
A Hardware and Software Architecture

for Pervasive Parallelism

by

Mark Christopher Jeffrey

Bachelor of Applied Science, University of Toronto (2009)
Master of Applied Science, University of Toronto (2011)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2020

c© Mark Christopher Jeffrey, MMXX. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly
paper and electronic copies of this thesis document in whole or in part in any medium

now known or hereafter created.

Author .
Department of Electrical Engineering and Computer Science

October 25, 2019

Certified by. .
Daniel Sanchez

Associate Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

iii

A Hardware and Software Architecture

for Pervasive Parallelism

by
Mark Christopher Jeffrey

Submitted to the Department of Electrical Engineering and Computer Science
on October 25, 2019, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

Parallelism is critical to achieve high performance in modern computer systems. Un-
fortunately, most programs scale poorly beyond a few cores, and those that scale well
often require heroic implementation efforts. This is because current parallel architec-
tures squander most of the parallelism available in applications and are too hard to
program.

This thesis presents Swarm, a new execution model, architecture, and system soft-
ware that exploits far more parallelism than conventional multicores, yet is almost
as easy to program as a sequential machine. Programmer-ordered tasks sit at the
software-hardware interface. Swarm programs consist of tiny tasks, as small as tens
of instructions each. Parallelism is dynamic: tasks can create new tasks at run time.
Synchronization is implicit: the programmer specifies a total or partial order on tasks.
This eliminates the correctness pitfalls of explicit synchronization (e.g., deadlock and
data races). Swarm hardware uncovers parallelism by speculatively running tasks out
of order, even thousands of tasks ahead of the earliest active task. Its speculation mech-
anisms build on decades of prior work, but Swarm is the first parallel architecture to
scale to hundreds of cores due to its new programming model, distributed structures,
and distributed protocols. Leaning on its support for task order, Swarm incorporates
new techniques to reduce data movement, to speculate selectively for improved effi-
ciency, and to compose parallelism across abstraction layers.

Swarm achieves efficient near-linear scaling to hundreds of cores on otherwise
hard-to-scale irregular applications. These span a broad set of domains, including
graph analytics, discrete-event simulation, databases, machine learning, and genomics.
Swarm even accelerates applications that are conventionally deemed sequential. It out-
performs recent software-only parallel algorithms by one to two orders of magnitude,
and sequential implementations by up to 600× at 256 cores.

Thesis Supervisor: Daniel Sanchez
Title: Associate Professor of Electrical Engineering and Computer Science

iv

v

Acknowledgments

This PhD journey at MIT has been extremely rewarding, challenging, and stimulating.
I sincerely thank the many individuals who supported me along the way.

First and foremost, I am grateful to my advisor, Professor Daniel Sanchez. His
breadth of knowledge and wide range of skills astounded me when I arrived at MIT
and continue to impress as I depart. My background was in parallel and distributed
systems, and Daniel quickly brought me up to speed on computer architecture research.
Early on, Daniel opined that a lot of fun happens at the interface, where you can change
both hardware and software to create radical new designs. Now, I could not agree
more. Daniel taught me how to think about the big picture challenges in computer
science, then frame tractable research problems, and use limit study prototypes to
quickly filter ideas as promising or not. He helped me improve my communication of
insights and results to the broader community. He also taught me new tricks to debug
low-level protocol deadlocks or system errors. Daniel exemplified strong leadership: he
would recognize and nurture particular strengths in his students, and rally strong teams
to tackle big important problems, while encouraging us to work on our weaknesses.
Daniel both provided so much freedom throughout my time at MIT, yet was always
available when I needed him.

I would like to thank my thesis committee members, Professor Joel Emer and Pro-
fessor Arvind. Over the years, Joel taught me the importance of carefully distilling the
contributions of a research project down to its core insights; implementation details
are important, but secondary to understanding the insight. Throughout my career, I
will strive to continue his principled approach to computer architecture research, and
his welcoming, inclusive, and empathetic approach to mentorship. Arvind, who solved
fundamental problems in parallel dataflow architectures and languages, provided a
valuable perspective and important feedback on this work.

This thesis is the result of collaboration with an outstanding team of students:
Suvinay Subramanian, Cong Yan, Maleen Abeydeera, Victor Ying, and Hyun Ryong
(Ryan) Lee. Suvinay was a crucial partner in all of the projects of this thesis. I ap-
preciate the hours we spent brainstorming, designing, and debugging. I learned a
lot from his persistence, deep focus, and unbounded optimism. Cong invested a few
months to wrangle a database application for our benchmark suite. We learned a lot
from such a large workload. Maleen improved the modeling of our simulations, imple-
mented several applications, and, bringing his expertise in hardware design, provided
valuable feedback and fast prototypes to simplify our designs. Victor added important
capabilities to our simulation in the Espresso and Capsules project, identified several
opportunities for system optimization, and has been a crucial sounding board for the
last three years. I am excited to see where his audacious work will lead next. Ryan
implemented new applications that taught us important lessons on how to improve
performance.

vi

I am thankful to the members of the Sanchez group: Maleen Abeydeera, Nathan
Beckmann, Nosayba El-Sayed, Yee Ling Gan, Harshad Kasture, Ryan Lee, Anurag Mukkara,
Quan Nguyen, Suvinay Subramanian, Po-An Tsai, Cong Yan, Victor Ying, and Guowei
Zhang. In addition to providing excellent feedback on papers and presentations, they
brought fun and insight to my time at MIT, through technical discussions, teaching me
history, eating, traveling to conferences, and hiking the trails of New York and New
Hampshire. Thanks to my officemate, Po-An, who shared much wisdom about mentor-
ship, research trajectories, and career decisions. I thoroughly enjoyed our one official
collaboration on the MICRO-50 submissions server, and our travels around the globe.

I appreciate my dear friends across Canada and the United States, who made every
moment outside the lab extraordinary.

Last but not least, an enormous amount of thanks goes to my family. My siblings
encouraged me to start this PhD journey and provided valuable advice along the way.
My parents boosted morale with frequent calls full of love and encouragement and re-
laxing visits back home. My nieces and nephews brought a world of fun and adventure
every time we got together. I got to watch you grow up over the course of this degree.
Finally, a very special thanks goes to my wife, Ellen Chan, who brings joy, fun, and
order to my life. I could not have finished this thesis without her love and support.

I am grateful for financial support from C-FAR, one of six SRC STAR-net centers by
MARCO and DARPA; NSF grants CAREER-1452994, CCF-1318384, SHF-1814969, and
NSF/SRC grant E2CDA-1640012; a grant from Sony; an MIT EECS Jacobs Presidential
Fellowship; an NSERC Postgraduate Scholarship; and a Facebook Fellowship.

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

1.1 Challenges . 2
1.2 Contributions . 5
1.3 Thesis Organization . 7

2 Background 9

2.1 Important Properties of Task-Level Parallelism 10
2.1.1 Task Regularity . 10
2.1.2 Task Ordering . 11
2.1.3 Task Granularity . 12
2.1.4 Open Opportunity: Fine-Grain Ordered Irregular Parallelism . . . 12

2.2 Exploiting Regular Parallelism . 13
2.3 Exploiting Non-Speculative Irregular Parallelism 14
2.4 Exploiting Speculative Irregular Parallelism 18

2.4.1 Dynamic Instruction-Level Parallelism 19
2.4.2 Thread-Level Speculation . 20
2.4.3 Transactional Memory . 24

3 Swarm: A Scalable Architecture for Ordered Parallelism 27

3.1 Motivation . 29
3.1.1 Understanding Ordered Irregular Parallelism 29
3.1.2 Analysis of Ordered Irregular Algorithms 31
3.1.3 Limitations of Thread-Level Speculation 33

vii

viii Contents

3.2 Swarm Execution Model . 34

3.3 Swarm Implementation . 36

3.3.1 ISA Extensions . 37

3.3.2 Task Queuing and Prioritization . 38

3.3.3 Speculative Execution and Versioning 39

3.3.4 Virtual Time-Based Conflict Detection 41

3.3.5 Selective Aborts . 43

3.3.6 Scalable Ordered Commits . 43

3.3.7 Handling Limited Queue Sizes . 45

3.3.8 Analysis of Hardware Costs . 46

3.4 Experimental Methodology . 47

3.5 Evaluation . 50

3.5.1 Swarm Scalability . 50

3.5.2 Swarm vs. Software Implementations 50

3.5.3 Swarm Analysis . 52

3.5.4 Sensitivity Studies . 55

3.5.5 Swarm Case Study: astar . 56

3.6 Additional Related Work . 56

3.7 Summary . 58

4 Spatial Hints: Data-Centric Execution of Speculative Parallel Programs 59

4.1 Motivation . 61

4.2 Spatial Task Mapping with Hints . 63

4.2.1 Hint API and ISA Extensions . 64

4.2.2 Hardware Mechanisms . 64

4.2.3 Adding Hints to Benchmarks . 65

4.3 Evaluation of Spatial Hints . 68

4.3.1 Experimental Methodology . 68

4.3.2 Effectiveness of Hints . 69

4.3.3 Comparison of Schedulers . 71

4.4 Improving Locality and Parallelism with Fine-Grain Tasks 74

4.4.1 Evaluation . 77

4.5 Data-Centric Load-Balancing . 77

4.5.1 Evaluation . 79

4.5.2 Putting It All Together . 80

4.6 Additional Related Work . 81

4.6.1 Scheduling in Speculative Systems 81

4.6.2 Scheduling in Non-Speculative Systems 82

4.7 Summary . 82

Contents ix

5 Espresso and Capsules: Harmonizing Speculative and Non-Speculative Ex-

ecution in Architectures for Ordered Parallelism 85

5.1 Motivation . 87
5.1.1 Speculation Benefits Are Input-Dependent 87
5.1.2 Combining Speculative and Non-Speculative Tasks 88
5.1.3 Software-Managed Speculation Improves Parallelism 89

5.2 Espresso Execution Model . 90
5.2.1 Espresso Semantics . 91
5.2.2 MAYSPEC: Tasks That May Speculate 93
5.2.3 Exception Model . 93

5.3 Capsules . 94
5.3.1 Untracked Memory . 95
5.3.2 Safely Entering a Capsule . 95
5.3.3 Capsule Execution . 96
5.3.4 Capsule Programming Example . 96

5.4 Implementation . 97
5.4.1 Espresso Microarchitecture . 97
5.4.2 Capsules Implementation . 99

5.5 Evaluation . 100
5.5.1 Methodology . 101
5.5.2 Espresso Evaluation . 102
5.5.3 Capsules Case Study: Dynamic Memory Allocation 104
5.5.4 Capsules Case Study: Disk-Backed Key-Value Store 106

5.6 Additional Related Work . 106
5.6.1 Task Scheduling and Synchronization 107
5.6.2 Restricted vs. Unrestricted Speculative Tasks 107
5.6.3 Open-Nested Transactions . 108

5.7 Summary . 108

6 Fractal: An Execution Model for Fine-Grain Nested Speculative Parallelism109

6.1 Motivation . 111
6.1.1 Fractal Uncovers Abundant Parallelism 111
6.1.2 Fractal Eases Parallel Programming 113
6.1.3 Fractal Avoids Over-Serialization . 115

6.2 Fractal Execution Model . 116
6.2.1 Programming Interface . 117

6.3 Fractal Implementation . 119
6.3.1 Fractal Virtual Time . 119
6.3.2 Supporting Unbounded Nesting . 121
6.3.3 Handling Tiebreaker Wrap-Arounds 124
6.3.4 Putting It All Together . 124

6.4 Evaluation . 125

x Contents

6.4.1 Methodology . 125
6.4.2 Fractal Uncovers Abundant Parallelism 126
6.4.3 Fractal Avoids Over-Serialization . 128
6.4.4 Zooming Overheads . 129
6.4.5 Discussion . 131

6.5 Additional Related Work . 132
6.5.1 Nesting in Transactional Memory . 132
6.5.2 Nesting in Thread-Level Speculation 133
6.5.3 Nesting in Non-Speculative Systems 133

6.6 Summary . 133

7 Conclusion 135

7.1 Future Work . 136

CHAPTER 1

Introduction

This thesis focuses on hardware-software co-design to exploit challenging types of par-
allelism. Through emerging workloads and an explosion of data production, users de-
mand ever higher compute performance from datacenters in the cloud [36] to devices
at the edge [334]. Historically, the microprocessor industry met performance demand,
by leveraging Moore’s Law [261] and Dennard scaling [103] to transparently and ex-
ponentially improve sequential software performance. Circuit designers exploited the
constant power density of transistor scaling to increase switching frequency. Computer
architects used the growing hardware parallelism from increasing transistor counts to
extract instruction-level parallelism (ILP) from sequential programs, by finding inde-
pendent instructions to process simultaneously. Unfortunately, by the mid 2000s these
approaches were yielding diminishing returns and computer systems became highly en-
ergy-constrained [58]. Transparent performance improvements would no longer come
to sequential software [9,153,279,357].

To continue performance scaling, we must reduce energy per operation, and par-
allelism paves all roads ahead. Modern technology yields chips with several billion
transistors [122, 159, 249, 310, 319], which can be assembled into thousands of func-
tional units, like ALUs and FPUs. Ideally, an application would use these units si-
multaneously, scaling its performance by exploiting the abundance of hardware par-
allelism, while reducing energy consumption with lower transistor switching frequen-
cies [74, 118, 189, 331]. The challenge then is how to effectively utilize these units:
how should software express the parallelism in an application, and what support should
hardware provide to efficiently extract the parallelism? Put another way, what execution

models and architectures do applications require to execute thousands of operations per

cycle? Although the number of transistors on a chip is now plateauing [387], pursuing
this question remains critical as modern computer systems fail to bring the parallelism

1

2 Chapter 1. Introduction

benefits of modern technology to the vast majority of application domains.
At one extreme, imperative sequential execution is so intuitive and general that it

has remained the prevalent form of computing for over 70 years [385]. Every program
can be implemented as an ordered sequence of instructions. However, no practical
superscalar out-of-order uniprocessor is likely to ever extract sufficient ILP to keep tens
of functional units well utilized [179], let alone thousands.

At another extreme, GPUs [2,148] and other domain-specific accelerators [78,206,
373] successfully execute hundreds to thousands of operations in parallel. GPUs spe-
cialize the microarchitecture to exploit data-level parallelism through vector process-
ing, and accelerators specialize the data path and optimize data movement for par-
ticular application domains. However, their execution models are specialized and re-
stricted, supporting only those few domains with abundant easy-to-express parallelism.
Moreover, accelerators are only viable for the few high-value applications that can re-
coup their considerable engineering costs; the economics of many applications require
a versatile and general-purpose approach to parallelism.

Between these two extremes are multicores, which simultaneously execute mul-
tiple instruction sequences, called threads, across tens [232, 249, 319, 361] to hun-
dreds [101, 335, 343] of cores or hardware contexts. Permitting arbitrary code and
possibly disjoint threads, the multithreaded execution model is more flexible than that
of GPUs and accelerators. Multicores strive to keep functional units busy by extract-
ing parallelism both across threads (thread-level parallelism) and within each thread
(instruction-level parallelism). However, even after decades of research in parallel
computing, multithreaded programs that scale beyond even a few cores remain ex-
ceptional [127, 185]. Most applications are left sequential and on a path to stagnant
performance. Even this general-purpose execution model can only express a small
fraction of the parallelism available in applications, and is too hard to program [226];
multicores do not provide sufficient architectural support for easy-to-use, large-scale
parallelization. To make abundant parallelism pervasive, this thesis enhances the exe-

cution model and microarchitecture of shared-memory multicores to express and extract

challenging types of parallelism.

1.1 Challenges

Fundamentally, expressing the parallelism in a program consists of two steps: (i) di-
viding the work into tasks that may run concurrently, and (ii) specifying some order
of execution among tasks with potential data dependences to ensure correct behavior.
The system extracts the parallelism by running tasks simultaneously, while ensuring
that data flow in the specified order. Unfortunately, modern multicores provide limited
architectural support in both dimensions, and therefore fail to efficiently extract paral-
lelism for applications that are challenging in either. To exploit abundant parallelism
in a broad range of applications, two fundamental challenges remain to be solved.

1.1. Challenges 3

Multicores lack general and efficient support to enforce order: When executed se-
quentially, an application’s tasks run in a specific order—its sequential program order.
However, the application semantics may permit one, few, or many correct orderings of
its tasks. In fact, it is the order of data-dependent tasks that affects program output.
Therefore, when executed concurrently, the tasks’ dependent data accesses must be
carefully ordered, or synchronized, so that the result of their execution matches one of
those correct task orders. For example, the signal toggling events of a digital circuit
simulation must execute in order of simulated time [144]. In contrast, the serializabil-

ity [285] of database transactions is more flexible, permitting any interleaving of data
accesses that is equivalent to any serial order of transactions. In some applications, all
data dependences are known statically at compile time (e.g., dense linear algebra and
multimedia streaming). The ordering of such regular data dependences can be enforced
efficiently by devising a parallel dataflow task schedule [43, 104, 227] offline. How-
ever, many other applications are plagued by dependences that manifest dynamically

(e.g., pointer chasing and graph analytics). Only an oracle can devise a task schedule
in advance that respects the programmer’s desired order of these irregular data depen-

dences, while running independent tasks in parallel. Absent an oracle, real systems rely
on either pessimistic or optimistic run-time synchronization tactics.

Pessimistic synchronization mechanisms include locks, barriers, condition variables,
etc. The programmer uses these tools to constrain the ordering of instructions among
concurrently executing threads, to maintain the integrity of program state by ensur-
ing that a valid task ordering is retained. Unfortunately, even if irregular dependences
among tasks rarely manifest, they are unknown in advance, so this pessimistic ap-
proach requires conservative and frequent synchronization that scales poorly beyond a
few cores [403]. Moreover, synchronization using these tools has been the bane of par-
allel programming, with pitfalls such as deadlock, data races, and other concurrency
bugs [226, 240]. Non-blocking synchronization [180] addresses the scalability chal-
lenges of locking [195,254], but is arguably even more difficult to use correctly [358].

To address these limitations, optimistic mechanisms speculatively execute tasks in
parallel to find a valid task schedule. This approach detects unsafe instruction inter-
leavings and undoes the effects of offending tasks, to retrospectively guarantee that
the execution result matches some programmer-approved task order. As software-only
techniques for speculation incur non-negligible overheads [67,176], hardware support
for transactional memory (TM) [182] and thread-level speculation (TLS) [344] has
received considerable attention in research. Several commercial multicores now im-
plement hardware TM [20, 64, 198, 389, 401]. Unfortunately, while TM and TLS are
simpler to use than locking, their execution models still restrict the types of parallelism
that the programmer can express. TM only guarantees task atomicity and isolation,
so the programmer has no ability to express parallelism subject to a particular task
order. TLS parallelizes sequentially ordered code, but this unnecessarily constrains
the parallelism expressed in many applications. Additionally, previously proposed TLS

4 Chapter 1. Introduction

implementations suffer from mechanisms that scale poorly beyond a few cores (Sec-
tion 2.4.2). Ideally, speculation should extract the task-level parallelism that only an
oracle can see in advance. In practice, it remains unclear what execution model will
grant programmers flexibility in expressing their desired task order(s), and what sup-
porting architecture can extract enough parallelism to effectively utilize modern chips.

Multicores lack support for scheduling short tasks: Multicores are amenable only
to algorithms that consist of (i) tasks known statically at compile time or (ii) coarse-
grain tasks of thousands to millions of instructions that are created dynamically at run
time. However, many algorithms are more naturally expressed using dynamic fine-
grain tasks of a few tens to hundreds of instructions, and exploiting this fine-grain par-
allelism is often the only way to make these algorithms scale. Unfortunately, because
the multithreading interface is task-agnostic, dynamic tasks are managed in software
data structures, so short tasks cause large overheads that overwhelm the benefits of
parallelism [90,176,177,215,312,409].

To amortize these overheads, techniques like bulk-synchronous parallelism [377]
coalesce short tasks into batches of many thousands of instructions. Unfortunately, this
coarsening thwarts the programmer’s expression of parallelism, reverting thousands of
short potentially-parallel tasks into a few long sequential tasks. Furthermore, it is not
safe to arbitrarily coalesce tasks in applications with complex ordering constraints that
schedule tasks to run far in the future (Chapter 3).

Although some architectures [161,221,326] provide hardware schedulers for short
non-speculative tasks, their execution models remain hard to use for many classes of ap-
plications, due to the limited support for synchronization, discussed previously. Hard-
ware management of speculative tasks requires new architectural techniques. What
should be the design of hardware task queues when resources are held longer to detect
invalid instruction interleavings? How should hardware task resources be allocated
when a task’s very existence is speculative, i.e., when it can be created speculatively?

Summary: For the small minority of applications with the right task and depen-
dence structures, multicores and other parallel architectures enable programmers to
improve performance by exploiting “the easiest form of parallelism that matches the
domain” [179]. In contrast, this thesis focuses on general-purpose support for the
heavy tail of applications for which current systems force programmers to leave paral-
lelism on the table. Amdahl’s Law makes it clear that targeting only the easy parallelism
yields diminishing returns [15,185]. Current execution models and architectures choke
performance with sequential bottlenecks that leave modern chips grossly underutilized.

1.2. Contributions 5

1.2 Contributions

This thesis presents1 a new execution model, multicore microarchitecture, and cross-
layer techniques that combat sequential bottlenecks, by easily expressing and efficiently
extracting types of parallelism that were previously inaccessible. The resulting system,
called Swarm, supports fine-grain tasks with low overheads and provides efficient,
easy-to-use synchronization. Swarm achieves this by exposing programmer-defined
task order as a simple, implicit, and general form of synchronization. Partially ordered
tasks capture the ultimate goal of complex synchronization patterns—including mutual
exclusion, signaling, and barriers—yet are arguably almost as easy to use as sequential
programming. With this new software-hardware interface, Swarm programs can con-
vey not only a sequential task order, but also partial orders, and even more nuanced
order constraints, such as creating tasks in a different order than they must run. Ap-
plications with the latter constraints, so-called ordered irregular algorithms [289], have
been extremely challenging to parallelize on current systems.

Swarm programs consist of short, dynamically created tasks that are ordered by
programmer-defined timestamps. Swarm hardware extracts parallelism by specula-
tively running available tasks out of order, even thousands of tasks ahead of the earliest
speculative task. The microarchitecture scales to large core counts due to distributed
structures and speculation mechanisms.

Perhaps surprisingly, Swarm’s efficient support for an ordered-task interface sub-
sequently enables simple solutions to further push the scalability, efficiency, and gen-
erality of the system. First, task order enables us to increase scalability by breaking
tasks more finely than ever before and sending compute close to the data that it ac-

cesses to improve locality. Second, we enhance the system to combine speculative and

non-speculative parallelism, executing speculatively only when required to scale, and
otherwise improving efficiency with non-speculative execution. Finally, task order en-
ables seamless composition of parallel algorithms, improving the generality of the system
and opening the door to parallelizing large complex programs.

Combining these techniques, Swarm achieves near-linear scaling to 256 cores on
a diverse set of 20 applications that span domains such as graph analytics, machine
learning, databases, simulation, and genomics. The Swarm architecture is evidently on
a promising path toward enabling a broad range of applications to harness the massive
parallelism of modern technology.
Mining parallelism from ordered tasks: Swarm [202,203] is a new execution model
and microarchitecture with ordered tasks at the software-hardware interface. A Swarm
program is expressed as a set of short, timestamped tasks. Each task may create
new children tasks for later execution, usually deriving their timestamps from local
state. Tasks appear to execute in timestamp order; those with equal timestamp appear

1 The ideas, designs, and experiments in this work were developed collaboratively over many years
with six graduate students. Each chapter details the specific contributions of this thesis in detail.

6 Chapter 1. Introduction

atomic.

Swarm hardware enhances a tiled multicore. It is optimized to support tasks as
small as tens of instructions. It extracts parallelism by speculatively executing avail-
able tasks out of order, while committing them in order. Doing this efficiently requires
overcoming several hurdles. How can we manage tiny tasks efficiently, keep cores busy
with useful work, perform scalable order-aware conflict detection, and commit many
tasks in order in a scalable fashion? Prior work solved some of these problems at small
scale with centralized tracking structures. Swarm is the first system to solve these
problems using distributed techniques that are amenable to multicores with hundreds
of cores. For example, whereas prior work would abort all future tasks upon a mispec-
ulation, Swarm selectively aborts descendant and data-dependent tasks with scalable
tracking structures. As a result of our novel contributions, Swarm efficiently speculates

thousands of tasks ahead of the earliest speculative task.

Exploiting locality: Parallelism must not come at the expense of locality. Systems that
support speculative parallelization—like Swarm, TM, or TLS—can uncover abundant
parallelism in challenging applications. However, they scale poorly beyond tens of
cores because, unlike their non-speculative counterparts, they do not exploit the locality

available in speculative programs. At first glance, locality and speculation seem to be
at odds: exploiting locality requires knowing the data accessed by each task, but a key
advantage of speculation is precisely that one need not know the data accessed by each
task. However, with tiny ordered tasks at the interface, we find that in fact most of the
data accessed is known at run time, just before a task is created.

Building on this insight, we extend Swarm with spatial hints [201], a technique to
enable software to convey locality to hardware, to run tasks likely to access the same
data in the same place. This exploits cache locality and avoids global communication.
When a new task is created, the programmer provides a spatial hint, an integer that
abstractly denotes the data that the task is likely to access. Hardware maps tasks with
the same hint to the same tile to localize data accesses, and balances load by moving
hints, and their tasks, around the system. For example, by leveraging task order, many
graph algorithms can be restructured so that each task operates on a single vertex;
using the vertex ID as a hint sends tasks for the same vertex to the same place, reducing
data movement. Swarm with spatial hints empowers programmers with a semantically
rich execution model to scale programs to hundreds of cores by exposing even more

opportunities to exploit locality than in non-speculative architectures. At 256 cores, hints
achieve near-linear scalability and outperform Swarm’s baseline random task mapping
by up to 16×. Hints also make speculation more efficient, reducing wasted work by
6.4× and network traffic by 3.5× on average.

Mixing speculative and non-speculative parallelism: Parallel systems should support
both speculative and non-speculative parallelism. Even applications that need specu-
lation to scale have some work that is best executed non-speculatively. Consider three
examples. First, some tasks are well synchronized and running them speculatively

1.3. Thesis Organization 7

adds overhead and needless aborts. Second, other tasks need speculation to scale
but perform short actions, such as memory allocation, whose dependences are best
hidden from hardware because they commute. Finally, non-speculative parallelism is
required to perform irrevocable actions, such as file or network I/O, in parallel. Work
on hardware transactional memory has considered these issues, but does not support
programmer-controlled ordered tasks. All systems for ordered parallelism, including
Swarm, disallow non-speculative parallelism.

Espresso and Capsules [204] bring the benefits of non-speculative execution to the
Swarm architecture. Espresso is an expressive execution model that generalizes Swarm
timestamps and spatial hints; it efficiently coordinates concurrent speculative and non-
speculative ordered tasks. Espresso lets the system decide whether to run certain tasks
speculatively or non-speculatively, reaping the efficiency of non-speculative parallelism

when it is plentiful, while exploiting speculative parallelism when needed to scale. Cap-
sules bring ideas from OS system calls and virtual memory to speculative architectures.
They enable speculative tasks to safely transition out of hardware-managed speculation
and protect certain memory regions from speculative accesses. Espresso outperforms
Swarm’s speculative-only execution by up to 2.5×. Capsules enable important system
services, like a speculation-friendly memory allocator that improves performance by up
to 69×. Espresso and Capsules give programmers the option to improve the efficiency
of the ordered-tasks interface.
Composing parallelism: Large complex programs can have large blocks that must
appear atomic. Left sequential, these blocks become performance bottlenecks. For
example, a database transaction could be millions of cycles long. Database designers
target parallelism among sequential transactions, but there is plentiful parallelism nested

within each transaction if we break up each query and update into its own ordered task.
But how do we ensure that all of the tasks representing one transaction appear atomic
with respect to those of other transactions?

Fractal [352] is an execution model that pushes the generality and expressivity
of the Swarm interface by capturing more complex synchronization and ordering con-
straints with nested parallelism. Examples include composition (i.e., calling an ordered
algorithm from within an ordered algorithm), or running independent ordered algo-
rithms concurrently. Fractal groups tasks into domains, with tasks in each domain
executing in the domain’s timestamp order. Tasks can create domains and set optional
order constraints among domains. This carefully designed interface virtualizes domains
cheaply, allowing an unbounded number of domains in software with simple hardware
support. Fractal accelerates large complex workloads by up to 88×.

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 provides relevant background
and summarizes related work. Chapter 3 presents the design and evaluation of the

8 Chapter 1. Introduction

Swarm architecture. Building on Swarm’s support for task order, Chapter 4, Chapter 5,
and Chapter 6 show how to generalize the execution model and microarchitecture to
exploit locality with spatial hints, speculate selectively with Espresso and Capsules, and
compose speculative parallelism with Fractal. Finally, Chapter 7 concludes the thesis
and proposes future work.

CHAPTER 2

Background

Expressing the parallelism in a program, or parallelizing it, consists of two fundamental
steps: dividing the work into tasks that will run concurrently, and enforcing some order
of execution among those tasks that may be data dependent. Any given execution
model and its supporting architecture will enable or constrain these steps, affecting
the scalability and performance of applications to varying extents. Currently, only a
minority of applications have a path to high performance, as modern computer systems
constrain the types of parallelism that are efficiently expressed. To unlock abundant
parallelism from the majority of applications, computer systems must support even the
most challenging types of parallelism with scalable hardware implementations.

The shared-memory multicore architecture, the baseline for this thesis, has been
commercially lucrative in part because its microarchitecture scales well: replicating a
core design across the chip reduces engineering costs [37, 279]. Figure 2-1 illustrates
a tiled homogeneous design. Every tile has several cores, each core runs a thread of

16-tile, 64-core chip

M
e
m

o
ry

 co
n
tro

lle
r

Memory controller

Memory controller

M
e
m

o
ry

 c
o
n
tr

o
ll
e
r

Tile

Core Core Core Core

L1I/D L1I/D L1I/D L1I/D

L2

L3 Bank Router

Tile organization

Figure 2-1: An example tiled homogeneous 64-core multicore.

9

10 Chapter 2. Background

instructions, and tiles are distributed across the chip, communicating through an on-
chip network [126]. To reduce average memory access latency, this system uses a three-
level coherent [345] cache hierarchy [32]. Unfortunately, while multicore hardware
scales well, its multithreaded execution model constrains the types of parallelism that
can be efficiently expressed, stymieing the efforts of programmers.

The rest of this chapter discusses the opportunities, techniques, and challenges in
exploiting different types of parallelism. Section 2.1 describes our view of the types
of parallelism in applications. In particular, it identifies how three properties of an
application’s tasks affect the degree of run-time overhead required to safely express
and extract parallelism. The next sections provide an overview of existing software and
hardware techniques to exploit these types of parallelism, beginning with the simpler
types in Section 2.2. Section 2.3 and Section 2.4 then summarize two broad approaches
to exploiting the more challenging types of parallelism, highlighting where they fall
short.

2.1 Important Properties of Task-Level Parallelism

An application may run through different phases, algorithms, or components. We dis-
tinguish three properties of an algorithm’s tasks that influence how easily parallelism is
expressed and extracted during that phase: regularity, ordering, and granularity. The
first property describes how much information is known at compile time, which affects
the resources required to orchestrate tasks at run time. The second describes how much
flexibility the application permits in reordering tasks, in some cases reducing run-time
overheads. The third describes the typical size of the tasks, impacting the relative cost
of run-time overheads, and therefore the need for architectural support.

A task is an instance of some sequential block of code with input arguments that
may read and write shared memory, and possibly perform externally visible actions
like I/O and system calls. All instances of tasks might be known statically at compile
time, or tasks might discover new work and create new tasks dynamically at run time.
A data dependence exists between two tasks if they both access the same datum and at
least one of them writes to the datum. The two tasks are data-dependent if they share
at least one data dependence.

2.1.1 Task Regularity

An algorithm is regular when all of its tasks and their data dependences are known
statically. Example applications include dense linear algebra, data streaming in image
and media processing pipelines, and stencil computations. The tasks often operate
on data structures like dense arrays and tensors using regular strides, and have pre-
dictable control flow. In the special case that all tasks are identical and operate on
disjoint data, they can safely run in parallel during this data parallel phase [186]. In

2.1. Important Properties of Task-Level Parallelism 11

the general case, a compiler, runtime system, or programmer can express the regular

parallelism by devising a schedule where independent tasks run in parallel, or by effi-
ciently synchronizing the regular data dependences with techniques like static dataflow
scheduling [43,104,227].

If any tasks or their data dependences are dynamic and therefore unknown a priori,
the algorithm is irregular. Newly created tasks are scheduled for later execution, requir-
ing run-time-managed queues, perhaps as part of an unbounded loop or a divide-and-
conquer algorithm. Irregular data dependences arise among memory accesses through
statically unknown pointers, for instance to data structures like lists, trees, and graphs.
Given two such accesses, a dependence may or may not manifest, because the addresses
depend on run-time values. Irregular algorithms are increasingly common in domains
such as graph and network analytics [123], machine learning and recommendation
systems [184], in-memory OLTP databases, and discrete-event simulation [144]. Be-
cause the dependences are unpredictable and new work may be discovered on the fly,
the irregular parallelism of such an algorithm cannot be scheduled in advance, but must
be safely found at run time.

2.1.2 Task Ordering

Although the sequential execution of an algorithm runs its tasks in one particular or-
der, application-specific semantics may permit one, a few, or many correct orderings
of the tasks. An unordered algorithm [289] is the most flexible, permitting tasks to be
executed in any serial order. For example, OLTP databases have this property [285],
along with the tasks within each superstep of an iterative graph algorithm such as con-
nected components or PageRank [250, 338]. In contrast, an ordered algorithm [289]
requires that tasks execute in some total or partial priority order, such as Kruskal’s
algorithm [216] to compute a minimum spanning tree on a weighted graph, which
processes edges in increasing order of weight.

In particular, it is differing orders of data-dependent tasks that may change the
result of a program. Two data-dependent tasks are ordered if the semantics require
that all of their shared data flow from the writes of the earlier-ordered predecessor task
to the reads of the later-ordered successor task, and not the other direction. The two
tasks are otherwise unordered if either task can be precede the other; we assume that
the tasks should be atomic, i.e. the data flow between the tasks must have no cycles.
Possible reasons the programmer would permit unordered tasks include commutative
operations, e.g., two tasks increment a shared counter but do not read it, or don’t-care

non-determinism [112,289], i.e., the application permits more than one correct output.
Whether expressing the parallelism among ordered or unordered tasks, the inter-

leavings of data-dependent accesses must be carefully synchronized to correspond to
some permitted task order. However, the ability to reorder unordered tasks grants flex-
ibility to compile-time or run-time systems when arbitrating access to shared data: the
larger set of correct task orders permits a larger set of legal data-access interleavings.

12 Chapter 2. Background

Exploiting unordered parallelism may allow shorter run-time stalls, releasing run-time
resources more quickly, or coarsening several tasks together [176], making ordered

parallelism more challenging to exploit efficiently.

2.1.3 Task Granularity

Compilers, runtimes, programmers, and even hardware delineate task boundaries.
Common candidates include loop iterations or function calls, which could appear at
shallow or deep levels of control flow nests. One might select even coarser or finer
granularities, or sizes, of code. Some tasks can be as short as a single instruction (such
as in instruction-level parallelism), but we regard most fine-grain tasks as tens to thou-
sands of instructions, and coarse-grain tasks as thousands to millions of instructions.
Since large programs consist of layers of interacting components (e.g., a function that
contains nested loops or calls into other libraries), it can be desirable to compose nested

parallelism: invoking a parallelized algorithm from within another parallelized algo-
rithm. We consider nested parallelism in Chapter 6.

Task granularity presents a performance trade-off. On one hand, expressing many
fine-grain tasks can yield far more parallelism than few coarse-grain tasks, particularly
when compounding the nested parallelism across layers of the program. On the other
hand, the costs of fine-grain tasks are more pronounced, including task creation, queu-
ing, synchronization, and other communication. So the selection of task granularity
influences the type of architectural support required.

2.1.4 Open Opportunity: Fine-Grain Ordered Irregular Parallelism

Combined together, the regularity, order constraints, and granularity of an application’s
tasks impact the run-time costs required to safely extract its parallelism. At the lighter
end of these dimensions, the schedule of regular tasks is optimized offline to efficiently
run them in parallel, unordered tasks can be reordered to enable more compile- or
run-time optimizations, and coarse-grain tasks often amortize any remaining run-time
costs. At the heavy end, irregular tasks may be dynamically synchronized and queued
in run-time structures, ordered tasks restrict the number of acceptable parallel sched-
ules, and fine-grain tasks may do little useful work relative to their run-time costs.
Current architectures have left a major opportunity for parallelism unexploited, and
therefore have left many applications behind.

On one hand, the multithreaded execution model—long instructions sequences that
synchronize through atomic instructions—and its backing multicore architectures pro-
vide limited architectural support along each of these three dimensions. They ulti-
mately target the easier types of parallelism. For example, while regular task schedules
can be mapped to parallel threads, dynamically created irregular tasks require mem-
ory-backed, software-managed queues that incur high overheads relative to a short

2.2. Exploiting Regular Parallelism 13

task’s useful work. This has restricted the domain of multicores to exploiting regu-
lar parallelism and coarse-grain irregular parallelism with infrequent synchronization
(The following sections summarize existing parallelization techniques).

On the other hand, superscalar out-of-order uniprocessors provide architectural
support to extract instruction-level ordered irregular parallelism from sequential pro-
grams. Unfortunately the granularity of instruction-sized tasks has proven too small to
achieve our goal of keeping thousands of functional units well utilized (Section 2.4.1).

In contrast, this thesis focuses on the unexploited taxing end of these three di-
mensions: providing architectural support to extract the parallelism among fine-grain
ordered irregular tasks. It is important to note that we do not propose niche solutions:
targeting the most challenging case results in a versatile and general-purpose architec-
ture that inclusively supports more types of parallelism and more application domains.
For instance, accelerating task management for fine-grain tasks need not preclude run-
ning coarse-grain tasks. Support for irregular data dependences can be bypassed for
regular data dependences, to run more efficiently. Any support for totally ordered or
partially ordered tasks can still execute unordered tasks correctly and efficiently. Over
the course of this thesis, we build a general execution model and architecture that,
in exchange for only modest area and communication costs over conventional mul-
ticores, yields substantial returns by extracting abundant fine-grain ordered irregular
parallelism to exploits the performance potential of modern chips.

2.2 Exploiting Regular Parallelism

The task dependence graph is a helpful abstraction to reason about, and in some cases
express, task-level parallelism. A vertex represents a task that must run atomically. A
directed edge represents a dependence from a predecessor task to its successor task,
due to either (i) flow of data or (ii) a control dependence, e.g., a parent task creates
a child task or a control instruction jumps to its target. The graph is directed and
acyclic, or else it would not correspond to some serial task order. One can construct
the task graph following the execution of an algorithm for a posteriori analysis, but a
key distinction between regular and irregular algorithms is whether the task graph can
be determined at compile time. This knowledge informs what techniques are used to
exploit regular parallelism (discussed in this section) and irregular parallelism (Sec-
tion 2.3 and Section 2.4).

A task is safe to execute once all of its predecessors in the graph have completed,
and a group of safe tasks is the source of parallelism [314]. The statically known tasks
and dependences of regular algorithms can enable techniques to devise parallel task
schedules, offline, that express regular parallelism. The a priori knowledge is exploited
to reduce the run-time overheads of synchronization and task scheduling.

Several programming languages and models facilitate the expression of regular par-
allelism. Data parallelism is the target of NESL [48], ZPL [235], and OpenMP [95]

14 Chapter 2. Background

constructs like parallel-for. Some languages and models exploit the straightforward
dataflow in particular domains like streaming [364], image processing pipelines [298],
machine learning [4,71], and digital signal processing [43,228]. Others constrain the
expression of parallelism for particular systems like GPUs [246], reconfigurable archi-
tectures [213], and distributed systems [3,102].

Compilers construct and analyze a program dependence graph [133], a task graph
at the granularity of individual instructions, to find regular parallelism. Compilers
have some success parallelizing sequential code that operates on regular data struc-
tures [34,256], such as “vectorizing" data-parallel inner loops. The polyhedron model
optimizes parallelism and data locality in regular loop nests [30,59,132,160]. Points-
to analysis [125, 187, 190] and shape analysis [155, 178] can identify independent
tasks that access some irregular data structures like trees, and can support expression
of pipeline parallelism [281].

Although the set of task instances is known in advance, some software runtimes
queue more tasks than there are cores to dynamically balance load across the sys-
tem [51, 290]. Exploiting static knowledge, runtimes may coarsen several tasks into a
large chunk to reduce queuing and synchronization overheads [215,290,374,409].
Architectural support further reduces overheads for different patterns of regular par-
allelism. The single-instruction multiple-thread (SIMT) execution model is exploited
by GPUs [2, 148] to amortize instruction-processing overheads over a batch of identi-
cal tasks. Single-instruction multiple-data (SIMD) instructions (e.g., AVX [135]) or
vector processors [317] enable software to express data parallelism at the instruc-
tion granularity. Very long instruction word (VLIW) architectures enable compilers
to express parallelism among a small number of independent, static-latency instruc-
tions [89,136,332], when branches are highly predictable [287]. Spatial architectures
with tiles of processing elements (PEs) enable the compiler to configure direct commu-
nication of values among the PEs [386], while systolic architectures limit configurabil-
ity by further specializing data paths to move data among the PEs in a pipeline before
returning a result to memory [206,222].

2.3 Exploiting Non-Speculative Irregular Parallelism

Conceptually, the challenge in parallelizing irregular algorithms is that the structure
of the task graph is revealed over the course of execution. For example, when a task
finds new work and creates a child task, we have learned that a vertex was added
to the graph; when a pointer’s address is finally resolved, we may learn of a new
data dependence edge. With this evolving task graph, run-time techniques must safely
find the irregular parallelism which imposes more overheads. Broadly, there are two
approaches to control the ordering of dependent data accesses among concurrent tasks:
speculative (Section 2.4) and non-speculative synchronization. Programmers use non-
speculative techniques to preclude data-access interleavings that would not result in

2.3. Exploiting Non-Speculative Irregular Parallelism 15

any correct task ordering [329].

Explicit primitives like locks and barriers synchronize unordered tasks (mutually
exclusive critical sections) and ordered tasks (program phases), respectively. Unfor-
tunately, since data dependences are unknown, these mechanisms are often specified
conservatively which impairs scalability. For example, coarse-grain locking conceptu-
ally adds unnecessary dependence edges to the task graph, to synchronize the few true
data dependences that will manifest at run time. A barrier is appropriate to order large
groups of tasks before one another, but is too blunt for applications that require or-
dering a smaller number of tasks, as we discuss further in Chapter 3. Non-blocking
synchronization [180] using atomic instructions (e.g., compare-and-swap) can lead
to scalable parallel implementations [195, 337]. Unfortunately, correct, efficient, and
scalable synchronization with blocking or non-blocking mechanisms is widely regarded
as the purview of experts, due to their challenges and pitfalls such as deadlock, priority
inversion, data races, order violations [240], non-determinism [226], and performance
under contention [99].

Software libraries and domain-specific frameworks can raise the level of abstrac-
tion. Concurrent data structure libraries provide tuned concurrent implementations
of unordered data structures (e.g., hash tables, sets, or bags) and ordered data struc-
tures (e.g., stacks, lists, FIFO queues, and priority queues) [254, 255, 260, 354, 355].
Unfortunately, even though the operations on a single object are atomic, tasks that
update multiple objects must resort to conventional synchronization and all of its
pitfalls. Among other uses, these concurrent structures may queue dynamically cre-
ated tasks, scheduled for later execution. While unordered algorithms can tolerate
reordering of tasks, in some cases their performance is improved with priority task
ordering [271]. For such cases, relaxed concurrent priority queues can scale to high
core counts by relaxing dequeue order [14, 231, 311, 393], but again, the program-
mer must synchronize other data structures by conventional means. Some frameworks
exploit particular application structure to abstract away the multithreaded interface,
handling sychronization and scheduling under the hood. A general-purpose example
is Galois [289], while graph frameworks are programmed around vertex- and edge-
updating tasks, and exploit the unordered parallelism within (i) each frontier-based
round [250,270,338,408] or (ii) each level of a wide partial order [107].

Dataflow models: In dataflow execution the availability of data drives execution [104,
105]. Whereas the prior discussion considered the task graph conceptually, several
dataflow-based software systems construct or emulate a task dependence graph or da-
taflow graph at run time. They use dataflow execution to synchronize dependent tasks.
Any vertex with no inbound edges (predecessors) represents a task that is safe to dis-
patch to a core. Typically, the system’s underlying scheduler distributes such ready
tasks to per-thread software-managed worklists to be run in parallel. When a task fin-
ishes, its vertices and outbound edges are removed from the graph, potentially adding
other tasks to the ready worklists. The onus falls on the programmer to convey or

16 Chapter 2. Background

constrain dependences among tasks, for instance, by declaring read and write sets
(e.g., OpenMP 4.0 [54], Jade [312], SMPSs [288], OmpSs [120], XKaapi [152], and
Gupta and Sohi [165]), by declaring explicit dependence edges (e.g., TBB [196] and
Nabbit [11]) or by restricting a task’s accesses to a subset of data (e.g., Cilk [142],
Chapel [73], Legion [38], and X10 [76]). This just-in-time coordination [289] of
tasks graphs can be viewed as a generalization of the inspector-executor model [321],
which parallelizes irregular loops through two phases: the inspector phase identifies
the dependences among iterations, and the executor phase uses this information to cre-
ate a parallel execution schedule. Deterministic reservation [46] is a related strategy
wherein reserve phases enable tasks to reserve priority-ordered access to data, and com-

mit phases determine which tasks succeed. While some of the previous systems permit
dynamic creation of tasks, they do not support ordered irregular parallelism in general,
as newly created priority-ordered tasks would change the dependence structure of the
underlying task graph. Kinetic dependence graphs [177] address this gap by extending
traditional task dependence graphs with programmer-defined methods to (i) identify
safe tasks to dispatch and (ii) specify how to update the task graph.

Although some software systems operate on a task dependence graph, the conven-
tional representation of a dataflow program is a dataflow graph [104, 131]. These
graphs have subtle differences. In dataflow graphs, each vertex represents an operator

or function to be applied to incoming data. Every directed edge represents a channel
for a datum to move from its producing operator to a consuming operator (a data de-
pendence). Whereas a vertex in the task graph is a dynamic instance of some code
(a task), a dataflow vertex represents the static code of the operator or function. A
dataflow operator should have no side effects, which is why task-dependence systems
require that data dependences in memory are made explicit. In dataflow graphs, an
operator’s consumed data must come from its inputs. Whereas a task graph is acyclic,
the dataflow graph may have cycles, for example to represent loops [22]. Control is
represented as boolean data that steers the flow of other data via special operators, or
that predicates operator actions. Execution of the dataflow graph is data-driven [105]:
an operator is ready to execute when data arrives at all its input edges, meaning that
several operators could execute in parallel. Dataflow languages have a long history of
work, surveyed by Johnston et al. [205].

Architectural support: While the previous software systems suffice for large tasks, the
non-negligible overheads of task scheduling and queuing overwhelm the parallelism
benefit of fine-grain tasks. For example, every interaction with a task worklist requires
accesses to memory. While dequeues from a local worklist may hit in a core’s local
cache, remote enqueues and task redistributions induce cross-chip network traffic that
hurt performance and energy use. Contreras and Martonosi characterize the perfor-
mance of TBB [90] and recommend tasks of at least 100,000 instructions to amortize
scheduer overheads. Similarly, Morais et al. [263] find that the Nanos software task
scheduler [363] requires 100,000-cycle tasks to saturate an 8-core machine.

2.3. Exploiting Non-Speculative Irregular Parallelism 17

Classic dataflow architectures [105,380] accelerate dataflow scheduling, operating
at the finest granularity where each operator is a single instruction. The architectures
consists of interconnected processing elements. Every instruction identifies its con-
sumer instructions so that when it executes, tokens can (conceptually) carry the output
data to their targets. In practice, a hardware structure at each processing element
holds and matches tokens that have arrived, and once all tokens for an instruction are
present, the instruction is issued to a functional unit. While static dataflow architec-
tures [105] permit only one instance of an operator (instruction), dynamic dataflow
architectures [23], uncover more parallelism by permitting several instances of each
operator through a set of mechanisms that tag each generated token with the instance
of its target operator.

The more recent work in dataflow architectures has proposed hybrid dataflow/von-
Neumann systems to exploit the parallelism of dataflow and the programability of the
sequential model. TRIPS [62] is a tiled architecture that exploits dataflow parallelism
within each large VLIW-like block of 128 instructions that encode a dataflow graph,
while using imperative control flow between blocks. WaveScalar [359, 360] is a da-
taflow architecture that supports memory ordering to run imperative sequential and
multithreaded code. Whereas the previous systems work at the instruction granularity,
Task Superscalar [129], TDM [68], and Phentos [263] operate at the task granularity,
providing hardware support for task dataflow scheduling or dependence analysis atop
baseline multicores. Yazdanpanah et al. [397] survey hybrid dataflow architectures in
more detail.

Whereas dataflow architectures reduce synchronization overheads, other hardware
proposals reduce the overheads of dynamic task queuing and load balance in mul-
ticores. Carbon [221] extends a multicore with hardware task queues and a work-
stealing protocol to distribute load across cores. ADM [326] enables cores to commu-
nicate by efficiently sending and receiving asynchronous, short messages, bypassing
the memory hierarchy. This enables software-configurable task schedulers with low-
overhead load balancing.

