization.

is spent on committed work, although aborts are still noticeable

(up to 30% of cycles in color). While fractal versions perform

better at 256 cores, their tiny tasks impose higher overheads, so they

underperform flat on small core counts. This is most apparent in

msf, where fractal tasks are just 49 cycles on average (Table 4).

Finally, swarm-fg versions follow the same scaling trends as

fractal ones, but over-serialization makes them 6% (color), 24%

(mis), and 93% (msf) slower. Fig. 15b shows that these slowdowns

primarily stem from more frequent aborts. This is because in swarm-fg

versions, conflict resolution priority is static (determined by time-

stamps), while in fractal versions, it is based on the dynamic exe-

cution order (determined by tiebreakers). In summary, these results

show that FRACTAL makes fine-grain parallelism more attractive by

avoiding needless order constraints.

6.3 Zooming overheads

Although our FRACTAL implementation supports unbounded nesting

(Sec. 4.3), two nesting levels suffice for all the benchmarks we eval-

uate. Larger programs should require deeper nesting. Therefore, we

use a microbenchmark to characterize the overheads of FRACTAL’s

zooming technique.

Our microbenchmark stresses FRACTAL by creating many nested

domains that contain few tasks each. Specifically, it generates a

depth-8 tree of nested domains with fanout F . All tasks perform

a small, fixed amount of work (1500 cycles). Non-leaf tasks then

create an unordered subdomain and enqueue F children into it. We

sweep both the fanout (F = 4 to 12) and the maximum number

of concurrent levels D in FRACTAL, from 2 (64-bit fractal VTs)

to 8 (256-bit fractal VTs). At D = 8, the system does not perform

any zooming. Our default hardware configuration supports up to 4

concurrent levels.
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Figure 16: Characterization of zooming overheads.

Fig. 16a reports performance on a 1-core system. Each group of

bars shows results for a single fanout, and bars within a group show

how performance changes as the maximum concurrent levels D

grows from 2 to 8. Performance is relative to the D = 8, no-zooming

system. Using a 1-core system lets us focus on the overheads of

zooming without factoring in limited parallelism. Larger fanouts and

concurrent levels increase the amount of work executed between

zooming operations, reducing overheads. Nonetheless, overheads

are modest even for F = 4 and D = 2 (21% slowdown).

Fig. 16b reports performance on a 256-core system. Supporting a

limited number of levels reduces parallelism, especially with small

fanouts, which hurts performance. Nonetheless, as long as F ≥ 8,

supporting at least four levels keeps overheads small.

All of our applications have much higher parallelism than 8 con-

current tasks in at least one of their two nesting levels, and often

in both. Therefore, on applications with deeper nesting, zooming

should not limit performance in most cases. However, these are

carefully coded applications that avoid unnecessary nesting. Nesting

could be overused (e.g., increasing the nesting depth at every inter-

mediate step of a divide-and-conquer algorithm), which would limit

parallelism. To avoid this, a compiler pass may be able to safely

flatten unnecessary nesting levels. We leave this to future work.

6.4 Discussion

We considered 18 benchmarks to evaluate FRACTAL: all eight from

Swarm [35, 36], all eight from STAMP [42], as well as maxflow and

mis. We looked for opportunities to exploit nested parallelism, focus-

ing on benchmarks with limited speedups. In summary, FRACTAL

benefits 7 out of these 18 benchmarks. We did not find opportu-

nities to exploit nested parallelism in the five Swarm benchmarks

not presented here (bfs, sssp, astar, des, and nocsim). These

benchmarks already use fine-grain tasks and scale well to 256 cores.

Fig. 17 shows how each STAMP benchmark scales when us-

ing different FRACTAL features. All speedups reported are over

the 1-core TM version. The TM lines show the performance of the

original STAMP transactions ported to Swarm tasks. Three appli-

cations (intruder, labyrinth, and bayes) barely scale, while

two (yada and kmeans) scale well at small core counts but suf-

fer on larger systems. By contrast, FRACTAL’s features make all

STAMP applications scale, although speedups are not only due to

nesting. First, the TM versions of intruder and yada use soft-

ware task queues that limit their scalability. Refactoring them to use

Swarm/FRACTAL hardware task queues [36] makes them scale. Sec-

ond, spatial hints [35] improves genome and makes kmeans scale.

Finally, as we saw in Sec. 6.1, FRACTAL’s support for nesting makes
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Figure 17: Different FRACTAL features make all STAMP appli-

cations scale well to 256 cores.

labyrinth and bayes scale. Therefore, FRACTAL is the first ar-

chitecture that scales the full STAMP suite to hundreds of cores,

achieving a gmean speedup of 177× at 256 cores.