Limitations: Non-speculative parallelization techniques are amenable to large tasks,
but the overheads of software task queuing and synchronization overwhelm the benefit
of parallelism for short tasks on modern multicores. Architectural support reduces the
overheads for some applications, but the prior hardware techniques do not support or-
dered irregular parallelism in general. In particular, algorithms that dynamically create
tasks scheduled to run far in the future, such as the discrete-event simulation of a cir-
cuit, cannot be effectively expressed in the dataflow model. Moreover, non-speculative
techniques place some amount of burden on the programmer to restrict data access
patterns, explicitly synchronize tasks, or explicitly declare task dependences. Specula-
tive parallelization (Section 2.4) reduces some of the burden on the programmer and
can extract more parallelism when dependences are unknown.

18 Chapter 2. Background

2.4 Exploiting Speculative Irregular Parallelism

While non-speculative techniques pessimistically constrain the concurrent execution of
tasks, speculative techniques optimistically run available tasks in parallel, and recover
if program correctness would be violated. Data-dependence speculation frees program-
mers from explicitly managing data dependences, such as tagging tasks, identifying
the read- and write-set of each task, or specifying how to synchronize. Instead, pro-
grammers simply declare which task orders are correct or which code blocks require
(unordered) atomicity. Given this correctness specification, the underlying system exe-
cutes tasks in parallel and speculates either (i) that all tasks are independent, or (ii) that
for every task, all its data-dependent predecessors have finished. To find a safe task
schedule, the software or hardware system automatically detects when this guess is
wrong and recovers to a consistent state upon mispeculation. A conflict or dependence

order violation arises between two tasks when their data-dependent accesses did not
flow in a correct order. If no conflicts are detected, then the speculation was correct, so
the tasks commit by making their updates non-speculative. However, if any speculative
tasks conflict the system may need to abort some of them to undo their effects, then
restart their execution.

Systems that employ speculative parallelization implement three basic primitives.
Version management enables recovery from mispeculation by distinguishing speculative
and non-speculative versions of data. Conflict detection tracks the data read and written
by each task (its read and write sets) to detect order violations. Conflict resolution, upon
a conflict, determines which task(s) should stall or abort to preserve correctness.

At the finest granularity, high-end commercial processors employ speculation to
extract ILP. The sequential execution model specifies a unique correct order of in-
structions. Targeting particular microarchitectures, compilers optimize the instruction
stream to better express the parallelism [328]. Architectural support for ILP finds in-
dependent instructions to process out of order and in parallel, through non-speculative
dynamic dataflow analysis, speculating on the target of branches, and speculating on
unresolved memory addresses (Section 2.4.1).

At coarse granularities, software systems extract speculative parallelism among
large tasks. In transactional databases, optimistic concurrency control ensures trans-
actions appear to run in any serializable order [223, 371]. In discrete-event simula-
tion, Time Warp [200] ensures that events appear to execute in order of simulated
time. General-purpose frameworks employ speculative parallelization of irregular loop
iterations, while reducing conflict rates by exploiting semantic commutativity [220],
semantic independence [65], pipeline parallelism [192,303,376], value-based conflict
detection [113], and other techniques. Applications amenable to large tasks of thou-
sands to millions of instructions have sufficient useful work to amortize the software
overheads of speculation, including validation and commit. However, there is often far
more fine-grain parallelism available with short tasks of tens to hundreds of instruc-

2.4. Exploiting Speculative Irregular Parallelism 19

tions, but at this granularity, the overheads overwhelm any performance benefit of
parallelism. Moreover, short ordered tasks exacerbate the problem, particularly when
serially committing tasks in order, as it becomes the bottleneck [176,220,303,376].

Architectural support for task-level speculation has been proposed to reduce these
overheads, through two dominant execution models. Thread-level speculation (TLS)
automatically extracts task-level parallelism from sequential programs [128, 344] and
transactional memory (TM) performs optimistic synchronization of unordered trans-
actions in multithreaded programs [171, 182]. Unfortunately, as we discuss in Sec-
tion 2.4.2 and Section 2.4.3, neither execution model is sufficiently general to capture
the ordered irregular parallelism latent in many important algorithms. Moreover, the
speculation mechanisms underlying TLS hardware scale poorly beyond the small-scale
systems of that era.

2.4.1 Dynamic Instruction-Level Parallelism

The sequential execution model is the simplest and longest-standing software-hard-
ware interface [385]. Software provides a totally ordered sequence of instructions,
where register- or memory-based data dependences flow in sequence order. From the
view of the Section 2.1 taxonomy, this execution model exposes a form of ordered ir-
regular parallelism that is restricted to a chain of single-instruction tasks, illustrated
in Figure 2-2. An instruction’s data dependences are identified dynamically, and every
instruction is control-dependent on its predecessor, since a branch or jump instruction
can appear at any position in the sequence.

Data dependence

Inst1 Inst2 Inst3 Inst4 InstN…

Control dependence

Inst5

Figure 2-2: The sequential execution model consists of an ordered chain of control-
dependent instructions, which limits expression of far-away parallelism. Instructions
may also be data dependent, as Inst4 is on Inst2.

Modern high-end processors extract dynamic instruction-level parallelism (ILP) from
the ordered stream, by processing independent instructions simultaneously using pipe-
lining, register renaming, out-of-order execution, and superscalar execution [305,342].
While data dependences on registers are synchronized non-speculatively using da-
taflow scheduling [286], these processors also employ two forms of speculation to
find more parallelism. Control-flow speculation predicts a path through the control-
flow graph to fill the instruction window, using branch prediction and branch target
buffers. Data-dependence speculation (or memory dependence speculation) issues loads
and stores out of order, speculating that they will access disjoint addresses [82, 139,

20 Chapter 2. Background

146,265].1 Additionally, data-value speculation was proposed to enable early execution
of different types of instructions by predicting the result of loads or memory access
addresses before they are resolved [236], but we are not aware of any commercial
implementations. In all cases, the reorder buffer and store buffer provide version man-
agement to recover from mispeculations.
Limitations: Unfortunately, dynamic ILP is nearing, or has reached, its limit [279];
most modern processors execute only one to four instructions in parallel per cycle on
average. Superscalar cores are built atop unscalable broadcast networks, associative
searches, and centralized structures [359]. The back-end structures, including instruc-
tion scheduling logic and register file, grow super-linearly with the instruction window
size and number of execution units [210, 278, 342]. Such increases are unacceptable
with constrained power and area budgets. Moreover, fundamentally, the amount of
parallelism extracted from the sequential interface is bottlenecked by the control-de-
pendent chain of instructions provided to the front-end. It is unlikely that superscalar
processors will ever resolve enough branches per cycle to issue thousands of opera-
tions in parallel [179,225,292,388]. The instruction-level sequential execution model
appears to be insufficiently expressive for a scalable hardware implementation.

By contrast, the Swarm architecture (Chapter 3) performs control and data depen-
dence speculation on ordered tasks of a few tens to hundreds of instructions. Speculat-
ing at the granularity of tasks amortizes the costs of task management and speculation.
With its execution model of timestamp-ordered tasks, Swarm tasks can create new
tasks in a different order than they will commit, conveying new work to hardware as
soon as it is available, and enabling highly parallel expressions of work. For example,
rather than serially creating tasks, in some cases software constructs a balanced tree
of ordered tasks that quickly fills the system with work. The Swarm microarchitecture
uses decentralized speculation structures and protocols, enabling it to scale to large
system sizes.

2.4.2 Thread-Level Speculation

Thread-level speculation (TLS) is a set of compiler and architectural techniques to au-
tomatically extract task-level parallelism from an irregular sequential program, while
retaining its original semantics. These ideas developed during the 1990s as super-
scalar instruction windows were nearing their limits to exploit instruction-level paral-
lelism [24,225], and research interests turned to extracting thread-level parallelism on
a single chip using multiple cores [278] or hardware multithreading [372]. Given the
simplicity and widespread adoption of sequential programming, the goal was to find
a new source of ILP by creating a larger effective instruction window by speculating
at the granularity of tasks [138, 140]. Beyond the summary that follows, the reader
can find further detail in an overview by Torrellas [368] and a survey by Estebanez et

1 At the granularity of tasks, this is the type of speculation typically referenced throughout this thesis.

2.4. Exploiting Speculative Irregular Parallelism 21

al. [128].

In the TLS execution model, a program’s totally ordered sequence of instructions
is split into a totally ordered sequence of tasks. Every task is ordered according to its
immediate predecessor and successor tasks to match sequential semantics. TLS compil-
ers [238,297,370,381,404], binary instrumentation [214], or even hardware [13,244]
select task boundaries, typically at the start of loop iterations and before and after func-
tion calls. Tasks are spawned to express potential irregular parallelism by overlapping
task bodies, such as having each task spawn its successor as early as possible [238,347],
using a central hardware structure to dispatch tasks to cores [168,344], or recursively
spawning a task and its continuation to expose nested parallelism [238,309].

TLS systems [168,214,308,309,344,348,369] extract irregular parallelism by op-
timistically running the tasks in parallel on distinct cores or hardware threads, specu-
lating that this will not violate sequential semantics. The system tracks the reads and
writes of speculatively executing tasks to detect any conflicts that arise when read-after-
write (RAW), write-after-read (WAR), or write-after-write (WAW) dependences do not
flow in order. If a conflict is detected, or a task was incorrectly speculatively spawned,
the system aborts the later-ordered task. The earliest-ordered active task in the sys-
tem runs non-speculatively, updating main memory directly, and later-ordered spec-
ulative tasks that finished running must wait to commit in order. Although software
TLS implementations have been proposed [306], the instrumentation overheads are
non-negligible for short tasks with low compute-to-memory ratios. We therefore focus
on hardware implementations. Like any system that extracts speculative parallelism,
TLS speculation is implemented through three key mechanisms: version management,
conflict detection, and conflict resolution.

Version management enables recovery from mispeculation by separating the non-spec-
ulative version of data from the speculatively written versions that could be incorrect.
Versioning can be categorized as lazy, privately buffering each task’s speculative writes
until it commits; or eager, where each task’s writes are made directly to memory, and
old values are saved in an undo log. Lazy versioning makes aborts fast, as the buffered
state is simply discarded, but commits are slow since updates must be merged into main
memory [56,150]. By contrast, eager versioning makes commits fast, as all speculative
writes are already in place, but aborts are slow, requiring an undo-log walk to restore
the original values to memory. Lazy versioning combined with in-order commits also
avoids aborting tasks due to reordered WAR and WAW dependences, as the buffered
writes of a later-ordered task do not interfere with its predecessors. Most TLS systems
employ lazy versioning to limit the cost of aborts.

The earliest design, Multiscalar [344], uses a centralized buffer that holds multi-
ple speculative versions (multiversioned) [139], while later systems decentralize the
buffering, for instance in private caches [158,214,348]. A buffer might fill up, requir-
ing hardware mechanisms that carefully overflow speculative state to memory [294],
or otherwise stalling the running task. Eager versioning was also explored via software

22 Chapter 2. Background

logging [151] and for distributed shared-memory [406]. Garzarán et al. provide a
detailed taxonomy of version management in TLS [150].

Conflict detection identifies dependence order violations among running and finished
tasks. It is often categorized according to when these checks occur: systems with eager

conflict detection check for a violation at the time of each data access, whereas lazy

conflict detection checks after a task has finished, but before it commits. Most TLS
systems detect conflicts eagerly to facilitate speculative data forwarding which lets tasks
access data written by earlier, uncommitted tasks. For instance, a read of an address,
a, from a task, T , should find the speculative version written by the latest-ordered task
that precedes T , rather than a stale non-speculative version from memory. Speculative
forwarding improves performance for ordered tasks with occasional dependences [291,
349].

Conceptually, conflict detection tracks a read and write set of every task’s memory
accesses as it runs. Practically, these sets are often implemented with speculative read
and write bits for every line or word in the private cache [168, 214], or by associat-
ing an order tag with every speculative version of a line [139, 344, 348]. RAW order
violations are caught when a task writes, for instance by encoding task order informa-
tion into the invalidations of the coherence protocol [348] or by checking a dedicated
disambiguation structure [139,214] to find later-ordered readers of the data.

Conflict resolution determines what corrective actions must be taken upon a detected
conflict. The later-ordered reader may2 have read stale data and must be aborted and
restarted. However, as a result of speculative data forwarding, this aborting task may
have forwarded its own speculative writes to later-ordered readers, which in turn may
have forwarded their writes, etc. All of these data-dependent tasks must be aborted.
Ideally this cascade of aborts would be selective to avoid wasting useful speculative
work: abort only the instigating violator and, recursively, its progeny of spawned tasks
and data-dependent successors. As far as we are aware, this strategy has been limited
to software TLS schemes [147, 367]. All hardware TLS schemes opt for the simpler
implementation that unselectively aborts the instigating violator and all later tasks en
masse.

Limitations: Although TLS finds speculative parallelism among ordered tasks, it has
four key shortcomings spanning the execution model to microarchitecture that curtail
its ability to parallelize general fine-grain ordered irregular algorithms at large scale.
We address these limitations in this thesis.

First, the purely sequential execution model is well matched to bounded loops but
impedes parallelization of irregular algorithms with dynamic task creation, particu-
larly those with priority ordered scheduling. Written sequentially, these algorithms
often consist of loops with unknown bounds, where each iteration must push and pop
new tasks onto a memory-backed scheduling structure. Because TLS is agnostic to

2 Value-based conflict detection avoids aborting RAW conflicts if the value is unchanged [244], but
requires tracking more state.

2.4. Exploiting Speculative Irregular Parallelism 23

task scheduling, dependences on the scheduling structure, not necessarily core algorith-
mic structures, force a chain of data-dependent tasks that cripple otherwise available
parallelism (Section 3.1).

Second, while TLS speculation techniques are effective at the scales evaluated (typ-
ically fewer than 10 cores), two in particular bottleneck the system as it scales to tens
or hundreds of cores: unselective aborts and limited commit throughput. Unselective
aborts simplify a TLS microarchitecture, but substantially increase the wasted work
incurred by a single conflict as the number of speculative tasks in the system grows.
Tasks must commit in order to ensure they have consumed and produced valid data
before releasing speculative state. Because TLS systems encode task order through a
chain of predecessor-successor pairs [309], they use protocols that serializes commits

(e.g., passing a token from predecessor to successor [294, 308, 348]). This becomes a
bottleneck on large-scale systems with hundreds of fine-grain tasks.

The Swarm architecture (Chapter 3) efficiently expresses and extracts ordered ir-
regular parallelism. Swarm programs consist of dynamic, programmer-controlled time-
stamp-ordered tasks, and Swarm hardware uncovers parallelism by speculatively exe-
cuting available tasks out of order. Swarm hardware uses eager versioning with new
conflict detection mechanisms that speculatively forward data, while implementing
selective aborts to reduce wasted work. Encoding order through integer timestamps
confers two key benefits: (i) the programmer conveys priority scheduling requirements
directly to hardware and thus obviates the false dependences of a memory-backed
scheduler, and (ii) integer timestamp comparisons enable Swarm to adapt distributed
systems techniques to achieve high-throughput ordered commits, avoiding the serializ-
ing successor chains of TLS.

Third, TLS schemes dispatch tasks to threads with no concern for data locality. Even
at small scales, cache misses hinder TLS scalability [145]. In large-scale systems with
hundreds of cores, it is critical to reduce data movement by using caches effectively
and running tasks close to the data they access. Spatial hints (Chapter 4) extend the
Swarm execution model and exploit Swarm’s support for short ordered tasks to enable
programmers to exploit locality by sending tasks likely to access the same data to the
same tile.

Finally, TLS cannot exploit non-speculative parallelism: only the earliest active task
runs non-speculatively. While speculation is an effective approach to extract challeng-
ing types of parallelism, some work should be run non-speculatively, such as system
services like file or network I/O. Espresso and Capsules (Chapter 5) further extend
the Swarm execution model and microarchitecture to reap the efficiency benefits of
non-speculative parallelism when it is plentiful, but otherwise leverage speculative ex-
ecution to scale.

24 Chapter 2. Background

2.4.3 Transactional Memory

Transactional memory (TM) provides optimistic synchronization in explicitly multi-
threaded programs. Like TLS, the concepts originate from the 1990s and earlier [182,
212, 239, 333], but whereas TLS is rooted in the sequential execution model, TM is
based in the multithreaded execution model, seeking improved scalability and ease-of-
use [284, 316] compared to blocking approaches like locks. Although the earliest TM
proposals [182,212,239] were contemporary with the earliest TLS [138,344], most of
the work in TM was done after the surge of interest in TLS dampened. Consequently,
in designing Swarm (Chapter 3), we adapt several innovations from TM to the ordered
context. Beyond the following summary, more detail can be found in overviews by
Harris et al. [171], Guerraoui and Kapałka [162], and Herlihy [181].

In the TM model, a transaction is a sequential block of code executed by a single
thread, whose boundaries are annotated by the programmer. Transactions will execute
atomically and in isolation, providing the illusion that every transaction executes all of
its operations instantaneously at a single and unique point in time, with no interleaving
from other threads. Whereas users of TLS implicitly declare which single (sequential)
order of tasks is correct, users of TM explicitly declare which unordered blocks of code
require atomicity and isolation, so that they appear to execute in any serializable order.
Transactions may replace locks for critical sections [299,300], while taking care to pre-
serve application semantics [53], or to implement multi-object atomic updates [351]
in contrast to single-word atomic instructions like compare-and-swap.

TM systems [69,169,182,262] extract irregular parallelism by running transactions
concurrently, speculating that the interleaving of their memory accesses is equivalent to
some serializable order. In most TM parlance, a conflict occurs when two or more con-
current transactions access the same datum and at least one access is a write.3 Trans-
actions can commit concurrently when they do not conflict [56]. Because software
TM implementations [333] add non-negligible instrumentation overheads [67, 115],
in our pursuit of fine-grain irregular parallelism, we summarize pertinent hardware
TM (HTM) implementations. As with TLS, the key mechanisms of TM speculation
are version management, conflict detection, and conflict resolution, but the scheduling
flexibility of unordered transactions presents new tradeoffs and inspired new designs.

Version management and conflict detection: Whereas most TLS systems combine
lazy version management with eager conflict detection, the ability to determine trans-
action order at run time opens the door to more varied designs in the HTM space. Lazy
version management has been combined with lazy conflict detection (e.g., TCC [169]
and BulkTM [69]), eager conflict detection (e.g., LTM [17] and VTM [301]), or both
configured in software (e.g., FlexTM [336] and Blue Gene/Q HTM [389]). Other
designs have used eager version management and eager conflict detection (e.g., Her-
lihy and Moss [182], UTM [17] and LogTM [262]). As mentioned in Section 2.4.2,

3 This definition of conflict captures RAW, WAR, and WAW dependences of concurrent transactions.

2.4. Exploiting Speculative Irregular Parallelism 25

there are advantages and disadvantages to each design point. Eager versioning makes
commits fast but aborts slow, and lazy versioning provides the opposite characteris-
tics. Eager conflict detection reduces the amount of wasted work when an abort is
unavoidable. Lazy conflict detection reduces the frequency of communication for con-
flict checks, and can avoid some aborts by privatizing updates. Bobba et al. conclude
that strategic conflict avoidance and resolution policies can address pathologies specific
to each design point, resulting in similar performance [56].

Beyond exploring the high-level design points, HTM proposals also innovate on
low-level implementations of versioning and conflict detection. Like TLS, some early
HTM variants build on existing hardware structures to implement write buffering and
read/write-set tracking. For example, they would add per-line speculative access bits to
caches [17,169,301] or processor-local buffers [182,299,351], and leverage coherence
protocol requests to detect conflicts in a thread’s local read or write set. In contrast,
later designs sought to decouple speculation mechanisms from these hardware struc-
tures and protocols to reduce implementation complexity or enable transactions of
unbounded size. LogTM [262] decouples version management from the caches, mov-
ing to memory-resident undo logs, while still tracking read and write sets with per-line
bits in the cache. To support unbounded size, when a transaction overflows the L1
cache, LogTM sets a sticky coherence state in the directory so that later potentially con-
flicting requests are forwarded to the overflower. The Bulk TM and TLS system [69]
decouples conflict detection from the caches and coherence protocol. It represents read
and write sets compactly in Bloom filter [50] signatures and broadcasts signatures to
detect conflicts at commit time. LogTM-SE [399] combines these two ideas: it eagerly
detects conflicts on coherence requests, tracks address read/write sets in signatures,
and implements eager versioning with memory-resident undo logs.

Conflict resolution and transaction ordering: Unordered transactions grant flexibil-
ity in how to resolve a conflict to preserve some serializable execution. Early HTM
systems use simple policies that stall or abort some transaction(s) upon a conflict. For
example, some lazy-lazy systems have the committer win conflicts, thereby aborting all
other conflicting transactions [69]. More recent systems have targeted conflict serial-

izability to improve performance and efficiency by reducing the frequency of aborts
and stalls. By applying speculative data forwarding for some dependences, neither
conflicting transaction need abort or stall if the transactions are reordered so that the
predecessor in the conflicting dependence commits first [25,199,296,302].

While transactions are typically defined to be unordered, some hardware [69,167,
169, 291] and software [61, 157] TMs let programmers control the commit order
among transactions, bridging the gap between TM and TLS. Other HTMs order transac-
tions internally, either to avoid pathologies [56,262] or to implement conflict serializ-
ability [25,137,199,296,302]. However, this order is not controllable by programmers.

Limitations: Although TM systems provide new mechanisms to extract speculative
irregular parallelism, including versioning and conflict detection, three main issues

26 Chapter 2. Background

prevent it from effectively supporting fine-grain ordered irregular parallelism at large
scale.

First, and most clearly, most HTMs do not support ordered tasks. Like TLS, the few
HTMs with programmer-controlled commit order, such as TCC [169] and Bulk [69],
do not support dynamic task creation and so similarly must resort to memory-resident
task queues and suffer their false dependences. By contrast, the Swarm (Chapter 3)
execution model consists of dynamic, programmer-controlled timestamp-ordered tasks.
This conveys the required commit order directly to hardware, and enables hardware to
provide task management, free of any false dependences.

Second, HTMs are agnostic to data locality, so, like TLS, data movement precludes
their scalability to hundreds of cores. Prior work has considered when to run particu-
lar transactions, proposing schedulers that limit concurrency to reduce the abort rate
under high contention [19, 44, 402]. However, reducing data movement requires con-
trolling where particular transactions should run. We address this problem with spatial
hints (Chapter 4), which exploit programmer knowledge to convey to hardware which
tasks should run at the same tile to reduce data movement.

Finally, existing HTM techniques to combine speculative and non-speculative par-
allelism do not work in the context of ordered parallelism. Although TM programs
consist of speculative (transactional) and non-speculative (non-transactional) code, it
is cumbersome to coordinate accesses to shared data from both types of tasks. Espresso
(Chapter 5) extends Swarm and spatial hints to support both speculative and non-spec-
ulative ordered tasks, and provides synchronization mechanisms to coordinate shared
accesses from both types of tasks. To enable transactions to perform I/O in parallel
or avoid conflicts by leveraging application-specific knowledge, prior work in HTM has
proposed escape actions [64, 264, 411] and open-nested transactions [251, 264, 266]
to selectively bypass hardware speculation. Unfortunately these techniques are un-
safe with speculative forwarding, a critical optimization to exploit ordered parallelism,
which we address with Capsules in Chapter 5.

CHAPTER 3

Swarm:

A Scalable Architecture

for Ordered Parallelism

This work was conducted in collaboration with Suvinay Subramanian, Cong Yan, Joel

Emer, and Daniel Sanchez. The ideas for the execution model, virtual-time based conflict

detection, selective aborts, and distributed commit protocol were developed collaboratively.

This thesis contributes task queuing and prioritization, fixed-sized queue management, the

software runtime, and the oracle tool. This thesis also contributes to the development of

applications, and the architectural simulator.

In this chapter, we focus on unlocking the parallelism in ordered irregular algo-
rithms, or ordered irregular parallelism. Ordered parallelism is abundant in many do-
mains, such as simulation, graph analytics, and databases. For example, consider a
timing simulator for a parallel computer. Each task is an event (e.g., executing an
instruction in a simulated core). Each task must run at a specific simulated time (intro-
ducing order constraints among tasks), and reads and modifies a specific component
(possibly introducing data dependences among tasks). Tasks dynamically create other
tasks (e.g., a simulated memory access), possibly for other components (e.g., a simu-
lated cache), and schedule them for a future simulated time.

Prior work has tried to exploit ordered parallelism in software on commodity mul-
ticores but has found that runtime overheads, including priority ordering and task
scheduling, negate the benefits of parallelism [176, 177]. This motivates the need for
architectural support.

27

28 Chapter 3. Swarm

To guide our design, we first characterize several applications with ordered irreg-
ular parallelism (Section 3.1). We find that tasks in these applications are as small
as a few tens of instructions, and, unlike unordered tasks, often cannot be coarsened
into larger code blocks due to the order constraints. Moreover, many of these algo-
rithms rarely have true data dependences among tasks, and their maximum achievable
parallelism exceeds 100×. It may seem that thread-level speculation (TLS), which
speculatively parallelizes sequential programs (Section 2.4.2), could extract this type
of parallelism. However, that this is not the case due to two reasons (Section 3.1.3):

• Ordered irregular algorithms have little parallelism when written as sequential
programs. To enforce order constraints, sequential implementations introduce
false data dependences among otherwise independent tasks. For example, sequen-
tial implementations of timing simulators use a priority queue to hold future
tasks. Priority queue accesses introduce false data dependences that limit the
effectiveness of TLS.
• To scale, ordered irregular algorithms need very large speculation windows, of

thousands of tasks (hundreds of thousands of instructions). Prior TLS schemes
use techniques that scale poorly beyond few cores and cannot support large spec-
ulation windows.

This chapter presents Swarm, an architecture that tackles these challenges. Swarm
consists of (i) a task-based execution model that conveys task order constraints directly
to hardware to sidestep false data dependences (Section 3.2), and (ii) a supporting
microarchitecture that leverages this execution model to scale efficiently (Section 3.3).

Swarm is a tiled multicore with distributed task queues, speculative out-of-order
task execution, and ordered task commits. Swarm adapts prior eager version manage-
ment and conflict detection schemes [262, 399], and features several new techniques
that allow it to scale. Specifically, we make the following novel contributions:

• An execution model based on tasks with programmer-specified timestamps that
conveys order constraints to hardware without undue false data dependences on
a software scheduler.
• A hardware task management scheme that features speculative task creation and

dispatch, drastically reducing task management overheads, and implements a
very large speculation window.
• A scalable conflict detection scheme that leverages eager versioning to, upon

mispeculation, selectively abort the mispeculated task and its dependents (unlike
prior TLS schemes that forward speculative data, which unselectively abort all
later tasks).
• A distributed commit protocol that allows ordered commits without serialization,

supporting multiple commits per cycle with modest communication (unlike prior
schemes that rely on successor lists, token-passing, and serialized commits).

We evaluate Swarm in simulation (Section 3.4 and Section 3.5) using six chal-
lenging workloads: four graph analytics algorithms, a discrete-event simulator, and an

3.1. Motivation 29

in-memory database. At 64 cores, Swarm achieves speedups of 51–122× over a single-
core Swarm system, and outperforms state-of-the-art parallel implementations of these
algorithms by 2.7–18.2×. In summary, by making ordered execution scalable, Swarm
speeds up challenging algorithms that are currently limited by stagnant single-core
performance. Moreover, Swarm simplifies parallel programming, as it frees developers
from using error-prone explicit synchronization.

3.1 Motivation

3.1.1 Understanding Ordered Irregular Parallelism

Ordered irregular algorithms have three main characteristics [176, 289], as discussed
in Section 2.1. First, they consist of tasks that must follow a programmer-defined total
or partial priority order. Second, not all tasks are known in advance. Instead, tasks
dynamically create children tasks and schedule them to run at particular future times,
potentially resulting in different task creation and execution orders. Third, tasks may
have data dependences that are not known a priori. Data must flow from a predecessor
task to its successor task(s), according to the order constraints.

These algorithms are common in many application domains. First, they are com-
mon in graph analytics, especially in search problems [111,173] but also in vertex- or
edge-set selection problems [216, 391]. Second, they are important in simulating sys-
tems whose state evolves over time. These include circuits [259], computers [75,307],
networks [197,378,379], healthcare systems [207], and systems of partial differential
equations [175,234]. Third, they are needed in systems that must maintain externally-
imposed order constraints. Consider geo-replicated databases where transactions must
appear to execute in timestamp order [92], or deterministic runtimes [237], determin-
istic architectures [106] and record-and-replay systems [191, 395] that constrain the
schedule of parallel programs to ensure deterministic execution. Finally, even appli-
cations with large unordered tasks could have more parallelism if expressed as short
ordered tasks. For example, an in-memory database in high contention has little paral-
lelism among its unordered transactions. Instead we can view a database transaction’s
underlying queries and updates as short, ordered tasks, while retaining the apparent
atomicity by ordering the tasks of one transaction before those of another.

Dijkstra’s algorithm [111,141] for the single-source shortest paths (sssp) problem
aptly illustrates the challenges in expressing the parallelism of an ordered algorithm.
sssp finds the shortest distance between some source vertex and all other vertices in
a graph with non-negative weighted edges. Listing 3.1 shows the sequential code for
sssp, which uses a priority queue to schedule tasks. Each task, dequeued from the
queue, visits a single vertex, and is ordered by its projected distance to the source
vertex. sssp relies on task order to guarantee that the first task to visit each vertex
comes from a shortest path. This task sets the vertex’s distance and enqueues children

30 Chapter 3. Swarm

prioQueue.enqueue({0, source});

while (!prioQueue.empty()) {

(distance, v) = prioQueue.dequeueMin();

if (v->distance == UNSET) {

v->distance = distance

for (Vertex* n : v->neighbors) {

int projected = distance + length(v, n);

prioQueue.enqueue({projected , n});

}

} else { /* vertex already visited */ }

}

Listing 3.1: Dijkstra’s single-source shortest paths (sssp) sequential algorithm, high-
lighting the visited and non-visited paths that each task may follow.

A

B

C

D

E

3

2
2 4

1

3

3

source

0

2

3 4

5

(a) Example graph and

resulting shortest-path

distances (underlined)

(b) Tasks executed by sssp. Each task shows

the node it visits. Tasks that visit the

same node have a data dependence

A C

B

B

D

D

E

Order = Distance from source vertex

E

Data dependences

0 1 2 3 4 5 6 7

Parent creates child

A C

B

B

D

D

E

E

(c) A correct speculative

schedule that achieves

2x parallelism

Figure 3-1: Dijkstra’s sssp algorithm has plentiful ordered irregular parallelism.

for every neighbor. Later tasks visiting the same node do nothing. Figure 3-1(a) shows
an example input graph, and Figure 3-1(b) shows the resulting task graph that sssp
executes to process this input. Figure 3-1(b) shows the order of each task (its distance
to the source vertex) in the x-axis, and outlines both parent-child relationships and
data dependences. For example, task A at distance 0, denoted (A, 0), creates children
tasks (C , 2) and (B, 3); and tasks (B, 3) and (B, 4) both access vertex B, so they have a
data dependence.

A distinctive feature of many ordered algorithms is that task creation and execution
orders can be different: children tasks are not immediately runnable, but are subject
to a global order influenced by all other tasks in the program. For example, in Fig-
ure 3-1(b), (C , 2) creates (B, 4), but running (B, 4) immediately would produce the
wrong result, because (B, 3), created by a different parent, must run first. This feature
necessitates dynamic task scheduling. Sequential implementations of these programs
use scheduling data structures, such as priority or FIFO queues, to process tasks in the
right order. This is a key reason why TLS cannot exploit ordered parallelism in general:
the in-memory scheduling data structures introduce false data dependences among
otherwise independent tasks (Section 3.1.3). In contrast, the Swarm execution model
(Section 3.2) dispenses with software scheduling, conveying the task order constraints
directly to hardware.

3.1. Motivation 31

Order constraints limit non-speculative parallelism. For example, sssp admits a
one-distance-at-a-time parallelization [107, 230]. At any given time, only tasks with
the lowest unprocessed distance are executed in parallel; these create tasks with higher
distances. Exploiting the unordered parallelism within each distance works well on a
shallow graph with many vertices that have the same distance to the source. However,
weighted graphs (e.g., road maps) often have very few vertices per distance, so there is
little work to do at each step, and limited unordered parallelism to be found [177]. For
example, in Figure 3-1(b), this strategy permits only (B, 4) and (D, 4) to run in parallel.

To extract the full amount of latent ordered parallelism, we must run independent
tasks out of order. For example, Figure 3-1(d) shows an ideal schedule for the sssp
tasks. It processes independent tasks across multiple distances simultaneously, shown
at each x-axis position. This schedule achieves twice the parallelism of a serial schedule
on this small graph, and larger graphs permit even more parallelism (Section 3.1.2).
The illustrated schedule produces the correct result because, although it elides order
constraints among independent tasks, it ensures that data dependences flow in the
right order. Unfortunately, the tasks and their data dependences are not known in
advance, so only an oracle could devise this schedule. Therefore, to elide unnecessary
order constraints at run time, we must resort to speculative execution. Specifically,
for every task other than the earliest active task, Swarm speculates that there are no
data-dependent predecessor tasks, and it executes the task anyway (Section 3.3). If
this guess is wrong, Swarm detects dependence order violations and aborts offending
tasks to preserve correctness.

3.1.2 Analysis of Ordered Irregular Algorithms

To quantify the potential for hardware support and guide our design, we first analyze
the task structure and potential parallelism in several ordered irregular algorithms.
Benchmarks: We analyze six benchmarks from the domains of graph analytics, simu-
lation, and databases:
• bfs finds the breadth-first tree of an arbitrary graph.
• sssp is Dijkstra’s algorithm (Section 3.1.1).
• astar uses the A∗ pathfinding algorithm [173] to find the shortest route between

two points in a road map.
• msf is Kruskal’s minimum spanning forest algorithm [93,216].
• des is a discrete-event simulator for digital circuits. Each task represents a signal

toggle at a gate input.
• silo is an in-memory OLTP database [371].

Section 3.4 describes their input sets and methodology details, including task selection.
Oracle analysis tool: We developed a pintool [242] to analyze these programs in
x86-64. We focus on the instruction length, data read and written, and intrinsic data
dependences of tasks, excluding the overheads and serialization introduced by the spe-
cific runtime used.

32 Chapter 3. Swarm

Application bfs sssp astar msf des silo

Maximum parallelism 3440× 793× 419× 158× 1440× 318×

Parallelism: window=1K 827× 178× 62× 147× 198× 125×

Parallelism: window=64 58× 26× 16× 49× 32× 17×

Instructions
mean 22 32 195 40 296 1969
90th 47 70 508 40 338 2403

Reads
mean 4.0 5.8 22 7.1 50 88
90th 8 11 51 7 57 110

Writes
mean 0.33 0.41 0.26 0.03 10.5 26
90th 1 1 1 0 11 51

Max TLS parallelism 1.03× 1.10× 1.04× 158× 1.15× 45×

Table 3.1: Maximum achievable parallelism and task characteristics (instructions and
64-bit words read and written) of representative ordered irregular applications.

The tool uses a simple runtime that executes tasks sequentially. The tool profiles
the number of instructions executed and addresses read and written (i.e., the read
and write sets) of each task. It filters out reads and writes to the stack, the priority
queue used to schedule tasks, and other run-time data structures such as the memory
allocator. With this information, the tool finds the critical path length of the algorithm:
the sequence of data-dependent tasks with the largest number of instructions. The
tool then finds the maximum achievable speedup by dividing the sum of instructions of
all tasks by the critical path length [396] (assuming unbounded cores and constant
cycles per instruction). Note that this analysis constrains parallelism only by true data

dependences: task order dictates the direction of data flow in a dependence, but is
otherwise superfluous given perfect knowledge of data dependences.

Table 3.1 summarizes the results of this analysis. We derive three key insights that
guide the design of Swarm:

Insight 1: Speculative parallelism is plentiful. These applications have at least 158×
maximum parallelism (msf), and up to 3440× (bfs). Thus, most order constraints are
superfluous, making speculative execution attractive.

Insight 2: Tasks are small. Across the benchmark suite, tasks are very short, ranging
from a few tens of instructions (bfs, sssp, msf), to a few thousand (silo). Tasks
are also relatively uniform: 90th-percentile instructions per task are close to the mean.
Tasks have small read- and write-sets. For example, sssp tasks read 5.8 64-bit words on
average, and write 0.4 words. Small tasks incur large overheads in software runtimes.
Moreover, order constraints prevent runtimes from grouping tasks into coarser-grain
units to amortize overheads, as is done with unordered tasks [176, 252]. Hardware

support for task management drastically reduces these overheads.

Insight 3: A large speculation window is needed. Table 3.1 also shows the achiev-
able parallelism within a limited task window. When finding the shortest schedule with

3.1. Motivation 33

a T -task window, the tool does not schedule an independent task until all work more
than T tasks behind has finished. Small windows severely limit parallelism. For ex-
ample, parallelism in sssp drops from 793× with an infinite window, to 178× with a
1024-task window, to 26× with a 64-task window. Thus, for speculation to be effective,
the architecture must support many more speculative tasks than cores.

These insights guide the design of Swarm. Our goal is to approach the maximum
achievable parallelism that an oracle can see, while incurring only moderate overheads.

3.1.3 Limitations of Thread-Level Speculation

As discussed in Section 2.4.2, prior work has investigated thread-level speculation
(TLS) schemes to parallelize sequential programs [150,168,309,344,349]. They ship
tasks from function calls or loop iterations to different cores, run them speculatively,
and commit them in program order. Although TLS schemes support speculatively syn-
chronized ordered tasks, we find that two critical problems prevent them from exploit-
ing ordered irregular parallelism in general.
The TLS execution model limits parallelism: To be parallelized by TLS, ordered al-
gorithms must be expressed as sequential programs, but for those with dynamically
scheduled tasks, their sequential implementations limit parallelism. Consider the sssp
code in Listing 3.1, where each iteration dequeues a task from the priority queue and
runs it, potentially enqueuing more tasks. Data dependences in the scheduling queue,
not among tasks themselves, cause frequent conflicts and aborts. For example, itera-
tions that enqueue high-priority (low-distance) tasks often abort all future iterations.

Table 3.1 shows the maximum speedups that an ideal TLS scheme achieves on se-
quential implementations of these algorithms. These results use perfect speculation,
an infinite task window, word-level conflict detection, immediate forwarding of specu-
lative data, and no communication delays. Yet parallelism is meager in most cases. For
example, sssp has 1.1× parallelism. Only msf and silo show notable speedups, be-
cause they do not need to queue dynamic tasks: their task orders match loop iteration
order.

The root problem is that loops and function calls, the control-flow constructs sup-
ported by TLS schemes, are insufficient to express the order constraints among these
dynamically scheduled tasks. By contrast, Swarm implements a more general execution
model with dynamically created, timestamp-ordered tasks to obviate software queues,
and implements hardware priority queues integrated with speculation mechanisms,
avoiding spurious aborts due to queue-related references.
TLS scalability bottlenecks: Although prior work has developed scalable versioning
and conflict detection schemes [70, 295, 348], two challenges limit TLS performance
with large speculation windows and small tasks: unselective aborts and limited commit
throughput.
Forwarding vs. selective aborts: Most TLS schemes find it is desirable to forward data
written by an earlier, still-speculative task to later reader tasks [291,349]. Speculative

34 Chapter 3. Swarm

data forwarding prevents later tasks from reading stale data, reducing mispeculations
on tight data dependences. However, it creates complex chains of dependences among
speculative tasks. Thus, upon detecting mispeculation, most TLS schemes abort the
task that caused the violation and all later speculative tasks en masse [150, 168, 309,
344, 348]. TCC [169] and Bulk [69] are the exception: they do not forward data and
only abort later readers when the earlier writer commits.

We similarly find that forwarding speculative data is crucial for Swarm. However,
although it is reasonable to abort all later tasks with small speculative windows (2 to
16 tasks are typical in prior work), Swarm has a 1024-task window, making unselec-
tive aborts impractical. To address this, our novel conflict-detection scheme forwards
speculative data and selectively aborts only dependent tasks upon mispeculation.

Commit serialization: Prior TLS schemes enforce in-order commits by passing a token
among ready-to-commit tasks [168, 309, 344, 348]. Each task can only commit when
it has the token, and passes the token to its immediate successor when it finishes com-
mitting. This approach cannot scale to the commit throughput that Swarm needs. For
example, with 64-cycle tasks, a 64-core system should commit 1 task/cycle on aver-
age. Even with constant-time [294] or instantaneous commits, the latency incurred by
passing the token makes this throughput unachievable.

Instead, we adapt techniques from distributed systems to achieve in-order commits
without serialization, token-passing, or building successor lists.

3.2 Swarm Execution Model

Swarm is a co-designed task-based execution model and hardware microarchitecture
with ordered tasks at the interface. Swarm programs consist of dynamically created
timestamp-ordered tasks that can read and write arbitrary data in shared memory. The
program’s output will always match that of a sequential model where task execution
is scheduled by a monotone [365] priority queue. Every task’s timestamp acts as its
key in the modeled queue. Swarm guarantees that tasks appear to run in increasing
timestamp order, as if a single thread repeatedly dequeues the lowest-timestamp task
from the queue, runs it, then dequeues the next task, until the queue is empty. Any task
can create children tasks, enqueuing them into the modeled priority queue with time-
stamps greater than or equal to the parent’s timestamp.1 Swarm retains atomicity with
partial orders: tasks with equal timestamp are ordered arbitrarily among themselves,
but they appear to run in some serial order, while ensuring every child is ordered af-
ter its parent. To simplify the discussion in this chapter, we defer the definition and
implementation of the exception model, including handling system calls, to Chapter 5.

1 Among other semantics, Fractal (Chapter 6) can generalize the Swarm execution model to a non-
monotone priority queue: any child with lower timestamp than its parent can be enqueued to the
parent’s subdomain.

3.2. Swarm Execution Model 35

Programs leverage the Swarm execution model through a simple API. Tasks create
children tasks by calling the following inlined, non-blocking function:
swarm::enqueue(taskFn, timestamp , args...)

The new task, when dispatched, will run a function with the following signature, with
arguments supplied through registers:
void taskFn(timestamp , args...)

Performance considerations from software: Swarm’s timestamp-ordered execution
model decouples task creation and execution orders: software can convey new work
to hardware as soon as it is discovered, rather than in the order it needs to run. This
exposes a large amount of parallelism that, as we detail in Section 3.3, hardware ex-
tracts by speculatively running tasks out of order. Swarm hardware implements the
centralized priority queue abstraction through scalable distributed structures.

Example: Listing 3.2 illustrates the execution model through the Swarm implemen-
tation of Dijkstra’s sssp. The code closely resembles the sequential implementation
from Listing 3.1—there is no explicit synchronization or thread management. List-
ing 3.2 defines a single task function, ssspTask. Because every sssp task is ordered
according to its vertex’s projected path distance to the source, that distance is used di-
rectly as a timestamp. If its own vertex v is unvisited, ssspTask creates one child task
for each neighbor, with the neighbor’s projected distance as the timestamp. Because
tasks appear to execute in timestamp order, the first task to visit each vertex will come
from a shortest path. A program invokes Swarm by enqueuing some initial tasks with
swarm::enqueue and calling swarm::run, which returns control when all tasks finish.
Listing 3.2 creates one initial task to visit the source vertex with distance zero to itself,
then initiates speculative execution.

To reduce the total number of executed tasks, and consequently the pressure on
hardware resources, we can also restructure the task code into a slightly coarser granu-

void ssspTask(Timestamp distance, Vertex* v) {

if (v->distance == UNSET) {

v->distance = distance;

for (Vertex* n : v->neighbors) {

Timestamp projected = distance + length(v,n);

swarm::enqueue(ssspTask, projected , n);

}

} else { /* vertex already visited */ }

}

void main() {

// initialization ...

swarm::enqueue(ssspTask, 0, source);

swarm::run();

}

Listing 3.2: Swarm implementation of Dijkstra’s sssp algorithm. The code is similar to
the sequential implementation (Listing 3.1). Synchronization is implicit through task
order.

36 Chapter 3. Swarm

void ssspTaskCG(Timestamp distance , Vertex* v) {

if (distance == v->distance)

for (Vertex* n : v->neighbors) {

Timestamp projected = distance + length(v,n);

if (projected < n->distance) {

n->distance = projected;

swarm::enqueue(ssspTask, projected , n);

}

}

}

Listing 3.3: Swarm implementation of Dijkstra’s sssp using fewer larger tasks.

larity, shown in Listing 3.3. This variant is evaluated in this chapter. Chapter 4 explores
the trade-off between memory footprint, number of tasks, and locality in detail.

3.3 Swarm Implementation

The Swarm microarchitecture uncovers ordered parallelism by speculatively executing
tasks out of order, but enforcing order on data-dependent tasks. It introduces modest
changes to a tiled, cache-coherent multicore, shown in Figure 3-2. Each tile has a
group of simple single-threaded cores.2 Each core has small, private, write-through L1
caches. All cores in a tile share an L2 cache, and each tile has a slice of a fully shared
NUCA L3 cache. Each tile is augmented with a task unit that queues, dispatches, and
commits tasks. Tiles communicate through a mesh NoC.

Swarm is carefully designed to support tiny tasks and a large speculation window
efficiently. Swarm has no centralized structures: every tile’s task unit queues runnable
tasks and maintains the speculative state of finished tasks that cannot yet commit. Task
units only communicate (i) when they send new tasks to each other to maintain load
balance, (ii) to notify children of parent commit or abort, and, infrequently (iii) to
determine which finished tasks can be committed.

2 Our prior work [5] expands Swarm with multithreaded cores.

16-tile, 64-core chip

M
e
m

o
ry

 co
n
tro

lle
r

Memory controller

Memory controller

M
e
m

o
ry

 c
o
n
tr

o
ll
e
r

Tile

Core Core Core Core

L1I/D L1I/D L1I/D L1I/D

L2

L3 & Dir Bank Router

Task Unit

Tile organization

Figure 3-2: Swarm 64-core chip and tile configuration.

3.3. Swarm Implementation 37

8
F

Tile 0

Tile 1

Tile 2

Legend
Task state

IDLE (I) RUNNING (R) FINISHED (F)

0
R

22
R

3
F

20
F

40
R

51
R

32
R

42
I

8
F

0
R

22
R

20
F

40
I

35
R

(a) Tasks far ahead of the minimum timestamp (0)
are run, even when parent is still speculative

51

R

(b) Selective aborts: Task 35 aborts
40 and child 51, but not 42

3 F
32
R

42
I

Task timestamp

Child task

8
F

Figure 3-3: Example execution of sssp. By executing tasks even if their parents are
speculative, Swarm uncovers ordered parallelism, but may trigger selective aborts.

Swarm speculates far ahead of the earliest active task, and runs a task even if its
parent is still speculative. Figure 3-3(a) shows this process: a task with timestamp
0 is still running, but tasks with later timestamps and several speculative ancestors
are running or have finished execution. For example, the task with timestamp 51,
currently running, has three still-speculative ancestors, two of which have finished and
are waiting to commit (8 and 20) and one that is still running (40).

Allowing tasks with speculative ancestors to execute uncovers significant paral-
lelism, but may induce aborts that span multiple tasks. For example, in Figure 3-3(b) a
new task with timestamp 35 conflicts with task 40, so 40 is aborted and child task 51
is both aborted and discarded. These aborts are selective, and only affect tasks whose
speculative ancestors are aborted, or tasks that have read data written by an aborted
task.

We describe Swarm in a layered fashion. First, we present Swarm’s ISA extensions.
Second, we describe Swarm hardware assuming that all queues are unbounded. Third,
we discuss how Swarm handles bounded queue sizes. Finally, we present Swarm’s
hardware costs.

3.3.1 ISA Extensions

Swarm manages and dispatches tasks using hardware task queues. A task is repre-
sented by a descriptor with the following architectural state: the function pointer, a
64-bit timestamp, and the task’s arguments. Swarm adds instructions to enqueue and
dequeue tasks.

The enqueue_task instruction accepts a task descriptor (held in registers) as its
input and queues the task for execution. If a task needs more than the maximum
number of task descriptor arguments, three 64-bit words in our implementation, the
runtime allocates them in memory. Because hardware tracks parent-child relations to
facilitate rollback (Section 3.3.5) and virtualization (Section 3.3.7), tasks may create a

38 Chapter 3. Swarm

limited number of children (8 in our implementation). Tasks that need more children
use a runtime API that creates a balanced tree of recursive enqueuer tasks to enqueue
the children.

A thread uses the dequeue_task instruction to start executing a previously-en-
queued task. dequeue_task initiates speculative execution at the task’s function pointer
and makes the task’s timestamp and arguments available (in registers). Task execution
ends with a finish_task instruction.
dequeue_task stalls the core if an executable task is not immediately available,

avoiding busy-waiting. When no tasks are left in any task unit and all threads are
stalled on dequeue_task, the algorithm has terminated, and dequeue_task jumps to
a configurable pointer to handle termination.

This ISA minimizes task creation and dispatch costs, enabling tiny tasks: a single
instruction creates each task, and arguments are copied from/to registers, without
stack accesses.

3.3.2 Task Queuing and Prioritization

The task unit has two main structures:
(1) The task queue holds task descriptors (function pointer, timestamp, and argu-

ments).
(2) The commit queue holds the speculative state of tasks that have finished execution

but cannot yet commit.
Figure 3-4 shows how these queues are used throughout the task’s lifetime. Each new
task allocates a task queue entry, and holds it until commit time. Each task allocates a
commit queue entry when it finishes execution, and also deallocates it at commit time.
For now, assume these queues always have free entries. Section 3.3.7 describes our
solutions for when they fill up.

Together, the task queue and commit queue are similar to a reorder buffer, but at
task-level rather than instruction-level. They are separate structures because commit

(a) Task with timestamp 7
arrives, is queued

(timestamp=7, taskFn, args)

Task Queue

Incoming Task

(b) Task with timestamp 2
finishes, 7 starts running

7, I

9, I

10, I

2, R

8, R

3, F

Cores

Commit Queue

2 8

3

Task Queue

7, R

9, I

10, I

2, F

8, R

3, F

Cores

Commit Queue

7 8

(c) Task with timestamp 7
finishes, 9 starts running

Task Queue

7, F

9, R

10, I

2, F

8, R

3, F

Cores

Commit Queue

9 8

Task States: IDLE (I) RUNNING (R) FINISHED (F)

2

3

7

2

3

Figure 3-4: Task queue and commit queue utilization through a task’s lifetime.

3.3. Swarm Implementation 39

Tile 1

Task

Queue

Tile 3

1 Task @ task queue position 4

starts running
New child task for tile 3

TASK(descriptor, parentPtr = (1, 4))

Core
TASK_ACK (childPtr = (3, 8))

2

3

6

5

4

Allocate task queue entry 8

Store task descriptor and
parent pointer (1, 4)

Record new child pointer (3, 8)

Figure 3-5: Task creation protocol. Cores send new tasks to other tiles for execution.
To track parent-child relations, parent and child keep a pointer to each other.

queue entries are larger than task queue entries, and typically fewer tasks are waiting
to commit than to execute. However, unlike in a reorder buffer, tasks do not arrive in
priority (timestamp) order. Both structures manage their free space with a freelist and
allocate entries independently of task priority order, as shown in Figure 3-4.
Task enqueues: When a core creates a new task (through enqueue_task), its task
unit sends a request to enqueue the task to a tile following the protocol in Figure 3-
5. The instruction is non-blocking, so the latency of remote enqueue is off the core’s
critical path. To balance loads across tiles, Swarm selects a random destination tile.
Chapter 4 considers how to choose the destination to improve data locality. Parent
and child track each other using task pointers. A task pointer is simply the tuple
(t ile, task queue posi t ion). This tuple uniquely identifies a task because it stays in
the same task queue position throughout its lifetime. Until a TASK_ACK is received, the
child task descriptor occupies an entry in the parent’s local task queue in an unqueued
state; it is only eligible to be executed at its target tile.
Task dispatch prioritization: Tasks are prioritized for execution in increasing time-
stamp order. When a core issues dequeue_task, the highest-priority local idle task is
selected and dispatched for execution. Since task queues do not hold tasks in priority
order, an auxiliary order queue is used to find this task.

The order queue can be cheaply implemented with two small ternary content-
addressable memories (TCAMs) with as many entries as the task queue (e.g., 256),
each of which stores a 64-bit timestamp. With Panigrahy and Sharma’s PIDR_OPT
method [283], finding the next task to dispatch requires a single lookup in both TCAMs,
and each insertion (task creation) and deletion (task commit or squash) requires two
lookups in both TCAMs. SRAM-based implementations are also possible, but we find
the small TCAMs to have a moderate cost (Section 3.3.8).

3.3.3 Speculative Execution and Versioning

The key requirements for speculative execution in Swarm are allowing fast commits
and a large speculative window. To this end, we adopt eager versioning, storing spec-
ulative data in place and logging old values. Eager versioning makes commits fast,

40 Chapter 3. Swarm

00100 000000 ... 01

0xF00BAD

00100 000100 ... 10

3, 18 1, 45

Read Set Signature

Write Set Signature

Undo Log Pointer

Children Pointers (x8)

--…

K-way N-bit Bloom filters

0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 0

…

hash1 hashk

Line Address

…

Figure 3-6: Speculative state for each task. Each core and commit queue entry main-
tains this state. Read and write sets are implemented with space-efficient Bloom filters.

but aborts are slow. However, Swarm’s execution model makes conflicts rare, so eager
versioning provides the right tradeoff.

Eager versioning is common in hardware transactional memory (HTM) systems [262,
399], most of which do not perform ordered execution or speculative data forwarding
(Section 2.4.3). By contrast, most TLS systems use lazy versioning (buffering specula-
tive data in caches) or more expensive multiversioning [69,150,168,169,291,308,309,
344, 348, 349] to limit the cost of aborts (Section 2.4.2). Some TLS schemes are ea-
ger [150,151,406], and they still suffer from the limitations described in Section 3.1.3.

Swarm’s speculative execution borrows from LogTM and LogTM-SE [262,325,399].
Our key contributions over these and other speculation schemes are (i) conflict de-
tection (Section 3.3.4) and selective abort techniques (Section 3.3.5) that leverage
Swarm’s hierarchical memory system and Bloom filter [50] signatures to scale to large
speculative windows, and (ii) a technique that exploits Swarm’s large commit queues
to achieve high-throughput commits (Section 3.3.6).

Figure 3-6 shows the per-task state needed to support speculation: read- and write-
set signatures, a pointer to a heap-allocated undo log, and child task pointers. Every
core and commit queue entry holds this state.

A successful dequeue_task instruction jumps to the task’s code pointer and initiates
speculation. Since speculation happens at the task level, there are no register check-
points, unlike in HTM and TLS. Like in LogTM-SE, as the task executes, hardware au-
tomatically performs conflict detection on every read and write (Section 3.3.4). Then,
it inserts the addresses read and written into the Bloom filters, and, for every write, it
saves the previous memory value in a memory-resident undo log. Stack addresses are
neither conflict-checked nor logged.

When a task finishes execution, it allocates a commit queue entry; stores the read-
and write-set signatures, undo log pointer, and children pointers there; and frees the
core to execute another task.

3.3. Swarm Implementation 41

3.3.4 Virtual Time-Based Conflict Detection

Conflict detection is based on a priority order that respects both programmer-assigned
timestamps and parent-child relationships. Conflicts are detected at cache line granu-
larity.
Unique virtual time: Some tasks may have equal programmer-assigned timestamps.
However, conflict detection has much simpler rules if tasks follow a total order. There-
fore, tasks are assigned a unique virtual time when they are dequeued for execution.
Unique virtual time is the 128-bit tuple (programmer timestamp, dequeue cycle, tile id).
The (dequeue cycle, tile id) pair is unique since at most one dequeue per cycle is permit-
ted at a tile. Conflicts are resolved using this unique virtual time, which tasks preserve
until they commit. Unique virtual times incorporate the ordering needs of programmer-
assigned timestamps and parent-child relations: children always start execution after
their parents, so a parent always has a smaller dequeue cycle than its child, and thus a
smaller unique virtual time, even when parent and child have the same timestamp.

This greedy dequeue-time assignment achieves a simple implementation of virtual
time. However, for unordered applications or very wide partial orders, this may cause
unnecessary aborts among same-timestamp tasks. In prior work [5] we describe a
scheme that assigns virtual time lazily upon a task’s first conflict, borrowing ideas from
conflict serializable HTMs [199], trading some complexity for some performance im-
provement in unordered applications.
Conflicts and forwarding: Conflicts arise when a task accesses a line that was previ-
ously accessed by a later-virtual time task. Suppose two tasks, t1 and t2, are running or
finished, and t2 has a later virtual time. A read of t1 to a line written by t2 or a write to
a line read or written by t2 causes t2 to abort. However, t2 can access data written by
t1 even if t1 is still speculative. Thanks to eager versioning, t2 automatically uses the
latest copy of the data—there is no need for speculative data forwarding logic [150].
Hierarchical conflict detection: Swarm exploits the cache hierarchy to reduce conflict
checks. Figure 3-7 shows the different types of checks performed in an access:
(1) The L1 is managed as described below to ensure L1 hits are conflict-free.
(2) L1 misses are checked against other tasks in the tile (both in other cores and in the

commit queue).
(3) L2 misses, or L2 hits where a virtual time check (described below) fails, are

checked against tasks in other tiles. As in LogTM [262], the L3 directory uses
memory-backed sticky bits to only check tiles whose tasks may have accessed the
line. Sticky bits are managed exactly as in LogTM.

Any of these conflicts trigger task aborts.
Using caches to filter checks: The key invariant that allows caches to filter checks is that,
when a task with virtual time T installs a line in the (L1 or L2) cache, that line has
no conflicts with tasks of virtual time > T . As long as the line stays cached with the
right coherence permissions, it stays conflict-free. Because conflicts happen when tasks
access lines out of virtual time order, if another task with virtual time U > T accesses

42 Chapter 3. Swarm

Core Core

L1D L1D

L2

Core

L1D

R/W SetsR/W Sets R/W Sets

R
/
W

 S
e
ts

R
/
W

 S
e
ts

R
/
W

 S
e
ts

R
/
W

 S
e
ts

R
/
W

 S
e
ts

1

2

4

3

No conflict if L1D hit

L1D miss à

Tile check

Commit

Queue

No tile conflict à L2 access

L2 Miss à Global check

No conflict à

Add to Set
5

Figure 3-7: Local, tile, and global conflict detection for an access that misses in the L1
and L2.

the line, it is also guaranteed to have no conflicts.
However, accesses from a task with virtual time U < T must trigger conflict checks,

as another task with intermediate virtual time X , U < X < T , may have accessed the
line. U ’s access does not conflict with T ’s, but may conflict with X ’s. For example,
suppose a task with virtual time X = 2 writes line A. Then, task T = 3 in another core
reads A. This is not a conflict with X ’s write, so A is installed in T ’s L1. The core then
finishes T and dequeues a task U = 1 that reads A. Although A is in the L1, U has a
conflict with X ’s write.

We handle this issue with two changes. First, when a core dequeues a task with a
smaller virtual time than the one it just finished, it flushes the L1. Because L1s are small
and write-through, this is fast, simply requiring to flash-clear the valid bits. Second,
each L2 line has an associated canary virtual time, which stores the lowest task virtual
time that need not perform a global check. For efficiency, lines in the same L2 set
share the same canary virtual time. For simplicity, this is the maximum virtual time of
the tasks that installed each of the lines in the set, and is updated every time a line is
installed.
Efficient commit queue checks: Although caches reduce the frequency of conflict checks,
all tasks in the tile must be checked on every L2 access and on some global checks.
To allow large commit queues (e.g., 64 tasks/queue), commit queue checks must be
efficient. To this end, we leverage that checking a K-way Bloom filter only requires
reading one bit from each way. As shown in Figure 3-8, Bloom filter ways are stored
in columns, so a single 64-bit access per way reads all the necessary bits. Reading and
ANDing all ways yields a word that indicates potential conflicts. For each queue entry
whose position in this word is set, its virtual time is checked; those with virtual time
higher than the issuing task’s must be aborted.

3.3. Swarm Implementation 43

0 1 0 1 0 0 1 0

1 0 0 1 1 0 1 0

…

Read- or write-set Bloom filter for i-th commit queue entry

hash1 hashk

0 i C-1 0 i C-1

0 0 0 1 0 0 1 0

…

Entries with

potential conflicts

Figure 3-8: Commit queues store read- and write-set Bloom filters by columns, so a
single access reads bit from all entries. All entries are checked in parallel.

3.3.5 Selective Aborts

Upon a conflict, Swarm aborts the later task and all its dependents: its children and
other tasks that have accessed data written by the aborting task. Hardware aborts each
task t in three steps:
(1) Notify t ’s children to abort and be removed from their task queues.
(2) Walk t ’s undo log in LIFO order, restoring old values. If one of these writes conflicts

with a later-virtual time task, wait for it to abort and continue t ’s rollback.
(3) Clear t ’s signatures and free its commit queue entry.

Applied recursively, this procedure selectively aborts all dependent tasks, as shown
in Figure 3-9. This scheme has two key benefits. First, it reuses the conflict-detection
logic used in normal operation. Undo-log writes (e.g., A’s second wr 0x10 in Figure 3-
9) are normal conflict-checked writes, issued with the task’s timestamp to detect all
later readers and writers. Second, this scheme does not explicitly track data depen-
dences among tasks. Instead, it uses the conflict-detection protocol to recover them as
needed. This is important, because any task may have served speculative data to many
other tasks, which would make explicit tracking expensive. For example, tracking all
possible dependences on a 1024-task window using bit-vectors, as proposed in prior
work [85,296], would require 1024× 1023≃1 Mbit of state.

3.3.6 Scalable Ordered Commits

To achieve high-throughput commits, Swarm adapts the virtual time algorithm [200],
common in parallel discrete event simulation [134]. Figure 3-10 shows this protocol.
Tiles periodically send the smallest unique virtual time of any unfinished (running or
idle) task to an arbiter. Idle tasks do not yet have a unique virtual time and use (time-

stamp, current cycle, tile id) for the purposes of this algorithm. The arbiter computes

44 Chapter 3. Swarm

Create D

R
e
a
l T

im
e

(A, 1)
(B, 2)

(C, 3)

(D, 4)

(E, 6)

Virtual Time

Create Ewr 0x10

rd 0x10
wr 0x10

InvX 0x10
Abort D

wr 0x10 GetX 0x10

NACK

Abort ACK

Abort E

ACK
Abort ACKwr 0x10

Task execution

Task rollback

Aborted children

tasks not requeued

A C

Virtual Time

Data dependences

1 2 3 4 5 6

Parent creates child

B D E

Inv 0x10

Figure 3-9: Selective abort protocol. Suppose (A, 1) must abort after it writes 0x10,
due to an incoming invalidation from some other tile. (A, 1)’s abort squashes child
(D, 4) and grandchild (E, 5). During rollback, A also aborts (C , 3), which read A’s
speculative write to 0x10. (B, 2) is independent and thus not aborted.

GVT

Arbiter

2 GVT=min{vt0…vtN-1}

= 98

Tile 0

4
Tiles commit all

finished tasks with

virtual time < GVT

Tile 1

Tile N-1

.

.

.

Tile 0

Tile 1

Tile N-1

1
Tiles send smallest virtual

time of local unfinished

tasks to arbiter

101

105

98

Broadcast

GVT

.

.

.

98

98

98

3

Figure 3-10: Global virtual time commit protocol. Tiles periodically communicate with
an arbiter to determine the earliest active task in the system. All tasks that precede this
earliest active task can safely commit.

3.3. Swarm Implementation 45

the minimum virtual time of all unfinished tasks, called the global virtual time (GVT),
and broadcasts it to all tiles. To preserve ordering, only tasks with virtual time < GVT
can commit.

The key insight is that, by combining the virtual time algorithm with Swarm’s large
commit queues, commit costs are amortized over many tasks. A single GVT update often
causes many finished tasks to commit. For example, if in Figure 3-10 the GVT jumps
from (80,100,2) to (98,550,1), all tasks with virtual time (80,100,2)< t <(98,550,1)
can commit. GVT updates happen sparingly (e.g., every 200 cycles) to limit bandwidth.
Less frequent updates reduce bandwidth but increase commit queue occupancy.

In addition, eager versioning makes commits fast: a task commits by freeing its task
and commit queue entries, a single-cycle operation. Thus, if a long-running task holds
the GVT for some time, once it finishes, commit queues quickly drain and catch up to
execution.

Compared with prior TLS schemes that use successor lists and token passing to
reconcile order (Section 2.4.2 and Section 3.1.3), this scheme does not even require
finding the successor and predecessor of each task, and does not serialize commits.

For the system sizes evaluated in this chapter, we find that a single GVT arbiter
suffices. For larger systems in later chapters, we use a hierarchy of arbiters that form
min-reduction and GVT-broadcast trees, to reduce communication.

3.3.7 Handling Limited Queue Sizes

The per-tile task and commit queues may fill up, requiring a few simple actions to
ensure correct operation.
Task queue virtualization: Applications may create an unbounded number of tasks
and schedule them for a future time. Swarm uses an overflow/underflow mechanism
to give the illusion of unbounded hardware task queues [161,221,326]. When a tile’s
task queue is nearly full, the local task unit dispatches a special, non-speculative coa-

lescer task to one of the cores. This coalescer task removes several idle task descriptors
with high programmer-assigned timestamps from the task queue, stores them in mem-
ory, and enqueues a splitter task that will re-enqueue the spilled tasks. The coalescer’s
timestamp matches that of the locally earliest active task to hold the GVT below the
spilled tasks. The splitter’s timestamp matches that of the earliest spilled task, to de-
prioritize its dispatch until the tasks are needed.

A task queue entry is only spilled to memory if it is untied: the task has no parent or
its parent has already committed. This simplifies parent-child abort notification. When
every entry is still tied to the commit or abort of its parent, we need another approach.
Virtual time-based allocation: The task and commit queues may also fill up with
tied tasks. The general rule to avoid deadlock due to resource exhaustion is to always
prioritize resources toward coalescer tasks and then earlier-virtual time tasks, aborting
other tasks with later virtual times if needed. For example, if a tile speculates far ahead,
fills up its commit queue, and then receives a task that precedes all other speculative

46 Chapter 3. Swarm

tasks, the tile must let the preceding task execute to avoid deadlock. This results in
three specific policies for the commit queue, cores, and task queue.
Commit queue: If task t finishes execution, the commit queue is full, and t precedes any
of the tasks in the commit queue, the task unit aborts the highest-virtual time finished
task and t takes its commit queue entry. Otherwise, t stalls its core, waiting for an
entry.
Cores: If task t arrives at the tile, the commit queue is full, and t precedes all tasks on
cores, the task unit aborts the highest-virtual time running task and takes its core.
Task queue: A fraction of the task queue capacity is reserved for untied tasks only (one
third in our implementation). An enqueue request for an untied task is allocated any
free entry, while a request for a tied task is restricted to the remaining capacity. Con-
sequently, when the queue is full, some tasks are always eligible to be spilled by a
coalescer. Suppose an enqueue request for task t arrives at a task unit but the relevant
capacity has been reached. The enqueue request is NACK’d (instead of ACK’d as in
Figure 3-5) and the parent task’s task unit retries the enqueue using linear backoff. If
all cores are running non-coalescer tasks, one of these running tasks is aborted so that
a coalescer can run to free space for later enqueue requests.

To avoid deadlock, we leverage that when a task’s unique virtual time matches the
GVT, it is the smallest-virtual time task in the system, and cannot be aborted. The task
runs non-speculatively: it need not keep track of its children (no child pointers), so
when those children are sent to another tile, they arrived untied, and can be spilled
to memory if the task queue is full. This ensures that the GVT task makes progress,
avoiding deadlock.

3.3.8 Analysis of Hardware Costs

Figure 3-11 summarizes Swarm’s hardware changes. Swarm adds task units, a GVT
arbiter (or a hierarchy of them in large systems), and modifies cores and caches.

Table 3.2 shows the per-entry sizes, total queue sizes, and area estimates for the
main task unit structures: task queue, commit queue, and order queue. All numbers
are for one per-tile task unit. In this chapter we assume a 16-tile, 64-core system as
in Figure 3-2, with 256 task queue entries (64 per core) and 64 commit queue entries
(16 per core).3 We use CACTI [366] for the task and commit queue SRAM areas (using
32 nm ITRS-HP logic) and scaled numbers from a commercial 28 nm TCAM [16] for
the order queue area. Task queues use single-port SRAMs. Commit queues use several
dual-port SRAMs for the Bloom filters (Figure 3-8), which are 2048-bit, 8-way in our
implementation, and a single-port SRAM for all other state (unique virtual time, undo
log pointer, and child pointers).

Overall, these structures consume 0.55 mm2 per 4-core tile, or 8.8 mm2 per chip, a
minor cost. Enqueues and dequeues access the order queue TCAM, which consumes

3 We exploit locality to scale the system to hundreds of cores in Chapter 4.

3.4. Experimental Methodology 47

16-tile, 64-core chip

Core Core Core Core

L1I/D L1I/D L1I/D L1I/D

L2

L3 SliceRouter

Tile Organization

M
e
m

o
ry

 co
n
tro

lle
r

Memory controller

Memory controller

M
e
m

o
ry

 c
o
n
tr

o
ll
e
r

Tile

Task Unit

00100 000000 ... 01

00100 000100 ... 10

Read Set Signature

Write Set Signature

Swarm Hardware
Modifications

0xF00BAD

3, 18 1, 45

Undo Log Pointer

Children Pointers (x8)

--…

Timestamp

1337

L1 Flush Bits
1 bit per line

L2 Canary Virtual Times
128 bits per set

Sticky Directory

New Instructions
enqueue/dequeue/finish_task

GVT Arbiter 100015

Tiebreaker
Task

Queue

Commit Queue

Task Descriptor 51 bytes

1 30x40020

Fn Pointer Arguments (x3)

Task Speculative

State 548 bytes

0

Figure 3-11: Summary of Swarm hardware modifications. Swarm augments a tiled
multicore with a GVT arbiter, a task unit on each tile, and modifications to cores and
caches. These enhancements require moderate cost.

Entries Entry size Size Est. area

Task queue 256 51 B 12.75 KB 0.056 mm2

Commit filters 64 16×32 B 32 KB (2-port) 0.304 mm2

queue other 64 36 B 2.25 KB 0.012 mm2

Order queue 256 2×8 B 4 KB (TCAM) 0.175 mm2

Table 3.2: Sizes and estimated areas of main task unit structures.

∼70pJ per access [274]. Moreover, queue operations happen sparingly (e.g. with
100-cycle tasks, one enqueue and dequeue every 25 cycles), so energy costs are small.

The GVT arbiter is simple. It buffers a virtual time per tile, and periodically broad-
casts the minimum one.

Cores are augmented with enqueue/dequeue/finish_task instructions (Section 3.3.1),
the speculative state in Figure 3-6 (530 bytes), a 128-bit unique virtual time, and logic
to insert addresses into Bloom filters and to, on each store, write the old value to an
undo log. Finally, the L2 uses a 128-bit canary virtual time per set. For an 8-way cache
with 64 B lines, this adds 2.6% extra state.

In summary, Swarm’s costs are moderate, and, in return, confer significant speedups.

3.4 Experimental Methodology

Modeled system: We use an in-house microarchitectural, event-driven, sequential sim-
ulator based on Pin [242,282] to model Swarm systems of up to 64-cores with a 3-level
cache hierarchy. In this chapter we use simple IPC-1 cores with detailed timing models
for caches, on-chip network, and main memory (adapted from zsim [323]), and also
model Swarm features (e.g., conflict checks, aborts, etc.) in detail. In all following
chapters we model up to 256-core systems with in-order cores. Table 3.3 details the

48 Chapter 3. Swarm

Cores
64 cores in 16 tiles (4 cores/tile), 2 GHz, x86-64 ISA, IPC-1 except misses and Swarm
instructions

L1 caches 16 KB, per-core, split D/I, 8-way, 2-cycle latency

L2 caches 256 KB, per-tile, 8-way, inclusive, 7-cycle latency

L3 cache
16 MB, shared, static NUCA [211] (1 MB bank/tile), 16-way, inclusive, 9-cycle bank
latency

Coherence MESI, 64 B lines, in-cache directories, no silent drops

NoC 4×4 mesh, 256-bit links, X-Y routing, 3 cycles/hop

Main

mem
4 controllers at chip edges, 120-cycle latency

Queues
64 task queue entries/core (4096 total),
16 commit queue entries/core (1024 total)

Swarm

instrs
5 cycles per enqueue/dequeue/finish_task

Conflicts

2048-bit 8-way Bloom filters, H3 hash functions [66]
Tile checks take 5 cycles (Bloom filters) + 1 cycle for every timestamp compared in the
commit queue

Commits Tiles and GVT arbiter send updates every 200 cycles

Spills
Coalescers fire when a task queue is 75% full
Coalescers spill up to 15 tasks each

Table 3.3: Configuration of the 64-core system.

modeled configuration.

Benchmarks: We use the six benchmarks mentioned in Section 3.1.2: bfs, sssp,
astar, msf, des, and silo. Table 3.4 details their provenance and input sets.

For most benchmarks, we use tuned serial and state-of-the-art parallel versions from
existing suites (Table 3.4). Like sssp, benchmarks bfs, astar, and des dynamically
create ordered tasks, so their serial implementations repeatedly dequeue work from a
scheduling FIFO or priority queue. In contrast, the key loop of msf is bounded, iterating
over graph edges in decreasing weight order. We port these serial implementation to
Swarm by obviating the queue, and conveying task priority order to hardware through
timestamps. Therefore Swarm implementations delineate fine-grain tasks, but other-
wise use the same data structures and perform the same work as the serial version,
so differences between serial and Swarm versions stem from parallelism, not other
optimizations.

We wrote our own tuned serial and Swarm astar implementations. astar is no-
toriously difficult to parallelize—to scale, prior work in parallel pathfinding sacrifices
solution quality for speed [60]. Thus, we do not have a software-only parallel imple-
mentation.

We port silo to show that Swarm can extract ordered parallelism from applica-
tions that are typically considered unordered. Database transactions are unordered
in silo. We decompose each transaction into many small ordered tasks to exploit

3.4. Experimental Methodology 49

Software baselines Input Seq run-time

bfs PBFS [230] hugetric-00020 [26,100] 3.68 Bcycles
sssp Bellman-Ford [176,289] East USA roads [1] 4.42 Bcycles

astar Own Germany roads [280] 2.08 Bcycles
msf PBBS [339] kronecker_logn16 [26,100] 2.16 Bcycles
des Chandy-Misra [176,289] csaArray32 [289] 3.05 Bcycles
silo Silo [371] TPC-C, 4 whs, 32 Ktxns 2.93 Bcycles

Table 3.4: Benchmark information: source of baseline implementations, inputs, and
run-time of the serial version.

intra-transaction parallelism. Tasks from different transactions use disjoint timestamp
ranges to preserve atomicity. We disable logging to disk. Whereas prior work used TLS
to extract intra-transaction parallelism only [87,88], our approach exposes significant
fine-grain parallelism within and across transactions.

Input sets: We use a varied set of inputs, often from standard collections such as
DIMACS (Table 3.4). bfs operates on an unstructured mesh; sssp and astar use
large road maps; msf uses a Kronecker graph; des simulates an array of carry-select
adders; and silo runs the TPC-C benchmark on 4 warehouses.

All benchmarks have serial run-times of over two billion cycles (Table 3.4). We
have evaluated other inputs (e.g., random and scale-free graphs), and qualitative dif-
ferences are not affected. Note that some inputs can offer plentiful trivial parallelism
to a software algorithm. For example, on large, shallow graphs (e.g., 10 M nodes and
10 levels), a simple bulk-synchronous bfs that operates on one level at a time scales
well [230]. But we use a graph with 7.1 M nodes and 2799 levels, so bfs must specu-
late across levels to uncover enough parallelism.

For each benchmark, we fast-forward to the start of the parallel region (skipping
initialization), and report results for the full parallel region. We perform enough runs
to achieve 95% confidence intervals ≤ 1%.

Idealized memory allocation: Only two of the benchmarks used in Section 3.5 (des
and silo) allocate memory within tasks. To separate concerns, dynamic memory allo-
cation is not simulated in detail, until a scalable solution is presented in Chapter 5. As
we show in that chapter, data dependences in the system’s memory allocator would oth-
erwise serialize all allocating tasks. Instead, in this chapter, Chapter 4, and Chapter 6,
the simulator allocates and frees memory in a task-aware way. Freed memory is not
reused until the freeing task commits to avoid spurious dependences. Each allocator
operation incurs a 30-cycle cost. For fairness, serial and software-parallel implementa-

tions also use this allocator.

50 Chapter 3. Swarm

1 16 32 48 64

Cores

1

16

32

48

64

S
p

e
e

d
u

p

1
2
2
x

1
1
2
x

8
3
x

sssp

bfs

astar

silo

des

msf

Figure 3-12: Swarm self-relative speedups on 1-64 cores. Larger systems have larger
queues and caches, which affect speedups and sometimes cause superlinear scaling.

3.5 Evaluation

We first compare Swarm with alternative implementations, then analyze its behavior
in depth.

3.5.1 Swarm Scalability

Figure 3-12 shows Swarm’s performance on 1- to 64-core systems. In this experiment,
per-core queue and L2/L3 capacities are kept constant as the system grows, so systems

with more cores have higher queue and cache capacities. This captures performance
per unit area. Larger systems have higher queue and cache capacities, which sometimes
causes superlinear speedups.

Each line in Figure 3-12 shows the speedup of a single application over a 1-core
system (i.e., its self-relative speedup). At 64 cores, speedups range from 51× (msf)
to 122× (sssp), demonstrating high scalability. In addition to parallelism, the larger
queues and L3 of larger systems also affect performance, causing super-linear speedups
in some benchmarks (sssp, bfs, and astar). We tease apart the contribution of these
factors in Section 3.5.3.

3.5.2 Swarm vs. Software Implementations

Figure 3-13 compares the performance of the Swarm and software-only versions of
each benchmark. Each graph shows the speedup of the Swarm and software-parallel
versions over the tuned serial version running on a system of the same size, from 1
to 64 cores. As in Figure 3-12, queue and L2/L3 capacities scale with the number of
cores.

3.5. Evaluation 51

1

32

64

S
p

e
e

d
u

p

1c 32c 64c

bfs
117x

1c 32c 64c

sssp

1c 32c 64c

astar

1c 32c 64c

msf

1c 32c 64c

des

1c 32c 64c

silo

Swarm

Software-only
parallel

Figure 3-13: Speedup of Swarm and state-of-the-art software-parallel implementations
from 1 to 64 cores, relative to a tuned serial implementation running on a system of
the same size.

Swarm outperforms the serial versions by 43–117×, and the software-parallel ver-
sions by 2.7–18.2×. We analyze the reasons for these speedups for each application.

bfs: Serial bfs does not need a priority queue. It uses an efficient FIFO queue to
store the set of nodes to visit. At 1 core, Swarm is 33% slower than serial bfs; how-
ever, Swarm scales to 43× at 64 cores. By contrast, the software-parallel version,
PBFS [230], scales to 6.0×, then slows down beyond 24 cores. PBFS only works on a
single level of the graph at a time, while Swarm speculates across multiple levels.

sssp: Serial sssp uses a priority queue. Swarm is 32% faster at one core, and 117×
faster at 64 cores. The software-parallel version uses the Bellman-Ford algorithm [93].
Bellman-Ford visits nodes out of order to increase parallelism, but wastes work in doing
so. Threads in Bellman-Ford communicate infrequently to limit overheads [176], wast-
ing much more work than Swarm’s speculative execution. As a result, Bellman-Ford
sssp scales to 14× at 64 cores, 8.1× slower than Swarm.

astar: Our tuned serial astar uses a priority queue to store tasks [93]. Swarm outper-
forms it by 2% at one core, and by 66× at 64 cores.

msf: The serial and software-parallel msf versions sort edges by weight to process
them in order. Our Swarm implementation instead does this sort implicitly through the
task queues, enqueuing one task per edge and using its weight as the timestamp. This
allows Swarm to overlap the sort and edge-processing phases. Swarm outperforms the
serial version by 70% at one core and 61× at 64 cores. The software-parallel msf uses
software speculation via deterministic reservations [46], and scales to 19× at 64 cores,
3.1× slower than Swarm.

des: Serial des uses a priority queue to simulate events in time order. Swarm outper-
forms the serial version by 23% at one core, and by 57× at 64 cores. The software-
parallel version uses the Chandy-Misra-Bryant (CMB) algorithm [259, 346]. CMB ex-
ploits the simulated communication latencies among components to safely execute
some events out of order (e.g., if two nodes have a 10-cycle simulated latency, they
can be simulated up to 9 cycles away). CMB scales to 21× at 64 cores, 2.7× slower
than Swarm. Half of Swarm’s speedup comes from exploiting speculative parallelism,
and the other half from reducing overheads.

silo: Serial silo runs database transactions sequentially without synchronization.
Swarm outperforms serial silo by 10% at one core, and by 57× at 64 cores. The

52 Chapter 3. Swarm

1 16 32 48 64

Cores

1

16

32

48

64

S
p

e
e

d
u

p Swarm

SW-only

64wh

16wh

4wh

1wh

64wh

16wh

4wh

1wh

Figure 3-14: Speedup of Swarm and software silo with 64, 16, 4, and 1 TPC-C ware-
houses.

software-parallel version uses a carefully optimized protocol to achieve high transac-
tion rates [371]. Software-parallel silo scales to 8.8× at 64 threads, 6.4× slower than
Swarm. The reason is fine-grain parallelism: in Swarm, each task reads or writes at
most one tuple. This exposes parallelism within and across database transactions, and
reduces the penalty of conflicts, as only small, dependent tasks are aborted instead of
full transactions.

Swarm’s benefits on silo heavily depend on the amount of coarse-grain paral-
lelism, which is mainly determined by the number of TPC-C warehouses. To quantify
this effect, Figure 3-14 shows the speedups of Swarm and software-parallel silo with
64, 16, 4, and 1 warehouses. With 64 warehouses, software-parallel silo scales lin-
early up to 64 cores and is 4% faster than Swarm. With fewer warehouses, database
transactions abort frequently, limiting scalability. With a single warehouse, software-
parallel silo scales to only 2.7×. By contrast, Swarm exploits fine-grain parallelism
within each transaction, and scales well even with a single warehouse, by 49× at 64
cores, 18.2× faster than software-parallel silo.

Overall, these results show that Swarm outperforms a wide range of parallel al-
gorithms, even when they use application-specific optimizations. Moreover, Swarm
implementations use no explicit synchronization and are simpler, which is itself valu-
able.

3.5.3 Swarm Analysis

We now analyze the behavior of different benchmarks in more detail to gain insights
about Swarm.
Cycle breakdowns: Figure 3-15 shows the breakdown of aggregate core cycles. Each
set of bars shows results for a single application as the system scales from 1 to 64
cores. The height of each bar is the sum of cycles spent by all cores, normalized by

3.5. Evaluation 53

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

A
g

g
re

g
a

te
 c

o
re

c
y
c
le

s

1 4 1664 1 4 1664 1 4 1664 1 4 1664 1 4 1664 1 4 1664

bfs sssp astar msf des silo

Committed Aborted Spill Stall

Figure 3-15: Breakdown of total core cycles for Swarm systems with 1 to 64 cores.
Most time is spent executing tasks that are ultimately committed.

Speedups 1c vs 1c-base 64c vs 1c-base 64c vs 1c

Swarm baseline 1× 77× 77×
+ unbounded queues 1.4× 87× 61×
+ 0-cycle mem system 5× 274× 54×

Table 3.5: gmean speedups with progressive idealizations: unbounded queues and a
zero-cycle memory system (1c-base = 1-core Swarm baseline without idealizations).

the cycles of the 1-core system (lower is better). With linear scaling, all bars would
have a height of 1.0; higher and lower bars indicate sub- and super-linear scaling,
respectively. Each bar shows the breakdown of cycles spent executing tasks that are
ultimately committed, tasks that are later aborted, spilling tasks from the hardware
task queue (using coalescer and splitter tasks, Section 3.3.7), and stalled.

Swarm spends most of the cycles executing tasks that later commit. At 64 cores,
aborted work ranges from 1% (bfs) to 27% (des) of cycles. All graph benchmarks
spend significant time spilling tasks to memory, especially with few cores (e.g., 47%
of cycles for single-core astar). In all benchmarks but msf, spill overheads shrink as
the system grows and task queue capacity increases; msf enqueues millions of edges
consecutively, so larger task queues do not reduce spills. Finally, cores rarely stall due
to full or empty queues. Only astar and msf spend more than 5% of cycles stalled at
64 cores: 27% and 8%, respectively.

Figure 3-15 also shows the factors that contribute to super-linear scaling in Figure 3-
12. First, larger task queues can capture a higher fraction of runnable tasks, reducing
spills. Second, larger caches can better fit the working set, reducing the cycles spent
executing committed tasks (e.g., silo). However, beyond 4–8 cores, the longer hit
latency of the larger NUCA L3 counters its higher hit rate in most cases, increasing
execution cycles.

Speedups with idealizations: To factor out the impact of queues and memory system
on scalability, we consider systems with two idealizations: unbounded queues, which

54 Chapter 3. Swarm

0

200

400

600

800

1000

1200

1400
A

v
g
 e

n
tr

ie
s
 u

s
e
d

bfs sssp astar msf des silo

2.6K 2.6K 2.3K 2.7K

Task queue Commit queue

Figure 3-16: Average task and commit
queue occupancies for 64-core Swarm.

0
1
2
3
4
5
6
7
8

N
o
C

 i
n
je

c
ti
o
n
 r

a
te

p
e
r

ti
le

 (
G

B
/s

)

bfs sssp astar msf des silo

GVT

Enqueues

Aborts

Mem accs

Figure 3-17: Breakdown of NoC traffic
per tile for 64-core, 16-tile Swarm.

factor out task spills, and an ideal memory system with 0-cycle delays for all accesses
and messages. Table 3.5 shows the gmean speedups when these idealizations are pro-
gressively applied. The left and middle columns show 1- and 64-core speedups, respec-
tively, over the 1-core baseline (without idealizations). While idealizations help both
cases, they have a larger impact on the 1-core system. Therefore, the 64-core speedups
relative to the 1-core system with the same idealizations (right column) are lower. With
all idealizations, this speedup is purely due to exploiting parallelism; 64-core Swarm is
able to mine 54× parallelism on average (46×–63×).

Queue occupancies: Figure 3-16 shows the average number of task queue and commit
queue entries used across the 64-core system. Both queues are often highly utilized.
Commit queues can hold up to 1024 finished tasks (64 per tile). On average, they hold
from 216 in des to 821 in astar. This shows that cores often execute tasks out of
order, and these tasks wait a significant time until they commit—a large speculative
window is crucial, as the analysis in Section 3.1.2 showed. The 4096-entry task queues
are also well utilized, with average occupancies between 1157 (silo) and 2712 (msf)
entries.

Network traffic breakdown: Figure 3-17 shows the NoC traffic breakdown at 64 cores
(16 tiles). The cumulative injection rate per tile remains well below the saturation in-
jection rate (32 GB/s). Each bar shows the contributions of memory accesses (between
the L2s and L3) issued during normal execution, tasks enqueues to other tiles, abort
traffic (including child abort messages and rollback memory accesses), and GVT up-
dates. Task enqueues, aborts, and GVT updates increase network traffic by 15% on
average. Thus, Swarm imposes small overheads on traffic and communication energy.

Conflict detection energy: Conflict detection requires Bloom filter checks—performed
in parallel over commit queue entries (Figure 3-7)—and for those entries where the
Bloom filter reports a match, a virtual time check to see whether the task needs to
be aborted. Both events happen relatively rarely. Each tile performs one Bloom filter
check every 8.0 cycles on average (from 2.5 cycles in msf to 13 cycles in bfs). Each
tile performs one timestamp check every 49 cycles on average (from 6 cycles in msf

3.5. Evaluation 55

to 143 cycles in astar). Hence, Swarm’s conflict detection imposes acceptable energy
overheads.
Canary virtual times: To lower overheads, all lines in the same L2 set share a com-
mon canary virtual time. This causes some unnecessary global conflict checks, but we
find the falsely unfiltered checks are infrequent. At 64 cores, using precise per-line
canary virtual times reduces global conflict checks by 10.3% on average, and improves
application performance by less than 1%.

3.5.4 Sensitivity Studies

We explore Swarm’s sensitivity to several design parameters at 64 cores:
Commit queue size: Figure 3-18a shows the speedups of different applications as we
sweep aggregate commit queue entries from 128 (8 tasks per tile) to unbounded; the
default is 1024 entries. Commit queues are fundamental to performance: fewer than
512 entries degrade performance considerably. More than 1024 entries confer moder-
ate performance boosts to some applications. We conclude that 1024 entries strikes a
good balance between performance and implementation cost for the benchmarks we
study.
Bloom filter configuration: Figure 3-18b shows the relative performance of different
Bloom filter configurations. The default 2048-bit 8-way Bloom filters achieve perfor-
mance within 10% of perfect conflict detection. Smaller Bloom filters cause frequent
false positives and aborts in silo and des, which have the tasks with the largest foot-
print. However, bfs, sssp, and msf tasks access little data, so they are insensitive to
Bloom filter size.
Frequency of GVT updates: Swarm is barely sensitive to the frequency of GVT up-
dates. As we vary the period between GVT updates from 50 cycles to 800 cycles (the
default is 200 cycles), performance at 64 cores drops from 0.1% in sssp to 3.0% in
msf.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

P
e
rf

o
rm

a
n
c
e

bfs sssp astar msf des silo

128 256 512 1024 2048 INF.

(a) Commit queue size

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rf

o
rm

a
n
c
e

bfs sssp astar msf des silo

256b/4way

1024b/4way

2048b/8way

Precise

(b) Bloom filter size

Figure 3-18: Sensitivity of 64-core Swarm to commit queue and Bloom filter sizes.

56 Chapter 3. Swarm

0.0

0.5

1.0

C
y
c
le

b
re

a
k
d

o
w

n

Tile 0 Tile 1 Tile 2 Tile 3

Stall

Spill

Worker

0

100

200

Q
u

e
u

e
le

n
g

th
s

Task Q

Commit Q

20K 40K 60K 80K 100K
Cycles

0

20

40

60

T
a

s
k

e
v
e

n
ts

20K 40K 60K 80K 100K
Cycles

20K 40K 60K 80K 100K
Cycles

20K 40K 60K 80K 100K
Cycles

Aborts

Commits

Figure 3-19: Execution trace of astar on 16-core (4-tile) Swarm over a 100 Kcycle
interval: breakdown of core cycles (top), queue lengths (middle), and task commits
and aborts (bottom) for each tile.

3.5.5 Swarm Case Study: astar

Finally, we present a case study of astar running on a 16-core, 4-tile system to analyze
Swarm’s time-varying behavior. Figure 3-19 depicts several per-tile metrics, sampled
every 500 cycles, over a 100 Kcycle interval: the breakdown of core cycles (top row),
commit and task queue lengths (middle row), and tasks commit and abort events (bot-
tom row). Each column shows these metrics for a single tile.

Figure 3-19 shows that task queues are highly utilized throughout the interval. As
task queues approach their capacity, coalescer tasks kick in, spilling tasks to memory.
Commit queues, however, show varied occupancy. As tasks are executed out of order,
they use a commit queue entry until they are safe to commit (or are aborted). Most of
the time, commit queues are large enough to decouple execution and commit orders,
and tiles spend the vast majority of time executing worker tasks.

Occasionally, however, commit queues fill up and cause the cores to stall. For ex-
ample, tiles stall around the 40 Kcycle mark as they wait for a few straggler tasks to
finish. The last of those stragglers finishes at 43 Kcycles, and the subsequent GVT
update commits a large number of erstwhile speculative tasks, freeing up substantial
commit queue space. These events explain astar’s sensitivity to commit queue size as
seen in Figure 3-18a.

Finally, note that although queues fill up rarely, commits tend to happen in bursts
throughout the run. This shows that fast commits are important, as they enable Swarm
to quickly turn around commit queue entries.

3.6 Additional Related Work

Prior work has studied the limits of instruction-level parallelism under several ideal-
izations, including a large or infinite instruction window, perfect branch prediction
and memory disambiguation, and simple program transformations to remove unneces-
sary data dependences [24, 63, 124, 130, 149, 225, 273, 292, 388]. Similar to our limit

3.6. Additional Related Work 57

study, these analyses find that parallelism is often plentiful (>1000×), but very large
instruction windows are needed to exploit it (>100K instructions [24,225,292]). Our
oracle tool focuses on task-level parallelism, so it misses intra-task parallelism, which
is necessarily limited with short tasks. Instead, we focus on removing superfluous de-
pendences in scheduling data structures, uncovering large amounts of parallelism for
irregular applications.

Several TLS schemes expose timestamps to software for different purposes, such
as letting the compiler schedule loop iterations in Stampede [348], letting the pro-
grammer relax sequential ordering [167] or speculate across barriers [169] in TCC,
and supporting out-of-order spawn of speculative function calls in Renau et al. [309].
These schemes work well for their intended purposes, but cannot queue or buffer tasks
with arbitrary timestamps—they can only spawn new work if there is a free hardware
context. Software scheduling would be required to sidestep this limitation, which, as
we have seen, would introduce false data dependences and limit parallelism.

Prior work in fine-grain parallelism has developed a range of techniques to reduce
task management overheads. Active messages lower the cost of sending tasks among
cores [98,276,384]. Hardware task schedulers such as Carbon [221] lower overheads
further for specific problem domains. GPUs [394] and Anton 2 [161] feature custom
schedulers for non-speculative tasks. By contrast, Swarm implements speculative hard-
ware task management for a different problem domain, ordered parallelism.

Prior work has developed shared-memory priority queues that scale with the num-
ber of cores [14, 231, 270, 311, 393], but they do so by relaxing priority order. This
restricts them to benchmarks that admit order violations. For example, the correct
discrete event simulation of a circuit requires hard ordering of tasks based on sim-
ulated time. Moreover, loose ordering can lose the work efficiency [49] of a paral-
lel implementation: in sssp, threads often execute useless tasks far from the critical
path [176,177]. Nikas et al. [275] use hardware transactional memory to partially par-
allelize priority queue operations, accelerating sssp by 1.8× on 14 cores. Instead, we
dispense with shared-memory priority queues: Swarm uses distributed priority queues,
load-balanced through random enqueues, and uses speculation to maintain order.

Our execution model has similarities to parallel discrete-event simulation (PDES) [134].
PDES events run at a specific virtual time and can create other events, but cannot access
arbitrary data, making them less general than Swarm tasks. Moreover, state-of-the-art
PDES engines have overheads of tens of thousands of cycles per event [35], making
them impractical for fine-grain tasks. Fujimoto proposed the Virtual Time Machine
(VTM), tailored to the needs of PDES [143], which could reduce these overheads.
However, VTM relied on an impractical memory system that could be indexed by ad-
dress and time.

58 Chapter 3. Swarm

3.7 Summary

This chapter has presented Swarm, an architecture that unlocks abundant but hard-to-
exploit ordered irregular parallelism. Swarm relies on a novel execution model based
on timestamped tasks that decouples task creation and execution order, and a mi-
croarchitecture that performs speculative, out-of-order task execution and implements
a large speculation window efficiently. Programs leverage Swarm’s execution model
to convey new work to hardware as soon as it is discovered rather than in the order
it needs to run, exposing a large amount of parallelism. As a result, Swarm achieves
order-of-magnitude speedups on ordered irregular programs, which are key in emerg-
ing domains such as graph analytics, data mining, and in-memory databases. Swarm
hardware could also support thread-level speculation and transactional execution with
minimal changes.

Swarm’s design challenges conventional wisdom in two ways. First, conventional
wisdom says that task order constraints limit parallelism. However, we have shown
that it is possible to maintain a large speculation window efficiently to extract ordered
parallelism, wherein only true data dependences limit parallelism. Second, conven-
tional wisdom says that speculation is wasteful, and designers should instead build
non-speculative parallel systems. However, we have shown that, for a broad class of
applications, speculation extracts abundant parallelism for moderate costs. Designers
can trade this additional parallelism for efficiency in many ways (for example, through
simpler cores or slower clock frequencies), more than offsetting the costs of specu-
lation. In other words, speculation can yield a net efficiency gain and enable more
applications to exploit the performance potential of multi-billion-transistor chips.

CHAPTER 4

Spatial Hints:

Data-Centric Execution

of Speculative Parallel Programs

This work was conducted in collaboration with Suvinay Subramanian, Maleen Abeydeera,

Joel Emer, and Daniel Sanchez. The ideas for spatial-hint task mapping and serialization

were developed collaboratively. This thesis contributes the spatial-hint selection patterns

across applications, and the implementation and study of fine-grain tasks. This thesis also

contributes to the development of applications, and the architectural simulator.

Speculative parallelization, e.g., through Swarm, thread-level speculation (TLS), or
hardware transactional memory (HTM), has two major benefits over non-speculative
parallelism: it uncovers abundant parallelism in many challenging applications [169]
(Chapter 3) and simplifies parallel programming [284,316]. However, even with scal-
able versioning and conflict detection techniques, speculative systems scale poorly be-
yond a few tens of cores. A key reason is that these systems do not exploit much of the

locality available among speculative tasks.

To scale, parallelism must not come at the expense of locality: tasks should be run
close to the data they access to avoid global communication and use caches effectively.
The need for locality-aware parallelism is well understood in non-speculative systems,
where abundant prior work has developed programming models to convey locality [8,
38,73,353,398], and runtimes and schedulers to exploit it [6,51,77,188,269,340,400].

However, most prior work in speculative parallelization has ignored the need for
locality-aware parallelism. In TLS, speculative tasks are executed by available cores

59

60 Chapter 4. Spatial Hints

without regard for locality [168,308,344]; Swarm sends new tasks to randomly chosen
tiles for load balance; and conventional HTM programs are structured as threads that
execute a fixed sequence of transactions. Prior work has observed that it is beneficial
to structure transactional code into tasks instead, and has proposed transactional task
schedulers that limit concurrency to reduce aborts under high contention [19,21,44,45,
110,116,199,320,402]. Limiting concurrency suffices for small systems, but scaling to
hundreds of cores also requires solving the spatial mapping problem: speculative tasks
must be mapped across the system to minimize data movement.

To our knowledge, no prior work has studied the spatial mapping problem for spec-
ulative architectures. This may be because, at first glance, spatial mapping and spec-
ulation seem to be at odds: achieving a good spatial mapping requires knowing the
data accessed by each task, but the conventional advantage of speculation is precisely
that the programmer or compiler need not or does not know the data accessed by each
task. However, we find that there is a wide gray area: in many applications, most of
the data accessed is known at run time just before the task is created. Thus, there
is ample information to achieve high-quality spatial task mappings. Beyond reducing
data movement, high-quality mappings also enhance parallelism by reducing the mis-
peculation rate and making most remaining conflicts local.

To exploit this insight, we present spatial hints, a technique that uses program
knowledge to achieve high-quality task mappings (Section 4.2). A hint is an abstract
integer, given at run time when a task is created, that denotes the data that the task
is likely to access. We show it is easy to modify programs to convey locality through
hints. We enhance Swarm to exploit hints by sending tasks with the same hint to the
same tile and running them serially.

We then analyze how task structure affects the effectiveness of hints (Section 4.4).
We find that fine-grain tasks access less data, and more of that data is known at task
creation time, making hints more effective. Although programs with fine-grain tasks
perform more work and put more pressure on scheduling structures, hints make fine-
grain tasks a good tradeoff by reducing memory stalls and conflicts further. We show
that certain programs can be easily restructured to use finer-grain tasks (Section 4.4),
improving performance by up to 2.7×.