7 RELATED WORK

7.1 Nesting in transactional memory

Serial nesting: Most HTMs support serial execution of nested trans-

actions, which makes transactional code easy to compose but forgoes

intra-transaction parallelism. Nesting can be trivially supported by

ignoring the boundaries of all nested transactions, treating them as

part of the top-level one. Some HTMs exploit nesting to implement

partial aborts [44]: they track the speculative state of a nested trans-

action separately while it executes, so conflicts that occur while the

nested transaction runs do not abort the top-level one.

Even with partial aborts, HTMs ultimately merge nested specu-

lative state into the top-level transaction, resulting in large atomic

regions that are hard to support in hardware [2, 12, 19, 20] and make

conflicts more likely.

Prior work has explored relaxed nesting semantics, like open

nesting [41, 44, 46] and early release [55], which relax isolation to

improve performance. FRACTAL is orthogonal to these techniques

and could be extended to support them, but we do not see the need

on the applications we study.

Parallel nesting: Some TM systems support running nested trans-

actions in parallel [45]: a transaction can launch multiple nested

transactions and wait for them to finish. Nested transactions may run

in parallel and can observe updates from their parent transaction. As

in serial nesting, when a nested transaction finishes, its speculative

state is merged with its parent’s. When all nested transactions finish,

the parent transaction resumes execution.

Most of this work has been in software TM (STM) implemen-

tations [1, 5, 24, 63], but these suffer from even higher overheads
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than flat STMs. Vachharajani [62, Ch. 7] and FaNTM [6] introduce

hardware support to reduce parallel nesting overheads. Even with

hardware support, parallel-nesting HTMs yield limited gains—e.g.,

FaNTM is often slower than a flat HTM, and moderately outperforms

it (by up to 40%) only on a microbenchmark.

Parallel-nesting TMs suffer from three main problems. First,

nested transactions merge their speculative state with their parent’s,

and only the coarse, top-level transaction can commit. This results

in large atomic blocks that are as expensive to track and as prone

to abort as large serial transactions. By contrast, FRACTAL per-

forms fine-grain speculation, at the level of individual tasks. It never

merges the speculative state of tasks, and relies on ordering tasks to

guarantee the atomicity of nested domains.

Second, because the parent transaction waits for its nested trans-

actions to finish, there is a cyclic dependence between the parent

and its nested transactions. This introduces many subtle problems,

including data races with the parent, deadlock, and livelock [6].

Workarounds for these issues are complex and sacrifice performance

(e.g., a nested transaction eventually aborts all its ancestors for live-

lock avoidance [6]). By contrast, all dependences in FRACTAL are

acyclic, from parents to children, which avoids these issues. FRAC-

TAL supports the fork-join semantics of parallel-nesting TMs by

having nested transactions enqueue their parent’s continuation.

Finally, parallel-nesting TMs do not support ordered speculative

parallelism. By contrast, FRACTAL supports arbitrary nesting of

ordered and unordered parallelism, which accelerates a broader

range of applications.

7.2 Thread-level speculation

Thread-level speculation (TLS) schemes [28, 31, 50, 56, 58] ship

tasks from function calls or loop iterations to different cores, run

them speculatively, and commit them in program order. Prior TLS

systems scale poorly beyond few cores, cannot support large specula-

tion windows, and are less general than Swarm’s timestamp-ordered

execution model [36].

A few TLS systems use timestamps internally, but do not let pro-

grams control them [32, 50, 57]. Renau et al. [50] use timestamps

to allow out-of-order task spawn. Each task carries a timestamp

range, and splits it in half when it spawns a successor. This approach

could be adapted to support the order constraints required by nesting.

However, while this technique works well at the scale it was evalu-

ated (4 speculative tasks), it would require an impractical number

of timestamp bits at the scale we consider (4096 speculative tasks).

Moreover, this technique would cause over-serialization and does

not support exposing timestamps to programs.

7.3 Nesting with non-speculative parallelism

Nesting is supported by most parallel programming languages, such

as OpenMP [26]. In many languages, such as NESL [10], Cilk [27],

and X10 [16], nesting is the natural way to express parallelism. Sup-

porting nested parallelism in these non-speculative systems is easy

because parallel tasks have no atomicity requirements: they either

operate on disjoint data or use explicit synchronization, such as

locks [17] or dataflow annotations [25], to avoid data races. Though

nested non-speculative parallelism is often sufficient, many algo-

rithms need speculation to be parallelized efficiently [48]. By making

nested speculative parallelism practical, FRACTAL brings the bene-

fits of composability and fine-grain parallelism to a broader set of

programs.

8 CONCLUSION

We have presented FRACTAL, a new execution model for fine-grain

nested speculative parallelism. FRACTAL lets programmers com-

pose ordered and unordered algorithms without undue serialization.

Our FRACTAL implementation builds on the Swarm architecture

and relies on a dynamically chosen task order to perform fine-grain

speculation, operating at the level of individual tasks. Our imple-

mentation sidesteps the scalability issues of parallel-nesting HTMs

and requires simple hardware. We have shown that FRACTAL can

parallelize a broader range of applications than prior work, and

outperforms prior speculative architectures by up to 88×.
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