Finally, while hints improve locality and reduce conflicts, they can also cause load
imbalance. We thus design a load balancer that leverages hints to redistribute tasks
across tiles in a locality-aware fashion (Section 4.5). Unlike non-speculative load bal-
ancers, the signals to detect imbalance are different with speculation (e.g., tiles do not
run out of tasks, but run tasks that are likely to abort), requiring a different approach.
Our load balancer improves performance by up to a further 27%.

In summary, this chapter presents four novel contributions:

• Spatial hints, a technique that conveys program knowledge to achieve high-
quality spatial task mappings.
• Simple hardware mechanisms to exploit hints by sending tasks likely to access

4.1. Motivation 61

the same data to the same place and running them serially.
• An analysis of the relationship between task granularity and locality, showing

that programs can often be restructured to make hints more effective.
• A novel data-centric load-balancer that leverages hints to redistribute tasks with-

out hurting locality.

Together, these techniques make speculative parallelism practical on large-scale sys-
tems: at 256 cores, hints achieve near-linear scalability on nine challenging applica-
tions, outperform the baseline Swarm random scheduler by 3.3× gmean and by up to
16×, and outperform a work-stealing scheduler by a wider margin. Hints also make
speculation far more efficient, reducing wasted work by 6.4× and network traffic by
3.5× on average.

4.1 Motivation

We demonstrate the benefits of spatial task mapping on Swarm (Chapter 3). Swarm
is a strong baseline for two key reasons. First, Swarm’s task-based, timestamp-ordered
execution model is general: it finds parallelism among ordered and unordered tasks,
subsuming both TLS and TM, and allows more ordered programs to be expressed than
TLS. This allows us to test our techniques with a broader range of speculative programs
than alternative baselines. Second, Swarm focuses on efficiently supporting fine-grain
tasks, and includes hardware support for task creation and queuing. This allows us
to study the interplay between task granularity and spatial hints more effectively than
alternative baselines with software schedulers, which are limited to coarse-grain tasks.

We use the discrete-event simulation (des) of a digital circuit under different task
schedulers as an example to motivate the need for spatial task mapping. Listing 4.1

void desTask(Timestamp ts, GateInput* input) {

Gate* g = input->gate();

bool toggledOutput = g.simulateToggle(input);

if (toggledOutput) {

// Toggle all inputs connected to this gate

for (GateInput* i : g->connectedInputs())

swarm::enqueue(desTask, ts + delay(g, i), i);

}

}

void main() {

[...] // Set up gates and initial values

// Enqueue events for input waveforms

for (GateInput* i : externalInputs)

swarm::enqueue(inputWaveformTask , 0, i);

swarm::run(); // Start simulation

}

Listing 4.1: Swarm implementation of discrete event simulation for digital circuits.

62 Chapter 4. Spatial Hints

shows the Swarm implementation of des. It defines one task function, desTask, which
simulates a signal toggling at a gate input at a particular simulated time (e.g., in pi-
coseconds). If that input toggle causes the gate output to toggle, desTask enqueues
child tasks for all the gates connected to this output. The program initiates the sim-
ulation by enqueuing a task for each input waveform, then calling swarm::run. We
simulate Swarm systems of up to 256 cores, as shown in Figure 4-2 (see Section 4.3.1
for methodology details). We compare four schedulers:

• Random is Swarm’s default task mapping strategy. New tasks are sent to a random
tile for load balance.
• Stealing is an idealized work-stealing scheduler, the most common scheduler in

non-speculative programs [6, 51]. New tasks are enqueued to the local tile, and
tiles that run out of tasks steal tasks from a victim tile. To evaluate stealing
in the best possible light, we do not simulate any stealing overheads: out-of-
work tiles instantaneously find the tile with the most idle tasks and steal the
earliest-timestamp task. Work-stealing is sensitive to the stealing policies used
(Section 4.6.2). We studied a wide range of policies, both in terms of victim tile
selection (random, nearest-neighbor, most-loaded) and task selection within a
victim tile (earliest-timestamp, random, latest-timestamp) and empirically found
the selected policies to perform best overall for our benchmarks.
• Hints is our hint-based spatial task mapping scheme.
• LBHints is our hint-based load balancer.

In des, Hints logically maps each gate in the simulated circuit to a specific, statically
chosen tile. New tasks that operate on a particular gate are sent to its logically mapped
tile (Section 4.2). LBHints enhances Hints by periodically remapping gates across tiles
to equalize their load (Section 4.5).

Two factors make spatial mapping in des possible. First, each task operates on a
single gate. Second, this gate is known at run time when the task is created. As we
will see later, good spatial mappings are possible even when these conditions are not
completely met (i.e., tasks access multiple pieces of data, or some of the data they
access is not known at task creation time). Also, note that even when we know all data
accesses, speculation is still needed, as tasks can be created out of order and executed
in the wrong order.

Figure 4-1a compares the performance of different schemes on 1- to 256-core sys-
tems. Each line shows the speedup relative to a 1-core Swarm system (all schedulers
are equivalent at 1 core). Stealing performs worst, scaling to 52× at 256 cores. Random

peaks at 144 cores, scaling to 91×, and drops to 49× at 256 cores. Hints scales to
186×, and LBHints performs best, with a 236× speedup at 256 cores.

Figure 4-1b yields further insights into these differences. The height of each bar in
Figure 4-1b is the sum of cycles spent by all cores, normalized to the cycles of Random

(lower is better). Each bar shows the breakdown of cycles spent executing tasks that
are ultimately committed, eventually aborted, cycles stalled on a full queue, and spent

4.2. Spatial Task Mapping with Hints 63

1

128

256
S

p
e

e
d

u
p

1c 128c 256c

LBHints

Hints

Random

Stealing

(a) Speedup

0.0

0.2

0.4

0.6

0.8

1.0

A
g

g
re

g
a

te
 c

o
re

 c
y
c
le

s

R S H L

Other

Stall

Abort

Commit

(b) Cycle breakdown

Figure 4-1: Performance of Random, Stealing, Hints, and LBHints schedulers on des:
(a) speedup relative to 1-core Swarm, and (b) breakdown of total core cycles at 256
cores, relative to Random.

in other overheads. Most cycles are spent running committed tasks, aborted tasks, or
in queue stalls, and trends are widely different across schemes.

Committed cycles mainly depend on locality: in the absence of conflicts, the only
difference is memory stalls. Random has the highest committed cycles (most stalls),
while Hints and LBHints have the lowest, as gates are held in nearby private caches.
Stealing has slightly higher committed cycles, as it often keeps tasks for nearby gates in
the same tile.

Differences in aborted cycles are higher. In des, conflict frequency depends highly
on how closely tasks from different tiles follow timestamp order. Random and LBHints

keep tiles running tasks with close-by timestamps. However, conflicts in LBHints are
local, and thus much faster, and LBHints serializes tasks that operate on the same gate.
For these reasons, LBHints spends the fewest cycles on aborts. Hints is less balanced, so
it incurs more conflicts than LBHints. Finally, in Stealing, tiles run tasks widely out of
order, as stealing from the most loaded tile is not a good strategy to maintain order in
des (as we will see, this is a good strategy in other cases). This causes both significant
aborts and queue stalls in Stealing, as commit queues fill up. These effects hinder
Stealing’s scalability.

Overall, these results show that hints can yield significant gains by reducing both
aborts and data movement.

4.2 Spatial Task Mapping with Hints

We now present spatial hints, a general technique that leverages application-level knowl-
edge to achieve high-quality task mappings. A hint is simply an abstract integer value,
given at task creation time, that denotes the data likely to be accessed by a task. Hard-
ware leverages hints to map tasks likely to access the same data to the same location.
We present the API and ISA extensions to support hints, describe the microarchitectural
mechanisms to exploit hints, and show how to apply hints to a variety of benchmarks.

64 Chapter 4. Spatial Hints

4.2.1 Hint API and ISA Extensions

We extend the swarm::enqueue function (Section 3.3.1) with one field for the spatial
hint:
swarm::enqueue(taskFn, timestamp , hint, args...)

This hint can take one of three values:
• A 64-bit integer value that conveys the data likely to be accessed. The program-

mer is free to choose what this integer represents (e.g., addresses, object ids,
etc.). The only guideline is that tasks likely to access the same data should have
the same hint.
• NOHINT, used when the programmer does not know what data will be accessed.
• SAMEHINT, which assigns the parent’s hint to the child task.
As with Swarm code enqueues tasks with an enqueue_task instruction that takes

the function pointer, timestamp, and arguments in registers. We employ unused bits
in the instruction opcode to represent whether the new task is tagged with an integer
hint, NOHINT, or SAMEHINT. If tagged with an integer hint, we pass that value through
another register.

4.2.2 Hardware Mechanisms

Hardware leverages hints in two ways:
1. Spatial task mapping: When a core creates a new task, the local task unit uses the
hint to determine its destination tile. The task unit hashes the 64-bit hint down to a
tile ID (e.g., 6 bits for 64 tiles), then sends a request to the selected tile to enqueue
the task descriptor (Section 3.3.2). SAMEHINT tasks are queued to the local task queue,
and NOHINT tasks are sent to a random tile.
2. Serializing conflicting tasks: Since two tasks with the same hint are likely to con-
flict, we enhance the task dispatch logic to avoid running them concurrently. Specif-
ically, tasks carry a 16-bit hash of their hint throughout their lifetime. By default,
the task unit selects the earliest-timestamp idle task for execution. Instead, we check
whether that candidate task’s hint hash matches one of the already-running tasks. If
there is a match and the already-running task has an earlier timestamp, the task unit
skips the candidate and tries the idle task with the next lowest timestamp.

Using 16-bit hashed hints instead of full hints requires less storage and simplifies
the dispatch logic. Their lower resolution introduces a negligible false-positive match
probability (6 · 10−5 with four cores per tile).
Overheads: These techniques add small overheads:
• 6- and 16-bit hash functions at each tile to compute the tile ID and hashed hint.
• An extra 16 bits per task descriptor. Descriptors are sent through the network (so

hints add some traffic) and stored in task queues. In our chosen configuration,
each tile’s task queue requires 512 extra bytes.
• Four 16-bit comparators used during task dispatch.

4.2. Spatial Task Mapping with Hints 65

4.2.3 Adding Hints to Benchmarks

We add hints to a diverse set of nine benchmarks. Table 4.1 summarizes their prove-
nance, input sets, and the strategies used to assign hints to each benchmark.

Seven of our benchmarks are ordered, including bfs, sssp, astar, des, and silo
from Chapter 3, and this chapter adds two others:
• color uses the largest-degree-first heuristic [391] to assign distinct colors to

adjacent graph vertices. This heuristic produces high-quality results and is thus
frequently used, but it is hard to parallelize.
• nocsim is a detailed network-on-chip simulator derived from GARNET [7]. Each

task simulates an event at a component of a router.
We port color and nocsim to Swarm from existing serial implementations. As in
Chapter 3, these applications do not change the amount of work relative to the serial
code. As shown in Table 4.1, at 1 core, Swarm implementations outperform tuned
serial versions in all cases except bfs, where 1-core Swarm is 18% slower.

We also port two unordered benchmarks from STAMP [257]:
• genome performs gene sequencing.
• kmeans implements K-means clustering.

We implement transactions as tasks of equal timestamp, so that they can commit in any
order. As in prior work in transaction scheduling [19,402] (Section 4.6), we break the
original threaded code into tasks that can be scheduled asynchronously and generate
children tasks as they find more work to do.

We observe that a few common patterns arise naturally when adding hints to these
applications. We explain each of these patterns through a representative application.
Cache-line address: Our graph analytics applications (bfs, sssp, astar, and color)
are vertex-centric: each task operates on one vertex and visits its neighbors in some
programmer-specified order. For example, Listing 4.2 shows the single task function
of sssp from Listing 3.3. Given the distance to the source of vertex v, the task visits
each neighbor n; if the projected distance to n is reduced, n’s distance is updated and a
new task created for n. Tasks appear to execute in timestamp order, i.e. the projected

void ssspTask(Timestamp distance, Vertex* v) {

if (distance == v->distance)

for (Vertex* n : v->neighbors) {

Timestamp projected = distance + length(v,n);

if (projected < n->distance) {

n->distance = projected;

swarm::enqueue(ssspTask,

projected /*Timestamp*/,

cacheLine(n) /*Hint*/, n);

}

}

}

Listing 4.2: A hint-tagged Swarm task for Dijkstra’s sssp algorithm.

66 Chapter 4. Spatial Hints

distance to the source.

Each task’s hint is the cache-line address of the vertex it visits. Every task iterates
over its vertex’s neighbor list. This incurs two levels of indirection: one from the vertex
to walk its neighbor list, and another from each neighbor to access and modify the
neighbor’s distance. Using the line address of the vertex lets us perform all the accesses
to each neighbor list from a single tile, improving locality; however, each distance is
accessed from different tasks, so hints do not help with those accesses. We use cache-
line addresses because several vertices reside on the same line, allowing us to exploit
spatial locality.

bfs, astar, and color have similar structure, so we also use the visited vertex’s
line address as the hint. The limiting aspect of this strategy is that it fails to localize a
large fraction of accesses (e.g., to v->distance in sssp), because each task accesses
state from multiple vertices. This coarse-grain structure is natural for software imple-
mentations (e.g., sequential and parallel Galois sssp are written this way), but we will
later see that fine-grain versions make hints much more effective.

Object IDs: In des and nocsim each task operates on one system component: a logic
gate (Listing 4.1), or an NoC router component (e.g., its VC allocator), respectively.
Similar to the graph algorithms, a task creates children tasks for its neighbors. In
contrast to graph algorithms, each task only accesses state from its own component.

We tag simulator tasks with the gate ID and router ID, respectively. In des, using the
gate ID is equivalent to using its line address, as each gate spans one line. Since each
nocsim task operates on a router component, using component IDs or addresses as
hints might seem appealing. However, components within the same router create tasks
(events) for each other very often, and share state (e.g., pipeline registers) frequently.
We find it is important to keep this communication local to a tile, which we achieve by
using the coarser router IDs as hints.

Abstract unique IDs: In silo, each database transaction consists of tens of tasks.
Each task reads or updates a tuple in a specific table. This tuple’s address is not known
at task creation time: the task must first traverse a tree to find it. Thus, unlike in
prior benchmarks, hints cannot be concrete addresses. However, we know enough
information to uniquely identify the tuple at task creation time: its table and primary
key. Therefore, we compute the task’s hint by concatenating these values. This way,
tasks that access same tuple map to the same tile.

NOHINT and SAMEHINT: In genome, we do not know the data that one of its trans-
actions, T, will access when the transaction is created. However, T spawns other trans-
actions that access the same data as T. Therefore, we enqueue T with NOHINT, and its
children with SAMEHINT to exploit parent-child locality.

Multiple patterns: Several benchmarks have different tasks that require different
strategies. For instance, kmeans has two types of tasks: findCluster operates on a sin-
gle point, determining its closest cluster centroid and updating the point’s membership;
and updateCluster updates the coordinates of the new centroid. findCluster uses

4.2. Spatial Task Mapping with Hints 67

S
o
u

rc
e

In
p

u
t

S
w

a
rm

1
-c

o
re

T
a
sk

H
in

t
p

a
tt

e
rn

s
R

u
n

-t
im

e
P
e
rf

v
s

se
ri

a
l

F
u

n
cs

b
fs

PB
FS
[2

30
]

hu
ge

tr
ic

-0
00

20
[2

6,
10

0]
3.

59
B

cy
cl

es
−

18
%

1
C

ac
he

lin
e

of
ve

rt
ex

ss
sp

G
al

oi
s
[2

89
]

E
as

t
U

SA
ro

ad
s
[1
]

3.
21

B
cy

cl
es

+
33

%
1

C
ac

he
lin

e
of

ve
rt

ex
a
st

a
r

(C
ha

pt
er

3)
G

er
m

an
y

ro
ad

s
[2

80
]

1.
97

B
cy

cl
es

+
1%

1
C

ac
he

lin
e

of
ve

rt
ex

co
lo

r
[1

74
]

co
m

-y
ou

tu
be
[2

33
]

1.
65

B
cy

cl
es

+
54

%
3

C
ac

he
lin

e
of

ve
rt

ex
d

e
s

G
al

oi
s
[2

89
]

cs
aA

rr
ay

32
1.

92
B

cy
cl

es
+

70
%

8
Lo

gi
c

ga
te

ID
n

o
cs

im
G

A
R

N
E

T
[7
]

16
x1

6
m

es
h,

to
rn

ad
o

tr
af

fi
c

22
.3

7
B

cy
cl

es
+

68
%

10
R

ou
te

r
ID

si
lo

[3
71
]

T
PC

-C
,4

w
hs

,3
2

K
tx

ns
2.

83
B

cy
cl

es
+

16
%

16
(T

ab
le

ID
,p

ri
m

ar
y

ke
y)

g
e
n

o
m

e
ST

A
M

P
[2

57
]

-g
40

96
-s

48
-n

10
48

57
6

2.
30

B
cy

cl
es

+
1%

10
E

le
m

ad
dr

,m
ap

ke
y,

N
O
/
SA

M
E

H
IN

T
k
m

e
a
n

s
ST

A
M

P
[2

57
]

-m
40

-n
40

-i
rn

d-
n1

6K
-d

24
-c

16
8.

56
B

cy
cl

es
+

2%
5

C
ac

he
lin

e
of

po
in

t,
cl

us
te

r
ID

Ta
bl

e
4.

1:
B

en
ch

m
ar

k
in

fo
rm

at
io

n:
so

ur
ce

im
pl

em
en

ta
ti

on
s,

in
pu

ts
,

ru
n-

ti
m

es
on

a
1-

co
re

Sw
ar

m
sy

st
em

,
1-

co
re

sp
ee

du
ps

ov
er

tu
ne

d
se

ri
al

im
pl

em
en

ta
ti

on
s,

nu
m

be
r

of
ta

sk
fu

nc
ti

on
s,

an
d

hi
nt

pa
tt

er
ns

us
ed

.

68 Chapter 4. Spatial Hints

the point’s cache line as a hint, while updateCluster uses the centroid’s ID. genome
also uses a variety of patterns, as shown in Table 4.1.

In summary, a task can be tagged with a spatial hint when some of the data it ac-
cesses can be identified (directly or abstractly) at task creation time. In all applications,
integer hints are either addresses or IDs. Often, we can use either; we use whichever
is easier to compute (e.g., if we already have a pointer to the object, we use addresses;
if we have its ID and would e.g., need to index into an array to find its address, we
use IDs). It may be helpful to assign a coarse hint, i.e., one that covers more data than
is accessed by the specific task, either to exploit spatial locality when tasks share the
same cache line (e.g., sssp, kmeans), or to group tasks with frequent communication
(e.g., nocsim).

4.3 Evaluation of Spatial Hints

4.3.1 Experimental Methodology

Modeled system: We use a cycle-accurate, event-driven simulator based on Pin [242,
282] to model Swarm systems of up to 256 cores, as shown in Figure 4-2, with parame-
ters in Table 4.2. We use detailed core, cache, network, and main memory models, and
simulate all Swarm execution overheads (e.g., running mispeculating tasks until they
abort, simulating conflict check and rollback delays and traffic, etc.). Our configuration
is similar to the 256-core Kalray MPPA [101], though with a faster clock (the MPPA is a
low-power part) and about 2× on-chip memory (the MPPA uses a relatively old 28 nm
process). We also simulate smaller systems with square meshes (K×K tiles for K ≤ 8).
We keep per-core L2/L3 sizes and queue capacities constant across system sizes. This
captures performance per unit area. As a result, larger systems have higher queue and
cache capacities, which sometimes cause superlinear speedups.

Whereas Chapter 3 models simple IPC-1 cores, in this chapter and all subsequent

64-tile, 256-core chip

Core Core Core Core

L1I/D L1I/D L1I/D L1I/D

L2

L3 slice Router

Tile organization

Task unit
Mem / IO

M
e
m

 /
 I
O

Mem / IO

M
e
m

 / IO

Tile

Figure 4-2: Swarm 256-core chip and tile configuration.

4.3. Evaluation of Spatial Hints 69

Cores

256 cores in 64 tiles (4 cores/tile), 2 GHz, x86-64 ISA; 8B-wide ifetch, 2-level bpred
with 256×9-bit BHSRs + 512×2-bit PHT, single-issue in-order scoreboarded
(stall-on-use), functional unit latencies as in Nehalem [323], 4-entry load and store
buffers

L1 caches 16 KB, per-core, split D/I, 8-way, 2-cycle latency

L2 caches 256 KB, per-tile, 8-way, inclusive, 7-cycle latency

L3 cache
64 MB, shared, static NUCA [211] (1 MB bank/tile), 16-way, inclusive, 9-cycle bank
latency

Coherence MESI, 64 B lines, in-cache directories

NoC
8×8 mesh, 128-bit links, X-Y routing, 1 cycle/hop when going straight, 2 cycles on
turns (like Tile64 [392])

Main mem 4 controllers at chip edges, 120-cycle latency

Queues
64 task queue entries/core (16384 total),
16 commit queue entries/core (4096 total)

Swarm

instrs
5 cycles per enqueue/dequeue/finish_task

Conflicts

2 Kbit 8-way Bloom filters, H3 hash functions [66]
Tile checks take 5 cycles (Bloom filters) + 1 cycle per timestamp compared in the
commit queue

Commits Tiles send updates to GVT arbiter every 200 cycles

Spills
Coalescers fire when a task queue is 85% full
Coalescers spill up to 15 tasks each

Table 4.2: Configuration of the 256-core system.

chapters, we model in-order, single-issue cores. Cores run the x86-64 ISA. We use the
decoder and functional-unit latencies of zsim’s core model, which have been validated
against Nehalem [323]. Cores are scoreboarded and stall-on-use, permitting multiple
memory requests in flight.
Benchmark configuration: Table 4.1 reports the input sets used. We compile bench-
marks with gcc 6.1. All benchmarks have 1-core run-times of over 1.6 billion cycles
(Table 4.1). Benchmarks from Chapter 3 use the same inputs. color operates on a
YouTube social graph [233]. nocsim simulates a 16x16 mesh with tornado traffic at
a per-tile injection rate of 0.06. STAMP benchmarks use inputs between the recom-
mended “+” and “++” sizes, to achieve a run time large enough to evaluate 256-core
systems, yet small enough to be simulated in reasonable time. We fix the number of
kmeans iterations to 40 for consistency across runs. Like in Section 3.4, we report
results for the full parallel region.

4.3.2 Effectiveness of Hints

We first perform an architecture-independent analysis to evaluate the effectiveness of
hints. We profile all the memory accesses made by committing tasks, and use this to
classify each memory location in two dimensions: read-only vs. read-write, and single-

70 Chapter 4. Spatial Hints

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

c
ti
o
n
 o

f
A

c
c
e
s
s
e
s

bfs
sssp

astar
color

des

nocsim silo

genome

kmeans

Multi-Hint RO

Single-Hint RO

Multi-Hint RW

Single-Hint RW

Arguments

Figure 4-3: Classification of memory accesses.

hint vs. multi-hint. We classify data as read-only if, during its lifetime (from allocation
to deallocation time), it is read at least 1000 times per write (this includes data that is
initialized once, then read widely); we classify data as single-hint if more than 90% of
accesses come from tasks of a single hint. We select fixed thresholds for simplicity, but
results are mostly insensitive to their specific values.

Figure 4-3 classifies data accesses according to these categories. Each bar shows
the breakdown of accesses for one application. We classify accesses in five types: those
made to arguments,1 and those made to non-argument data of each of the four possible
types (multi-/single-hint, read-only/read-write).

Figure 4-3 reveals two interesting trends. First, on all applications, a significant
fraction of read-only data is single-hint. Therefore, we expect hints to improve cache
reuse by mapping tasks that use the same data to the same tile. All applications except
nocsim also have a significant amount of multi-hint read-only accesses; often, these are
accesses to a small amount of global data, which caches well. Second, hint effectiveness
is more mixed for read-write data: in des, nocsim, silo, and kmeans, most read-write
data is single-hint, while multi-hint read-write data dominates in bfs, sssp, astar,
color, and genome. Read-write data is more critical, as mapping tasks that write the
same data to the same tile not only improves locality, but also reduces conflicts.

In summary, hints effectively localize a significant fraction of accesses to read-only
data, and, in 4 out of 9 applications, most accesses to read-write data (fine-grain ver-
sions in Section 4.4 will improve this to 8 out of 9). We now evaluate the impact of
these results on performance.

4.3. Evaluation of Spatial Hints 71

1

256

512

S
p
e
e
d
u
p

bfs

1

256

512
sssp

1

128

256
astar

1

32

64

S
p
e
e
d
u
p

color

1

128

256
des

1

128

256
nocsim

1

128

256

S
p
e
e
d
u
p

1c 128c 256c

silo

1

32

64

1c 128c 256c

genome

1

128

256

1c 128c 256c

kmeans

Hints Random Stealing

Figure 4-4: Speedup of different schedulers from 1 to 256 cores, relative to a 1-core
system. We simulate systems with K × K tiles for K ≤ 8.

4.3.3 Comparison of Schedulers

Figure 4-4 compares the scalability of the Random, Stealing, and Hints schedulers on
1–256-core systems, similar to Figure 4-1a. As in Section 3.5, we keep per-core queue
and L2/L3 capacities constant, capturing performance per unit area.2

Overall, at 256 cores, Hints performs at least as well as Random (astar) or out-
performs it by 16% (color) to 13× (kmeans). At 256 cores, Hints scales from 39.4×
(color) to 279× (bfs). Hints outperforms Random across all core counts except on
kmeans at 16–160 cores, where Hints is hampered by imbalance (hint-based load bal-
ancing will address this). While Hints and Random follow similar trends, Stealing’s
performance is spotty. On the one hand, Stealing is the best scheduler in bfs and sssp,
outperforming Hints by up to 65%. On the other hand, Stealing is the worst scheduler
in most other ordered benchmarks, and tracks Random on unordered ones.

Figure 4-5 gives more insight into these results by showing core cycle and network

1Swarm passes up to three 64-bit arguments per task through registers, and additional arguments
through memory; this analysis considers both types of arguments equally.

2Section 3.5.3 details the contributions of scaling queue/cache capacities; the same trends hold.

72 Chapter 4. Spatial Hints

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
g

g
re

g
a

te
 c

o
re

 c
y
c
le

s

RSH RSH RSH RSH RSH RSH RSH RSH RSH

bfs
sssp

astar
color

des

nocsim silo

genome

kmeans

1.8 4.1 4.3 1.5

Commit Abort Spill Stall Empty

(a) Breakdown of total core cycles

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
C

 d
a
ta

 t
ra

n
s
fe

rr
e
d

R S H R S H R S H R S H R S H R S H R S H R S H R S H

bfs
sssp

astar
color

des

nocsim silo

genome

kmeans

2.0
Mem accs Aborts Tasks GVT

(b) Breakdown of total NoC data transferred

Figure 4-5: Breakdown of (a) core cycles and (b) NoC data transferred at 256 cores,
under Random, Stealing, and Hints schedulers. Each bar is normalized to Random’s.

traffic breakdowns at 256 cores. Each bar of Figure 4-5a shows the breakdown of
cycles spent (i) running tasks that are ultimately committed, (ii) running tasks that
are later aborted, (iii) spilling tasks from the hardware task queues, (iv) stalled on a
full task or commit queue, or (v) stalled due to lack of tasks. Each bar of Figure 4-5b
shows the breakdown of data transferred over the NoC (in total flits injected), including
(i) memory accesses (between L2s and LLC, or LLC and main memory), (ii) abort traffic
(including child abort messages and rollback memory accesses), (iii) tasks enqueued
to remote tiles, and (iv) GVT updates (for commits). In both cases, results are relative
to Random’s. We first compare Hints and Random, then discuss Stealing.
Hints vs. Random: Beyond outperforming Random, Hints also improves efficiency,
substantially reducing cycles wasted to aborted tasks and network traffic. Performance
and efficiency gains are highly dependent on the fraction of accesses to single-hint data
(Section 4.3.2).

In graph analytics benchmarks, Hints achieves negligible (astar) to moderate im-

4.3. Evaluation of Spatial Hints 73

provements (bfs, sssp, color). bfs, sssp, and color have a substantial number
of single-hint read-only accesses. These accesses cache well, reducing memory stalls.
This results in a lower number of committed-task cycles and lower network traffic.
However, cycles wasted on aborted tasks barely change, because nearly all accesses
to contentious read-write data are multi-hint. In short, improvements in these bench-
marks stem from locality of single-hint read-only accesses; since these are infrequent
in astar, Hints barely improves its performance.

In des, nocsim, and silo, Hints significantly outperforms Random, from 1.4×
(silo) to 3.8× (des). In these benchmarks, many read-only and most read-write
accesses are to single-hint data. As in graph analytics benchmarks, Hints reduces com-
mitted cycles and network traffic. Moreover, aborted cycles and network traffic drop
dramatically, by up to 6× and 7× (des), respectively. With Hints, these benchmarks are
moderately limited by load imbalance, which manifests as stalls in nocsim and aborts
caused by running too far-ahead tasks in des and silo.

Hints has the largest impact on the two unordered benchmarks, genome and kmeans.
It outperforms Random by up to 13× and reduces network traffic by up to 32× (kmeans).
For kmeans, these gains arise because Hints localizes and serializes all single-hint read-
write accesses to the small amount of highly-contended data (the K cluster centroids).
However, co-locating the many accessor tasks of one centroid to one tile causes imbal-
ance. This manifests in two ways: (i) Random outperforms Hints from 16–160 cores in
Figure 4-4, and (ii) empty stalls are the remaining overhead at 256 cores. Hint-based
load balancing addresses this problem (Section 4.5). In contrast to kmeans, genome
has both single- and multi-hint read-write data, but Hints virtually eliminates aborts.
Accesses to multi-hint read-write data rarely contend, while accesses to single-hint
read-write data are far more contentious. Beyond 64 cores, both schedulers approach
the limit of concurrency, dominated by an application phase with low parallelism; this
phase manifests as empty cycles in Figure 4-5a.

Stealing: Stealing shows disparate performance across benchmarks, despite careful
tuning and idealizations (Section 4.1). Stealing suffers from two main pathologies.
First, Stealing often fails to keep tiles running tasks of roughly similar timestamps,
which hurts several ordered benchmarks. Second, when few tasks are available, Steal-

ing moves tasks across tiles too aggressively, which hurts the unordered benchmarks.

Interestingly, although they are ordered, bfs and sssp perform best under Stealing.
Because most visited vertices expand the fringe of vertices to visit, Stealing manages
to keep tiles balanced with relatively few steals, and keeps most tasks for neighbor-
ing vertices in the same tile. Because each task accesses a vertex and its neighbors
(Listing 4.2), Stealing enjoys good locality, achieving the lowest committed cycles and
network traffic. bfs and sssp tolerate Stealing’s looser cross-tile order well, so Stealing

outperforms the other schedulers.

Stealing performs poorly in other ordered benchmarks. This happens because steal-
ing the earliest task from the most loaded tile is insufficient to keep all tiles running

74 Chapter 4. Spatial Hints

tasks with close-by timestamps. Instead, some tiles run tasks that are too far ahead
in program order. In astar and color, this causes a large increase in commit queue
stalls, which dominate execution. In des and silo, this causes both commit queue
stalls and aborts, as tasks that run too early mispeculate frequently. nocsim also suffers
from commit queue stalls and aborts, but to a smaller degree, so Stealing outperforms
Random but underperforms Hints at 256 cores.

By contrast, genome and kmeans are unordered, so they do not suffer from Stealing’s
loose cross-tile order. Stealing tracks Random’s performance up to 64 cores. However,
these applications have few tasks per tile at large core counts, and Stealing underper-
forms Random because it rebalances tasks too aggressively. In particular, it sometimes
steals tasks that have already run, but have aborted. Rerunning these aborted tasks at
the same tile, as Random does, incurs fewer misses, as the tasks have already built up
locality at the tile.

4.4 Improving Locality and Parallelism with Fine-Grain

Tasks

We now analyze the relationship between task granularity and hint effectiveness. We
show that programs can often be restructured to use finer-grain tasks, which make
hints more effective.

For example, consider the coarse-grained implementation of sssp in Listing 4.2.
Each task may read and write the vertex distances of several neighbors; conversely
each distance is read and written by multiple tasks. This renders hints ineffective for
read-write data. Instead, Listing 4.3 shows an alternative version of sssp where each
task operates on the data (distance and neighbor list) of a single vertex.

Instead of setting the distances of all its neighbors, this task creates one child task
per neighbor. Each task accesses its own distance. This transformation generates sub-
stantially more tasks, as each vertex is visited once for every incident edge. In a serial or
parallel version with software scheduling, the coarse-grain approach is more efficient,
as a memory access is cheaper than creating additional tasks. But in large multicores

with hardware scheduling, this tradeoff reverses: sending a task across the chip is cheaper

void ssspTaskFG(Timestamp pathDist , Vertex* v) {

if (v->distance == UNSET) {

v->distance = pathDist;

for (Vertex* n : v->neighbors)

swarm::enqueue(ssspTaskFG ,

pathDist + length(v,n) /*Timestamp*/,

cacheLine(n) /*Hint*/, n);

}

}

Listing 4.3: Fine-grain sssp implementation.

4.4. Improving Locality and Parallelism with Fine-Grain Tasks 75

0.0

0.5

1.0

1.5

2.0

2.5

F
ra

c
ti
o

n
 o

f
A

c
c
e

s
s
e

s

CG FG CG FG CG FG CG FG
bfs sssp astar color

4.6

Multi-Hint RO

Single-Hint RO

Multi-Hint RW

Single-Hint RW

Arguments

Figure 4-6: Classification of memory accesses for coarse-grain (CG) and fine-grain (FG)
versions.

than incurring global conflicts and serialization.

We have also adapted three other benchmarks with significant multi-hint read-write
accesses. bfs and astar follow a similar approach to sssp. In color, each task
operates on a vertex, reads (pulls [80, 270]) data from all neighboring vertices, then
updates its own. Our fine-grain version reverses this operation to read and update local
vertex data in one type of task, then send other tasks to push [80,270] updates to each
neighbor; every task reads or writes mutable data from at most one vertex.

We do not consider finer-grain versions of des, nocsim, silo, or kmeans because
they already have negligible multi-hint read-write accesses, and it is not clear how to
make their tasks smaller. We believe a finer-grain genome would be beneficial, but this
would require turning it into an ordered program to be able to break transactions into
smaller tasks while retaining atomicity.

Tradeoffs: In general, fine-grain tasks yield two benefits: (i) improved parallelism,
and, (ii) with hints, improved locality and reduced conflicts. However, fine-grain tasks
also introduce two sources of overhead: (i) additional work (e.g., when a coarse-grain
task is broken into multiple tasks, several fine-grain tasks may need to read or compute
the same data), and (ii) more pressure on the scheduler.

Effectiveness of Hints: Figure 4-6 compares the memory accesses of coarse-grain (CG)
and fine-grain (FG) versions. Figure 4-6 is similar to Figure 4-3, but bars are normal-
ized to the CG version, so the height of each FG bar denotes how many more accesses it
makes. Figure 4-6 shows that FG versions make hints much more effective: virtually all
accesses to read-write data become single-hint, and more read-only accesses become
single-hint. Nevertheless, this comes at the expense of extra accesses (and work): from
8% more accesses in sssp, to 4.6× more in color (2.6× discounting arguments).

76 Chapter 4. Spatial Hints

1

256

512

S
p

e
e

d
u

p

bfs

1

256

512
sssp

1

128

256

S
p

e
e

d
u

p

1c 128c 256c

astar

1

64

128

1c 128c 256c

color

FG Hints

FG Random

FG Stealing

CG Hints

CG Random

CG Stealing

Figure 4-7: Speedup of fine-grain (FG) and coarse-grain (CG) versions, relative to CG
versions on a 1-core system.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

A
g

g
re

g
a

te
 c

o
re

 c
y
c
le

s

R S H R S H R S H R S H

bfs sssp astar color

2.4 7.1

Empty

Stall

Spill

Abort

Commit

(a) Breakdown of total core cycles

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o

C
 d

a
ta

 t
ra

n
s
fe

rr
e

d

R S H R S H R S H R S H

bfs sssp astar color

GVT

Tasks

Aborts

Mem accs

(b) Breakdown of total NoC data transferred

Figure 4-8: Breakdown of (a) core cycles and (b) NoC data transferred in fine-grain
versions at 256 cores, under Random, Stealing, and Hints. Each bar is normalized to
the coarse-grain version under Random (as in Figure 4-5).

4.5. Data-Centric Load-Balancing 77

4.4.1 Evaluation

Figure 4-7 compares the scalability of CG and FG versions under the three schedulers.
Speedups are relative to the CG versions at one core. Figure 4-8 shows cycle and
network traffic breakdowns, with results normalized to CG under Random (as in Fig-
ure 4-5). Overall, FG versions improve Hints uniformly, while they have mixed results
with Random and Stealing.

In bfs and sssp, FG versions improve scalability and reduce data movement, com-
pensating for their moderate increase in work. Figure 4-8a shows that Hints improve
locality (fewer committed cycles) and reduce aborts. As a result, FG versions under
Hints incur much lower traffic (Figure 4-8b), up to 4.8× lower than CG under Hints

and 7.7× lower than CG under Random in sssp.
astar’s FG version does not outperform CG: though it reduces aborts, the smaller

tasks stress commit queues more, increasing stalls (Figure 4-8a). Nonetheless, FG
improves efficiency and reduces traffic by 61% over CG under Hints (Figure 4-8b).
color’s FG version performs significantly more work than CG, which is faster below

64 cores. Beyond 64 cores, however, FG reduces aborts dramatically (Figure 4-8a),
outperforming CG under Hints by 93%.

Finally, comparing the relative contributions of tasks sent in Figure 4-8b vs. Fig-
ure 4-5b shows that, although the amount of task data transferred across tiles becomes
significant, the reduction of memory access traffic more than offsets this scheduling
overhead.

In summary, fine-grain versions substantially improve the performance and effi-
ciency of Hints. This is not always the case for Random or Stealing, as they do not
exploit the locality benefits of fine-grain tasks.

4.5 Data-Centric Load-Balancing

While hint-based task mapping improves locality and reduces conflicts, it may cause
load imbalance. For example, in nocsim, routers in the middle of the simulated mesh
handle more traffic than edge routers, so more tasks operate on them, and their tiles
become overloaded. We address this problem by dynamically remapping hints across
tiles to equalize their load.

We have designed a new load balancer because non-speculative ones work poorly.
For example, applying stealing to hint-based task mapping hurts performance. The
key reason is that load is hard to measure: non-speculative schemes use queued tasks
as a proxy for load, but with speculation, underloaded tiles often do not run out of
tasks—rather, they run too far ahead and suffer more frequent aborts or full-queue
stalls.

Instead, we have found that the number of committed cycles is a better proxy for

78 Chapter 4. Spatial Hints

Commit

Queue
Task

Cycles Committed tasks

32 x 32 bits

1 7 1 … 61 63 63

H

Hint

Tile Map 2

Tile ID

0xF00

Bucket

Bucket

Cycle

Counters

Finished tasks

+

16 bits

(a) Configurable tile map (b) Profiling committed cycles

Figure 4-9: Hardware modifications of hint-based load balancer.

load. Therefore, our load balancer remaps hints across tiles to balance their committed

cycles per unit time. Our design has three components:
1. Configurable hint-to-tile mapping with buckets: Instead of hashing a hint to
produce a tile ID directly, we introduce a reconfigurable level of indirection. As shown
in Figure 4-9(a), when a new task is created, the task unit hashes its hint to produce
a bucket, which it uses to index into a tile map and obtain the destination tile’s ID, to
which it sends the task.

The tile map is a table that stores one tile ID for every bucket. To achieve fine-
enough granularity, the number of buckets should be larger than the number of tiles.
We find 16 buckets/tile works well, so at 256 cores (64 tiles) we use a 1024-bucket tile
map. Each tile needs a fixed 10-bit hint-to-bucket hash function and a 1024×6-bit tile
map (768 bytes).

We periodically reconfigure the tile map to balance load. The mapping is static
between reconfigurations, allowing tasks to build locality at a particular tile.
2. Profiling committed cycles per bucket: Accurate reconfigurations require profil-
ing the distribution of committed cycles across buckets. Each tile profiles cycles locally,
using three modifications shown in Figure 4-9(b). First, like the hashed hint (Sec-
tion 4.2.2), tasks carry their bucket value throughout their lifetime. Second, when a
task finishes execution, the task unit records the number of cycles it took to run. Third,
if the task commits, the tile adds its cycles to the appropriate entry of the per-bucket
committed cycle counters.

A naive design would require each tile to have as many committed cycle counters
as buckets (e.g., 1024 at 256 cores). However, each tile only executes tasks from the
buckets that map to it; this number of mapped buckets is 16 per tile on average. We
implement the committed cycle counters as a tagged structure with enough counters
to sample 2× this average (i.e., 32 counters in our implementation). Overall, profiling
hardware takes ∼600 bytes per tile.
3. Reconfigurations: Initially, the tile map divides buckets uniformly among tiles.

4.5. Data-Centric Load-Balancing 79

Periodically (every 500 Kcycles in our implementation), a core reads the per-bucket
committed cycle counters from all tiles and uses them to update the tile map, which it
sends to all tiles.

The reconfiguration algorithm is straightforward. It computes the total commit-
ted cycles per tile, and sorts tiles from least to most loaded. It then greedily donates
buckets from overloaded to underloaded tiles. To avoid oscillations, the load balancer
does not seek to completely equalize load at once. Rather, an underloaded tile can
only reduce its deficit (difference from the average load) by a fraction f (80% in our
implementation). Similarly, an overloaded tile can only reduce its surplus by a frac-
tion f . Reconfigurations are infrequent, and the software handler completes them in
∼50 Kcycles (0.04% of core cycles at 256 cores).

4.5.1 Evaluation

Figure 4-10 reports the scalability of applications with our hint-based load balancer,
denoted LBHints. LBHints improves performance on four applications, and neither

1

256

512

S
p
e
e
d
u
p

bfs

1

256

512
sssp

1

128

256
astar

1

64

128

S
p
e
e
d
u
p

color

1

128

256
des

1

256

512
nocsim

1

128

256

S
p
e
e
d
u
p

1c 128c 256c

silo

1

64

128

1c 128c 256c

genome

1

128

256

1c 128c 256c

kmeans

LBHints Hints Random Stealing

Figure 4-10: Speedup of Random, Stealing, Hints, and LBHints schedulers from 1 to
256 cores, relative to a 1-core system. For applications with coarse- and fine-grain
versions, we report the best-performing version for each scheme.

80 Chapter 4. Spatial Hints

0.0

0.2

0.4

0.6

0.8

1.0

A
g

g
re

g
a

te
 c

o
re

 c
y
c
le

s

R S H L R S H L R S H L R S H L

des nocsim silo kmeans

4.3 1.3

Empty

Stall

Spill

Abort

Commit

Figure 4-11: Breakdown of total core cycles at 256 cores under Random, Stealing,
Hints, and LBHints.

helps nor hurts performance on the other five.

In des, LBHints outperforms Hints by 27%, scaling to 236×. As described in Sec-
tion 4.1, in des load imbalance causes aborts as some tiles run too far ahead; LBHints’s
gains come from reducing aborts, as shown in Figure 4-11. In nocsim, LBHints out-
performs Hints by 27%, scaling to 325×, and in kmeans, LBHints outperforms Hints by
17%, scaling to 192×. These gains come from reducing empty stalls, commit queue
stalls, and aborts. Finally, LBHints improves silo by a modest 1.5% at 256 cores, and
by 18% at 144 cores. In all cases, LBHints does not sacrifice locality (same committed
cycles as Hints) and yields smooth speedups.

Finally, we also evaluated using other signals as a proxy for load in the hint-based
load balancer. Using the number of idle tasks in each tile to estimate load performs
significantly worse than LBHints. At 256 cores, this variant improves performance over
Hints by 12% on nocsim and 2% on silo, and degrades performance by 9% on des
and 1.2% on kmeans. This happens because balancing the number of idle tasks does
not always balance the amount of useful work across tiles.

4.5.2 Putting It All Together

Together, the techniques we have presented make speculative parallelism practical at
large core counts. Across our nine applications, Random achieves 58× gmean speedup
at 256 cores; Hints achieves 146×; with the fine-grain versions from Section 4.4 instead
of their coarse-grain counterparts, Hints scales to 179× (while Random scales to 62×
only); and LBHints scales to 193× gmean.3

3The corresponding harmonic-mean speedups are 25× for Random, 117× for Hints, 146× for Hints

with fine-grained versions, and 154× for LBHints.

4.6. Additional Related Work 81

4.6 Additional Related Work

4.6.1 Scheduling in Speculative Systems

Speculative execution models have seen relatively little attention with regards to opti-
mizing locality.

Ordered parallelism: TLS schemes dispatch tasks to threads as they become available,
without concern for locality [150, 168, 308, 309, 344, 349]. TLS schemes targeted sys-
tems with few cores, but cache misses hinder TLS scalability even at small scales [145].

Unordered parallelism: TM programs are commonly structured as threads that exe-
cute a fixed sequence of transactions [69, 169, 262]. Prior work has observed that it
is often beneficial to structure code as a collection of transactional tasks, and schedule
them across threads using a variety of hardware and software techniques [19, 21, 44,
45,110,116,320,402]. Prior transactional schedulers focus on limiting concurrency, not
spatial task mapping. These schemes are either reactive or predictive. ATS [402], CAR-
STM [114], and Steal-on-Abort [19] serialize aborted transactions after the transaction
they conflicted with, avoiding repeated conflicts. PTS [44], BFGTS [45], Shrink [116],
and HARP [21] instead predict conflicts by observing the read- and write-sets of prior
transactions, and serialize transactions that are predicted to conflict. Unlike predictive
schemes, we avoid conflicts by leveraging program hints. Hints reduce conflicts more
effectively than prior predictive schedulers, and require much simpler hardware. More-
over, unlike prior transactional schedulers, our approach does not rely on centralized
scheduling structures or frequent broadcasts, so it scales to hundreds of cores.

A limitation of our approach vs. predictive transaction schedulers is that program-
mers must specify hints. We have shown that it is easy to provide accurate hints. It
may be possible to automate this process, e.g. through static analysis or profile-guided
optimization; we defer this to future work.

Data partitioning: Kulkarni et al. [219] propose a software speculative runtime that
exploits partitioning to improve locality. Data structures are statically divided into a
few coarse partitions, and partitions are assigned to cores. The runtime maps tasks
that operate on a particular partition to its assigned core, and reduces overheads by
synchronizing at partition granularity. Schism [94] applies a similar approach to trans-
actional databases. These techniques work well only when data structures can be easily
divided into partitions that are both balanced and capture most parent-child task re-
lations, so that most enqueues do not leave the partition. Many algorithms do not
meet these conditions. While we show that simple hint assignments that do not rely
on careful static partitioning work well, more sophisticated mappings may help some
applications. For example, in des, mapping adjacent gates to nearby tiles may reduce
communication, at the expense of complicating load balancing. We leave this explo-
ration to future work.

Distributed transactional memory: Prior work has proposed STMs for distributed

82 Chapter 4. Spatial Hints

systems [57,183,318]. Some of these schemes, like ClusterSTM [57], allow migrating
a transaction across machines instead of fetching remotely-accessed data. However,
their interface is more onerous than hints: in ClusterSTM, programmers must know
exactly how data is laid out across machines, and must manually migrate transactions
across specific processors. Moreover, these techniques are dominated by the high cost
of remote accesses and migrations [57], so load balancing is not an issue.

4.6.2 Scheduling in Non-Speculative Systems

In contrast to speculative models, prior work for non-speculative parallelism has devel-
oped many techniques to improve locality, often tailored to specific program traits [6,
8,38,51,73,77,188,269,340,398,400]. Work-stealing [6,51] is the most widely used
technique. Work-stealing attempts to keep parent and child tasks together, which is
near-optimal for divide-and-conquer algorithms, and as we have seen, minimizes data
movement in some benchmarks (e.g., bfs and sssp in Section 4.3). Due to its low
overheads, work-stealing is the foundation of most parallel runtimes [121, 196, 217],
which extend it to improve locality by stealing from nearby cores or limiting the foot-
print of tasks [6,164,324,400], or to implement priorities [231,271,324]. Prior work
within the Galois project [176, 231, 289] has found that irregular programs (includ-
ing software-parallel versions of several of our benchmarks) are highly sensitive to
scheduling overheads and policies, and has proposed techniques to synthesize ade-
quate schedulers [271, 293]. Likewise, we find that work-stealing is sensitive to the
specific policies it uses.

In contrast to these schemes, we have shown that a simple hardware task schedul-
ing policy can provide robust, high performance across a wide range of benchmarks.
Hints enable high-quality spatial mappings and produce a balanced work distribution.
Hardware task scheduling makes hints practical. Whereas a software scheduler would
spend hundreds of cycles per remote enqueue on memory stalls and synchronization, a
hardware scheduler can send short tasks asynchronously, incurring very low overheads
on tasks as small as few tens of instructions. Prior work has also investigated hardware-
accelerated scheduling, but has done so in the context of work-stealing [221,326] and
domain-specific schedulers [161,394].

4.7 Summary

This chapter has presented spatial hints, a general technique that leverages application-
level knowledge to achieve high-quality spatial task mappings in speculative programs.
A hint is an abstract value, given at task creation time, that denotes the data likely to
be accessed by a task. We have enhanced Swarm from Chapter 3 to exploit hints by
(i) running tasks likely to access the same data on the same tile, (ii) serializing tasks
likely to access the same data, and (iii) balancing work across tiles in a locality-aware

4.7. Summary 83

fashion. We have also studied the relationship between task granularity and locality,
and shown that programs can often be restructured to use finer-grain tasks to make
hints more effective.

Together, these techniques make speculative parallelism practical on large-scale sys-
tems: at 256 cores, the baseline Swarm system accelerates nine challenging applica-
tions by 5–180× (gmean 58×). With the techniques in this chapter, speedups increase
to 64–561× (gmean 193×). Beyond improving gmean performance by 3.3×, these
techniques make speculation more efficient, reducing aborted cycles by 6.4× and net-
work traffic by 3.5× on average.

84 Chapter 4. Spatial Hints

CHAPTER 5

Espresso and Capsules:

Harmonizing Speculative and

Non-Speculative Execution in

Architectures for Ordered Parallelism

This work was conducted in collaboration with Victor A. Ying, Suvinay Subramanian,

Hyun Ryong Lee, Joel Emer, and Daniel Sanchez. The Espresso execution model, exception

model, and Capsules semantics were developed collaboratively. This thesis contributes the

safe dispatch of MAYSPEC and NONSPEC tasks, their conflict detection concerns, and the

promotion mechanism. This thesis also contributes to the development of applications,

and the architectural simulator.

Chapter 3 and Chapter 4 showed that speculative execution is an important tool
to extract abundant fine-grain irregular parallelism. However, even applications that
need speculation to scale have some work that is best executed non-speculatively. For
example, some tasks are straightforward to synchronize with locks or atomic instruc-
tions, and running them speculatively adds overhead and needless aborts. Moreover,
non-speculative parallelism is required to perform irrevocable actions, such as disk or
network I/O, in parallel.

Ideally, systems should support composition and coordination of speculative and
non-speculative tasks, and allow those tasks to safely synchronize access to the same
data. Unfortunately, prior techniques fall short of this goal. All prior hardware tech-
niques to combine speculative and non-speculative parallelism have been done in the

85

86 Chapter 5. Espresso and Capsules

context of hardware transactional memory (HTM) systems. HTM supports both spec-
ulative (transactional) and non-speculative (non-transactional) code. But HTM lacks

shared synchronization mechanisms, so speculative and non-speculative code cannot
easily access shared data [119, 382]. Moreover, most HTMs provide unordered execu-
tion semantics that miss many opportunities for parallelization. Systems that use spec-
ulation to unlock ordered parallelism, such as thread-level speculation (TLS), Swarm,
and HTMs with programmer-controllable commit order [69, 169, 291], disallow non-

speculative parallelism. In these systems, all tasks except the earliest active one execute
speculatively.

The goal of this chapter is to bring the benefits of non-speculative execution to sys-
tems that support ordered irregular parallelism. This is not merely a matter of adapting
HTM techniques. Unordered and ordered speculation systems address different needs
and need different mechanisms (Section 5.1). To meet this goal, we contribute two
main techniques.

The first contribution is Espresso, an expressive execution model that generalizes
Swarm and spatial hints for speculative and non-speculative parallelism (Section 5.2).
In Espresso, all work happens within tasks, which can run speculatively or non-specu-
latively. Tasks can create children tasks that run in either mode. Like Swarm, Espresso
efficiently supports fine-grain tasks of a few tens of instructions each, so many tasks
access a single piece of data, which is known when the task is created. To exploit
this, Espresso elevates Swarm timestamps and spatial hints into synchronization mech-
anisms that efficiently coordinate speculative and non-speculative tasks. Moreover,
Espresso lets the system decide whether to run certain tasks speculatively or non-spec-
ulatively, reaping the efficiency of non-speculative parallelism when it is plentiful, while
exploiting speculative parallelism when needed to scale.

The second contribution is Capsules, a technique that lets speculative tasks selec-
tively bypass hardware-managed speculation (Section 5.3) to rely on software-man-
aged techniques that avoid serialization or conflicts. Among other uses, this enables
scalable system services and concurrent system calls. Prior work in HTM has pro-
posed escape actions [64, 264, 411] and open-nested transactions [251, 264, 266] to
achieve similar goals. Unfortunately, these mechanisms are incompatible with many
modern speculative systems. Specifically, they are incompatible with speculative for-

warding which allows speculative tasks to read data written by uncommitted tasks (Sec-
tion 2.4.2, Section 3.3.4). Forwarding is critical for extracting ordered parallelism, but
causes tasks to lose data and control-flow integrity (Section 5.1.3). Capsules solve this
problem by implementing a safe mechanism to transition out of hardware-managed
speculation and by protecting certain memory regions from speculative accesses. Un-
like prior techniques, Capsules can be applied to any system for speculative system,
even if speculative tasks can lose data or control-flow integrity.

These contributions improve performance and efficiency, and enable new capabil-
ities. We implement Espresso and Capsules atop Swarm (Section 5.4) and evaluate

5.1. Motivation 87

them on a diverse set of challenging applications (Section 5.5). At 256 cores, Espresso
outperforms non-speculative-only execution by gmean 6.9× and Swarm’s speculative-
only execution by gmean 22%. Capsules enable the efficient implementation of impor-
tant system services, like a scalable memory allocator that improves performance by up
to 69×, and allow speculative tasks to issue concurrent system calls, e.g., to fetch data
from disk.

5.1 Motivation

We present three case studies that show the need to combine speculative and non-
speculative parallelism. Espresso subsumes prior speculative execution models (HTM,
TLS, and Swarm), so these case studies use our Espresso implementation (Section 5.4),
which does not penalize programs that do not use its features.

5.1.1 Speculation Benefits Are Input-Dependent

Just as Dijkstra’s algorithm for single-source shortest paths (sssp) motivated the need
for speculative parallelism in Chapter 3, it also aptly illustrates the tradeoffs between
speculative and non-speculative parallelism. sssp admits a non-speculative, one-distance-
at-a-time parallelization [107,230,253]. At any given time, the system only processes
tasks with the lowest unprocessed distance; these create tasks with higher distances.
After all tasks for the current distance have finished, cores wait at a barrier and collec-
tively move on to the next unprocessed distance. Since multiple same-distance tasks
may visit the same vertex, each task must use proper synchronization to ensure safety.

This non-speculative sssp works well if the graph is shallow and there are many
vertices with the same distance to the source. However, weighted graphs often have
very few vertices per distance, so non-speculative sssp will find little work between
barriers. In this case, scaling sssp requires exploiting ordered parallelism, processing
tasks across multiple distances simultaneously. While most tasks are independent, run-
ning dependent (same-vertex) tasks out of order will produce incorrect results. Hence,
exploiting ordered parallelism requires speculative execution, running tasks out of or-
der and committing them in order. The Swarm architecture can do this, but it runs all
tasks (except the earliest active one) speculatively (Chapter 3).

Neither strategy is always the best. Figure 5-1 compares the speedups of the non-
speculative (Non-spec) and fully speculative (All-spec) versions of sssp on two graphs:
usa, a graph of Eastern U.S. roads, and cage, a graph arising from DNA electrophoresis.
Both versions leverage Espresso’s hardware-accelerated task scheduling and locality-
aware execution (see Section 5.5.1 for methodology). At 256 cores, on usa All-spec is
248× faster than Non-spec, which barely scales because there are few vertices per dis-
tance. By contrast, cage is a shallow unit-weight graph with about 36000 vertices per
distance, so Non-spec outperforms All-spec by 21%, as it does not incur the overheads

88 Chapter 5. Espresso and Capsules

Non-spec All-spec Espresso

1

256

512

S
p

e
e

d
u

p

1c 128c 256c

usa

1

128

256

1c 128c 256c

cage

Figure 5-1: Speedup of three versions of sssp on 1–256 cores for two graphs. Total
cache and queue capacities grow with core count (Section 5.5.1), causing superlinear
speedup on usa.

of speculative execution.
These results show that forcing the programmer to choose whether to use all-or-

nothing speculation is undesirable. The best way to parallelize sssp is a hybrid strat-
egy: all lowest-distance tasks should run non-speculatively, relying on cheaper synchro-
nization mechanisms to provide mutual exclusion, while higher-distance tasks should
run speculatively to exploit ordered parallelism. But this requires the same task to be
runnable in either mode, which is not possible in current systems.

Espresso provides the mechanisms needed for this hybrid strategy (Section 5.2).
First, it provides two synchronization mechanisms, timestamps and locales, that have
consistent semantics across speculative and non-speculative tasks. Second, it lets the
system choose whether to speculate or not, based on the amount of available par-
allelism. Figure 5-1 shows that the Espresso version of sssp achieves the best per-
formance on both graphs, because it only uses speculative parallelism when non-
speculative parallelism is insufficient.

5.1.2 Combining Speculative and Non-Speculative Tasks

Even in applications that need speculative parallelization, some tasks are best run
non-speculatively. Consider des, our discrete event simulator for digital circuits (List-
ing 4.1). Each des task evaluates the effects of toggling a gate input at a particular sim-
ulated time; if the gate’s output toggles, the task creates new tasks for gates connected
to this output. As with sssp, ordered speculation enables des to scale to hundreds of
cores (Section 4.3).

However, a common feature in logic simulators is to log the waveforms of interme-
diate signals. We extend des so that each simulation task that causes a toggle creates
a separate logging task that writes the event to a per-core in-memory log.

Although simulation tasks require ordered speculation to scale, there is no good
reason for logging tasks to speculate. Logging is trivial to synchronize. Prior architec-
tures for ordered parallelism, however, run all tasks speculatively. This causes abort
cascades: if a simulation task aborts, its child logging task aborts, and this in turn

5.1. Motivation 89

causes all logging tasks that have later written to the same log to abort.

1

128

256

S
p
e
e
d
u
p

1c 128c 256c

Es
pr

es
so

All-spec

Figure 5-2: des speedup
on 1–256 cores, with
speculative and non-spec-
ulative logging tasks.

The right strategy is to let each (ordered) specula-
tive simulation task launch an (unordered) non-speculative
logging task. These logging tasks can run in parallel, but a
logging task runs only after its speculative parent commits,
avoiding mispeculation. If its parent aborts, it is discarded.
Espresso enables this approach.

Figure 5-2 compares the speedups of using speculative
and non-speculative logging in des. Speculative logging
causes needless aborts that limit des’s performance beyond
64 cores. At 256 cores, non-speculative logging is 4.1×
faster.

Prior work in HTM has proposed to let transactions
register commit handlers that run only at transaction com-
mit [251]. Espresso generalizes this idea to let any task
create speculative or non-speculative children.1 Additionally, Espresso’s implementa-
tion requirements are different: unordered HTMs commit transactions immediately
after running, while ordered tasks can stay speculative many cycles after they finish.

5.1.3 Software-Managed Speculation Improves Parallelism

When a speculative task produces output that is not immediately needed, it can create
a non-speculative child task (Section 5.1.2). However, a speculative task often needs
to use the results of some action, such as allocating memory, that is best done without
hardware speculation.

Prior work in HTM has proposed escape actions for this purpose [64, 264, 411].
Escape actions let a transaction temporarily turn off hardware conflict detection and
version management and run arbitrary code, including system calls. An escape action
can register an abort handler that undoes its effects if the enclosing transaction aborts.
For example, a transaction can use escape actions to allocate memory from a con-
ventional thread-safe allocator, avoiding conflicts on allocator metadata. The escape
action’s abort handler frees the allocated memory.

Unfortunately, escape actions and similar mechanisms, such as open-nested trans-
actions [251, 264, 266], are incompatible with architectures for ordered parallelism
and many recent HTMs. These architectures perform speculative data forwarding [25,
137, 199, 291, 296, 302, 344, 349], which lets tasks access data written by earlier, un-
committed tasks.2 Speculative forwarding is crucial because ordered tasks may take a
long time to commit. Without speculative forwarding, many ordered algorithms scale

1 For example, a non-speculative child with the same timestamp as its speculative parent is equivalent
to a transactional commit handler.

2 We follow TLS terminology [291, 344, 349]; in software TMs, lack of speculative forwarding is
referred to as opacity [97,163].

90 Chapter 5. Espresso and Capsules

poorly [277, 349] (e.g., des is 5× slower at 256 cores).3 However, letting tasks ac-
cess uncommitted state means they may read inconsistent data, and lose data and
control-flow integrity (e.g., by dereferencing or performing an indirect jump to an in-
valid pointer). This makes escape actions unsafe: a mispeculating task can begin a
malformed escape action, or an escape action might read temporarily clobbered data.
Such an escape action could perform actions that cannot be undone by an abort han-
dler.

1

128

256

S
p
e
e
d
u
p

1c 128c 256c

ca
pa

llo
c

TCMalloc

Figure 5-3: des speedup
on 1–256 cores, with dif-
ferent allocators.

Without escape actions, prior ordered speculative sys-
tems are forced to run memory allocation routines spec-
ulatively, and suffer from spurious conflicts on allocator
metadata. Figure 5-3 shows the performance of des when
linked with TCMalloc [154], a state-of-the-art memory al-
locator that uses thread-local structures. des scales poorly
with TCMalloc, achieving a speedup of 23× at 100 cores
and declining significantly at higher core counts, where it
is overwhelmed with aborts.

Capsules (Section 5.3) solve this problem by provid-
ing a general solution for providing protected access to
software-managed speculation. The program prespecifies
a set of capsule functions, and the system guarantees that
speculative tasks can only disable hardware speculation by invoking these functions.
This prevents mispeculating tasks from invoking arbitrary actions. Moreover, capsule
functions have access to memory that is not conflict-checked and is protected from ac-
cesses by speculative tasks. Figure 5-3 shows the performance of capalloc, a memory
allocator similar to TCMalloc that implements all allocation routines, such as malloc,
in capsule functions and uses lock-based synchronization. capalloc makes des scale
well, outperforming TCMalloc by 39× at 256 cores.

5.2 Espresso Execution Model

Espresso programs consist of tasks that run speculatively or non-speculatively. All tasks
can access shared memory and make arbitrary system calls. Espresso provides two
synchronization mechanisms: timestamps to convey order requirements and locales to
convey mutual exclusion and locality information. Each task can optionally be given a
timestamp and a locale. Timestamps and locales have common semantics among spec-
ulative and non-speculative tasks, allowing tasks running in either mode to coordinate
accesses to shared data.

Espresso supports three task types that control speculation: SPEC tasks always run
speculatively, NONSPEC tasks always run non-speculatively, and MAYSPEC tasks may run

3 Without speculative forwarding, systems must stall [262] or abort [56, 401] tasks that access un-
committed data.

5.2. Espresso Execution Model 91

void ssspTask(Timestamp dist, Vertex* v) {

if (v->distance == UNSET) {

v->distance = dist;

for (Vertex* n : v->neighbors)

espresso::enqueue<MAYSPEC >(&ssspTask,

/*timestamp=*/ dist + weight(v,n),

/*locale=*/ n->id, n);

}

}

void main() {

[...] /* Set up graph and initial values */

espresso::enqueue<MAYSPEC >(&ssspTask,

0, source->id, source);

espresso::run();

}

Listing 5.1: Espresso implementation of Dijkstra’s sssp algorithm.

in either mode. All tasks can create children tasks of any type.

We expose these features through a simple API. Tasks create children tasks by calling
the following inlined, non-blocking function:

espresso::enqueue<type>(taskFn,
[timestamp , locale ,] args...)

The new task will run the task function taskFn with arguments supplied through reg-
isters. If timestamp or locale are given, the task will be synchronized according to
their semantics.

Espresso programs start by creating one or more initial tasks with espresso::enqueue
and calling espresso::run, which returns control after all tasks finish. Listing 5.1
shows the implementation of sssp described in Section 5.1.1, which we will use to
explain Espresso’s semantics. In this example, the program creates one initial task to
visit the source vertex.

5.2.1 Espresso Semantics

Espresso runs all speculative tasks atomically, i.e., speculative tasks never appear to
interleave. Moreover, Espresso provides strong atomicity [53, 96] between specula-
tive and non-speculative tasks: the effects of a speculative task are invisible to non-
speculative tasks until the speculative task commits (containment [53]), and non-
speculative writes do not appear mid-speculative-task (non-interference [53]). Espresso
does not guarantee atomicity among non-speculative tasks.

Atomicity has implications on the allowed concurrency between parent and child
tasks. If a parent creates a speculative child, the child appears to execute after the
parent finishes. If a speculative parent creates a non-speculative child, the child does
not run until after the parent commits (e.g., Section 5.1.2).

There are no atomicity guarantees among non-speculative tasks. The programmer

92 Chapter 5. Espresso and Capsules

Task mode Synchronization mechanism

Timestamps Locales

Non-speculative barriers mutual exclusion
Speculative ordered commits reduce conflicts

Table 5.1: The effect of Espresso’s synchronization mechanisms.

must ensure non-SPEC tasks are well-synchronized, that is, they avoid race conditions.

Espresso provides two synchronization mechanisms to control how the system ex-
ecutes tasks. Timestamps enforce order among tasks, and locales enforce mutual ex-
clusion. Timestamps and locales have consistent semantics for both speculative and
non-speculative tasks, but have different effects on concurrency, described below and
summarized in Table 5.1.

Timestamps: Like with Swarm (Chapter 3), timestamps are integers that specify a par-
tial order among tasks. If two tasks have distinct timestamps, the system ensures they
appear to execute in timestamp order. A timestamped task may only assign timestamps
greater than or equal to its own to its children. A non-timestamped task cannot create
timestamped children.

Timestamps impose barrier semantics among non-speculative tasks. For example, a
non-speculative task with timestamp 10 will not run until all tasks with timestamp< 10
have finished and committed. However, speculative tasks can run out of order, specu-
lating past these barriers. Timestamps only constrain the commit order of speculative
tasks. Hence, speculation can increase parallelism for ordered algorithms.

Listing 5.1 shows timestamps in action. Each sssp task has a timestamp that corre-
sponds to its path’s distance to the source vertex. If all tasks had type NONSPEC instead
of MAYSPEC, this code would implement the non-speculative, one-distance-at-a-time
sssp version from Section 5.1.1. If all tasks had type SPEC, the code would implement
the fully speculative sssp version.

Locales: A locale is an integer that, if specified, denotes the data the task will ac-
cess. Locales enforce mutual exclusion: if two tasks have the same locale, Espresso
guarantees that they do not run concurrently. For tasks that only need to acquire a sin-
gle lock, locales are a more efficient alternative to conventional shared-memory locks.
Moreover, Espresso hardware uses locales to map tasks that are likely to access the
same data to the same chip tile in order to exploit locality, as we saw with spatial hints
(Chapter 4).

For non-speculative tasks, locales can be used as mutexes to write safe parallel
code. For speculative tasks, locales are not necessary, since these tasks already appear
to execute atomically. Locales are still useful in reducing aborts (Chapter 4) as well as
exploiting locality across speculative and non-speculative tasks.

Listing 5.1 shows locales in action. Each sssp task uses the ID of the vertex it
processes as its locale. For non-speculative tasks, this implements mutual exclusion

5.2. Espresso Execution Model 93

among tasks that access the same vertex. For both speculative and non-speculative
tasks, this approach sends all tasks that operate on the same vertex to the same chip tile,
improving temporal locality. To avoid cache ping-ponging, we apply the optimization
from Chapter 4 that uses the cache line of the vertex as the locale.

These synchronization mechanisms cover important use cases, but are not exhaus-
tive. For example, locales only provide single-lock semantics, but a task may need to
acquire multiple locks. In this case, the task may either use shared-memory locks or
resort to speculative execution by marking the task SPEC. Espresso does not support
multiple locales per task because doing so would be much more complex.
Comparison with other execution models: Espresso generalizes Swarm, HTM, and
message-driven processors. Swarm programs consist of all-timestamped SPEC tasks.
Espresso extends Swarm to support non-speculative tasks and to make timestamps op-
tional. Locales extend and restrict spatial hints to provide mutual exclusion among
non-speculative tasks. Espresso also subsumes HTM. HTM programs consist of trans-
actional (speculative) and non-transactional (non-speculative) code blocks. These are
equivalent to non-timestamped SPEC and NONSPEC tasks. Finally, Espresso can em-
ulate message-driven processors [98, 276], supporting an actor model [10], through
locale-addressed, non-timestamped NONSPEC tasks.

5.2.2 MAYSPEC: Tasks That May Speculate

Espresso tasks run speculatively or not. However, the programmer must choose one of
three types for each task: SPEC, NONSPEC, or MAYSPEC. MAYSPEC lets the system decide
which mode the task should run in. This is useful as there are times when it is safe
to run a task speculatively but not non-speculatively. If the system wants to dispatch a
MAYSPEC task that cannot yet run non-speculatively, the task runs speculatively.

Choosing between NONSPEC and MAYSPEC affects performance but not correctness.
NONSPEC and MAYSPEC tasks must already be well-synchronized, so they are also safe
to run speculatively. If the task will be expensive to run speculatively (e.g., the logging
tasks in Section 5.1.2), it should be NONSPEC. Otherwise, MAYSPEC lets the system
decide.

Listing 5.1 shows MAYSPEC in action. All sssp tasks are tagged as MAYSPEC because
they can run in either mode, as locales enforce mutual exclusion among same-vertex
tasks. This implements the right strategy discussed in Section 5.1.1: tasks with the low-
est unprocessed distance run non-speculatively, and if this non-speculative parallelism
is insufficient, the system runs higher-distance (i.e., higher-timestamp) tasks specula-
tively.

5.2.3 Exception Model

Espresso does not restrict the actions that tasks may perform. Beyond accessing shared
memory, both speculative and non-speculative tasks may invoke irrevocable actions that

94 Chapter 5. Espresso and Capsules

cannot be undone by a versioned memory system. That is, tasks in either running mode
can call into arbitrary code, including code that triggers exceptions and invokes system
calls.

To provide precise exception semantics and enforce strong atomicity, a speculative
task that triggers an exception or a system call yields until it becomes the earliest active
task and is then promoted to run non-speculatively. To guarantee promoted tasks still
appear strongly atomic, a promoted task does not run concurrently with any other
non-speculative task (Section 5.4.1). Previous TLS systems used similar techniques to
provide precise exceptions [168,348].

Promotions can be expensive but are rare in practice. To avoid frequent and ex-
pensive promotions, tasks that frequently invoke irrevocable actions should use the
NONSPEC type. Capsules further reduce the need for promotions.

Finally, Espresso introduces a promote instruction to expose this mechanism. If
called from a speculative task, promote triggers an exception that will, in the absence
of conflicts, eventually promote the task. If called from a non-speculative task, promote
has no effect. promote has two uses. First, it can be invoked by tasks that detect an
inconsistency and know they must abort, similar to transactional retry [172]. Second,
promote lets code that must perform an expensive action avoid doing so speculatively
(e.g., Listing 5.2 in Section 5.3).

5.3 Capsules

Although hardware version management is more efficient than a software-only equiv-
alent [67,115], hardware-only speculation can cause more serialization. For example,
Espresso supports irrevocable actions in speculative tasks by promoting them to run
non-speculatively, an expensive process that limits parallelism. Irrevocable actions can-
not run under the control of hardware speculation, since hardware cannot undo their
effects. This is limiting, because letting speculative tasks invoke system calls in parallel
has many legitimate uses [39], like concurrent reads from disk. Beyond system calls,
tasks may wish to perform software-managed speculative actions that exploit applica-
tion-specific parallelization strategies, such as commutativity [86, 218, 268, 313]. As
we saw in Section 5.1.3, prior work proposed escape actions to achieve this goal [64,
264, 411]. But escape actions are incompatible with systems for ordered parallelism
that need speculative forwarding. Forwarding can make speculative tasks lose data and
control-flow integrity, making it impossible for software to dependably undo specula-
tive actions [163].

Specifically, escape actions suffer from two problems with forwarding. First, a mis-
peculating task that has lost control-flow integrity may jump to malformed or invalid
code that initiates an escape action and performs an unintended system call, such as
overwriting a file or exiting the program, that cannot be undone. Second, mispeculat-
ing tasks may clobber state used by escape actions, causing them to misbehave when

5.3. Capsules 95

they read this uncommitted data. For example, consider an escape action that allocates
memory from a free list. A mispeculating task can temporarily clobber the free list,
causing the escape action to return invalid data or crash.

To address these issues, we present Capsules, a technique to enable safe software-
managed speculative actions in any speculative system. Capsules are a powerful tool
for systems programmers. Similar to escape actions, Capsules can avoid the overheads
of hardware conflict detection, perform irrevocable actions, and undo speculative ac-
tions by registering abort handlers. Capsules enable programmers to guarantee safety
even if a mispeculating task attempts to use Capsules incorrectly. It does this through
two mechanisms. First, it provides untracked memory that is protected from mispec-
ulating tasks. Second, it uses a vectored-call interface that guarantees control-flow in-
tegrity within a capsule. We add three new instructions to the ISA, capsule_call,
capsule_ret, and capsule_abort_handler. We explain their semantics below.

5.3.1 Untracked Memory

We allow memory segments or pages in the application’s address space to be classified
as untracked. Untracked memory is neither conflict-checked nor versioned in hardware,
eliminating speculation overheads for accesses to untracked data. We use standard
virtual memory protection mechanisms to prevent speculative tasks from accessing un-
tracked memory without entering a capsule (Section 5.4.2). This is analogous to how
OS kernel memory is protected from userspace code.

Software-managed speculative state should be maintained in untracked memory
both to avoid the overhead of hardware conflict detection as well as to ensure it is
not corrupted by speculative tasks. Accesses to untracked data can be synchronized
conventionally (e.g., with locks) to ensure safety.

5.3.2 Safely Entering a Capsule

Since a speculative task can lose control-flow integrity, we need a way to enter a capsule
that guarantees the integrity of capsule code. To achieve this, we use a vectored-call

interface, similar to that of system calls.
We require that all capsule code is wrapped into capsule functions placed in un-

tracked memory. A capsule-call vector stored in untracked memory contains pointers
to all capsule functions. Since speculative tasks cannot access untracked memory, they
can only call capsule functions with the capsule_call instruction. capsule_call is
similar to an ordinary call instruction, but it takes an index into the capsule-call vec-
tor as an operand instead of a function address. capsule_call looks up the index in
the vector. If the index is within bounds, it jumps to its corresponding function and
disables hardware speculation; if the index is out of bounds, it triggers an exception.
capsule_ret is used to return from a capsule function.

96 Chapter 5. Espresso and Capsules

The vectored-call interface retains safety even when speculative tasks lose control-
flow integrity. A task can only enter a capsule through a capsule_call instruction,
which can only jump to the beginning of a known capsule function.

5.3.3 Capsule Execution

A capsule may access untracked memory and perform irrevocable actions such as sys-
tem calls without triggering a promotion. It typically operates on untracked memory,
but may also access tracked memory (e.g., to make data such as file contents available
to non-capsule speculative tasks). Its accesses to tracked memory use the normal con-
flict detection and resolution mechanisms. This ensures loads from tracked memory
return valid data if the capsule is running non-speculatively, and that the enclosing
task will eventually abort if a capsule reads invalid data while running speculatively.

Like a system call, a capsule function cannot trust its caller to be well behaved, as
the caller could be mispeculating. A speculatively running capsule may receive invalid
data through arguments or tracked memory, or perhaps should not have been called
due to control mispeculation. To handle these, it may register an abort handler to
compensate for its actions. It uses the capsule_abort_handler instruction, which
takes a function pointer and arguments as operands. The given function will run non-
speculatively if the capsule’s enclosing task aborts.

A capsule function running speculatively must ensure it only performs actions for
which it can safely compensate. It must check its arguments and data read from tracked
memory before using the data in an unsafe way. To avoid performing rare actions that
would be very expensive or unsafe to perform speculatively, it may use the promote
instruction, which is a no-op if running non-speculatively, but causes the enclosing task
to abort if it was speculative and immediately exits the capsule. Thus, code following a
promote instruction will only run non-speculatively, is guaranteed to be in a consistent
state, and any abort handlers it registers will not run.

5.3.4 Capsule Programming Example

Listing 5.2 shows how malloc can be written as a capsule function. malloc first checks
that its stack pointer is valid and has sufficient space, using promote otherwise. malloc

void* malloc(size_t bytes) {

if (BAD_STACK()) promote;

if (bytes > (16 << 20)) promote;

if (bytes == 0) capsule_ret(nullptr);

void* ptr = do_alloc(bytes);

capsule_abort_handler(&do_dealloc , ptr);

capsule_ret(ptr);

}

Listing 5.2: malloc implemented as a capsule function.

5.4. Implementation 97

also checks whether the requested allocation is very large, using promote if the pro-
gram wants to allocate more than 16 MB. This avoids wasting excessive space to satisfy
large requests from mispeculating tasks. After these checks, malloc calls do_alloc,
which allocates the requested chunk. Finally, malloc uses capsule_abort_handler
to register a call to do_dealloc as the abort handler. In this example, do_alloc
and do_dealloc are thread-safe functions that use conventional synchronization (e.g.,
locks) to perform allocation and deallocation of heap memory. All allocator metadata
(e.g., free lists) are stored in untracked memory. If the calling task aborts, the call to
do_dealloc runs, freeing the allocated memory.

5.4 Implementation

We implement Espresso and Capsules by extending Swarm (Chapter 3). Swarm is
a strong baseline because it already provides most of the mechanisms needed for
Espresso: it efficiently supports fine-grain tasks, implements scalable ordered specu-
lation using timestamps, and performs locality-aware execution (Chapter 4). However,
Espresso could be implemented over classic TLS systems as well, and Capsules are a
general technique that could be applied to any speculative system, including HTM, TLS,
Swarm, or Espresso. We first describe how Swarm’s features are extended to implement
Espresso, then describe the implementation of Capsules.

5.4.1 Espresso Microarchitecture

Espresso generalizes the Swarm microarchitecture to (i) support non-speculative tasks,
(ii) handle their interactions with speculative tasks, and (iii) implement exceptions.

Tasks use the same hardware task descriptor format as in Swarm, with two ad-
ditional bits to store the type (SPEC, NONSPEC, or MAYSPEC). The dispatch, queuing,
speculation mechanisms, and commit protocol of SPEC tasks are unchanged from those
of Swarm in Section 3.3.
Non-speculative tasks require simple changes to the dispatch and queuing logic in ev-
ery tile’s task unit. A NONSPEC task may run only when (i) its parent is non-speculative
or committed, (ii) it is not timestamped or its timestamp matches that of the earliest
active task, (iii) it has no locale or its locale does not match that of any running task,
and (iv) the system is not satisfying a promotion.

The tile’s dispatch logic performs all these checks using local state. It picks the
lowest-timestamp task available to run, but excludes NONSPEC tasks that are not yet
runnable. Locales regulate task dispatch in the same way as spatial hints (Section 4.2):
tasks with the same locale are enqueued to the same tile and serialized, providing
mutual exclusion.

A non-speculatively running task frees its task queue entry when dispatched and
does not use a commit queue entry. This reduces queue pressure. Recall that when

98 Chapter 5. Espresso and Capsules

T
im
e

(b) Speculative parent creates

speculative child, then aborts

TASK_ACK(childPos)

TASK(descriptor)

PARENT_ABORT(childPos)

LTU RTU

(c) Non-speculative

parent creates child

RTU

TASK_ACK

TASK_UNTIED(descriptor)

LTU

(d) Speculative parent keeps non-

speculative child locally until commit

TASK

TASK_ACK

TASK_UNTIED(descriptor)

LTU RTU

(a) Speculative parent creates

speculative child, ends, then commits

LTU RTUCore

TASK_ACK(childPos)

TASK(descriptor)

PARENT_COMMIT(childPos)

CREATE(desc)

TASK_END

T
im
e

Figure 5-4: Swarm (a,b) and Espresso (a,b,c,d) enqueue protocol between a local task
unit (LTU) and a remote task unit (RTU), as a parent task creates a child.

a speculative task creates children, the local task unit asynchronously sends their task
descriptors to remote tiles and tracks their destinations to enable parent commit or
abort notifications (Section 3.3.2), as shown in Figure 5-4(a) and Figure 5-4(b). In
contrast, since a non-speculative task can never abort, it does not track its children or
send them any notifications, as shown in Figure 5-4(c). This reduces traffic and allows
non-speculative tasks to create an unbounded number of children; their children can
always be spilled to memory (Section 3.3.7).

Mixing non-speculative and speculative tasks requires changing the dispatch, con-
flict detection, and commit mechanisms:

1. Speculative NONSPEC enqueue: If a speculative task creates a NONSPEC child destined
to a remote tile, since the child cannot run before its parent commits, the child task
descriptor is buffered at its parent’s local task unit, and the request to enqueue the child
is sent to the remote tile only once the parent commits (Figure 5-4(d)). This avoids
needless abort and commit notifications.

2. MAYSPEC dispatch: A MAYSPEC task is always speculatively runnable, but may exploit
non-speculative execution for efficiency. The dispatch logic checks if the task meets the
same conditions for a NONSPEC task to run. If so, the task executes non-speculatively;
otherwise, it executes speculatively.

3. Conflicts: A non-speculative task does not track read/write-sets. However, to im-
plement strong atomicity, its accesses are conflict-checked against speculative tasks. A
non-speculative access that conflicts with a running speculative task’s read/write set
aborts the speculative task.

If a non-speculative task N conflicts with a finished speculative task S, S may be
unsafe to abort. Recall that tiles periodically communicate to find the virtual time (VT)
of the earliest active task, and all finished tasks whose VTs precede that earliest active
VT must then commit (Section 3.3.6). The global virtual time arbiter tracks the earliest

5.4. Implementation 99

active VT in the system. If S’s tile has sent a locally earliest active VT to the commit
arbiter that is higher than S’s VT, S may later be deemed committed by the arbiter. To
handle this race, S’s tile NACKs N ’s conflicting memory request, causing N to stall until
the arbiter replies and S’s fate is known. This race is very rare.

4. Commit protocol: When tiles send their earliest active VT to the arbiter, the time-
stamps of non-speculative tasks are included for consideration. This prevents any spec-
ulative task with a higher timestamp from committing, while allowing same-timestamp
speculative tasks to commit. As they inherently “win” all conflicts, non-speculative tasks
have no tiebreaker.

Exceptions: Any attempt by a speculative task to perform an irrevocable action (e.g., a
system call or segmentation fault) causes a speculative exception. There are two causes
for speculative exceptions: either the task legitimately needs to execute an irrevocable
action, or it is a mispeculating task performing incorrect execution.

Whereas TLS schemes stall the core running the exceptioned task [168,348], Espresso
leverages commit queues to avoid holding up a core. The exceptioned task is immedi-
ately stopped and its core becomes available to run another task. Its writes are rolled
back, and its children tasks are aborted and discarded. Espresso then keeps the task’s
read set active in the commit queue. If the read set detects a conflict with an earlier
task, the exceptioned task was mispeculating, so it becomes runnable again for specu-

lative execution. However, if the task becomes the earliest active task without having
suffered a conflict, it legitimately needs to perform an irrevocable action.

After an exceptioned task’s tile finds it became the earliest active task in the system,
the tile promotes it to re-run non-speculatively. This proceeds as follows. First, the
task’s tile sends a promotion request to the virtual time arbiter. The arbiter forbids other
tiles from dispatching further non-speculative tasks. This is because the promoted task
was speculative, so it must run isolated from all other tasks. After all currently running
non-speculative tasks have finished, the exceptioned task is promoted and allowed to
run. Although the promoted task cannot run concurrently with other non-speculative
tasks (to maintain isolation), other speculative tasks can continue execution, ordered
after the promoted task. Though expensive, this process happens rarely.

In summary, Espresso requires simple extensions to Swarm, and in return substan-
tially improves performance and programmability, as we will see in Section 5.5.

5.4.2 Capsules Implementation

Capsules extend the system to implement untracked memory and a vectored-call inter-
face to capsule functions.

Untracked memory: Our implementation of untracked memory makes simple exten-
sions to standard virtual memory protection mechanisms. In addition to the standard
read, write, and execute permissions bits, we add an untracked permission bit to each
page table entry and TLB entry. An access to an untracked page from a speculative

100 Chapter 5. Espresso and Capsules

task that is not in a capsule causes a memory-protection exception. Programs can re-
quest tracked or untracked memory using the mmap system call, and change a page’s
permissions with the mprotect system call. Alternatively, untracked memory could be
implemented as a new virtual memory segment.

To track whether the current task is in a capsule, each core has a capsule depth

counter, initialized to zero at task start to indicate that the task is not yet in a capsule.
capsule_call increments the capsule depth counter by one, and capsule_ret decre-
ments it by one. This allows capsule functions to call other capsule functions, while
tracking when the task finally exits the outermost capsule.
Safely entering a capsule: The capsule-call vector contains pointers to all capsule func-
tions and is stored at a fixed location in untracked memory. It would be cumbersome
to manually assign unique IDs to capsule functions and build the call vector. How-
ever, the linker and loader can automate this process, similarly to how they handle
position-independent code [193].
Capsule aborts: If a task aborts, any registered abort handlers must run non-specu-
latively. The task creates each abort handler as a NONSPEC task with no timestamp:
unordered with respect to timestamped tasks. In slight contrast to a regular NONSPEC
child of a speculative task, the abort handler task descriptor is buffered at its parent’s
local tile, then remotely enqueued once its parent aborts.

Special handling is required to abort a task while it is still executing a capsule.
Normally, a task is immediately stopped after detecting a conflict. A capsule, however,
cannot be stopped arbitrarily—it must be allowed to complete, and then its abort han-
dlers run, to guarantee a consistent state in untracked memory. Nonetheless, to avoid
priority inversion, i.e., letting an aborting task block the execution of an earlier-ordered
task, our implementation always handles conflicts immediately upon detection. If the
task is in a capsule when it needs to be aborted, all the task’s side-effects to tracked
memory are rolled back immediately, so other tasks can proceed to use the recovered
state in tracked memory. Abort notifications are sent to its children. The capsule is
then marked as doomed and allowed to continue execution. A doomed capsule’s writes
to tracked memory are not performed, nor are its enqueues. Its accesses to untracked
memory are performed normally. The core becomes available to run another task after
the doomed capsule exits.

5.5 Evaluation

We evaluate Espresso and Capsules on a diverse set of applications. Non-speculative
execution brings modest performance and efficiency gains when non-speculative par-
allelism is plentiful, but forcing non-speculative execution with NONSPEC can dramati-
cally hurt parallelism. By contrast, MAYSPEC achieves the best of both worlds and can be
applied indiscriminately without hurting parallelism, making it easy to use. Capsules
yields order-of-magnitude speedups in important use cases, which we show through

5.5. Evaluation 101

Application Input
1-core cycles 1-core perf.

total per task vs. serial

sssp [289]
cage14 [100] 1.6 B 53 0.93×
East USA roads [1] 2.4 B 299 1.74×

cf [338,407] movielens-1m [170] 1.5 B 59500 0.98×
triangle [338] R-MAT [72] 59.5 B 1240 1.02×
kmeans [257] m40 n40 n16384 d24 c16 8.6 B 6500 1.02×
color [174] netflix [42] 11.1 B 163 1.42×
bfs [230] hugetric-00020 [26,100] 3.3 B 139 0.93×
mis [339] R-MAT [72] 1.7 B 121 0.80×
astar (Chapter 3) Germany roads [280] 1.6 B 458 1.37×
genome [257] g4096 s48 n1048576 2.3 B 850 1.01×
des [289] csaArray32 1.7 B 506 1.82×
nocsim [7] 16x16 mesh, tornado 19.3 B 979 1.79×
silo [371] TPC-C, 4 whs, 1 Ktxns 0.1 B 3380 1.13×

Table 5.2: Benchmarks: source implementations and inputs; run time, average task
length, and serial-relative performance on a single-core system.

two case studies on memory allocation and disk-based key-value stores.

5.5.1 Methodology

Like in Section 4.3.1 we model systems of up to 256 cores (Figure 4-2), with the same
parameters (Table 4.2) and scaling methodology.

Benchmarks: Table 5.2 reports the benchmarks and inputs used to evaluate Espresso
and the Capsules-based allocator. We consider 13 ordered and unordered benchmarks.
We ported 10 benchmarks from Chapter 3 and Chapter 4. Seven of the 10 benchmarks
have tasks that can be well-synchronized with timestamps and locales: sssp, color,
bfs, astar, and des are ordered applications, and genome and kmeans are unordered
transactional applications. We introduce mis, adapted from PBBS [339]. It finds the
maximal independent set of an unweighted graph: a set of nodes S such that no two
nodes in S are adjacent, and each node not in S is adjacent to some node in S. We im-
plement an ordered and deterministic variant. Chapter 6 describes mis and its Swarm
implementation in more detail.

We also introduce bulk-synchronous cf (collaborative filtering) and triangle (tri-
angle counting), ported from Ligra [338,407]. Their tasks are well-synchronized: they
perform lock-free atomic updates and use barriers, which we replace with timestamps.

Section 5.5.2 compares Espresso versions by declaring all well-synchronized tasks
as SPEC, NONSPEC, or MAYSPEC. The source code is otherwise identical. Swarm runs all
tasks speculatively, and is thus equivalent to Espresso’s SPEC. We also evaluate state-of-
the-art software-only parallel versions as in the previous chapters. (except for genome
and kmeans, which lack a non-transactional parallel version, and astar, for which
software-parallel versions yield no speedup).

102 Chapter 5. Espresso and Capsules

Four of the benchmarks have a significant amount of dynamic memory allocation:
genome, des, nocsim, and silo. Section 5.5.3 compares the effect of different alloca-
tors on the SPEC (Swarm) version of these applications.

We report speedups relative to tuned 1-core Swarm implementations. These are
coarse-grain variants, when applicable, which have less overhead but are less scalable
than their fine-grain counterparts (Section 4.4). Due to hardware task management, 1-
core Swarm versions are competitive with (and often faster than) tuned software-only
serial implementations, as shown in Table 5.2. Like in Section 3.4, we report results for
the full parallel region.
Memory allocation: Only two of the benchmarks used in Section 5.5.2 (genome and
des) allocate memory within tasks. To separate concerns, we study the impact of allo-
cators in Section 5.5.3 and use an ideal memory allocator in Section 5.5.2. As described
in Section 3.4, the ideal allocator is implemented within the simulator, and allocates
and deallocates heap memory from per-core pools with zero overhead. Memory freed
by a speculative task is not reused until the task commits. For fairness, software-only
implementations also use this allocator.

5.5.2 Espresso Evaluation

Figure 5-5 compares the performance of Swarm (SPEC), Espresso’s NONSPEC and MAYSPEC
variants, and the software-only parallel versions as the system scales from 1 to 256
cores. Because most applications are hard to parallelize, MAYSPEC always matches or
outperforms the software-only versions, which scale poorly in all cases except sssp-
cage, cf, triangle, and color. Thus, we do not consider software-only versions
further. Among the other schemes, Swarm works poorly on cf and triangle, and
sacrifices some performance on sssp-cage, genome, and color; NONSPEC scales well
in sssp-cage, cf, triangle, genome, kmeans, and bfs, but performs poorly in other
applications because it forgoes opportunities to exploit speculative parallelism; and
MAYSPEC always performs best.

1

128

256

S
p
e
e
d
u
p

sssp-cage

1

256

512
sssp-usa

1

128

256
cf

1

128

256
triangle

1

64

128
genome

1

128

256
kmeans

1

128

256

S
p
e
e
d
u
p

1c 128c 256c

color

1

256

512

1c 128c 256c

bfs

1

64

128

1c 128c 256c

mis

1

128

256

1c 128c 256c

astar

1

128

256

1c 128c 256c

des

NONSPEC

Swarm

MAYSPEC

SW only

Figure 5-5: Speedup of Swarm (SPEC), NONSPEC, MAYSPEC, and software-only bench-
mark variants on 1–256 cores. Higher is better.

5.5. Evaluation 103

0.0

0.2

0.4

0.6

0.8

1.0

E
x
e

c
u

ti
o

n
 t

im
e

SNM SNM SNM SNM SNM SNM SNM SNM SNM SNM SNM

sssp-cage

sssp-usa cf

tria
ngle

genome

kmeans
color

bfs mis
astar

des

248 6.5 1.2 76 69 142

Non-spec

Spec-commit

Spec-abort

Spill

Stall

No-task

(a) Breakdown of total core cycles

0.0

0.2

0.4

0.6

0.8

1.0

N
o

C
 d

a
ta

 t
ra

n
s
fe

rr
e

d

SNM SNM SNM SNM SNM SNM SNM SNM SNM SNM SNM

sssp-cage

sssp-usa cf

tria
ngle

genome

kmeans
color

bfs mis
astar

des

13 3.3 12 8.7
Mem accs Aborts Tasks Virtual time

(b) Breakdown of total NoC data transferred

Figure 5-6: Breakdowns at 256 cores, using Swarm (SPEC), and Espresso’s NONSPEC,
and MAYSPEC variants. Each bar is normalized to Swarm. Lower is better.

Figure 5-6 gives more insight into these results by showing core cycle and network
traffic breakdowns at 256 cores for the Swarm, NONSPEC, and MAYSPEC versions. Each
group of bars shows breakdowns for a different application. The height of a bar in
Figure 5-6a is the execution time relative to Swarm. Each bar shows a breakdown of
how cores spend these cycles, executing (i) non-speculative tasks, or (ii) speculative
tasks that later commit or (iii) later abort; (iv) spilling tasks to memory; (v) stalled on
a full task or commit queue; or (vi) idle because there are no tasks available to run.
Each bar of Figure 5-6b reports the total bytes injected into the NoC relative to Swarm,
broken down into four categories: (i) memory accesses from running tasks (between
L2s and L3, or L3 and main memory), (ii) abort traffic (parent abort notifications
and rollback memory accesses), (iii) task enqueues and parent commit notifications,
(iv) virtual time updates (for ordered commits and barriers).

For sssp, as discussed in Section 5.1.1, neither Swarm nor NONSPEC perform best
across inputs. MAYSPEC outperforms the best of Swarm and NONSPEC by using specu-
lation opportunistically. In the shallow graph (cage), MAYSPEC runs almost all tasks
non-speculatively. Meanwhile, in the deep graph (usa), MAYSPEC runs almost all tasks
speculatively, overlapping the processing of vertices at multiple distances to extract

104 Chapter 5. Espresso and Capsules

enough parallelism. NONSPEC and MAYSPEC spend fewer cycles executing tasks than
Swarm’s committed cycles because non-speculative execution is more efficient: it re-
duces cache pressure (no undo log) and network traffic (less cache pressure, no aborts,
and no parent commit notifications).
cf and triangle show the largest difference between Swarm and Espresso vari-

ants. Both applications have plentiful non-speculative parallelism, but some tasks are
large. When tasks run speculatively in cf they fill their Bloom filters and yield false
conflicts, whereas in triangle, the long tasks prevent short tasks from committing,
leading to full queues. NONSPEC and MAYSPEC are up to 2.6× (cf) faster than Swarm,
and have up to 8.0× (cf) lower network traffic.
genome, kmeans, color, and bfs show similar trends as sssp-cage. genome has

a phase with little parallelism; non-speculative execution runs faster in this phase,
reducing no-task stalls. Though STAMP’s kmeans is nominally transactional, locales
and timestamps non-speculatively synchronize it, so NONSPEC and MAYSPEC perform
equally. Nearly all traffic is virtual time updates because locales effectively localize
accesses to shared data, resulting in a high L2 hit rate.

The final three benchmarks show similar trends as sssp-usa: mis, astar, des
have little non-speculative parallelism, even though nearly all their tasks can be safely
declared NONSPEC. Therefore, NONSPEC performance is terrible, up to 142× worse than
Swarm (des). NONSPEC is dominated by no-task stalls as only a few same-timestamp
tasks run at a time. MAYSPEC addresses this pathology and matches Swarm.

These results show that Espresso both improves performance and efficiency while
also aiding programmability. Across the 11 results, NONSPEC achieves 29× gmean
speedup at 256 cores, Swarm (SPEC) 162×, and MAYSPEC scales to 198×. Without
MAYSPEC, programmers would need to know how much non-speculative parallelism is
available to decide whether to use NONSPEC or SPEC. MAYSPEC lets them declare any
task that may run non-speculatively as such without performance concerns.

5.5.3 Capsules Case Study: Dynamic Memory Allocation

We design a scalable speculation-friendly memory allocator using Capsules. As dis-
cussed in Section 5.1.3, simply calling memory allocation routines within speculative
tasks introduces needless conflicts that limit parallelism. Prior work has proposed al-
locators for software TM [194], studied existing allocators’ synchronization impact on
software TM [33], and used HTM to accelerate allocators for non-speculative parallel

programs [108, 117, 224]. TMs without forwarding can avoid false conflicts on allo-
cator metadata by using escape actions or open-nested transactions [411], but as far
as we know, no memory allocator has been implemented for systems with speculative
forwarding.

To this end, we implement capalloc, a memory allocator built with Capsules. All
allocation calls (malloc, calloc, etc.) are capsule functions, implemented following
the pattern in Listing 5.2. To avoid reusing memory freed by tasks that later abort, each

5.5. Evaluation 105

1.2
237 53 82 157 132

Non-spec

Spec-commit

Spec-abort

Spill

Stall

No-task

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

E
x
e

c
u

ti
o

n
 t

im
e

I C T I C T I C T I C T

genome des nocsim silo

(a) At 1 core

0.0

0.5

1.0

1.5

2.0

I C T I C T I C T I C T

genome des nocsim silo

20 49 3.7 113

(b) At 256 cores

Figure 5-7: Normalized execution time using three implementations of dynamic mem-
ory allocation: Ideal, Capalloc, and unmodified TCMalloc. Lower is better.

deallocation call (free, cfree) creates a NONSPEC child with no timestamp to perform
the deallocation. Thus, memory is deallocated only after the caller commits.

capalloc’s internal design mimics TCMalloc [154], a state-of-the-art and widely
used memory allocator. Small allocations (≤16 KB in our implementation) are served
by a per-core software cache. These caches hold a limited amount of memory, and
allocate from a set of central freelists. Large allocations are served from a centralized
page heap that prioritizes space efficiency. The central freelists, large heap, and system-
wide page allocator use spinlocks to avoid data races.

The key difference between capalloc and TCMalloc is that capalloc keeps all its
metadata in untracked memory. TCMalloc implements freelists as linked lists using the
free chunks themselves. The free chunks cannot be placed in untracked memory as
they are used by speculative tasks.

As explained in Section 5.5.1, we evaluate capalloc on the four applications with
frequent dynamic allocation. We compare capalloc with TCMalloc and the ideal allo-
cator.

Figure 5-7a shows single-core results, which let us examine work efficiency without
concern for parallelism. Each group of bars shows execution times for one application,
normalized to the ideal allocator. capalloc and TCMalloc perform similarly, adding
gmean slowdowns of 11% and 8%, respectively.

Figure 5-7b shows 256-core results. TCMalloc suffers spurious conflicts among tasks
that access the same allocator metadata, and is gmean 25× slower than the ideal allo-
cator. By contrast, capalloc is only gmean 30% slower than the ideal allocator. These
overheads are in line with those in the single-core system, demonstrating capalloc’s
scalability. capalloc is gmean 20× faster than TCMalloc—from 3× (nocsim) to 69×
(silo).

106 Chapter 5. Espresso and Capsules

0.0 0.4 0.8 1.2 1.6 2.0
Miss rate (%)

0

400

800

1200

1600

B
a
n
d
w

id
th

 (
M

B
/s

)

capsule

spec

1671 MB/s

63 MB/s

(a) Disk bandwidth usage
spec capsule

0

4

8

12

16

M
 Q

u
e
ri
e
s
/s

e
c

(b) Performance at 2% miss rate

Figure 5-8: Disk utilization of spec and capsule variants of a key-value store.

5.5.4 Capsules Case Study: Disk-Backed Key-Value Store

The previous case study showed that Capsules avoid needless conflicts; we now show
the benefits of letting speculative tasks perform controlled parallel I/O. We implement a
simple disk-backed key-value store that runs the YCSB [91] benchmark with 4 KB tuples
and 80/20% read/write queries. Each query runs within a single speculative task. The
key-value store keeps only some of the tuples in main memory. If the requested tuple
is not in main memory, it must be fetched from disk and another tuple must be evicted,
writing it back to disk if it is dirty.

We implement two miss-handling strategies. First, spec performs the disk fetch
and eviction directly in SPEC tasks, without Capsules. Because this requires read (and
possibly write) system calls, tasks that suffer a miss are promoted and run serially.
Second, capsule performs each fetch from a capsule function invoked within the SPEC
task, and performs each eviction from a follow-up NONSPEC task. This lets capsule
perform parallel I/O.

We evaluate both strategies on a 256-core system with an NVMe SSD.4 Figure 5-
8a shows how disk bandwidth grows with miss rate (which we control by varying the
memory footprint). spec tops out at 63 MB/s, far below the disk’s bandwidth, due
to its serialized I/O. By contrast, capsule fully saturates disk bandwidth, achieving
1671 MB/s. Figure 5-8b shows that, with a 2% miss rate (where both variants are
I/O-bound), capsule achieves 24× the throughput of spec. These results show that
concurrent system calls can be highly beneficial, and Capsules successfully unlock this
benefit for speculative tasks.

5.6 Additional Related Work

Espresso is most closely related to Swarm, but draws from prior HTM and TLS systems
as well. Table 5.3 summarizes the capabilities of these systems.

4 We model a Samsung 960 PRO, which supports 440K/360K IOPS for random 4 KB reads/writes,
with minimum latencies of 70/20µs [322].

5.6. Additional Related Work 107

5.6.1 Task Scheduling and Synchronization

Prior work has investigated hardware support for scheduling and synchronization of
either speculative or non-speculative tasks. On the speculative side, prior techniques
avoid aborts on known dependences by stalling [405] or pipelining [376], enable
threads to speculate past barriers [169,248,327], and accelerate multi-word compare-
and-swap in hardware transactions [243]. On the non-speculative side, prior work has
proposed hardware-accelerated task-stealing [221,326] and dataflow [68,98,129,161,
276] schedulers. The lack of shared synchronization mechanism hinders HTM, where
mixing transactional and conventional synchronization is unsafe [119,382]. Prior work
has crafted software primitives that bypass transactional mechanisms [119, 382], tog-
gle between transactional and lock-based synchronization [315], or move data struc-
tures from kernel to user space [390].

By contrast, Espresso’s timestamps and locales facilitate coordination across spec-
ulative and non-speculative tasks. This opens the door to MAYSPEC, which allows the
system to dynamically choose to execute tasks speculatively or non-speculatively. More-
over, timestamps and locales offer more performance for non-speculative tasks than
shared-memory barriers and locks. Timestamps are essentially hardware-accelerated
barriers [41, 210, 330]. Locales are handled by the task dispatch logic, so they are
more efficient than hardware-accelerated locks [208,241,410], as they eliminate spin-
ning within a task. Locales also enable locality-aware task mapping.

5.6.2 Restricted vs. Unrestricted Speculative Tasks

TLS systems are unrestricted: their tasks can run arbitrary code, although only the ear-
liest active task may run a system call or exception handler. Most HTMs are restricted:
they forbid transactions from invoking irrevocable actions, which hinders programma-
bility. OneTM [52] and TCC [169] permit unrestricted transactions. Our promotion
technique lies between OneTM-serialized, which pauses all other threads, and OneTM-
concurrent, which keeps all other threads running but requires in-memory metadata to
support unbounded read/write sets. By contrast, Espresso keeps only speculative tasks

Capability HTM TLS Swarm Espresso

Ordered parallelism [
a

✔ ✔ ✔

Non-speculative parallelism ✔ ✘ ✘ ✔

Shared synchronization mechanisms ✘ ✘ ✘ ✔

Locality-aware ✘ ✘ ✔ ✔

Unrestricted speculative code [
b

✔ ✘ ✔

a Most HTMs are unordered (Section 2.4.3).
b Most HTMs are restricted (Section 5.6.2).

Table 5.3: Comparison of prior systems and Espresso.

108 Chapter 5. Espresso and Capsules

running through a promotion. TCC, like TLS, does not support non-speculative paral-
lelism (all code runs speculatively except the transaction with commit permission).

5.6.3 Open-Nested Transactions

Some speculative tasks must perform operations that would be expensive or incompat-
ible with their hardware speculation mechanisms. Escape actions (Section 5.1.3) are
one prior solution for HTMs, as are open-nested transactions [251, 264, 266], which
run within another transaction and commit immediately after finishing, before its en-
closing transaction commits. Like Capsules, open-nested transactions still use ordinary
conflict detection to preserve atomicity when accessing data shared by other transac-
tions. Like escape actions and Capsules, open-nested transactions use abort handlers to
undo their effects. Unfortunately, open-nested transactions are also unsafe with spec-
ulative forwarding because open-nested transactions may lose data and control-flow
integrity and then perform harmful writes and commit.

5.7 Summary

We have presented two techniques that bring the benefits of non-speculative parallelism
to systems with ordered speculation, like Swarm from Chapter 3. First, the Espresso
execution model efficiently supports speculative and non-speculative tasks, provides
shared synchronization mechanisms to all tasks, and lets the system adaptively run
tasks speculatively or non-speculatively to achieve the best of both worlds. Second,
Capsules let speculative tasks safely invoke software-managed speculative actions, by-
passing hardware version management and conflict detection. We have shown that
these techniques improve performance and enable new capabilities, such as scaling
memory allocation and allowing speculative tasks to safely perform parallel I/O.

CHAPTER 6

Fractal:

An Execution Model for Fine-Grain

Nested Speculative Parallelism

This work was conducted in collaboration with Suvinay Subramanian, Maleen Abeydeera,

Hyun Ryong Lee, Victor A. Ying, Joel Emer, and Daniel Sanchez. The Fractal execution

model was developed collaboratively. This thesis contributes the database and MIS moti-

vation studies. This thesis also contributes to the development of the high-level interface,

applications, and the architectural simulator.

Systems for speculative parallelism, such as hardware transactional memory (HTM),
thread-level speculation (TLS), or Swarm (Chapter 3), suffer from limited support for
nested speculative parallelism, i.e., the ability to invoke a speculative parallel algorithm
within another speculative parallel algorithm. This causes three problems. First, it
sacrifices substantial parallelism and limits the algorithms supported by these systems.
Second, it disallows composing parallel algorithms, making it hard to write modular
parallel programs. Third, it biases programmers to write coarse-grain speculative tasks,
which are more expensive to support in hardware.

For example, consider the problem of parallelizing a transactional database. A
natural approach is to use HTM (Section 2.4.3) and to make each database transaction
a memory transaction. Each transaction executes on a thread, and the HTM system
guarantees atomicity among concurrent transactions, detecting conflicting loads and
stores on the fly, and aborting transactions to avoid serializability violations.

Unfortunately, this HTM approach faces significant challenges. First, each trans-

109

110 Chapter 6. Fractal

action must run on a single thread, but database transactions often consist of many
queries or updates that could run in parallel. The HTM approach thus sacrifices this
intra-transaction, fine-grain parallelism. Second, long transactions often have large
read and write sets, which make conflicts and aborts more likely. These aborts often
waste many operations that were not affected by the conflict. Third, supporting large
read/write sets in hardware is costly. Hardware can track small read/write sets cheaply,
e.g., using private caches [169,344] or small Bloom filters [69,399]. But these tracking
structures have limited capacity and force transactions that overflow them to serialize,
even when they have no conflicts [52, 169, 229, 399]. Beyond these problems, HTM’s
unordered execution semantics are insufficient for programs with ordered parallelism,
where speculative tasks must appear to execute in a program-specified order.

Through its efficient support for programmer-controlled task order, we have seen in
Chapter 3 and Chapter 4 that the Swarm architecture can address some of these prob-
lems. By exposing timestamps to software, Swarm can be used to parallelize more al-
gorithms than prior ordered speculation techniques, like TLS; Swarm also supports un-
ordered, HTM-style execution. As a result, Swarm often uncovers abundant fine-grain
parallelism. But Swarm’s software-visible timestamps can only convey very limited
forms of nested parallelism, and they cause two key issues in this regard (Section 6.1).
Timestamps make nested algorithms hard to compose, as algorithms at different nest-
ing levels must agree on a common meaning for the timestamp. Timestamps also
over-serialize nested algorithms, as they impose more order constraints than needed.

For instance, in the example above, Swarm can be used to break each database
transaction into many small, ordered tasks, as evaluated in Chapter 3. This exploits
intra-transaction parallelism, and, at 256 cores, it is 21× faster than running operations
within each transaction serially (Section 6.1.2). However, to maintain atomicity among
database transactions, the programmer must needlessly order database transactions
and must carefully assign timestamps to tasks within each transaction.

These problems are far from specific to database transactions. In general, large
programs have speculative parallelism at multiple levels and often intermix ordered
and unordered algorithms. Speculative architectures should support composition of
ordered and unordered algorithms to convey all this nested parallelism without undue
serialization.

This chapter presents two main contributions that achieve these goals. The first
contribution is Fractal, an execution model for nested speculative parallelism that gen-
eralizes Swarm. Fractal programs consist of tasks located in a hierarchy of nested
domains. Within each domain, tasks can be ordered or unordered. Any task can create
a new subdomain and enqueue new tasks in that subdomain. All tasks in a domain
appear to execute atomically with respect to tasks outside the domain.

Fractal allows seamless composition of ordered and unordered nested parallelism.
In the above example, each database transaction starts as a single task that runs in an
unordered, root domain. Each of these unordered tasks creates an ordered subdomain

6.1. Motivation 111

in which it enqueues tasks for the different operations within the transaction. In the
event of a conflict between tasks in two different transactions, Fractal selectively aborts
conflicting tasks, rather than aborting all tasks in any one transaction. In fact, other
tasks from the two transactions may continue to execute in parallel.

The second contribution is a simple implementation of Fractal that builds on Swarm
and supports arbitrary nesting levels cheaply (Section 6.3). Our implementation fo-
cuses on extracting parallelism at the finest (deepest) levels first. This is in stark con-
trast with current HTMs. Most HTMs only support serial execution of nested trans-
actions, forgoing intra-transaction parallelism. A few HTMs support parallel nested
transactions [28, 375], but they parallelize at the coarsest levels, suffer from subtle
deadlock and livelock conditions, and impose large overheads because they merge the
speculative state of nested transactions [27, 28]. The Fractal execution model lets our
implementation avoid these problems. Beyond exploiting more parallelism, focusing
on fine-grain tasks reduces the hardware costs of speculative execution.

This chapter demonstrates Fractal’s performance and programmability benefits through
several case studies (Section 6.1) and a broad evaluation (Section 6.4). Fractal un-
covers abundant fine-grain parallelism on large programs. For example, ports of the
STAMP benchmark suite to Fractal outperform baseline HTM implementations by up to
88× at 256 cores. As a result, while several of the original STAMP benchmarks cannot
reach even 10× scaling, Fractal makes all STAMP benchmarks scale well to 256 cores.

6.1 Motivation

We motivate Fractal through three case studies that highlight its key benefits: uncover-
ing abundant parallelism, improving programmability, and avoiding over-serialization.
Since Fractal subsumes prior speculative execution models (HTM, TLS, and Swarm),
all case studies use the Fractal architecture (Section 6.3), and we compare applications
written in Fractal vs. other execution models. This approach lets us focus on the effect
of different Fractal features. Our implementation does not add overheads to programs
that do not use Fractal’s features.

6.1.1 Fractal Uncovers Abundant Parallelism

Consider the maxflow problem, which finds the maximum amount of flow that can be
pushed from a source to a sink node in a network (a graph with directed edges labeled
with capacities). Push-relabel is a fast and widely used maxflow algorithm [81], but
it is hard to parallelize [40, 289]. Push-relabel tags each node with a height. It ini-
tially gives heights of 0 to the sink, N (the number of nodes) to the source, and 1 to
every other node. Nodes are temporarily allowed to have excess flow, i.e., have more
incoming flow than outgoing flow. Nodes with excess flow are considered active and

112 Chapter 6. Fractal

Core 0

Core 1

Core 2

Core 3

Core 4

Core 5

Core 6

Core 7

Time

(a) maxflow-flat

Time

Tasks

Active node

Global relabel

Aborted

Core 0

Core 1

Core 2

Core 3

Core 4

Core 5

Core 6

Core 7

(b) maxflow-fractal

Figure 6-1: Execution timeline of (a) maxflow-flat which consists of unordered tasks
and does not exploit nested parallelism, and (b) maxflow-fractal, which exploits the
nested ordered parallelism within global relabel.

can push this flow to lower-height nodes. The algorithm processes one active node at
a time, attempting to push flow to neighbor nodes and potentially making them active.
When an active node cannot push its excess flow, it increases its height to the minimum
value that allows pushing flow to a neighbor (this is called a relabel). The algorithm
processes active nodes in arbitrary order until no active nodes are left.

To be efficient, push-relabel must use a heuristic that periodically recomputes node
heights. Global relabeling [81] is a commonly used heuristic that updates many node
heights by performing a breadth-first search on a subset of the graph. Global relabeling
takes a significant fraction of the total work, typically 10–40% of instructions [18].

Since push-relabel can process active nodes in an arbitrary order, it can be paral-
lelized using transactional tasks of two types [289,304]. An active-node task operates
on a node and its neighbors, and may enqueue other tasks to process newly-activated
nodes. A global-relabel task performs a global relabel operation. Every task must
run atomically, since tasks access data from multiple neighbors and must observe a
consistent state. We call this implementation maxflow-flat.

We simulate maxflow-flat on systems of up to 256 cores. (See Section 6.4.1 for
methodology details.) At 256 cores, maxflow-flat scales to 4.9× only. Figure 6-1a
illustrates the reason for this limited speedup: while active-node tasks are short, each
global-relabel task is long, and queries and updates many nodes. When a global-

relabel task runs, it conflicts with and serializes many active-node tasks.

Fortunately, each global-relabel task performs a breadth-first search, which, as
we saw in the previous chapters, has plentiful ordered speculative parallelism. Fractal
lets us exploit this nested parallelism, running the breadth-first search in parallel while
maintaining its atomicity with respect to other active-node tasks. To achieve this, we

6.1. Motivation 113

Root domain

Global relabel

subdomain

0

1

1 2

2

Figure 6-2: In maxflow-fractal, each
global-relabel task creates an ordered
subdomain.

1

128

256

S
p
e
e
d
u
p

1c 128c 256c

Figure 6-3: Speedup of different maxflow
versions on 1–256 cores.

fr
ac

ta
l 322×

flat

develop a maxflow-fractal implementation where each global-relabel task creates
an ordered subdomain, in which it executes a parallel breadth-first search using fine-
grain ordered tasks, as shown in Figure 6-2. A global-relabel task and its subdomain
appear as a single atomic unit with respect to other tasks in the (unordered) root
domain. Figure 6-1b illustrates how this improves parallelism and efficiency. As a
result, Figure 6-3 shows that maxflow-fractal achieves a speedup of 322× at 256
cores (over maxflow-flat on one core).

Fractal is the first architecture that effectively exploits maxflow’s fine-grain nested
parallelism: neither HTM, nor TLS, nor Swarm can support the combination of un-
ordered and ordered parallelism latent in maxflow. Prior software-parallel push-relabel
algorithms attempted to exploit this fine-grain parallelism [18,289,304], but the over-
heads of software speculation and scheduling negated the benefits of additional paral-
lelism (in maxflow-fractal, each task is 373 cycles on average). We also evaluated
two state-of-the-art software implementations: prsn [40] and Galois [289]. On 1–256
cores, they achieve maximum speedups of only 4.9× and 8.3× over maxflow-flat at
one core, respectively.

6.1.2 Fractal Eases Parallel Programming

Beyond improving performance, Fractal’s support for nested parallelism eases parallel
programming because it enables parallel composition. Programmers can write multiple
self-contained, modular parallel algorithms and compose them without sacrificing per-
formance: when a parallel algorithm invokes another parallel algorithm, Fractal can
exploit parallelism at both caller and callee.

In the previous case study, only Fractal was able to uncover nested parallelism.
In some applications, prior architectures can also exploit the nested parallelism that
Fractal uncovers, but they do so at the expense of composability.

Consider the transactional database example from this chapter’s introduction. Con-
ventional HTMs run each database transaction in a single thread, and exploit coarse-

114 Chapter 6. Fractal

1

128

256

S
p
e
e
d
u
p

1c 128c 256c

Figure 6-4: Speedup of silo versions on
1–256 cores.

TXN 1 TXN 2 TXN 3

…0 10
20

1 2

42

3 4

11

13

12

21

23

22

23

24

Figure 6-5: silo Swarm uses disjoint
timestamp ranges for different database
transactions, sacrificing composability.

fra
ct
al

sw
ar
m

flat

grain inter-transaction parallelism only. But amid its queries and updates, each database
transaction has plentiful ordered parallelism. Fractal can exploit both inter- and intra-
transaction parallelism by running each transaction in its own ordered subdomain, just
as each global relabel runs in its own ordered subdomain in Figure 6-2. We apply
both approaches to the silo in-memory database [371]. Figure 6-4 shows that, at
256 cores, silo-fractal scales to 206×, while silo-flat scales to 9.7× only, 21×
slower than silo-fractal.

Figure 6-4 also shows that silo-swarm, the Swarm version of silo from Chap-
ter 3 and Chapter 4, achieves similar performance to silo-fractal (silo-swarm is
4.5% slower). Figure 6-5 illustrates silo-swarm’s implementation: the transaction-
launching code assigns disjoint timestamp ranges to transactions (10 contiguous time-
stamps per transaction in Figure 6-5), and each transaction enqueues tasks only within
this range (e.g., 10–19 for TXN 2 in Figure 6-5). silo-swarm uses the same fine-
grain tasks as silo-fractal, exposing plentiful parallelism and reducing the penalty
of conflicts (Section 3.5.1). For example, in Figure 6-5, if the tasks at timestamps 13
and 24 conflict, only one task must abort, rather than any whole transaction.

Since Swarm does not provide architectural support for nested parallelism, ap-
proaching Fractal’s performance comes at the expense of composability. silo Swarm
couples the transaction-launching code and the code within each transaction: both
modules must know the number of tasks per transaction, so that they can agree on
the semantics of each timestamp. Moreover, a fixed-size timestamp makes it hard to
allocate sufficient timestamp ranges in complex applications with many nesting levels
or where the number of tasks in each level is dynamically determined. Fractal avoids
these issues by providing direct support for nested parallelism.

Prior HTMs have supported composable nested parallel transactions, but they suffer
from deadlock and livelock conditions, impose large overheads, and sacrifice most of
the benefits of fine-grain parallelism because each nested transaction merges its spec-
ulative state with that of its parent [27, 28]. We compare Fractal and parallel nesting
HTMs in detail in Section 6.5, after discussing Fractal’s implementation. Beyond these
issues, parallel nesting HTMs do not support ordered parallelism, so they would not
help maxflow or silo.

6.1. Motivation 115

6.1.3 Fractal Avoids Over-Serialization

Beyond forgoing composability, supporting fine-grain parallelism through manually-
specified ordering can cause over-serialization.

Consider the maximal independent set (mis) problem which, given a graph, seeks
a set of nodes S such that no two nodes in S are adjacent, and each node not in S is
adjacent to some node in S.

A straightforward, non-deterministic mis algorithm uses unordered, atomic
tasks [339]. We call this implementation mis-flat. Each task operates on a node
and its neighbors. If the node has not yet been visited, the task visits both the node
and its neighbors, adding the node to the independent set and marking its neighbors
as excluded from the set. mis-flat creates one task for every node in the graph, and
finishes when all these tasks have executed. Figure 6-6 shows that, on an R-MAT graph
with 8 million nodes and 168 million edges, mis-flat scales to 98× at 256 cores.

1

64

128

S
p
e
e
d
u
p

1c 128c 256c

fr
ac

ta
l

sw
ar
m

flat

145×

Figure 6-6: Speedup of
different mis versions on
1–256 cores.

mis-flat misses a source of nested parallelism: when
a node is added to the set, its neighbors may be visited
and excluded in parallel. This yields great benefits when
nodes have many neighbors. mis-fractal defines two
task types: include and exclude. An include task checks
whether a node has already been visited. If it has not, it
adds the node to the set and creates an unordered subdo-
main to run exclude tasks for the node’s neighbors. An
exclude task permanently excludes a node from the set.
Domains guarantee a node and its neighbors are visited
atomically while allowing many tasks of both types to run
in parallel. Figure 6-6 shows that mis-fractal scales to
145× at 256 cores, 48% faster than mis-flat.

Swarm cannot exploit this parallelism as effectively. Swarm can only guarantee
atomicity for groups of tasks if the program specifies a total order among groups (as
in silo). We follow this approach to implement mis-swarm: every include task is
assigned a unique timestamp, and it shares its timestamp with any exclude tasks it
enqueues. This imposes more order constraints than mis-fractal, where there is no
order among tasks in the root domain. Figure 6-6 shows that mis-swarm scales to
117×, 24% slower than mis-fractal, as unnecessary order constraints cause more
aborted work.1

In summary, conveying the atomicity needs of nested parallelism through a fixed
order limits parallel execution. Fractal allows programs to convey nested parallelism
without undue order constraints.

1mis-swarm’s order constraints make it deterministic, which some users find desirable [46,47,106].

116 Chapter 6. Fractal

B

A

C

F

I

M

G L H

K

J

E

D

N

O P

1 2 3 4

F’s subdomain

B’s subdomain

D’s subdomain

Root domain

M’s

subdomain

1 4

Figure 6-7: Elements of the Fractal execution model. Arrows point from parent to
child tasks. Parents enqueue their children into ordered domains where tasks have
timestamps, such as A’s and M’s subdomains, or unordered domains, such as the other
three domains.

6.2 Fractal Execution Model

Fractal programs consist of tasks in a logical hierarchy of nested domains. Each task
may access arbitrary data, and may create child tasks as it finds new work to do. Fig-
ure 6-7 illustrates the key elements of the Fractal execution model. For example, in the
figure, task C creates children D and E. When each task is created, it is enqueued to a
specific domain.
Semantics within a domain: Each domain provides either unordered or timestamp-
ordered execution semantics. In an unordered domain, Fractal chooses an arbitrary
order among tasks that respects parent-child dependences, i.e., every child is ordered
after its parent. For example, in Figure 6-7, task C’s children D and E must appear to
run after C, but task D can appear to run either before or after task E. These semantics
are similar to TM: all tasks execute atomically and in isolation, as though executed
serially and new tasks are scheduled in an unordered bag.

In an ordered domain, each task has a program-specified timestamp. A task can
enqueue child tasks to the same domain with any timestamp equal to or greater than
its own. Fractal guarantees that tasks appear to run in increasing timestamp order. If
multiple tasks have the same timestamp, Fractal arbitrarily chooses an order among
them. This order always respects parent-child dependences. Timestamps let programs
convey their specific order requirements, e.g., the level-by-level breadth-first search in
maxflow-fractal (Section 6.1.1). For example, in Figure 6-7, the timestamps of tasks
F, G, L, and H ensure they appear to run in that fixed order. These semantics are the
same as those of Swarm (Chapter 3).
Semantics across domains: Each task can create a single subdomain and enqueue
tasks into it. For example, in Figure 6-7, task B creates a new subdomain and enqueues
F and G into it. These tasks may themselves create their own subdomains. For example,

6.2. Fractal Execution Model 117

F creates a subdomain and enqueues I into it.
Fractal provides atomicity guarantees across domains to allow parallel composition

of speculative algorithms. All tasks in a domain appear to execute after the task that
creates the domain and are not interleaved with tasks outside their domain. In other
words, any non-root domain together with its creator appears to execute as a single

atomic unit in isolation. For example, since F is ordered before G in B’s subdomain, all
tasks in F’s subdomain (I, J, and K) must appear to execute immediately after F and
before G. Furthermore, although no task in B’s subdomain is ordered with respect to
any task in D’s subdomain, tasks in B’s and D’s subdomains are guaranteed not to be
interleaved.

A task may also enqueue child tasks to its immediate enclosing domain, or super-

domain. For example, in Figure 6-7, K in F’s subdomain enqueues L to B’s subdomain.
This lets a task delegate enqueuing future work to descendants within the subdomain
it creates. A task cannot enqueue children to any domain beyond the domain it belongs
to, its superdomain, and the single subdomain it may create.

6.2.1 Programming Interface

We first expose Fractal’s features through a simple low-level C++ interface, then com-
plement it with a high-level, OpenMP-style interface that makes it easier to write Frac-
tal applications.
Low-level interface: Listing 6.1 illustrates the key features of the low-level Fractal
interface by showing the implementation of the mis-fractal tasks described in Sec-
tion 6.1.3. Similar to Swarm and Espresso, a task is described by its function, argu-
ments, and ordering properties. Task functions can take arbitrary arguments but do not
return values. Tasks create children by calling one of three enqueue functions with the
appropriate task function and arguments: fractal::enqueue places the child task in
the same domain as the caller, fractal::enqueue_sub places the child in the caller’s
subdomain, and fractal::enqueue_super places the child in the caller’s superdo-
main. If the destination domain is ordered, the enqueuing function also takes the child

void exclude(Node& n) {

n.state = EXCLUDED;

}

void include(Node& n) {

if (n.state == UNVISITED) {

n.state = INCLUDED;

fractal::create_subdomain(UNORDERED);

for (Node& ngh: n.neighbors)

fractal::enqueue_sub(exclude, ngh);

}

}

Listing 6.1: Fractal implementation of mis tasks.

118 Chapter 6. Fractal

Function Description

forall
Atomic unordred loop. Enqueues each iteration as as a task in a new
unordered subdomain.

forall_ordered
Atomic ordered loop. Enqueues tasks to a new ordered subdomain,
using the iteration index as a timestamp.

forall_reduce Atomic unordered loop with a reduction variable.
forall_reduce_ordered Atomic ordered loop with a reduction variable.

parallel Execute multiple code blocks as parallel tasks.
parallel_reduce Execute multiple code blocks as parallel tasks, followed by a reduction.

enqueue_all Enqueues a sequence of tasks with the same (or no) timestamp.
enqueue_all_ordered Enqueues a sequence of tasks with a range of timestamps.

task

Starts a new task in the middle of a function. Implicitly encapsulates
the rest of the function into a lambda, then enqueues it. Useful to
break long functions into smaller tasks.

callcc

Call with current continuation [356]. Allows calling a function that
might enqueue tasks, returning control to the caller by invoking its
continuation. The continuation runs as a separate task.

Table 6.1: High-level interface functions.

task’s timestamp. This isn’t the case in Listing 6.1, as this non-deterministic mis is
unordered.

Before calling fractal::enqueue_sub to place tasks in a subdomain, a task must
call fractal::create_subdomain exactly once to specify the subdomain’s ordering
semantics: unordered, or ordered with 32- or 64-bit timestamps. In Listing 6.1, each
include task may create an unordered subdomain to atomically run exclude tasks for
all its neighbors. The initialization code (not shown) creates an include task for every
node in an unordered root domain.

Task enqueue functions also take one optional argument, a spatial hint (Chapter 4).
Hints aid the system in performing locality-aware task mapping and load balancing.
Hints are orthogonal to Fractal. We adopt them because we study systems of up to 256
cores, and several of our benchmarks suffer from poor locality without hints, which
limits their scalability beyond tens of cores.

Fractal is also orthogonal to Espresso’s support for speculative and non-speculative
tasks, and Capsules’ ability to safely bypass hardware speculation (Chapter 5). We
leave combining these techniques to future work.

High-level interface: Although our low-level interface is simple, breaking straight-line
code into many task functions can be tedious. To ease this burden, we implement
a high-level interface in the style of OpenMP and OpenTM [29]. Table 6.1 details its
main constructs, and Listing 6.2 shows it in action with pseudocode for include. Nested
parallelism is expressed using forall, which automatically creates an unordered sub-
domain and enqueues each loop iteration as a separate task. This avoids breaking code
into small functions like exclude. These constructs can be arbitrarily nested. Our ac-

6.3. Fractal Implementation 119

void include(Node& n) {

if (n.state == UNVISITED) {

n.state = INCLUDED;

forall (Node& ngh: n.neighbors)

ngh.state = EXCLUDED;

}

}

Listing 6.2: Pseudocode for Fractal implementation of mis’s include using the high-
level interface.

tual syntax is slightly more complicated because we do not modify the compiler, and
we implement these constructs using macros.2

6.3 Fractal Implementation

Our Fractal implementation seeks three desirable properties. First, the architecture
should perform fine-grain speculation, carrying out conflict resolution and commits at
the level of individual tasks, not complete domains. This avoids the granularity issues
of nested parallel HTMs (Section 6.5). Second, creating a domain should be cheap, as
domains with few tasks are common (e.g., mis in Section 6.1.3). Third, while the
architecture should support unbounded nesting depth to enable software composition,
parallelism compounds quickly with depth, so hardware only needs to support a few con-

current depths. To meet these objectives, our Fractal implementation builds on Swarm,
and dynamically chooses a task commit order that satisfies Fractal’s semantics.

6.3.1 Fractal Virtual Time

Recall from Section 3.3.4 that Swarm maintains a consistent total order among tasks
by assigning a unique virtual time (VT) to each task when it is dispatched. Swarm
VTs are 128-bit integers that extend the 64-bit program-assigned timestamp with a 64-
bit tiebreaker. This tiebreaker is the concatenation of the dispatch cycle and tile id, as
shown in Figure 6-8. Thus, Swarm VTs break ties among same-timestamp tasks sensibly
(prioritizing older tasks), and they satisfy Swarm’s semantics (they order a child task
after its parent, since the child is always dispatched at a later cycle). However, Fractal
needs a different schema to match its semantics.

Fractal assigns a fractal virtual time (fractal VT) to each task. This fractal VT is the
concatenation of one or more domain virtual times (domain VTs).
Domain VTs order all tasks in a domain and are constructed similarly to Swarm VTs.
In an ordered domain, each task’s domain VT is the concatenation of its 32- or 64-bit

2 The difference between the pseudocode in Listing 6.2 and our actual code is that we have to tag the
end of control blocks, i.e., using forall_begin(...) {...} forall_end();. This could be avoided
with compiler support, as in OpenMP.

120 Chapter 6. Fractal

45 2

64-bit

timestamp Dispatch cycle Tile ID

64-bit tiebreaker 128-bit virtual time

23 ++ 23, 45:2=

Figure 6-8: Swarm VT construction.

23 56:4

23 56:4

56:4

32 bit

tiebreakers
64-bit

timestamp

32-bit timestamp

Unordered

+

+

= 96 bits

= 64 bits

= 32 bits

Figure 6-9: Domain VT formats.

23, 45:2 57:4
96 bits 32 bits

64-bit ordered
domain virtual time

Unordered domain
virtual time

Four unordered domain virtual times

56:4

4 × 32 bits

76:1 94:389:2

Figure 6-10: Example 128-bit fractal VTs.

timestamp and a tiebreaker. In an unordered domain, tasks do not have timestamps,
so each task’s domain VT is just a tiebreaker, assigned at dispatch time.

Fractal uses 32-bit rather than 64-bit tiebreakers for efficiency. As in Swarm, each
tiebreaker is the concatenation of dispatch cycle and tile id, which orders parent before
child. While 32-bit tiebreakers are efficient, they can wrap around. Section 6.3.3
discusses how Fractal handles wrap-arounds. Figure 6-9 illustrates the possible formats
of a domain VT, which can take 32, 64, or 96 bits.

Fractal VTs enforce a total order among tasks in the system. This order satisfies Frac-
tal’s semantics across domains: all tasks within each domain are ordered immediately
after the domain’s creator and before any other tasks outside the domain. These se-
mantics can be implemented with two simple rules. First, the fractal VT of a task in
the root domain is just its root domain VT. Second, the fractal VT of any other task is
equal to its domain VT appended to the fractal VT of the task that created its domain.
Figure 6-10 shows some example fractal VT formats. A task’s fractal VT is thus made
up of one domain VT for each enclosing domain. Two fractal VTs can be compared
with a natural lexicographic comparison.

Fractal VTs are easy to support in hardware. We use a fixed-width field in the task
descriptor to store each fractal VT, 128 bits in our implementation. Fractal VTs smaller
than 128 bits are right-padded with zeros. This fixed-width format makes comparing
fractal VTs easy, requiring conventional 128-bit comparators. With a 128-bit budget,
Fractal hardware can support up to four levels of nesting, depending on the sizes of
domain VTs. Section 6.3.2 describes how to support levels beyond those that can be
represented in 128 bits.

Figure 6-11 shows fractal VTs in a system with three domains: an unordered root
domain, B’s subdomain (ordered with 64-bit timestamps), and D’s subdomain (un-
ordered). Idle tasks do not have tiebreakers, which are assigned on dispatch. Any two

6.3. Fractal Implementation 121

B

A

C

M

G H

E

D

B’s subdomain

D’s subdomainF

45:2 0

— 0

78:6 0

37:3 0

42:1 0

45:2 1, 51:4

45:2 2, 71:5

45:2 4, —

Root

domain VTs

Subdomain VTs

Root domain

78:6 — 0

Unused bits

zeroed out

Idle

task
T

Legend

Unset tiebreaker

Figure 6-11: Fractal VTs in action.

dispatched tasks can be ordered by comparing their fractal VTs. For example, F (in B’s
subdomain) is ordered after B, but before M (in D’s subdomain). Fractal performs fine-
grain speculation by using the total order among running tasks to commit and resolve
conflicts at the level of individual tasks. For example, although all tasks in B’s subdo-
main must stay atomic with respect to tasks in any other domain, Fractal can commit
tasks B and F individually, without waiting for G and H to finish. Fractal guarantees
that B’s subdomain executes atomically because G and H are ordered before any of the
remaining uncommitted tasks.

Fractal VTs also make it trivial to create a new domain. In hardware, enqueuing to
a subdomain simply requires including the parent’s full fractal VT in the child’s task de-
scriptor. For instance, when B enqueues F in Figure 6-11, it tags F with (45:2; 1)—B’s
fractal VT (45:2) followed by F’s timestamp (1). Similarly, enqueues to the same do-
main use the enqueuer’s fractal VT without its final domain VT (e.g., when A enqueues
C, C’s fractal VT uses no more bits than A’s), and enqueues to the superdomain use the
enqueuer’s fractal VT without its final two domain VTs.

In summary, fractal VTs capture all the information needed for ordering and task
enqueues, so these operations do not rely on centralized structures. Moreover, the rules
of fractal VT construction automatically enforce Fractal’s semantics across domains
while performing speculation only at the level of fine-grain tasks—no tracking is done
at the level of whole domains.

6.3.2 Supporting Unbounded Nesting

Large applications may consist of parallel algorithms nested with arbitrary depth. Frac-
tal supports this unbounded nesting depth by spilling tasks from shallower domains to
memory. These spilled tasks are filled back into the system after deeper domains fin-
ish. This process, which we call zooming, is conceptually similar to the stack spill-fill
mechanism in architectures with register windows [166]. Zooming in allows Fractal
to continue fine-grain speculation among tasks in deeper domains, without requiring
additional structures to track speculative state. Note that, although zooming is in-

122 Chapter 6. Fractal

Root domain (base)

M

D
B’s subdomain

D’s subdomain

G H

78:6 0

45:2 1, 51:4

45:2 2, 71:5 78:6 — 0

E

— 0

F

F creating subdomain

45:2 4, —

(a) After B commits.

E

D

B’s subdomain

G H

45:2 1, 51:4

45:2 2, 71:5

45:2 4, —

F

F creating subdomain

— 0

— 0

Root domain (base)

(b) Base-domain tasks abort.

Memory

E

D

B’s subdomain

F

F creating

subdomain

G H

S

45:2 MAX, —

Splitter

Root domain (base)

45:2 1, 51:4

45:2 2, 71:5

45:2 4, —

(c) Base-domain tasks are spilled.

B’s subdomain (base)

F G H

F’s subdomain

I

02, 71:5

—1, 51:4

0MAX, —

S

Splitter

04, —01, 51:4

(d) B’s subdomain becomes the
base domain.

Figure 6-12: Starting from Figure 6-11, zooming in allows F to create and enqueue to
a subdomain by shifting fractal VTs.

volved, it imposes negligible overheads: zooming is not needed in our full applications
(which use two nesting levels), and it happens infrequently in microbenchmarks (Sec-
tion 6.4.4).
Zooming in spills tasks from the shallowest active domain, which we call the base

domain, to make space for deeper domains. Suppose that, in Figure 6-11, F in B’s
subdomain wants to create an unordered subdomain and enqueue a child into it. The
child’s fractal VT must include a new subdomain VT, but no bits are available to the
right of F’s fractal VT. To solve this, F issues a zoom-in request to the global virtual time
arbiter (Section 3.3.6) with its fractal VT.

Figure 6-12 illustrates the actions taken during a zoom-in. To avoid priority inver-
sion, the task that requests the zoom-in waits until the base domain task that shares its
base domain VT commits. This guarantees that no active base domain tasks precede
the requesting task. In our example, F waits until B commits. Figure 6-12a shows
the state of the system at this point—note that F and all other tasks in B’s subdomain
precede the remaining base-domain tasks. The arbiter broadcasts the zoom-in request
and saves any timestamp component of the base domain VT to an in-memory stack. In
Figure 6-12a, the base domain is unordered so there is no timestamp for the arbiter to
save.

6.3. Fractal Implementation 123

Each zoom-in proceeds in two steps. First, all tasks in the base domain are spilled
to memory. For simplicity, speculative state is never spilled. Instead, any base-domain
tasks that are running or have finished are aborted first, which recursively aborts and
eliminates their descendants (Section 3.3.5). Figure 6-12b shows the state of the sys-
tem after these aborts. Note how D’s abort eliminates M and D’s entire subdomain.
Although spilling tasks to memory is complex, it reuses the spilling mechanism already
present in Swarm (Section 3.3.7): task units dispatch coalescer tasks that remove base-
domain tasks from task queues, store them in memory, and enqueue splitter tasks that
will later re-enqueue the spilled tasks. The splitter task is deprioritized relative to all
regular tasks in the domain. Figure 6-12c shows the state of the system once all base-
domain tasks have been spilled. A new splitter task, S, will re-enqueue D and E to the
root domain when it runs.

In the second step of zooming in, the system turns the outermost subdomain into
the base domain. At this point, all tasks belong to one subdomain (B’s subdomain
in our example), so their fractal VTs all begin with the same base domain VT. This
common prefix may be eliminated, while preserving order relations. Each tile walks
its task queues and modifies the fractal VTs of all tasks by shifting out the common
base domain VT. Each tile also modifies its canary VTs, which enable the L2 to filter
conflict checks (Section 3.3.4). Overall, this requires modifying a few tens to hundreds
of fractal VTs per tile (in our implementation, up to 256 in the task queue and up to 128
canaries). Figure 6-12d shows the state of the system after zooming in. B’s subdomain
has become the base domain. This process has freed 32 bits of fractal VT, so F can
enqueue I into its new subdomain.

Zooming out reverses the effects of zooming in. It is triggered when a task in the

base domain attempts to enqueue to its superdomain. Such an action is treated as
an exception (Section 5.2.3), so the enqueuing task waits (off core) until all tasks
preceding it have committed. Once non-speculative, it sends a zoom-out request to the
central arbiter with its fractal VT. If the previous base domain was ordered, the central
arbiter pops a timestamp from its stack to broadcast with the zoom-out request.

Zooming out restores the previous base domain: Each tile walks its task queues,
right-shifting each fractal VT and adding back the base domain timestamp, if any. The
restored base domain VT has its tiebreaker set to zero, but this does not change any
order relations because the domain from which we are zooming out contains all the
earliest active tasks.

Avoiding quiescence: As explained so far, the system would have to be completely
quiesced while fractal VTs are being shifted. This overhead is small—a few hundred
cycles—but introducing mechanisms to quiesce the whole system would add complex-
ity. Instead, we use an alternating-bit protocol [362] to let tasks continue running
while fractal VTs are modified. Each fractal VT entry in the system has an extra bit
that is flipped on each zoom in/out operation. When the bits of two fractal VTs being
compared differ, one of them is shifted appropriately to perform the comparison.

124 Chapter 6. Fractal

6.3.3 Handling Tiebreaker Wrap-Arounds

Using 32-bit tiebreakers makes fractal VTs compact, but causes tiebreakers to wrap
around every few tens of milliseconds. Since domains can exist for long periods of
time, the range of existing tiebreakers must be compacted to make room for new ones.
When tiebreakers are about to wrap around, the system walks every fractal VT and
performs the following actions:

(1) Subtract 231 (half the range) with saturate-to-0 from each tiebreaker in the fractal
VT (i.e., flip the MSB from 1 to 0, or zero all the bits if the MSB was 0).

(2) If a task’s final tiebreaker is 0 after subtraction and the task is not the earliest
unfinished task, abort it.

When this process finishes, all tiebreakers are < 231, so the system continues assigning
tiebreakers from 231.

This process exploits the property that, if the task that created a domain precedes
all other active tasks (i.e., is non-speculative), its tiebreaker can be set to zero without
affecting order relations. If the task is aborted because its tiebreaker is set to 0, any
subdomain it created will be squashed. In practice, we find this has no effect on perfor-
mance, because, to be aborted, a task would have to remain speculative for far longer
than we observe in any benchmark.

6.3.4 Putting It All Together

Our Fractal implementation adds small hardware overheads over Swarm.3 Each fractal
VT consumes five additional bits beyond Swarm’s 128: four to encode its format (14
possibilities), and one for the alternating-bit protocol. This adds storage overheads of
240 bytes per 4-core tile. Fractal also adds simple logic to each tile to walk and modify
fractal VTs—for zooming and tiebreaker wrap-arounds—and adds a shifter to fractal
VT comparators to handle the alternating-bit protocol.

Fractal makes small changes to the ISA: it modifies the enqueue_task instruction
and adds a create_subdomain instruction. Task enqueue messages carry a fractal VT
without the final tiebreaker (up to 96+5 bits) compared to the 64-bit timestamp in
Swarm.

Finally, in our implementation, zoom-in/out requests and tiebreaker wrap-arounds
are handled by the global virtual time arbiter (the unit that runs the ordered-commit
protocol). This adds a few message types between this arbiter and the tiles to carry out
the steps in each of these operations. The arbiter must manage a simple in-memory
stack to save and restore base domain timestamps.

3 Swarm itself imposes modest overheads to implement speculative execution (Section 3.3.8)

6.4. Evaluation 125

Application Input
1-core run time

(B cycles)

C
h

.
3
,4

,5 color [174] com-youtube [233] 0.968
mis [339] R-MAT [72], 8 M nodes, 168 M edges 1.34
msf [339] kron_g500-logn16 [26,100] 0.717
silo [371] TPC-C, 4 whs, 32 Ktxns 2.98

S
T
A

M
P
[2

57
]

ssca2 -s15 -i1.0 -u1.0 -l6 -p6 10.6
vacation -n4 -q60 -u90 -r1048576 -t262144 4.31
genome -g4096 -s48 -n1048576 2.26
kmeans -m40 -n40 -i rand-n16384-d24-c16 8.75
intruder -a10 -l64 -s32768 2.12

yada -a15 -i ttimeu100000.2 3.41
labyrinth random-x128-y128-z5-n128 4.41

bayes -v32 -r4096 -n10 -p40 -i2 -e8 -s1 8.81

maxflow [40] rmf-wide [81,156], 65 K nodes, 314 K edges 16.7

Table 6.2: Benchmark information: source implementations, inputs, and execution
time on a single-core system.

6.4 Evaluation

We now analyze the benefits of Fractal in depth. As in Section 6.1, we begin with ap-
plications where Fractal uncovers abundant fine-grain parallelism through nesting. We
then discuss Fractal’s benefits from avoiding over-serialization. Finally, we characterize
the performance overheads of zooming to support deeper nesting.

6.4.1 Methodology

Like in Section 4.3.1 we model systems of up to 256 cores (Figure 4-2), with the same
parameters (Table 4.2) and scaling methodology. For task scheduling, we use spatial
hints with load balancing (Section 4.5). We use 128-bit fractal VTs and simulate 2
cycles per create_subdomain instruction.
Benchmarks: Table 6.2 reports the benchmarks we use for evaluation. Benchmarks
have 1-core run-times of about 1 B cycles or longer. We use four benchmarks from
Chapter 3, Chapter 4, and Chapter 5, which we adapt to Fractal; Fractal implementa-
tions of the eight STAMP benchmarks [257]; and one new Fractal workload, maxflow,
which we adapt from prsn [40].

Benchmarks adapted from the previous chapters use their same inputs. msf in-
cludes an optimization to filter out non-spanning edges efficiently [46]. This optimiza-
tion improves absolute performance but reduces the amount of highly parallel work,
so msf has lower scalability than the unoptimized Swarm version of Chapter 3.

STAMP benchmarks use inputs between the recommended “+” and “++” sizes, to
achieve a run-time large enough to evaluate 256-core systems, yet small enough to be
simulated in reasonable time. maxflow uses rmf-wide [156], one of the harder graph

126 Chapter 6. Fractal

Perf. vs serial Avg task length

Nesting type@ 1-core (cycles)

flat fractal flat fractal

maxflow 0.92× 0.68× 3260 373 unord ,→ ord-32b
labyrinth 1× 0.62× 16 M 220 unord ,→ ord-32b

bayes 1× 1.11× 1.8 M 3590 unord ,→ unord

silo 1.14× 1.10× 80 K 3420 unord ,→ ord-32b
mis 0.79× 0.26× 162 115 unord ,→ unord

color 1.06× 0.80× 633 96 ord-32b ,→ ord-32b
msf 3.1× 1.73× 113 49 ord-64b ,→ unord

Table 6.3: Benchmarks with parallel nesting: performance of 1-core flat/fractal vs
tuned serial versions (higher is better), average task lengths, and nesting semantics.

families from the DIMACS maxflow challenge [40].
Like in Section 3.4, we report results for the full parallel region. On all benchmarks

except bayes, we perform enough runs to achieve 95% confidence intervals ≤ 1%.
bayes is highly non-deterministic, so we report its average results with 95% confidence
intervals over 50 runs.

6.4.2 Fractal Uncovers Abundant Parallelism

Fractal’s support for nested parallelism greatly benefits three benchmarks: maxflow, as
well as labyrinth and bayes, the two least scalable benchmarks from STAMP.
maxflow, as discussed in Section 6.1.1, is limited by long global-relabel tasks. Our
fractal version performs the breadth-first search nested within each global relabel in
parallel.
labyrinth finds non-overlapping paths between pairs of (start, end) cells on a 3D grid.
Each transaction operates on one pair: it finds the shortest path on the grid and claims
the cells on the path for itself. In the STAMP implementation, each transaction per-
forms this shortest-path search sequentially. Our fractal version runs the shortest-
path search nested within each transaction in parallel, using an ordered subdomain.
bayes learns the structure of a Bayesian network, a DAG where nodes denote ran-
dom variables and edges denote conditional dependencies among variables. bayes
spends most time deciding whether to insert, remove, or reverse network edges. Eval-
uating each decision requires performing many queries to an ADTree data structure,
which efficiently represents probability estimates. In the STAMP implementation, each
transaction evaluates and applies an insert/remove/reverse decision. Since the ADTree
queries performed depend on the structure of the network, transactions serialize often.
Our fractal version runs ADTree queries nested within each transaction in parallel,
using an unordered subdomain.

Table 6.3 compares the 1-core performance and average task lengths of flat and
fractal versions. flat versions of these benchmarks have long, unordered trans-

6.4. Evaluation 127

flat fractal precisebloom

1

256

512

S
p

e
e

d
u

p

1c 128c 256c

maxflow

1

64

128

1c 128c 256c

labyrinth

1

128

256

1c 128c 256c

279x

bayes

(a) Speedup from 1 to 256 cores relative to 1-core flat.

0

20

40

60

80

100

F
ra

c
ti
o

n
 o

f
c
o
re

 c
y
c
le

s
 (

%
)

B P B P B P B P B P B P
flat fractal flat fractal flat fractal

maxflow labyrinth bayes

4
.9

x

4
.8

x

3
2
2
x

3
2
3
x

0
.8

x

4
.2

x

8
8
x

8
8
x

2
.7

x

4
.3

x

2
4
6
x

2
7
9
x

§
1
8
%

§
2
9
%

§
1
6
%

§
1
3
%

Empty

Stall

Spill

Abort

Commit

(b) Breakdown of core cycles at 256 cores, with speedups on top.

Figure 6-13: Performance of flat and fractal versions of applications with abundant
nested parallelism, using Bloom filter–based or Precise conflict detection.

actions (up to 16 M cycles). fractal versions have much smaller tasks (up to 3590
cycles on average in bayes). These short tasks hurt serial performance (by up to 38% in
labyrinth), but expose plentiful intra-domain parallelism (e.g., a parallel breadth-first
search), yielding great scalability.

Beyond limiting parallelism, the long transactions of flat versions have large read-
/write sets that often overflow Fractal’s Bloom filters, causing false-positive aborts.
Therefore, we also present results under an idealized, precise conflict detection scheme
that does not incur false positives. High false positive rates are not specific to Fractal—
prior HTMs used similarly-sized Bloom filters [69,258,325,399].

Figure 6-13a shows the performance of the flat and fractal versions when scal-
ing from 1- to 256-core systems. All speedups reported are over the 1-core flat ver-
sion. Solid lines show speedups when using Bloom filters, while dashed ones show
speedups under precise conflict detection. flat versions scale poorly, especially when
using Bloom filters: the maximum speedups across all system sizes range from 1.0×
(labyrinth at 1 core) to 4.9× (maxflow). By contrast, fractal versions scale much
better, from 88× (labyrinth) to 322× (maxflow).4.

4 Note that systems with more tiles have higher cache and queue capacities, which sometimes cause

128 Chapter 6. Fractal

Figure 6-13b gives more insight into these differences by showing the percentage
of cycles that cores spend on different activities: (i) running tasks that are ultimately
committed, (ii) running tasks that are later aborted, (iii) spilling tasks from the hard-
ware task queues, (iv) stalled on a full task or commit queue, or (v) stalled due to lack
of tasks. Each group of bars shows results for a different application at 256 cores.

Figure 6-13b shows that flat versions suffer from lack of work caused by insuffi-
cient parallelism, and stalls caused by long tasks that eventually become the earliest
active task and prevent others from committing. Moreover, most of the work performed
by flat versions is aborted as tasks have large read/write sets and frequently conflict.
labyrinth-flat and bayes-flat also suffer frequent false-positive aborts that hurt
performance with Bloom filter conflict detection. Although precise conflict detection
helps labyrinth-flat and bayes-flat, both benchmarks still scale poorly (to 4.3×
and 6.8×, respectively) due to insufficient parallelism.

By contrast, fractal versions spend most cycles executing useful work, and aborted
cycles are relatively small, from 7% (bayes) to 24% (maxflow). fractal versions per-
form just as well with Bloom filters as with precise conflict detection. These results
shows that exploiting fine-grain nested speculative parallelism is an effective way to
scale challenging applications.

6.4.3 Fractal Avoids Over-Serialization

Fractal’s support for nested parallelism avoids over-serialization on four benchmarks:
silo, mis, color, and msf. Swarm can exploit nested parallelism in these bench-
marks by imposing a total order among coarse-grain operations or groups of tasks
(Section 6.1.3). Section 6.1 showed that this has a negligible effect on silo, so we
focus on the other three applications.
mis, color, and msf are graph-processing applications. Their flat versions per-

form operations on multiple graph nodes that can be parallelized but must remain
atomic—e.g., in mis, adding a node to the independent set and excluding its neighbors
(Section 6.1.3). mis-flat is unordered, while color-flat and msf-flat visit nodes
in a partial order (e.g., color visits larger-degree nodes first). Our fractal versions
use one subdomain per coarse-grain operation to exploit this nested parallelism (Ta-
ble 6.3). The swarm-fg versions of these benchmarks use the same fine-grain tasks as
fractal but use a unique timestamp or timestamp range per coarse-grain operation to
guarantee atomicity, imposing a fixed order among coarse-grain operations.

Figure 6-14 shows the scalability and cycle breakdowns for these benchmarks. flat
versions achieve the lowest speedups, from 26× (msf at 64 cores) to 98× (mis). Fig-
ure 6-14b shows that they are dominated by aborts, which take up to 73% of cycles in
color-flat, and empty cycles caused by insufficient parallelism in msf and mis. In
msf-flat, frequent aborts hurt performance beyond 64 cores.

superlinear speedups (Section 4.3.1)

6.4. Evaluation 129

flat fractalswarm-fg

1

64

128

S
p

e
e

d
u

p

1c 128c 256c

145x

mis

1

64

128

1c 128c 256c

color

1

32

64

1c 128c 256c

msf

(a) Speedup from 1 to 256 cores relative to 1-core flat.

0

20

40

60

80

100

F
ra

c
ti
o
n
 o

f
c
o
re

 c
y
c
le

s
 (

%
)

flat s frac flat s frac flat s frac

mis color msf

9
8

x

1
1

7
x

1
4

5
x

7
4

x

1
1

9
x

1
2

6
x

9
.3

x

2
1

x

4
0

x

Empty

Stall

Spill

Abort

Commit

(b) Breakdown of core cycles at 256 cores, with speedups on top.

Figure 6-14: Performance of flat, swarm-fg, and fractal versions of applications
where Swarm extracts nested parallelism through strict ordering, but Fractal outper-
forms it by avoiding undue serialization.

By contrast, fractal versions achieve the highest performance, from 40× (msf) to
145× (mis). At 256 cores, the majority of time is spent on committed work, although
aborts are still noticeable (up to 30% of cycles in color). While fractal versions
perform better at 256 cores, their tiny tasks impose higher overheads, so they under-
perform flat on small core counts. This is most apparent in msf, where fractal tasks
are just 49 cycles on average (Table 6.3).

Finally, swarm-fg versions follow the same scaling trends as fractal ones, but
over-serialization makes them 6% (color), 24% (mis), and 93% (msf) slower. Fig-
ure 6-14b shows that these slowdowns primarily stem from more frequent aborts. This
is because in swarm-fg versions, conflict resolution priority is static (determined by
timestamps), while in fractal versions, it is based on the dynamic execution order
(determined by tiebreakers). In summary, these results show that Fractal makes fine-
grain parallelism more attractive by avoiding needless order constraints.

6.4.4 Zooming Overheads

Although our Fractal implementation supports unbounded nesting (Section 6.3.2), two
nesting levels suffice for all the benchmarks we evaluate. Larger programs should re-

130 Chapter 6. Fractal

2 4 6 8(no zooming)Max. depth supported in hardware:

Fanout

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rf

o
rm

a
n
c
e

4 6 8 12

(a) 1 core
Fanout

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rf

o
rm

a
n
c
e

4 6 8 12

(b) 256 cores

Figure 6-15: Characterization of zooming overheads.

quire deeper nesting. Therefore, we use a microbenchmark to characterize the over-
heads of Fractal’s zooming technique.

Our microbenchmark stresses Fractal by creating many nested domains that contain
few tasks each. Specifically, it generates a depth-8 tree of nested domains with fanout
F . All tasks perform a small, fixed amount of work (1500 cycles). Non-leaf tasks then
create an unordered subdomain and enqueue F children into it. We sweep both the
fanout (F = 4 to 12) and the maximum number of concurrent levels D in Fractal, from
2 (64-bit fractal VTs) to 8 (256-bit fractal VTs). At D = 8, the system does not perform
any zooming. Our default hardware configuration supports up to 4 concurrent levels.

Figure 6-15a reports performance on a 1-core system. Each group of bars shows
results for a single fanout, and bars within a group show how performance changes as
the maximum concurrent levels D grows from 2 to 8. Performance is relative to the
D = 8, no-zooming system. Using a 1-core system lets us focus on the overheads of
zooming without factoring in limited parallelism. Larger fanouts and concurrent levels
increase the amount of work executed between zooming operations, reducing over-
heads. Nonetheless, overheads are modest even for F = 4 and D = 2 (21% slowdown).

Figure 6-15b reports performance on a 256-core system. Supporting a limited num-
ber of levels reduces parallelism, especially with small fanouts, which hurts perfor-
mance. Nonetheless, as long as F ≥ 8, supporting at least four levels keeps overheads
small.

All of our applications have much higher parallelism than 8 concurrent tasks in at
least one of their two nesting levels, and often in both. Therefore, on applications
with deeper nesting, zooming should not limit performance in most cases. However,
these are carefully coded applications that avoid unnecessary nesting. Nesting could
be overused (e.g., increasing the nesting depth at every intermediate step of a divide-
and-conquer algorithm), which would limit parallelism. To avoid this, a compiler pass
may be able to safely flatten unnecessary nesting levels. We leave this to future work.

6.4. Evaluation 131

1

128

256

S
p

e
e

d
u

p

293x

vacation

1

128

256
277x

ssca2

1

128

256

S
p

e
e

d
u

p

intruder

1

64

128
yada

1

64

128
labyrinth

1

128

256

S
p

e
e

d
u

p

1c 128c 256c

kmeans

1

64

128

1c 128c 256c

genome

1

128

256

1c 128c 256c

bayes

TM

+HWQueues

+Hints

Fractal

Figure 6-16: Different Fractal features make all STAMP applications scale well to 256
cores.

6.4.5 Discussion

We considered 20 benchmarks to evaluate Fractal: all eight from STAMP [257], the
remaining 11 applications from the previous chapters, as well as maxflow. We looked
for opportunities to exploit nested parallelism, focusing on benchmarks with limited
speedups. In summary, Fractal benefits 7 out of these 20 benchmarks. We did not find
opportunities to exploit nested parallelism in the seven Swarm and Espresso bench-
marks not presented here (bfs, sssp, astar, des, nocsim, cf, and triangle). These
benchmarks all scale well to 256 cores, the latter two have plentiful non-speculative
parallelism, and the former five already use sufficiently fine-grain tasks.

Figure 6-16 shows how each STAMP benchmark scales when using different Fractal
features. All speedups reported are over the 1-core TM version. The TM lines show
the performance of the original STAMP transactions ported to Swarm tasks. Three
applications (intruder, labyrinth, and bayes) barely scale, while two (yada and
kmeans) scale well at small core counts but suffer on larger systems. By contrast, Frac-
tal’s features make all STAMP applications scale, although speedups are not only due
to nesting. First, the TM versions of intruder and yada use software task queues that
limit their scalability. Refactoring them to use Swarm/Fractal hardware task queues
(Section 3.3.2) makes them scale. Second, spatial hints (Chapter 4) improves genome

132 Chapter 6. Fractal

and makes kmeans scale. Finally, as we saw in Section 6.4.2, Fractal’s support for nest-
ing makes labyrinth and bayes scale. Therefore, Fractal is the first architecture that
scales the full STAMP suite to hundreds of cores, achieving a gmean speedup of 177×
at 256 cores.

6.5 Additional Related Work

6.5.1 Nesting in Transactional Memory

Serial nesting: Most HTMs support serial execution of nested transactions, which
makes transactional code easy to compose but forgoes intra-transaction parallelism.
Nesting can be trivially supported by ignoring the boundaries of all nested transactions,
treating them as part of the top-level one. Some HTMs exploit nesting to implement
partial aborts [264]: they track the speculative state of a nested transaction separately
while it executes, so conflicts that occur while the nested transaction runs do not abort
the top-level one.

Even with partial aborts, HTMs ultimately merge nested speculative state into the
top-level transaction, resulting in large atomic regions that are hard to support in hard-
ware [17,55,83,84] and make conflicts more likely.

Prior work has explored relaxed nesting semantics, like open nesting [251, 264,
272] and early release [341], which relax isolation to improve performance. Fractal is
orthogonal to these techniques and could be extended to support them, but we do not
see the need on the applications we study.
Parallel nesting: Some TM systems support running nested transactions in paral-
lel [267]: a transaction can launch multiple nested transactions and wait for them
to finish. Nested transactions may run in parallel and can observe updates from their
parent transaction. As in serial nesting, when a nested transaction finishes, its specu-
lative state is merged with its parent’s. When all nested transactions finish, the parent
transaction resumes execution.

Most of this work has been in software TM (STM) implementations [12, 27, 109,
383], but these suffer from even higher overheads than flat STMs. Vachharajani [375,
Ch. 7] and FaNTM [28] introduce hardware support to reduce parallel nesting over-
heads. Even with hardware support, parallel-nesting HTMs yield limited gains—e.g.,
FaNTM is often slower than a flat HTM, and moderately outperforms it (by up to 40%)
only on a microbenchmark.

Parallel-nesting TMs suffer from three main problems. First, nested transactions
merge their speculative state with their parent’s, and only the coarse, top-level transac-
tion can commit. This results in large atomic blocks that are as expensive to track and
as prone to abort as large serial transactions. By contrast, Fractal performs fine-grain
speculation, at the level of individual tasks. It never merges the speculative state of
tasks, and relies on ordering tasks to guarantee the atomicity of nested domains.

6.6. Summary 133

Second, because the parent transaction waits for its nested transactions to finish,
there is a cyclic dependence between the parent and its nested transactions. This intro-
duces many subtle problems, including data races with the parent, deadlock, and live-
lock [28]. Workarounds for these issues are complex and sacrifice performance (e.g.,
a nested transaction eventually aborts all its ancestors for livelock avoidance [28]). By
contrast, all dependences in Fractal are acyclic, from parents to children, which avoids
these issues. Fractal supports the fork-join semantics of parallel-nesting TMs by having
nested transactions enqueue their parent’s continuation.

Finally, parallel-nesting TMs do not support ordered speculative parallelism. By
contrast, Fractal supports arbitrary nesting of ordered and unordered parallelism, which
accelerates a broader range of applications.

6.5.2 Nesting in Thread-Level Speculation

Renau et al. [309] use timestamps to allow out-of-order task spawn, exploiting nested
parallelism across function calls and loop nests [238]. Each task carries a timestamp
range, and splits it in half when it spawns a successor. However, while this technique
works well at the scale it was evaluated (4 speculative tasks), it would require an
impractical number of timestamp bits at the scale we consider (4096 speculative tasks).
Moreover, this technique would cause over-serialization and does not support exposing
timestamps to programs.

6.5.3 Nesting in Non-Speculative Systems

Nesting is supported by most parallel programming languages, such as OpenMP [121].
In many languages, such as NESL [48], Cilk [142], and X10 [76], nesting is the natu-
ral way to express parallelism. Supporting nested parallelism in these non-speculative
systems is easy because parallel tasks have no atomicity requirements: they either op-
erate on disjoint data or use explicit synchronization, such as locks [79] or dataflow
annotations [120], to avoid data races. Though nested non-speculative parallelism is
often sufficient, many algorithms need speculation to be parallelized efficiently [289].
By making nested speculative parallelism practical, Fractal brings the benefits of com-
posability and fine-grain parallelism to a broader set of programs.

6.6 Summary

We have presented Fractal, a new execution model for fine-grain nested speculative
parallelism. Fractal lets programmers compose ordered and unordered algorithms
without undue serialization. Our Fractal implementation builds on the Swarm archi-
tecture and relies on a dynamically chosen task order to perform fine-grain speculation,
operating at the level of individual tasks. Our implementation sidesteps the scalability

134 Chapter 6. Fractal

issues of parallel-nesting HTMs and requires simple hardware. We have shown that
Fractal can parallelize a broader range of applications than prior work, and outper-
forms prior speculative architectures by up to 88× at 256 cores.

CHAPTER 7

Conclusion

Transistor density scaling has slowed and voltage scaling has long tapered out, so im-
proved performance and energy efficiency will only come from more effective use of
modern multi-billion-transistor chips. This demands simple expression and efficient
extraction of all types of application parallelism, to the point of executing thousands
of operations at a time, or more. Unfortunately, the interfaces of current multicores,
GPUs, and accelerators makes this an arduous job, if not impossible, as they favor eas-
ier types of parallelism or coarse-grain tasks. Prior hardware architectures to simplify
parallelization do not scale sufficiently to reach our goal. Exploiting parallelism has for
too long been restricted to a minority of expert programmers and application domains.

This thesis has presented a versatile execution model, architecture, and cross-layer
techniques that enable more programmers to exploit some of the most challenging
types of parallelism from a broader range of applications. In particular, we have made
the following contributions:
• Swarm (Chapter 3) is a co-designed execution model and multicore architec-

ture with ordered tasks at the software-hardware interface. Swarm programs
express potential parallelism through dynamically created timestamped tasks.
Timestamps make synchronization implicit, enabling the programmer to specify
the unique, few, or many task execution orders that correctly satisfy their appli-
cation semantics. The Swarm microarchitecture extracts fine-grain ordered irreg-
ular parallelism by running tasks speculatively and out of order, adding modest
changes to a conventional multicore. It innovates on prior speculative architec-
tures through its hardware task management for short, dynamic tasks; decen-
tralized and scalable speculation mechanisms that enable speculative forwarding
with selective aborts; and its hierarchical protocol that achieves high-throughput
ordered commits.

135

136 Chapter 7. Conclusion

• Spatial hints (Chapter 4) extends the Swarm execution model and microarchi-
tecture to perform locality-aware execution, pushing the scalability of the system
to hundreds of cores. The programmer conveys their knowledge of locality by
optionally tagging each task with an integer hint that denotes the data it is likely
to access. The hardware maps tasks with the same hint to the same tile to local-
ize data accesses, and balances load by moving hints, and their tasks, around the
system. We showed that, by exploiting Swarm’s support for tiny ordered tasks,
most data accessed is at least abstractly known just before a task is created, and
programs can often be restructured to further isolate accesses to contentious data.
• Espresso and Capsules (Chapter 5) improve the efficiency of the Swarm archi-

tecture by combining the benefits of non-speculative parallelism with the simplic-
ity and scalability of Swarm’s speculative parallelism. Espresso extends Swarm
to support non-speculative tasks, provides timestamps and locales as common
coordination mechanisms for tasks running in either mode, and introduces the
MAYSPEC task type to let the system decide whether to run individual tasks spec-
ulatively or not. Capsules let speculative tasks safely invoke software-managed
speculative actions, even in the face of speculative forwarding. By bypassing
hardware version management and conflict detection, this enables new capabili-
ties, such as scalable memory allocation and file I/O from speculative tasks.
• Fractal (Chapter 6) pushes the generality of the system by seamlessly composing

nested speculative parallelism, while building on Swarm’s support for specula-
tive ordered parallelism. Fractal expresses computation as a hierarchy of nested
domains, where any task may create an ordered or unordered subdomain and
enqueue its children into it. Tasks within a domain appear to execute in its time-
stamp order, and as one atomic unit to the tasks outside the domain.

This thesis implemented the ordered-tasks execution model atop a baseline homo-
geneous single-threaded multicore. This enabled us to explore how to efficiently ex-
tract fine-grain ordered irregular parallelism with modest changes to a now-ubiquitous
architecture. Beyond multicores, our prior work has also adapted these techniques to
multithreaded architectures [5]. We therefore expect that the underlying principles of
this thesis can be applied to make challenging types of parallelism practical in other
throughput-oriented architectures like GPUs and heterogeneous and specialized archi-
tectures.

7.1 Future Work

Our contributions open exciting research avenues spanning computer architecture,
computer systems, software, and compilers.
Fine-grain parallelism at large scale: Distributed-memory systems become increas-
ingly enticing as Moore’s Law nears its end. For example, near-data processing archi-
tectures [31] improve energy efficiency by reducing data movement, and large-scale

7.1. Future Work 137

systems that span multiple chips [209, 232], boards, or racks [36] improve perfor-
mance by scaling an application across thousands to millions of cores. Beyond shared-
memory parallel architectures, could the techniques in this thesis democratize access
to these systems by efficiently supporting fine-grain irregular parallelism? Unfortu-
nately, Swarm and other speculative architectures leverage the coherence protocol to
detect conflicting accesses cheaply. While coherence protocols can scale to high core
counts [247], their added complexity and overhead may make them undesirable at
very large scales. Fortunately, accurate spatial hints and locales could help make global
coherence unnecessary: if all accesses to shared read-write data are localized within
a tile, all conflicts become local, and coherence becomes superfluous across tiles. We
have shown that hints effectively localize the vast majority of read-write accesses. Frac-
tal further simplifies this pursuit, allowing each remote memory access to execute as
a separate task, sent to the appropriate tile, all while retaining the atomicity of the
original task. This would reuse speculation logic to emulate coherence.

Exploiting task choice to adaptively limit mispeculation: Although speculation can
unlock abundant irregular parallelism, we should avoid as many aborts as possible.
Swarm’s large speculation window with many more tasks than cores gives the archi-
tecture choice on when, where, and how to execute tasks. Spatial hints exploit that
choice by spatially mapping tasks to reduce data movement and serializing same-hint
tasks, while Espresso decides whether to execute MAYSPEC tasks speculatively or not.
Can we exploit task dispatch choice to further reduce aborts? For instance, task pre-
dictors could estimate a dispatch candidate’s likelihood to commit, factoring in several
signals (e.g., function pointer address, arguments, and history). Should a tile make
local decisions to select the most profitable task to dispatch, or should there be a global
approach to throttle concurrency, as in our prior work on speculation-aware multi-
threading [5]? Pursuing these questions can build on the abundance of prior work in
branch prediction, TM schedulers [19,44,45,402], adaptive speculative discrete-event
simulation [350], and control speculation in the original TLS [344].

Expressing more types of parallelism: This thesis presented an execution model
whose hardware implementation extracts abundant fine-grain irregular parallelism
across a large suite of applications. However, it is likely not a panacea: we will need
new techniques to express and efficiently extract parallelism from challenging appli-
cations that goes beyond dynamic hierarchical timestamp-ordered tasks. First, algo-
rithms may exhibit more complex task scheduling patterns. For instance, suppose the
programmer knows that, in their program, many tasks create new work scheduled far
away in program order. In Swarm or Fractal, the new task descriptors are queued in
hardware, but may later spill to and from memory using our general-purpose mecha-
nisms. However, these actions could be optimized with application-specific memory-
backed schedulers. What is right interface that lets programmers control these task
overflow structures, and what hardware support should be provided? Second, time-
stamps are insufficiently expressive to order the tasks of some algorithms and forego

138 Chapter 7. Conclusion

optimization opportunities. For example, applications like sssp can tolerate reordering
of tasks but heuristically order them for algorithmic efficiency [253, 271]. Could we
exploit this fact by generalizing task order with timestamp intervals? Tasks with dis-
joint intervals would be appropriately ordered yet those with overlapping intervals are
respectively unordered. Or should the system decouple timestamped dispatch order
from unordered commits? In either case, what are the architectural implications, and
can we improve efficiency with more flexible task orders?
Application to new algorithms and domains: This thesis demonstrated that the pro-
posed techniques can extract abundant parallelism from conventionally hard-to-par-
allelize algorithms across several domains. We hope this motivates future work that
applies fine-grain parallelism to a broader range of algorithms. For instance, Fractal’s
composable timestamps can implement algorithms that rely on non-monotone priority
queues [365], but we have yet to explore this direction. This could unlock scalable
implementations of Prim’s algorithm for the minimum spanning tree problem or the
SD heuristic for vertex coloring, both of which have proven to be challenging to scale
in software [174] and with custom hardware [245]. Beyond classic graph algorithms,
new opportunities for fine-grain irregular parallelism may lie in emerging and classic
domains: machine learning (e.g., Gibbs sampling in sparse graphical models), numeri-
cal optimization (e.g., linear and integer programming approximations), aerial drones
(e.g., 3D exploration and navigation), electronic CAD (e.g., place and route), compu-
tational geometry (e.g., Voronoi diagrams), bioinformatics, and more.
Compiler-aided program parallelization: While our declarative approach to task or-
dering makes Swarm programs straightforward to port from sequential implementa-
tions, programmers must still invest the time to delimit code into tasks. Fortunately,
this thesis offers a new set of capabilities to compiler-aided program parallelization,
a decades-old research area that yielded limited results. Relying on static analysis
alone, parallelizing compilers have some success finding parallelism in sequential regu-
lar algorithms. Even with the dynamic analysis of speculation, speculative parallelizing
compilers have struggled to extract much irregular parallelism, as they are curtailed by
the limitations of their underlying architectures (i.e., TLS). In contrast, a parallelizing
compiler that targets Swarm would benefit from the scalable hardware implementa-
tion, including selective aborts, high-throughput ordered commits, and locality-aware
execution. The compiler would retain sequential semantics by breaking code into time-
stamp-ordered tasks, while composing nested loops and function calls with Fractal
domains. The resulting code could reduce data movement and isolate contentious ac-
cesses with automatically generated spatial hints. This could be a promising approach
perform whole-program parallelization to aid programmers in expression of fine-grain
irregular parallelism.

Bibliography

[1] “9th DIMACS Implementation Challenge: Shortest Paths,” 2006.

[2] T. M. Aamodt, W. W. L. Fung, and T. G. Rogers, General-Purpose Graphics Proces-

sor Architectures, ser. Synthesis Lectures on Computer Architecture. Morgan &
Claypool Publishers, 2018.

[3] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G.
Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zheng, “TensorFlow: A system for large-scale machine learning,” in Proc.

OSDI-12, 2016.

[4] M. Abadi, M. Isard, and D. G. Murray, “A computational model for TensorFlow:
An introduction,” in Proceedings of the 1st ACM SIGPLAN International Workshop

on Machine Learning and Programming Languages (MAPL), 2017.

[5] M. Abeydeera, S. Subramanian, M. C. Jeffrey, J. Emer, and D. Sanchez, “SAM:
Optimizing multithreaded cores for speculative parallelism,” in Proc. PACT-26,
2017.

[6] U. A. Acar, G. E. Blelloch, and R. D. Blumofe, “The data locality of work stealing,”
in Proc. SPAA, 2000.

[7] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “GARNET: A detailed on-chip
network model inside a full-system simulator,” in Proc. ISPASS, 2009.

[8] S. Agarwal, R. Barik, D. Bonachea, V. Sarkar, R. K. Shyamasundar, and K. Yelick,
“Deadlock-free scheduling of X10 computations with bounded resources,” in
Proc. SPAA, 2007.

[9] V. Agarwal, M. Hrishikesh, S. W. Keckler, and D. Burger, “Clock rate versus IPC:
the end of the road for conventional microarchitectures,” in Proc. ISCA-27, 2000.

139

140 Bibliography

[10] G. A. Agha, “Actors: a model of concurrent computation in distributed systems,”
Ph.D. dissertation, Massachusetts Institute of Technology, 1985.

[11] K. Agrawal, C. E. Leiserson, and J. Sukha, “Executing task graphs using work-
stealing,” in Proc. IPDPS, 2010.

[12] K. Agrawal, J. T. Fineman, and J. Sukha, “Nested parallelism in transactional
memory,” in Proc. PPoPP, 2008.

[13] H. Akkary and M. A. Driscoll, “A dynamic multithreading processor,” in Proc.

MICRO-31, 1998.

[14] D. Alistarh, J. Kopinsky, J. Li, and N. Shavit, “The SprayList: A scalable relaxed
priority queue,” in Proc. PPoPP, 2015.

[15] G. M. Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities,” in Proc. of the American Federation of Information

Processing Societies Spring Joint Computer Conference, ser. AFIPS, 1967.

[16] 4096x128 ternary CAM datasheet (28nm), Analog Bits, 2011.

[17] C. S. Ananian, K. Asanović, B. C. Kuszmaul, C. E. Leiserson, and S. Lie, “Un-
bounded transactional memory,” in Proc. HPCA-11, 2005.

[18] R. J. Anderson and J. C. Setubal, “On the parallel implementation of Goldberg’s
maximum flow algorithm,” in Proc. SPAA, 1992.

[19] M. Ansari, M. Luján, C. Kotselidis, K. Jarvis, C. Kirkham, and I. Watson,
“Steal-on-abort: Improving transactional memory performance through dy-
namic transaction reordering,” in Proc. HiPEAC, 2009.

[20] L. B. Arimilli, B. Blaner, B. C. Drerup, C. F. Marino, D. E. Williams, E. N. Lais, F. A.
Campisano, G. L. Guthrie, M. S. Floyd, R. B. Leavens, S. M. Willenborg, R. Kalla,
and B. Abali, “IBM POWER9 processor and system features for computing in the
cognitive era,” IBM Journal of Research and Development, vol. 62, no. 4/5, 2018.

[21] A. Armejach, A. Negi, A. Cristal, O. Unsal, P. Stenstrom, and T. Harris, “HARP:
Adaptive abort recurrence prediction for hardware transactional memory,” in
HiPC-20, 2013.

[22] Arvind and K. P. Gostelow, “The U-interpreter,” IEEE Computer, vol. 15, no. 2,
1982.

[23] Arvind and R. Nikhil, “Executing a program on the MIT tagged-token dataflow
architecture,” IEEE Transactions on Computers, vol. 39, no. 3, 1990.

[24] T. Austin and G. Sohi, “Dynamic dependency analysis of ordinary programs,” in
Proc. ISCA-19, 1992.

Bibliography 141

[25] U. Aydonat and T. S. Abdelrahman, “Hardware support for relaxed concurrency
control in transactional memory,” in Proc. MICRO-43, 2010.

[26] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, Eds., 10th DIMACS

Implementation Challenge Workshop, 2012.

[27] W. Baek, N. Bronson, C. Kozyrakis, and K. Olukotun, “Implementing and eval-
uating nested parallel transactions in software transactional memory,” in Proc.

SPAA, 2010.

[28] W. Baek, N. Bronson, C. Kozyrakis, and K. Olukotun, “Making nested paral-
lel transactions practical using lightweight hardware support,” in Proc. ICS’10,
2010.

[29] W. Baek, C. C. Minh, M. Trautmann, C. Kozyrakis, and K. Olukotun, “The
OpenTM transactional application programming interface,” in Proc. PACT-16,
2007.

[30] R. Baghdadi, J. Ray, M. B. Romdhane, E. Del Sozzo, A. Akkas, Y. Zhang, P. Suri-
ana, S. Kamil, and S. Amarasinghe, “Tiramisu: A polyhedral compiler for ex-
pressing fast and portable code,” in Proc. CGO, 2019.

[31] R. Balasubramonian, J. Chang, T. Manning, J. H. Moreno, R. Murphy, R. Nair,
and S. Swanson, “Near-data processing: Insights from a MICRO-46 workshop,”
IEEE Micro, vol. 34, no. 4, 2014.

[32] R. Balasubramonian, N. P. Jouppi, and N. Muralimanohar, Multi-Core Cache Hier-

archies, ser. Synthesis Lectures on Computer Architecture. Morgan & Claypool
Publishers, 2011.

[33] A. Baldassin, E. Borin, and G. Araujo, “Performance implications of dynamic
memory allocators on transactional memory systems,” in Proc. PPoPP, 2015.

[34] U. Banerjee, R. Eigenmann, A. Nicolau, and D. A. Padua, “Automatic program
parallelization,” Proceedings of the IEEE, vol. 81, no. 2, 1993.

[35] P. Barnes Jr, C. Carothers, D. R. Jefferson, and J. LaPre, “Warp speed: executing
time warp on 1,966,080 cores,” in Proc. PADS, 2013.

[36] L. A. Barroso, U. HÃűlzle, and P. Ranganathan, The Datacenter as a Computer:

Designing Warehouse-Scale Machines, 3rd ed., ser. Synthesis Lectures on Com-
puter Architecture. Morgan & Claypool Publishers, 2018.

[37] L. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer, B. Sano,
S. Smith, R. Stets, and B. Verghese, “Piranha: A scalable architecture based on
single-chip multiprocessing,” in Proc. ISCA-27, 2000.

[38] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing locality
and independence with logical regions,” in Proc. SC12, 2012.

142 Bibliography

[39] L. Baugh and C. Zilles, “An analysis of I/O and syscalls in critical sections and
their implications for transactional memory,” in Proc. ISPASS, 2008.

[40] N. Baumstark, G. Blelloch, and J. Shun, “Efficient implementation of a syn-
chronous parallel push-relabel algorithm,” in Proc. ESA, 2015.

[41] C. J. Beckmann and C. D. Polychronopoulos, “Fast barrier synchronization hard-
ware,” in Proc. SC90, 1990.

[42] J. Bennett and S. Lanning, “The Netflix prize,” in KDD Cup and Workshop, 2007.

[43] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete, “Cyclo-static dataflow,”
IEEE Transactions on Signal Processing, vol. 44, no. 2, 1996.

[44] G. Blake, R. G. Dreslinski, and T. Mudge, “Proactive transaction scheduling for
contention management,” in Proc. MICRO-42, 2009.

[45] G. Blake, R. G. Dreslinski, and T. Mudge, “Bloom filter guided transaction
scheduling,” in Proc. MICRO-44, 2011.

[46] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and J. Shun, “Internally deterministic
parallel algorithms can be fast,” in Proc. PPoPP, 2012.

[47] G. E. Blelloch, J. T. Fineman, and J. Shun, “Greedy sequential maximal indepen-
dent set and matching are parallel on average,” in Proc. SPAA, 2012.

[48] G. E. Blelloch, J. C. Hardwick, S. Chatterjee, J. Sipelstein, and M. Zagha, “Im-
plementation of a portable nested data-parallel language,” in Proc. PPoPP, 1993.

[49] G. E. Blelloch and B. M. Maggs, “Parallel algorithms,” ACM Computing Surveys

(CSUR), vol. 28, no. 1, 1996.

[50] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Com-

munications of the ACM, vol. 13, no. 7, 1970.

[51] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded computations by
work stealing,” Journal of the ACM (JACM), vol. 46, no. 5, 1999.

[52] C. Blundell, J. Devietti, E. C. Lewis, and M. M. Martin, “Making the fast case
common and the uncommon case simple in unbounded transactional memory,”
in Proc. ISCA-34, 2007.

[53] C. Blundell, E. C. Lewis, and M. M. K. Martin, “Subtleties of transactional mem-
ory atomicity semantics,” IEEE Computer Architecture Letters, vol. 5, no. 2, 2006.

[54] O. A. R. Board, “OpenMP application program interface,” 2013.

[55] J. Bobba, N. Goyal, M. D. Hill, M. M. Swift, and D. A. Wood, “TokenTM: Efficient
execution of large transactions with hardware transactional memory,” in Proc.

ISCA-35, 2008.

Bibliography 143

[56] J. Bobba, K. E. Moore, H. Volos, L. Yen, M. D. Hill, M. M. Swift, and D. A.
Wood, “Performance pathologies in hardware transactional memory,” in Proc.

ISCA, 2007.

[57] R. L. Bocchino, V. S. Adve, and B. L. Chamberlain, “Software transactional mem-
ory for large scale clusters,” in Proc. PPoPP, 2008.

[58] M. Bohr, “A 30 year retrospective on Dennard’s MOSFET scaling paper,” IEEE

Solid-State Circuits Society Newsletter, vol. 12, no. 1, 2007.

[59] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A practical
automatic polyhedral parallelizer and locality optimizer,” in Proc. PLDI, 2008.

[60] S. Brand and R. Bidarra, “Multi-core scalable and efficient pathfinding with Par-
allel Ripple Search,” Computer Animation and Virtual Worlds, vol. 23, no. 2,
2012.

[61] A. Brito, C. Fetzer, H. Sturzrehm, and P. Felber, “Speculative out-of-order event
processing with software transaction memory,” in Proc. of the 2nd intl. conf. on

Distributed Event-Based Systems, 2008.

[62] D. Burger, S. W. Keckler, K. e. McKinley, M. Dahlin, L. K. John, C. Lin, C. R.
Moore, J. Burrill, R. G. McDonald, and W. Yoder, “Scaling to the End of Silicon
with EDGE Architectures,” IEEE Computer, vol. 37, no. 7, 2004.

[63] M. Butler, T.-Y. Yeh, Y. Patt, M. Alsup, H. Scales, and M. Shebanow, “Single
instruction stream parallelism is greater than two,” in Proc. ISCA-18, 1991.

[64] H. W. Cain, M. M. Michael, B. Frey, C. May, D. Williams, and H. Le, “Robust
architectural support for transactional memory in the Power architecture,” in
Proc. ISCA-40, 2013.

[65] B. D. Carlstrom, A. McDonald, M. Carbin, C. Kozyrakis, and K. Olukotun, “Trans-
actional collection classes,” in Proc. PPoPP, 2007.

[66] J. L. Carter and M. Wegman, “Universal classes of hash functions (extended
abstract),” in Proc. STOC-9, 1977.

[67] C. Caşcaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras, and S. Chat-
terjee, “Software transactional memory: Why is it only a research toy?” Com-

munications of the ACM, vol. 51, no. 11, 2008.

[68] E. Castillo, L. Alvarez, M. Moreto, M. Casas, E. Vallejo, J. L. Bosque, R. Beivide,
and M. Valero, “Architectural support for task dependence management with
flexible software scheduling,” in Proc. HPCA-24, 2018.

[69] L. Ceze, J. Tuck, J. Torrellas, and C. Caşcaval, “Bulk disambiguation of specula-
tive threads in multiprocessors,” in Proc. ISCA-33, 2006.

144 Bibliography

[70] H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald, C. C. Minh, W. Baek,
C. Kozyrakis, and K. Olukotun, “A scalable, non-blocking approach to trans-
actional memory,” in Proc. HPCA-13, 2007.

[71] H. Chafi, A. K. Sujeeth, K. J. Brown, H. Lee, A. R. Atreya, and K. Olukotun, “A
domain-specific approach to heterogeneous parallelism,” in Proc. PPoPP, 2011.

[72] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive model for graph
mining,” in Proc. SDM, 2004.

[73] B. Chamberlain, D. Callahan, and H. Zima, “Parallel programmability and the
Chapel language,” International Journal of High Performance Computing Appli-

cations, vol. 21, no. 3, 2007.

[74] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low-power CMOS digital
design,” IEEE Journal of Solid-State Circuits, vol. 27, no. 4, 1992.

[75] S. Chandrasekaran and M. D. Hill, “Optimistic simulation of parallel architec-
tures using program executables,” in Proc. PADS, 1996.

[76] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von
Praun, and V. Sarkar, “X10: An object-oriented approach to non-uniform cluster
computing,” in Proc. OOPSLA-20, 2005.

[77] S. Chen, P. B. Gibbons, M. Kozuch, V. Liaskovitis, A. Ailamaki, G. E. Blelloch,
B. Falsafi, L. Fix, N. Hardavellas, T. C. Mowry, and C. Wilkerson, “Scheduling
threads for constructive cache sharing on CMPs,” in Proc. SPAA, 2007.

[78] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficient re-
configurable accelerator for deep convolutional neural networks,” IEEE Journal

of Solid-State Circuits, vol. 52, no. 1, 2017.

[79] G.-I. Cheng, M. Feng, C. E. Leiserson, K. H. Randall, and A. F. Stark, “Detecting
data races in Cilk programs that use locks,” in Proc. SPAA, 1998.

[80] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng, M. Wu, F. Yang, L. Zhou, F. Zhao,
and E. Chen, “Kineograph: Taking the pulse of a fast-changing and connected
world,” in Proc. EuroSys, 2012.

[81] B. V. Cherkassky and A. V. Goldberg, “On implementing the push-relabel method
for the maximum flow problem,” Algorithmica, vol. 19, no. 4, 1997.

[82] G. Z. Chrysos and J. S. Emer, “Memory dependence prediction using store sets,”
in Proc. ISCA-25, 1998.

[83] W. Chuang, S. Narayanasamy, G. Venkatesh, J. Sampson, M. Van Biesbrouck,
G. Pokam, B. Calder, and O. Colavin, “Unbounded page-based transactional
memory,” in Proc. ASPLOS-XII, 2006.

Bibliography 145

[84] J. Chung, C. C. Minh, A. McDonald, T. Skare, H. Chafi, B. D. Carlstrom,
C. Kozyrakis, and K. Olukotun, “Tradeoffs in transactional memory virtualiza-
tion,” in Proc. ASPLOS-XII, 2006.

[85] M. Cintra and D. Llanos, “Toward efficient and robust software speculative par-
allelization on multiprocessors,” in PPoPP, 2003.

[86] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris, and E. Kohler, “The
scalable commutativity rule: Designing scalable software for multicore proces-
sors,” in Proc. SOSP-24, 2013.

[87] C. B. Colohan, A. Ailamaki, J. G. Steffan, and T. C. Mowry, “Optimistic intra-
transaction parallelism on chip multiprocessors,” in Proc. VLDB, 2005.

[88] C. B. Colohan, A. Ailamaki, J. G. Steffan, and T. C. Mowry, “Tolerating depen-
dences between large speculative threads via sub-threads,” in Proc. ISCA-33,
2006.

[89] R. P. Colwell, R. P. Nix, J. J. O’Donnell, D. B. Papworth, D. B. Papworth, and
P. K. Rodman, “A VLIW architecture for a trace scheduling compiler,” in Proc.

ASPLOS-II, 1987.

[90] G. Contreras and M. Martonosi, “Characterizing and improving the performance
of Intel threading building blocks,” in Proc. IISWC, 2008.

[91] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Bench-
marking cloud serving systems with YCSB,” in Proc. SoCC-1, 2010.

[92] J. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. Furman, S. Ghemawat,
A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, , and D. Woodford, “Spanner: Google’s
globally distributed database,” ACM Transactions on Computer Systems (TOCS),
vol. 31, no. 3, 2013.

[93] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms,
3rd ed. MIT Press, 2009.

[94] C. Curino, E. Jones, Y. Zhang, and S. Madden, “Schism: a workload-driven
approach to database replication and partitioning,” Proceedings of the VLDB En-

dowment, vol. 3, 2010.

[95] L. Dagum and R. Menon, “OpenMP: an industry standard API for shared-
memory programming,” IEEE Computational Science and Engineering, vol. 5,
no. 1, 1998.

[96] L. Dalessandro and M. L. Scott, “Strong isolation is a weak idea,” in TRANSACT,
2009.

146 Bibliography

[97] L. Dalessandro and M. L. Scott, “Sandboxing transactional memory,” in Proc.

PACT-21, 2012.

[98] W. J. Dally, L. Chao, A. Chien, S. Hassoun, W. Horwat, J. Kaplan, P. Song, B. Totty,
and S. Wills, “Architecture of a message-driven processor,” in Proc. ISCA-14,
1987.

[99] T. David, R. Guerraoui, and V. Trigonakis, “Everything you always wanted to
know about synchronization but were afraid to ask,” in Proc. SOSP-24, 2013.

[100] T. A. Davis and Y. Hu, “The University of Florida sparse matrix collection,” ACM

Transactions on Mathematical Software (TOMS), vol. 38, no. 1, 2011.

[101] B. D. de Dinechin, R. Ayrignac, P.-E. Beaucamps, P. Couvert, B. Ganne, P. G.
de Massas, F. Jacquet, S. Jones, N. M. Chaisemartin, F. Riss, and T. Strudel, “A
clustered manycore processor architecture for embedded and accelerated appli-
cations,” in Proc. HPEC, 2013.

[102] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large
clusters,” Communications of the ACM, vol. 51, no. 1, 2008.

[103] R. Dennard, F. Gaensslen, V. Rideout, E. Bassous, and A. LeBlanc, “Design of
ion-implanted MOSFETs with very small physical dimensions,” IEEE Journal of

Solid-State Circuits, vol. 9, no. 5, 1974.

[104] J. B. Dennis, “First version of a data flow procedure language,” in Proc. Program-

ming Symposium, 1974.

[105] J. B. Dennis and D. P. Misunas, “A preliminary architecture for a basic data-flow
processor,” in Proc. ISCA, 1975.

[106] J. Devietti, B. Lucia, L. Ceze, and M. Oskin, “DMP: Deterministic shared memory
multiprocessing,” in Proc. ASPLOS-XIV, 2009.

[107] L. Dhulipala, G. Blelloch, and J. Shun, “Julienne: A framework for parallel graph
algorithms using work-efficient bucketing,” in Proc. SPAA, 2017.

[108] D. Dice, Y. Lev, V. J. Marathe, M. Moir, D. Nussbaum, and M. Olszewski, “Simpli-
fying concurrent algorithms by exploiting hardware transactional memory,” in
Proc. SPAA, 2010.

[109] N. Diegues and J. Cachopo, “Practical parallel nesting for software transactional
memory,” in Proc. DISC, 2013.

[110] N. Diegues, P. Romano, and S. Garbatov, “Seer: Probabilistic Scheduling for
Hardware Transactional Memory,” in Proc. SPAA, 2015.

[111] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische

Mathematik, vol. 1, no. 1, 1959.

Bibliography 147

[112] E. W. Dijkstra, A Discipline of Programming. Prentice-Hall, 1976.

[113] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and C. Zhang, “Software behavior
oriented parallelization,” in Proc. PLDI, 2007.

[114] S. Dolev, D. Hendler, and A. Suissa, “CAR-STM: scheduling-based collision
avoidance and resolution for software transactional memory,” in Proc. PODC,
2008.

[115] A. Dragojević, P. Felber, V. Gramoli, and R. Guerraoui, “Why STM can be more
than a research toy,” Communications of the ACM, vol. 54, no. 4, 2011.

[116] A. Dragojević, R. Guerraoui, A. V. Singh, and V. Singh, “Preventing versus curing:
avoiding conflicts in transactional memories,” in Proc. PODC, 2009.

[117] A. Dragojević, M. Herlihy, Y. Lev, and M. Moir, “On the power of hardware trans-
actional memory to simplify memory management,” in Proc. PODC, 2011.

[118] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge, “Near-
threshold computing: Reclaiming Moore’s law through energy efficient inte-
grated circuits,” Proceedings of the IEEE, vol. 98, no. 2, 2010.

[119] P. Dudnik and M. M. Swift, “Condition variables and transactional memory:
Problem or opportunity?” in Proc. TRANSACT, 2009.

[120] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Martorell, and
J. Planas, “OmpSs: A proposal for programming heterogeneous multi-core ar-
chitectures,” Parallel Processing Letters, vol. 21, no. 02, 2011.

[121] A. Duran, J. Corbalán, and E. Ayguadé, “Evaluation of OpenMP task scheduling
strategies,” in Proc. of the 4th International Workshop on OpenMP, 2008.

[122] L. Durant, O. Girouxa, M. Harris, and N. Stam, “Inside Volta: The world’s most
advanced data center GPU,” in NVIDIA Developer Blog, May 2017.

[123] D. Easley and J. Kleinberg, Networks, Crowds, and Markets: Reasoning about a

Highly Connected World. Cambridge University Press, 2010.

[124] K. Ebcioğlu, E. Altman, M. Gschwind, and S. Sathaye, “Optimizations and oracle
parallelism with dynamic translation,” in Proc. MICRO-32, 1999.

[125] M. Emami, R. Ghiya, and L. J. Hendren, “Context-sensitive interprocedural
points-to analysis in the presence of function pointers,” in Proc. PLDI, 1994.

[126] N. Enright Jerger, T. Krishna, and L.-S. Peh, On-Chip Networks, 2nd ed., ser.
Synthesis Lectures on Computer Architecture. Morgan & Claypool Publishers,
2017.

[127] H. Esmaeilzadeh, E. Blem, R. St Amant, K. Sankaralingam, and D. Burger, “Dark
silicon and the end of multicore scaling,” in Proc. ISCA-38, 2011.

148 Bibliography

[128] A. Estebanez, D. R. Llanos, and A. Gonzalez-Escribano, “A survey on thread-
level speculation techniques,” ACM Computing Surveys (CSUR), vol. 49, no. 2,
2016.

[129] Y. Etsion, F. Cabarcas, A. Rico, A. Ramirez, R. Badia, E. Ayguade, J. Labarta, and
M. Valero, “Task Superscalar: An Out-of-Order Task Pipeline,” in Proc. MICRO-

43, 2010.

[130] E. Fatehi and P. Gratz, “ILP and TLP in shared memory applications: a limit
study,” in Proc. PACT-23, 2014.

[131] P. Feautrier and C. Lengauer, “Data flow graphs,” in Encyclopedia of Parallel Com-

puting, D. Padua, Ed. Springer, 2011.

[132] P. Feautrier and C. Lengauer, “Polyhedron model,” in Encyclopedia of Parallel

Computing, D. Padua, Ed. Springer, 2011.

[133] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence graph
and its use in optimization,” ACM Transactions on Programming Languages and

Systems (TOPLAS), vol. 9, no. 3, 1987.

[134] A. Ferscha and S. Tripathi, “Parallel and distributed simulation of discrete event
systems,” U. Maryland, Tech. Rep., 1998.

[135] N. Firasta, M. Buxton, P. Jinbo, K. Nasri, and S. Kuo, “Intel R© AVX: New frontiers
in performance improvements and energy efficiency,” Intel Corporation, White
Paper, May 2008.

[136] J. A. Fisher, “Very long instruction word architectures and the ELI-512,” in Proc.

ISCA-10, 1983.

[137] J. Fix, N. P. Nagendra, S. Apostolakis, H. Zhang, S. Qiu, and D. I. August, “Hard-
ware multithreaded transactions,” in Proc. ASPLOS-XXIII, 2017.

[138] M. Franklin and G. S. Sohi, “The expandable split window paradigm for exploit-
ing fine-grain parallelism,” in Proc. ISCA-19, 1992.

[139] M. Franklin and G. S. Sohi, “ARB: A hardware mechanism for dynamic reorder-
ing of memory references,” IEEE Transactions on Computers, vol. 45, no. 5, 1996.

[140] M. Franklin, “The multiscalar architecture,” Ph.D. dissertation, University of
Wisconsin–Madison, 1993.

[141] M. Fredman and R. Tarjan, “Fibonacci heaps and their uses in improved net-
work optimization algorithms,” in Proc. of the 25th Symposium on Foundations

of Computer Science (FOCS), 1984.

[142] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation of the Cilk-5
multithreaded language,” in Proc. PLDI, 1998.

Bibliography 149

[143] R. Fujimoto, “The virtual time machine,” in Proc. SPAA, 1989.

[144] R. Fujimoto, “Parallel discrete event simulation,” Communications of the ACM,
vol. 33, no. 10, 1990.

[145] S. L. Fung and J. G. Steffan, “Improving cache locality for thread-level specula-
tion,” in Proc. IPDPS, 2006.

[146] D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllenhaal, and W.-m. W. Hwu,
“Dynamic memory disambiguation using the memory conflict buffer,” in Proc.

ASPLOS-VI, 1994.

[147] A. García-Yágüez, D. R. Llanos, and A. González-Escribano, “Squashing alterna-
tives for software-based speculative parallelization,” IEEE Transactions on Com-

puters, vol. 63, no. 7, 2014.

[148] M. Garland and D. B. Kirk, “Understanding throughput-oriented architectures,”
Communications of the ACM, vol. 53, no. 11, 2010.

[149] S. Garold, “Detection and parallel execution of independent instructions,” IEEE

Transactions on Computers, vol. 19, no. 10, 1970.

[150] M. J. Garzarán, M. Prvulovic, J. M. Llabería, V. Viñals, L. Rauchwerger, and
J. Torrellas, “Tradeoffs in buffering speculative memory state for thread-level
speculation in multiprocessors,” in Proc. HPCA-9, 2003.

[151] M. J. Garzarán, M. Prvulovic, V. Viñals, J. M. Llabería, L. Rauchwerger, and
J. Torrellas, “Using software logging to support multi-version buffering in
thread-level speculation,” in Proc. PACT-12, 2003.

[152] T. Gautier, J. V. F. Lima, N. Maillard, and B. Raffin, “XKaapi: A runtime system for
data-flow task programming on heterogeneous architectures,” in Proc. IPDPS,
2013.

[153] P. P. Gelsinger, “Microprocessors for the new millennium: Challenges, opportu-
nities, and new frontiers,” in Proc. ISSCC, 2001.

[154] S. Ghemawat and P. Menage, “TCMalloc: Thread-caching malloc,” https:
//gperftools.github.io/gperftools/tcmalloc.html, archived at https://perma.cc/
EK9E-LBYU, 2007.

[155] R. Ghiya and L. J. Hendren, “Is it a tree, a DAG, or a cyclic graph? a shape
analysis for heap-directed pointers in C,” in Proc. POPL, 1996.

[156] D. Goldfarb and M. D. Grigoriadis, “A computational comparison of the dinic and
network simplex methods for maximum flow,” Annals of Operations Research,
vol. 13, no. 1, 1988.

https://gperftools.github.io/gperftools/tcmalloc.html
https://gperftools.github.io/gperftools/tcmalloc.html
https://perma.cc/EK9E-LBYU
https://perma.cc/EK9E-LBYU

150 Bibliography

[157] M. Gonzalez-Mesa, E. Gutierrez, E. L. Zapata, and O. Plata, “Effective Transac-
tional Memory Execution Management for Improved Concurrency,” ACM Trans-

actions on Architecture and Code Optimization (TACO), vol. 11, no. 3, 2014.

[158] S. Gopal, T. N. Vijaykumar, J. E. Smith, and G. S. Sohi, “Speculative versioning
cache,” in Proc. HPCA-4, 1998.

[159] D. Greenhill, R. Ho, D. Lewis, H. Schmit, K. H. Chan, A. Tong, S. Atsatt, D. How,
P. McElheny, K. Duwel, J. Schulz, D. Faulkner, G. Iyer, G. Chen, H. K. Phoon,
H. W. Lim, W. Koay, and T. Garibay, “A 14nm 1GHz FPGA with 2.5D transceiver
integration,” in Proc. ISSCC, 2017.

[160] T. Grosser, A. Größlinger, and C. Lengauer, “Polly - performing polyhedral op-
timizations on a low-level intermediate representation,” Parallel Processing Let-

ters, vol. 22, no. 4, 2012.

[161] J. P. Grossman, J. S. Kuskin, J. A. Bank, M. Theobald, R. O. Dror, D. J. Ierardi,
R. H. Larson, U. B. Schafer, B. Towles, C. Young, and D. E. Shaw, “Hardware
support for fine-grained event-driven computation in Anton 2,” in Proc. ASPLOS-

XVIII, 2013.

[162] R. Guerraoui and M. Kapałka, Principles of Transactional Memory, ser. Synthesis
Lectures on Distributed Computing Theory. Morgan & Claypool Publishers,
2010.

[163] R. Guerraoui and M. Kapałlka, “On the correctness of transactional memory,” in
Proc. PPoPP, 2008.

[164] Y. Guo, J. Zhao, V. Cave, and V. Sarkar, “SLAW: A scalable locality-aware adaptive
work-stealing scheduler,” in Proc. IPDPS, 2010.

[165] G. Gupta and G. S. Sohi, “Dataflow execution of sequential imperative programs
on multicore architectures,” in Proc. MICRO-44, 2011.

[166] D. C. Halbert and P. B. Kessler, “Windows of overlapping register frames,” CS
292R Final Report, UC Berkeley, 1980.

[167] L. Hammond, B. D. Carlstrom, V. Wong, B. Hertzberg, M. Chen, C. Kozyrakis,
and K. Olukotun, “Programming with transactional coherence and consistency
(TCC),” in Proc. ASPLOS-XI, 2004.

[168] L. Hammond, M. Willey, and K. Olukotun, “Data speculation support for a chip
multiprocessor,” in Proc. ASPLOS-VIII, 1998.

[169] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B. Hertzberg,
M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun, “Transactional memory
coherence and consistency,” in Proc. ISCA-31, 2004.

Bibliography 151

[170] F. M. Harper and J. A. Konstan, “The MovieLens datasets: History and context,”
ACM Transactions on Interactive Intelligent Systems (TiiS), vol. 5, no. 4, 2015.

[171] T. Harris, J. Larus, and R. Rajwar, Transactional Memory, 2nd ed., ser. Synthesis
Lectures on Computer Architecture. Morgan & Claypool Publishers, 2010.

[172] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy, “Composable memory
transactions,” in Proc. PPoPP, 2005.

[173] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic determina-
tion of minimum cost paths,” IEEE Transactions on Systems Science and Cybernet-

ics, vol. 4, no. 2, 1968.

[174] W. Hasenplaugh, T. Kaler, T. B. Schardl, and C. E. Leiserson, “Ordering heuristics
for parallel graph coloring,” in Proc. SPAA, 2014.

[175] M. A. Hassaan, D. Nguyen, and K. Pingali, “Brief announcement: Parallelization
of asynchronous variational integrators for shared memory architectures,” in
Proc. SPAA, 2014.

[176] M. A. Hassaan, M. Burtscher, and K. Pingali, “Ordered vs. unordered: a compar-
ison of parallelism and work-efficiency in irregular algorithms,” in Proc. PPoPP,
2011.

[177] M. A. Hassaan, D. Nguyen, and K. Pingali, “Kinetic Dependence Graphs,” in
Proc. ASPLOS-XX, 2015.

[178] L. J. Hendren and A. Nicolau, “Parallelizing programs with recursive data struc-
tures,” IEEE Transactions on Parallel and Distributed Systems, vol. 1, no. 1, 1990.

[179] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Ap-

proach, 6th ed. Elsevier, 2019.

[180] M. Herlihy, “Wait-free synchronization,” ACM Transactions on Programming Lan-

guages and Systems (TOPLAS), vol. 13, no. 1, 1991.

[181] M. Herlihy, “Transactional memories,” in Encyclopedia of Parallel Computing,
D. Padua, Ed. Springer, 2011.

[182] M. Herlihy and J. E. B. Moss, “Transactional memory: Architectural support for
lock-free data structures,” in Proc. ISCA, 1993.

[183] M. Herlihy and Y. Sun, “Distributed transactional memory for metric-space net-
works,” Distributed Computing, vol. 20, no. 3, 2007.

[184] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl, “Evaluating collabo-
rative filtering recommender systems,” ACM Transactions on Information Systems

(TOIS), vol. 22, no. 1, 2004.

152 Bibliography

[185] M. D. Hill and M. Marty, “Amdahl’s Law in the Multicore Era,” IEEE Computer,
vol. 41, no. 7, 2008.

[186] W. D. Hillis and G. L. Steele, Jr., “Data parallel algorithms,” Communications of

the ACM, vol. 29, no. 12, 1986.

[187] M. Hind, “Pointer analysis: Haven’t we solved this problem yet?” in Proceedings

of the ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools

and Engineering, 2001.

[188] B. Holt, P. Briggs, L. Ceze, and M. Oskin, “Alembic: automatic locality extraction
via migration,” in Proc. OOPSLA, 2014.

[189] M. Horowitz, E. Alon, D. Patil, S. Naffziger, Rajesh Kumar, and K. Bernstein,
“Scaling, power, and the future of CMOS,” in Proc. IEDM, 2005.

[190] S. Horwitz, P. Pfeiffer, and T. Reps, “Dependence analysis for pointer variables,”
in Proc. PLDI, 1989.

[191] D. Hower, P. Montesinos, L. Ceze, M. D. Hill, and J. Torrellas, “Two hardware-
based approaches for deterministic multiprocessor replay,” Communications of

the ACM, 2009.

[192] J. Huang, A. Raman, T. B. Jablin, Y. Zhang, T.-H. Hung, and D. I. August, “De-
coupled software pipelining creates parallelization opportunities,” in Proc. CGO,
2010.

[193] J. Hubicka, A. Jaeger, and M. Mitchell, “System V application binary interface,”
AMD64 Architecture Processor Supplement, 2013.

[194] R. L. Hudson, B. Saha, A.-R. Adl-Tabatabai, and B. C. Hertzberg, “McRT-Malloc:
A scalable transactional memory allocator,” in Proc. ISMM, 2006.

[195] N. Hunt, P. S. Sandhu, and L. Ceze, “Characterizing the performance and energy
efficiency of lock-free data structures,” in Proceedings of the 15th Workshop on

Interaction between Compilers and Computer Architectures, 2011.

[196] Intel, “TBB http://www.threadingbuildingblocks.org.”

[197] T. Issariyakul and E. Hossain, Introduction to network simulator NS2. Springer,
2011.

[198] C. Jacobi, T. Slegel, and D. Greiner, “Transactional memory architecture and
implementation for ibm system z,” in Proc. MICRO-45, 2012.

[199] S. A. R. Jafri, G. Voskuilen, and T. N. Vijaykumar, “Wait-n-GoTM: improving
HTM performance by serializing cyclic dependencies,” in Proc. ASPLOS-XVIII,
2013.

http://www.threadingbuildingblocks.org

Bibliography 153

[200] D. R. Jefferson, “Virtual time,” ACM Transactions on Programming Languages

and Systems (TOPLAS), vol. 7, no. 3, 1985.

[201] M. C. Jeffrey, S. Subramanian, M. Abeydeera, J. Emer, and D. Sanchez, “Data-
centric execution of speculative parallel programs,” in Proc. MICRO-49, 2016.

[202] M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer, and D. Sanchez, “A scalable
architecture for ordered parallelism,” in Proc. MICRO-48, 2015.

[203] M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer, and D. Sanchez, “Unlocking
ordered parallelism with the Swarm architecture,” IEEE Micro, vol. 36, no. 3,
2016.

[204] M. C. Jeffrey, V. A. Ying, S. Subramanian, H. R. Lee, J. Emer, and D. Sanchez,
“Harmonizing speculative and non-speculative execution in architectures for or-
dered parallelism,” in Proc. MICRO-51, 2018.

[205] W. M. Johnston, J. R. P. Hanna, and R. J. Millar, “Advances in dataflow program-
ming languages,” ACM Computing Surveys (CSUR), vol. 36, no. 1, 2004.

[206] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark,
J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Got-
tipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt,
D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew,
A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,
A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,
R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda,
A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov,
M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian,
H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H.
Yoon, “In-datacenter performance analysis of a tensor processing unit,” in Proc.

ISCA-44, 2017.

[207] J. Jun, S. Jacobson, J. Swisher et al., “Application of discrete-event simulation in
health care clinics: A survey,” Journal of the operational research society, vol. 50,
no. 2, 1999.

[208] A. Kägi, D. Burger, and J. R. Goodman, “Efficient synchronization: Let them eat
QOLB,” in Proc. ISCA-24, 1997.

[209] A. Kannan, N. E. Jerger, and G. H. Loh, “Enabling interposer-based disintegra-
tion of multi-core processors,” in Proc. MICRO-48, 2015.

[210] S. W. Keckler, W. J. Dally, D. Maskit, N. P. Carter, A. Chang, and W. S. Lee,
“Exploiting fine-grain thread level parallelism on the MIT multi-ALU processor,”
in Proc. ISCA-25, 1998.

154 Bibliography

[211] C. Kim, D. Burger, and S. W. Keckler, “An adaptive, non-uniform cache structure
for wire-delay dominated on-chip caches,” in Proc. ASPLOS-X, 2002.

[212] T. Knight, “An architecture for mostly functional languages,” in Proc. of the ACM

Conference on LISP and Functional Programming, 1986.

[213] D. Koeplinger, M. Feldman, R. Prabhakar, Y. Zhang, S. Hadjis, R. Fiszel, T. Zhao,
L. Nardi, A. Pedram, C. Kozyrakis, and K. Olukotun, “Spatial: A language and
compiler for application accelerators,” in Proc. PLDI, 2018.

[214] V. Krishnan and J. Torrellas, “A chip-multiprocessor architecture with speculative
multithreading,” IEEE Transactions on Computers, vol. 48, no. 9, 1999.

[215] C. P. Kruskal and A. Weiss, “Allocating independent subtasks on parallel proces-
sors,” IEEE Transactions on Software Engineering, vol. SE-11, no. 10, 1985.

[216] J. B. Kruskal, “On the shortest spanning subtree of a graph and the traveling
salesman problem,” Proceedings of the American Mathematical Society, vol. 7,
1956.

[217] M. Kulkarni, P. Carribault, K. Pingali, G. Ramanarayanan, B. Walter, K. Bala, and
L. P. Chew, “Scheduling strategies for optimistic parallel execution of irregular
programs,” in Proc. SPAA, 2008.

[218] M. Kulkarni, D. Nguyen, D. Prountzos, X. Sui, and K. Pingali, “Exploiting the
commutativity lattice,” in Proc. PLDI, 2011.

[219] M. Kulkarni, K. Pingali, G. Ramanarayanan, B. Walter, K. Bala, and L. P. Chew,
“Optimistic parallelism benefits from data partitioning,” in Proc. ASPLOS-XIII,
2008.

[220] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and L. P. Chew,
“Optimistic parallelism requires abstractions,” in Proc. PLDI, 2007.

[221] S. Kumar, C. Hughes, and A. Nguyen, “Carbon: architectural support for fine-
grained parallelism on chip multiprocessors,” in Proc. ISCA-34, 2007.

[222] H. T. Kung, “Why systolic architectures?” IEEE Computer, vol. 15, no. 1, 1982.

[223] H.-T. Kung and J. T. Robinson, “On optimistic methods for concurrency control,”
ACM Transactions on Database Systems (TODS), vol. 6, no. 2, 1981.

[224] B. C. Kuszmaul, “SuperMalloc: A super fast multithreaded malloc for 64-bit
machines,” in Proc. ISMM, 2015.

[225] M. Lam and R. Wilson, “Limits of control flow on parallelism,” in Proc. ISCA-19,
1992.

[226] E. A. Lee, “The problem with threads,” IEEE Computer, vol. 39, no. 5, 2006.

Bibliography 155

[227] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceedings of the

IEEE, vol. 75, no. 9, 1987.

[228] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous data flow
programs for digital signal processing,” IEEE Transactions on Computers, vol. 36,
no. 1, 1987.

[229] V. Leis, A. Kemper, and T. Neumann, “Exploiting hardware transactional memory
in main-memory databases,” in Proc. of IEEE 30th International Conference on

Data Engineering, 2014.

[230] C. Leiserson and T. Schardl, “A work-efficient parallel breadth-first search algo-
rithm,” in Proc. SPAA, 2010.

[231] A. Lenharth, D. Nguyen, and K. Pingali, “Priority queues are not good concurrent
priority schedulers,” in Proc. of the European Conference on Parallel Processing

(Euro-Par), 2015.

[232] K. Lepak, G. Talbot, S. White, N. Beck, and S. Naffziger, “The next generation
AMD enterprise server product architecture,” in Proc. HotChips, 2017.

[233] J. Leskovec and A. Krevl, “SNAP datasets: Stanford large network dataset col-
lection,” http://snap.stanford.edu/data, 2014.

[234] A. Lew, J. Marsden, M. Ortiz, and M. West, “Asynchronous variational integra-
tors,” Arch. Rational Mech. Anal., vol. 167, no. 2, 2003.

[235] C. Lin and L. Snyder, “ZPL: An array sublanguage,” in Proceedings of the 6th in-

ternational workshop on Languages and Compilers for Parallel Computing, 1993.

[236] M. H. Lipasti and J. P. Shen, “Exceeding the dataflow limit via value prediction,”
in Proc. MICRO-29, 1996.

[237] T. Liu, C. Curtsinger, and E. D. Berger, “Dthreads: efficient deterministic multi-
threading,” in Proc. SOSP-23, 2011.

[238] W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau, and J. Torrellas, “POSH: a
TLS compiler that exploits program structure,” in Proc. PPoPP, 2006.

[239] D. B. Lomet, “Process structuring, synchronization, and recovery using atomic
actions,” in Proc. of the ACM Conference on Language Design for Reliable Software,
1977.

[240] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: A comprehen-
sive study on real world concurrency bug characteristics,” in Proc. ASPLOS-XIII,
2008.

[241] B. Lucia, J. Devietti, T. Bergan, L. Ceze, and D. Grossman, “Lock prediction,” in
2nd USENIX Workshop on Hot Topics in Parallelism, 2010.

http://snap.stanford.edu/data

156 Bibliography

[242] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood, “Pin: Building customized program analysis tools
with dynamic instrumentation,” in Proc. PLDI, 2005.

[243] D. Makreshanski, J. Levandoski, and R. Stutsman, “To lock, swap, or elide: On
the interplay of hardware transactional memory and lock-free indexing,” Pro-

ceedings of the VLDB Endowment, vol. 8, no. 11, 2015.

[244] P. Marcuello, A. González, and J. Tubella, “Speculative multithreaded proces-
sors,” in Proc. ICS’98, 1998.

[245] A. Mariano, D. Lee, A. Gerstlauer, and D. Chiou, “Hardware and software im-
plementations of Prim’s algorithm for efficient minimum spanning tree compu-
tation,” in Proc. of the International Embedded Systems Symposium, 2013.

[246] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard, “Cg: A system for pro-
gramming graphics hardware in a C-like language,” in Proc. SIGGRAPH, 2003.

[247] M. M. K. Martin, M. D. Hill, and D. J. Sorin, “Why on-chip cache coherence is
here to stay,” Communications of the ACM, vol. 55, no. 7, 2012.

[248] J. F. Martínez and J. Torrellas, “Speculative synchronization: Applying thread-
level speculation to explicitly parallel applications,” in Proc. ASPLOS-X, 2002.

[249] T. Maruyama, Y. Akizuki, T. Tabata, K. Kitamura, N. Takagi, H. Ishii, S. Watanabe,
and F. Tawa, “SPARC64 XII: Fujitsu’s latest 12-core processor for mission-critical
servers,” IEEE Micro, vol. 38, no. 5, 2018.

[250] R. R. McCune, T. Weninger, and G. Madey, “Thinking like a vertex: A survey
of vertex-centric frameworks for large-scale distributed graph processing,” ACM

Computing Surveys (CSUR), vol. 48, no. 2, 2015.

[251] A. McDonald, J. Chung, B. D. Carlstrom, C. C. Minh, H. Chafi, C. Kozyrakis, and
K. Olukotun, “Architectural semantics for practical transactional memory,” in
Proc. ISCA-33, 2006.

[252] M. Méndez-Lojo, D. Nguyen, D. Prountzos, X. Sui, M. A. Hassaan, M. Kulka-
rni, M. Burtscher, and K. Pingali, “Structure-driven optimizations for amorphous
data-parallel programs,” in Proc. PPoPP, 2010.

[253] U. Meyer and P. Sanders, “Delta-stepping: A parallelizable shortest path algo-
rithm,” Journal of Algorithms, vol. 49, no. 1, 2003.

[254] M. M. Michael, “High performance dynamic lock-free hash tables and list-based
sets,” in Proc. SPAA, 2002.

[255] M. M. Michael and M. L. Scott, “Simple, fast, and practical non-blocking and
blocking concurrent queue algorithms,” in Proc. PODC, 1996.

Bibliography 157

[256] S. P. Midkiff, Automatic Parallelization: An Overview of Fundamental Compiler

Techniques, ser. Synthesis Lectures on Computer Architecture. Morgan & Clay-
pool Publishers, 2012.

[257] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP: Stanford Trans-
actional Applications for Multi-Processing,” in Proc. IISWC, 2008.

[258] C. C. Minh, M. Trautmann, J. Chung, A. McDonald, N. Bronson, J. Casper,
C. Kozyrakis, and K. Olukotun, “An effective hybrid transactional memory sys-
tem with strong isolation guarantees,” in Proc. ISCA-34, 2007.

[259] J. Misra, “Distributed discrete-event simulation,” ACM Computing Surveys

(CSUR), vol. 18, no. 1, 1986.

[260] M. Moir and N. Shavit, “Concurrent data structures,” in Handbook of Data Struc-

tures and Applications, D. P. Mehta and S. Sahni, Eds. Chapman & Hall/CRC,
2004.

[261] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics,
vol. 38, 1965.

[262] K. Moore, J. Bobba, M. Moravan, M. D. Hill, and D. Wood, “LogTM: Log-based
transactional memory,” in Proc. HPCA-12, 2006.

[263] L. Morais, V. Silva, A. Goldman, C. Alvarez, J. Bosch, M. Frank, and G. Araujo,
“Adding tightly-integrated task scheduling acceleration to a RISC-V multi-core
processor,” in Proc. MICRO-52, 2019.

[264] M. J. Moravan, J. Bobba, K. E. Moore, L. Yen, M. D. Hill, B. Liblit, M. M. Swift,
and D. A. Wood, “Supporting nested transactional memory in LogTM,” in Proc.

ASPLOS-XII, 2006.

[265] A. Moshovos, S. E. Breach, T. N. Vijaykumar, and G. S. Sohi, “Dynamic specula-
tion and synchronization of data dependences,” in Proc. ISCA, 1997.

[266] J. E. B. Moss, “Open nested transactions: Semantics and support,” in Workshop

on Memory Performance Issues, 2006.

[267] J. E. B. Moss and A. L. Hosking, “Nested transactional memory: Model and
architecture sketches,” Science of Computer Programming, vol. 63, no. 2, 2006.

[268] N. Narula, C. Cutler, E. Kohler, and R. Morris, “Phase Reconciliation for Con-
tended In-Memory Transactions.” in Proc. OSDI-11, 2014.

[269] J. E. Nelson, “Latency-Tolerant Distributed Shared Memory For Data-Intensive
Applications,” Ph.D. dissertation, 2015.

[270] D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight infrastructure for graph
analytics,” in Proc. SOSP-24, 2013.

158 Bibliography

[271] D. Nguyen and K. Pingali, “Synthesizing concurrent schedulers for irregular al-
gorithms,” in Proc. ASPLOS-XVI, 2011.

[272] Y. Ni, V. S. Menon, A.-R. Adl-Tabatabai, A. L. Hosking, R. L. Hudson, J. E. B.
Moss, B. Saha, and T. Shpeisman, “Open nesting in software transactional mem-
ory,” in Proc. PPoPP, 2007.

[273] A. Nicolau and J. Fisher, “Using an oracle to measure potential parallelism in
single instruction stream programs,” in Proc. MICRO-14, 1981.

[274] K. Nii, T. Amano, N. Watanabe, M. Yamawaki, K. Yoshinaga, M. Wada, and
I. Hayashi, “A 28nm 400MHz 4-Parallel 1.6Gsearch/s 80Mb Ternary CAM,” in
Proc. ISSCC, 2014.

[275] K. Nikas, N. Anastopoulos, G. Goumas, and N. Koziris, “Employing transactional
memory and helper threads to speedup Dijkstra’s algorithm,” in ICPP, 2009.

[276] M. Noakes, D. Wallach, and W. Dally, “The J-Machine multicomputer: an archi-
tectural evaluation,” in Proc. ISCA-20, 1993.

[277] R. Odaira and T. Nakaike, “Thread-level speculation on off-the-shelf hardware
transactional memory,” in Proc. IISWC, 2014.

[278] K. Olukotun, B. Nayfeh, L. Hammond, K. Wilson, and K. Chang, “The case for a
single-chip multiprocessor,” in Proc. ASPLOS-VII, 1996.

[279] K. Olukotun and L. Hammond, “The future of microprocessors,” ACM Queue,
vol. 3, no. 7, 2005.

[280] OpenStreetMap, “http://www.openstreetmap.org.”

[281] G. Ottoni, R. Rangan, A. Stoler, and D. I. August, “Automatic thread extraction
with decoupled software pipelining,” in Proc. MICRO-38, 2005.

[282] H. Pan, K. Asanović, R. Cohn, and C.-K. Luk, “Controlling program execution
through binary instrumentation,” SIGARCH Comput. Archit. News, vol. 33, no. 5,
2005.

[283] R. Panigrahy and S. Sharma, “Sorting and searching using ternary CAMs,” IEEE

Micro, vol. 23, no. 1, 2003.

[284] V. Pankratius and A.-R. Adl-Tabatabai, “A study of transactional memory vs. locks
in practice,” in Proc. SPAA, 2011.

[285] C. H. Papadimitriou, “The serializability of concurrent database updates,” Jour-

nal of the ACM (JACM), vol. 26, no. 4, 1979.

[286] Y. N. Patt, W. M. Hwu, and M. Shebanow, “HPS, a new microarchitecture: Ra-
tionale and introduction,” in Proc. MICRO-18, 1985.

http://www.openstreetmap.org

Bibliography 159

[287] D. Patterson, “50 years of computer architecture: From the mainframe cpu to the
domain-specific tpu and the open risc-v instruction set,” in Proc. ISSCC, 2018.

[288] J. M. Perez, R. M. Baida, and J. Labarta, “A dependency-aware task-based pro-
gramming environment for multi-core architectures,” in IEEE International Con-

ference on Cluster Computing, 2008.

[289] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan, R. Kaleem,
T.-H. Lee, A. Lenharth, R. Manevich, M. Méndez-Lojo, D. Prountzos, and X. Sui,
“The tao of parallelism in algorithms,” in Proc. PLDI, 2011.

[290] C. D. Polychronopoulos and D. J. Kuck, “Guided self-scheduling: A practical
scheduling scheme for parallel supercomputers,” IEEE Transactions on Comput-

ers, vol. C-36, no. 12, 1987.

[291] L. Porter, B. Choi, and D. Tullsen, “Mapping out a path from hardware transac-
tional memory to speculative multithreading,” in Proc. PACT-18, 2009.

[292] M. Postiff, D. Greene, G. Tyson, and T. Mudge, “The limits of instruction level
parallelism in SPEC95 applications,” Comp. Arch. News, vol. 27, no. 1, 1999.

[293] D. Prountzos, R. Manevich, and K. Pingali, “Synthesizing parallel graph pro-
grams via automated planning,” in Proc. PLDI, 2015.

[294] M. Prvulovic, M. J. Garzarán, L. Rauchwerger, and J. Torrellas, “Removing ar-
chitectural bottlenecks to the scalability of speculative parallelization,” in Proc.

ISCA-28, 2001.

[295] X. Qian, W. Ahn, and J. Torrellas, “ScalableBulk: Scalable cache coherence for
atomic blocks in a lazy environment,” in Proc. MICRO-43, 2010.

[296] X. Qian, B. Sahelices, and J. Torrellas, “OmniOrder: Directory-based conflict
serialization of transactions,” in Proc. ISCA-41, 2014.

[297] C. G. Quiñones, C. Madriles, J. Sánchez, P. Marcuello, A. González, and D. M.
Tullsen, “Mitosis compiler: An infrastructure for speculative threading based on
pre-computation slices,” in Proc. PLDI, 2005.

[298] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Amarasinghe,
“Halide: A language and compiler for optimizing parallelism, locality, and re-
computation in image processing pipelines,” in Proc. PLDI, 2013.

[299] R. Rajwar and J. R. Goodman, “Speculative lock elision: Enabling highly con-
current multithreaded execution,” in Proc. of the 34th annual ACM/IEEE intl.

symp. on Microarchitecture, 2001.

[300] R. Rajwar and J. R. Goodman, “Transactional lock-free execution of lock-based
programs,” in Proc. ASPLOS-X, 2002.

160 Bibliography

[301] R. Rajwar, M. Herlihy, and K. Lai, “Virtualizing transactional memory,” in Proc.

ISCA-32, 2005.

[302] H. E. Ramadan, C. J. Rossbach, and E. Witchel, “Dependence-aware transac-
tional memory for increased concurrency,” in Proc. MICRO-41, 2008.

[303] A. Raman, H. Kim, T. R. Mason, T. B. Jablin, and D. I. August, “Speculative
parallelization using software multi-threaded transactions,” in Proc. ASPLOS-XV,
2010.

[304] N. Rapolu, K. Kambatla, S. Jagannathan, and A. Grama, “TransMR: Data-centric
programming beyond data parallelism,” in HotCloud, 2011.

[305] B. R. Rau and J. A. Fisher, “Instruction-level parallel processing: History,
overview, and perspective,” The Journal of Supercomputing, vol. 7, no. 1, 1993.

[306] L. Rauchwerger and D. Padua, “The LRPD test: Speculative run-time paralleliza-
tion of loops with privatization and reduction parallelization,” in Proc. PLDI,
1995.

[307] S. Reinhardt, M. D. Hill, J. Larus, A. Lebeck, J. Lewis, and D. Wood, “The Wis-
consin Wind Tunnel: virtual prototyping of parallel computers,” in SIGMETRICS,
1993.

[308] J. Renau, K. Strauss, L. Ceze, W. Liu, S. Sarangi, J. Tuck, and J. Torrellas,
“Thread-level speculation on a CMP can be energy efficient,” in Proc. ICS’05,
2005.

[309] J. Renau, J. Tuck, W. Liu, L. Ceze, K. Strauss, and J. Torrellas, “Tasking with
out-of-order spawn in TLS chip multiprocessors: Microarchitecture and compi-
lation,” in Proc. ICS’05, 2005.

[310] R. Riedlinger, R. Arnold, L. Biro, B. Bowhill, J. Crop, K. Duda, E. S. Fetzer,
O. Franza, T. Grutkowski, C. Little, C. Morganti, G. Moyer, A. Munch, M. Na-
garajan, C. Parks, C. Poirier, B. Repasky, E. Roytman, T. Singh, and M. W. Ste-
faniw, “A 32 nm, 3.1 billion transistor, 12 wide issue Itanium R© processor for
mission-critical servers,” IEEE Journal of Solid-State Circuits, vol. 47, no. 1, 2012.

[311] H. Rihani, P. Sanders, and R. Dementiev, “Brief announcement: MultiQueues:
Simple relaxed concurrent priority queues,” in Proc. SPAA, 2015.

[312] M. C. Rinard, D. J. Scales, and M. S. Lam, “Jade: a high-level, machine-
independent language for parallel programming,” IEEE Computer, vol. 26, no. 6,
1993.

[313] M. C. Rinard and P. C. Diniz, “Commutativity analysis: A new analysis technique
for parallelizing compilers,” ACM TOPLAS, vol. 19, no. 6, 1997.

Bibliography 161

[314] Y. Robert, “Task graph scheduling,” in Encyclopedia of Parallel Computing,
D. Padua, Ed. Springer, 2011.

[315] C. J. Rossbach, O. S. Hofmann, D. E. Porter, H. E. Ramadan, B. Aditya, and
E. Witchel, “TxLinux: Using and managing hardware transactional memory in
an operating system,” in Proc. SOSP-21, 2007.

[316] C. J. Rossbach, O. S. Hofmann, and E. Witchel, “Is transactional programming
actually easier?” in Proc. PPoPP, 2010.

[317] R. M. Russell, “The CRAY-1 computer system,” Communications of the ACM,
vol. 21, no. 1, 1978.

[318] M. M. Saad and B. Ravindran, “Hyflow: A high performance distributed soft-
ware transactional memory framework,” in Proceedings of the 20th international

symposium on High performance distributed computing, 2011.

[319] S. K. Sadasivam, B. W. Thompto, R. Kalla, and W. J. Starke, “IBM Power9 pro-
cessor architecture,” IEEE Micro, vol. 37, no. 2, 2017.

[320] D. Sainz and H. Attiya, “Relstm: A proactive transactional memory scheduler,”
in International Workshop on Transactional Computing (TRANSACT), 2013.

[321] J. H. Salz, R. Mirchandaney, and K. Crowley, “Run-time parallelization and
scheduling of loops,” IEEE Transactions on Computers, vol. 40, no. 5, 1991.

[322] Samsung, “Samsung SSD 960 PRO M.2 Data Sheet,” 2017.

[323] D. Sanchez and C. Kozyrakis, “ZSim: Fast and accurate microarchitectural sim-
ulation of thousand-core systems,” in Proc. ISCA-40, 2013.

[324] D. Sanchez, D. Lo, R. M. Yoo, J. Sugerman, and C. Kozyrakis, “Dynamic Fine-
Grain Scheduling of Pipeline Parallelism,” in Proc. of the 20th intl conf. on Parallel

Architectures and Compilation Techniques, 2011.

[325] D. Sanchez, L. Yen, M. D. Hill, and K. Sankaralingam, “Implementing signatures
for transactional memory,” in Proc. MICRO-40, 2007.

[326] D. Sanchez, R. Yoo, and C. Kozyrakis, “Flexible architectural support for fine-
grain scheduling,” in Proc. ASPLOS-XV, 2010.

[327] T. Sato, K. Ohno, and H. Nakashima, “A mechanism for speculative memory
accesses following synchronizing operations,” in Proc. IPDPS, 2000.

[328] M. Schlansker, T. M. Conte, J. Dehnert, K. Ebcioglu, J. Z. Fang, and C. L.
Thompson, “Compilers for instruction-level parallelism,” IEEE Computer, vol. 30,
no. 12, 1997.

[329] M. L. Scott, Shared-Memory Synchronization, ser. Synthesis Lectures on Com-
puter Architecture. Morgan & Claypool Publishers, 2013.

162 Bibliography

[330] S. L. Scott, “Synchronization and Communication in the T3E Multiprocessor,”
in Proc. ASPLOS-VII, 1996.

[331] M. Shafique and S. Garg, “Computing in the dark silicon era: Current trends
and research challenges,” IEEE Design & Test, vol. 34, no. 2, 2017.

[332] H. Sharangpani and K. Arora, “Itanium processor microarchitecture,” IEEE Mi-

cro, vol. 20, no. 5, 2000.

[333] N. Shavit and D. Touitou, “Software transactional memory,” in Proc. PODC,
1995.

[334] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and chal-
lenges,” IEEE Internet of Things Journal, vol. 3, no. 5, 2016.

[335] J. Shin, K. Tam, D. Huang, B. Petrick, H. Pham, C. Hwang, H. Li, A. Smith,
T. Johnson, F. Schumacher, D. Greenhill, A. Leon, and A. Strong, “A 40nm 16-
core 128-thread CMT SPARC SoC processor,” in Proc. ISSCC, 2010.

[336] A. Shriraman, S. Dwarkadas, and M. L. Scott, “Flexible decoupled transactional
memory support,” in Proc. ISCA-35, 2008.

[337] J. Shun, Shared-Memory Parallelism Can Be Simple, Fast, and Scalable. ACM
and Morgan & Claypool Publishers, 2017.

[338] J. Shun and G. E. Blelloch, “Ligra: a lightweight graph processing framework
for shared memory,” in Proc. PPoPP, 2013.

[339] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Kyrola, H. V. Simhadri,
and K. Tangwongsan, “Brief announcement: The problem based benchmark
suite,” in Proc. SPAA, 2012.

[340] H. V. Simhadri, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and A. Kyrola, “Ex-
perimental analysis of space-bounded schedulers,” in Proc. SPAA, 2014.

[341] T. Skare and C. Kozyrakis, “Early release: Friend or foe?” in Proc. WTW, 2006.

[342] J. E. Smith and G. S. Sohi, “The microarchitecture of superscalar processors,”
Proceedings of the IEEE, vol. 83, no. 12, 1995.

[343] A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim, K. Vinod, S. Chinthamani, S. Hut-
sell, R. Agarwal, and Y.-C. Liu, “Knights Landing: Second-generation Intel Xeon
Phi product,” IEEE Micro, vol. 36, no. 2, 2016.

[344] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar, “Multiscalar processors,” in Proc.

ISCA-22, 1995.

[345] D. J. Sorin, M. D. Hill, and D. A. Wood, A Primer on Memory Consistency and

Cache Coherence, ser. Synthesis Lectures on Computer Architecture. Morgan &
Claypool Publishers, 2011.

Bibliography 163

[346] L. Soule and A. Gupta, “An evaluation of the Chandy-Misra-Bryant algorithm for
digital logic simulation,” ACM Transactions on Modeling and Computer Simula-

tion (TOMACS), vol. 1, no. 4, 1991.

[347] J. G. Steffan, C. Colohan, A. Zhai, and T. C. Mowry, “The STAMPede approach
to thread-level speculation,” ACM Transactions on Computer Systems (TOCS),
vol. 23, no. 3, 2005.

[348] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry, “A scalable approach to
thread-level speculation,” in Proc. ISCA-27, 2000.

[349] J. G. Steffan and T. C. Mowry, “The potential for using thread-level data specu-
lation to facilitate automatic parallelization,” in Proc. HPCA-4, 1998.

[350] J. S. Steinman, “Breathing time warp,” in Proc. PADS, 1993.

[351] J. M. Stone, H. S. Stone, P. Heidelberger, and J. Turek, “Multiple reservations
and the Oklahoma update,” IEEE Parallel Distributed Technology: Systems Appli-

cations, vol. 1, no. 4, 1993.

[352] S. Subramanian, M. C. Jeffrey, M. Abeydeera, H. R. Lee, V. A. Ying, J. Emer,
and D. Sanchez, “Fractal: An execution model for fine-grain nested speculative
parallelism,” in Proc. ISCA-44, 2017.

[353] J. Sugerman, K. Fatahalian, S. Boulos, K. Akeley, and P. Hanrahan, “GRAMPS:
A programming model for graphics pipelines,” ACM Transactions on Graphics

(TOG), vol. 28, no. 1, 2009.

[354] H. Sundell and P. Tsigas, “Fast and lock-free concurrent priority queues for multi-
thread systems,” in Proc. IPDPS, 2003.

[355] H. Sundell, A. Gidenstam, M. Papatriantafilou, and P. Tsigas, “A lock-free algo-
rithm for concurrent bags,” in Proc. SPAA, 2011.

[356] G. J. Sussman and G. L. Steele Jr, “Scheme: A interpreter for extended lambda
calculus,” Higher-Order and Symbolic Computation, vol. 11, no. 4, 1998.

[357] H. Sutter, “The free lunch is over: A fundamental turn toward concurrency in
software,” Dr. Dobb’s Journal, vol. 30, no. 3, March 2005.

[358] H. Sutter, “Lock-free code: A false sense of security,” Dr. Dobb’s Journal, vol. 33,
no. 9, September 2008.

[359] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin, “Wavescalar,” in Proc.

MICRO-36, 2003.

[360] S. Swanson, A. Schwerin, M. Mercaldi, A. Petersen, A. Putnam, K. Michelson,
M. Oskin, and S. J. Eggers, “The wavescalar architecture,” ACM Transactions on

Computer Systems (TOCS), vol. 25, no. 2, 2007.

164 Bibliography

[361] S. M. Tam, H. Muljono, M. Huang, S. Iyer, K. Royneogi, N. Satti, R. Qureshi,
W. Chen, T. Wang, H. Hsieh, S. Vora, and E. Wang, “SkyLake-SP: A 14nm 28-
core Xeon processor,” in Proc. ISSCC, 2018.

[362] A. S. Tanenbaum and D. J. Wetherall, Computer networks, 5th ed., P. Hall, Ed.,
2010.

[363] X. Teruel, X. Martorell, A. Duran, R. Ferrer, and E. Ayguadé, “Support for
OpenMP tasks in Nanos V4,” in Proc. of the Conference of the Center for Advanced

Studies on Collaborative Research (CASCON), 2007.

[364] W. Thies, M. Karczmarek, and S. Amarasinghe, “StreamIt: A language for
streaming applications,” in Proc. of the 10th International Conference on Com-

piler Construction, 2002.

[365] M. Thorup, “On RAM priority queues,” in Proc. SODA, 1996.

[366] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi, “CACTI 5.1,” HP
Labs, Tech. Rep. HPL-2008-20, 2008.

[367] C. Tian, C. Lin, M. Feng, and R. Gupta, “Enhanced speculative parallelization
via incremental recovery,” in Proc. PPoPP, 2011.

[368] J. Torrellas, “Thread-level speculation,” in Encyclopedia of Parallel Computing,
D. Padua, Ed. Springer, 2011.

[369] J.-Y. Tsai, J. Huang, C. Amlo, D. J. Lilja, and P.-C. Yew, “The superthreaded
processor architecture,” IEEE Transactions on Computers, vol. 48, no. 9, 1999.

[370] J.-Y. Tsai, Z. Jiang, and P.-C. Yew, “Compiler techniques for the superthreaded ar-
chitectures,” International Journal of Parallel Programming, vol. 27, no. 1, 1999.

[371] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden, “Speedy transactions in
multicore in-memory databases,” in Proc. SOSP-24, 2013.

[372] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous multithreading: Max-
imizing on-chip parallelism,” in Proc. ISCA-22, 1995.

[373] Y. Turakhia, G. Bejerano, and W. J. Dally, “Darwin: A genomics co-processor
provides up to 15,000x acceleration on long read assembly,” in Proc. ASPLOS-

XXIII, 2017.

[374] T. H. Tzen and L. M. Ni, “Trapezoid self-scheduling: A practical scheduling
scheme for parallel compilers,” IEEE Transactions on Parallel and Distributed Sys-

tems, vol. 4, no. 1, 1993.

[375] N. Vachharajani, “Intelligent speculation for pipelined multithreading,” Ph.D.
dissertation, Princeton University, 2008.

Bibliography 165

[376] N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges, G. Ottoni, and D. I. Au-
gust, “Speculative decoupled software pipelining,” in Proc. of the 16th Interna-

tional Conference on Parallel Architecture and Compilation Techniques, 2007.

[377] L. G. Valiant, “A bridging model for parallel computation,” Communications of

the ACM, vol. 33, no. 8, 1990.

[378] A. Varga and R. Hornig, “An overview of the OMNeT++ simulation environ-
ment,” in Proc. of the 1st International Conference on Simulation Tools and Tech-

niques for Communications, Networks and Systems & Workshops, ser. Simutools,
2008.

[379] A. Varga and A. Şekercioğlu, “Parallel simulation made easy with OMNeT++,”
in Proc. of the European Simulation Multiconference, ser. ESM, 2001.

[380] A. H. Veen, “Dataflow machine architecture,” ACM Computing Surveys (CSUR),
vol. 18, no. 4, 1986.

[381] T. N. Vijaykumar and G. S. Sohi, “Task selection for a Multiscalar processor,” in
Proc. MICRO-31, 1998.

[382] H. Volos, N. Goyal, and M. M. Swift, “Pathological interaction of locks with
transactional memory,” in TRANSACT, 2008.

[383] H. Volos, A. Welc, A.-R. Adl-Tabatabai, T. Shpeisman, X. Tian, and
R. Narayanaswamy, “NePalTM: Design and implementation of nested paral-
lelism for transactional memory systems,” in ECOOP, 2009.

[384] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser, “Active messages:
a mechanism for integrated communication and computation,” in Proc. ISCA-19,
1992.

[385] J. von Neumann, “First draft of a report on the EDVAC,” 1945, reprinted in [?].

[386] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank,
P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal, “Baring it all to
software: Raw machines,” IEEE Computer, vol. 30, no. 9, 1997.

[387] M. M. Waldrop, “The chips are down for Moore’s law,” Nature, vol. 530, no.
7589, 2016.

[388] D. Wall, “Limits of instruction-level parallelism,” in Proc. ASPLOS-IV, 1991.

[389] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht, C. Barton, R. Silvera,
and M. Michael, “Evaluation of Blue Gene/Q hardware support for transactional
memories,” in Proc. PACT-21, 2012.

[390] C. Wang, Y. Liu, and M. Spear, “Transaction-friendly condition variables,” in
Proc. SPAA, 2014.

166 Bibliography

[391] D. J. Welsh and M. B. Powell, “An upper bound for the chromatic number of
a graph and its application to timetabling problems,” The Computer Journal,
vol. 10, no. 1, 1967.

[392] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mattina,
C.-C. Miao, J. F. Brown III, and A. Agarwal, “On-chip interconnection architec-
ture of the Tile Processor,” IEEE Micro, vol. 27, no. 5, 2007.

[393] M. Wimmer, F. Versaci, J. Träff, D. Cederman, and P. Tsigas, “Data structures for
task-based priority scheduling,” in Proc. PPoPP, 2014.

[394] C. Wittenbrink, E. Kilgariff, and A. Prabhu, “Fermi GF100 GPU architecture,”
IEEE Micro, vol. 31, no. 2, 2011.

[395] M. Xu, R. Bodik, and M. D. Hill, “A flight data recorder for enabling full-system
multiprocessor deterministic replay,” in Proc. ISCA-30, 2003.

[396] C. Yang and B. Miller, “Critical path analysis for the execution of parallel and
distributed programs,” in Proc. ICDCS, 1988.

[397] F. Yazdanpanah, C. Alvarez-Martinez, D. Jimenez-Gonzalez, and Y. Etsion, “Hy-
brid Dataflow/Von-Neumann Architectures,” IEEE Transactions on Parallel and

Distributed Systems, vol. 25, no. 6, 2014.

[398] K. Yelick, D. Bonachea, W.-Y. Chen, P. Colella, K. Datta, J. Duell, S. L. Gra-
ham, P. Hargrove, P. Hilfinger, P. Husbands, C. Iancu, A. Kamil, R. Nishtala,
J. Su, M. Welcome, and T. Wen, “Productivity and performance using parti-
tioned global address space languages,” in Proceedings of the 2007 international

workshop on Parallel symbolic computation, 2007.

[399] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill, M. M. Swift,
and D. A. Wood, “LogTM-SE: Decoupling hardware transactional memory from
caches,” in Proc. HPCA-13, 2007.

[400] R. M. Yoo, C. J. Hughes, C. Kim, Y.-K. Chen, and C. Kozyrakis, “Locality-aware
task management for unstructured parallelism: A quantitative limit study,” in
Proc. SPAA, 2013.

[401] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar, “Performance evaluation of
Intel R© transactional synchronization extensions for high-performance comput-
ing,” in Proc. SC13, 2013.

[402] R. M. Yoo and H.-H. S. Lee, “Adaptive transaction scheduling for transactional
memory systems,” in Proc. SPAA, 2008.

[403] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker, “Staring into the
abyss: An evaluation of concurrency control with one thousand cores,” Proceed-

ings of the VLDB Endowment, vol. 8, no. 3, 2014.

Bibliography 167

[404] A. Zhai, C. B. Colohan, J. G. Steffan, and T. C. Mowry, “Compiler optimization
of scalar value communication between speculative threads,” in Proc. ASPLOS-X,
2002.

[405] A. Zhai, C. B. Colohan, J. G. Steffan, and T. C. Mowry, “Compiler optimization
of memory-resident value communication between speculative threads,” in Proc.

CGO, 2004.

[406] Y. Zhang, L. Rauchwerger, and J. Torrellas, “Hardware for speculative paral-
lelization of partially-parallel loops in DSM multiprocessors,” in Proc. HPCA-5,
1999.

[407] Y. Zhang, V. Kiriansky, C. Mendis, S. P. Amarasinghe, and M. Zaharia, “Making
caches work for graph analytics,” in Proc. IEEE BigData, 2017.

[408] Y. Zhang, M. Yang, R. Baghdadi, S. Kamil, J. Shun, and S. Amarasinghe,
“GraphIt: A high-performance graph DSL,” Proceedings of the ACM on Program-

ming Languages, vol. 2, no. OOPSLA, 2018.

[409] J. Zhao, J. Shirako, V. K. Nandivada, and V. Sarkar, “Reducing task creation and
termination overhead in explicitly parallel programs,” in Proc. PACT-19, 2010.

[410] W. Zhu, V. C. Sreedhar, Z. Hu, and G. R. Gao, “Synchronization state buffer:
supporting efficient fine-grain synchronization on many-core architectures,” in
Proc. ISCA-34, 2007.

[411] C. Zilles and L. Baugh, “Extending hardware transactional memory to support
non-busy waiting and non-transactional actions,” in TRANSACT, 2006.

	Abstract
	Acknowledgements
	Introduction
	Challenges
	Contributions
	Thesis Organization

	Background
	Important Properties of Task-Level Parallelism
	Task Regularity
	Task Ordering
	Task Granularity
	Open Opportunity: Fine-Grain Ordered Irregular Parallelism

	Exploiting Regular Parallelism
	Exploiting Non-Speculative Irregular Parallelism
	Exploiting Speculative Irregular Parallelism
	Dynamic Instruction-Level Parallelism
	Thread-Level Speculation
	Transactional Memory

	Swarm: A Scalable Architecture for Ordered Parallelism
	Motivation
	Understanding Ordered Irregular Parallelism
	Analysis of Ordered Irregular Algorithms
	Limitations of Thread-Level Speculation

	Swarm Execution Model
	Swarm Implementation
	ISA Extensions
	Task Queuing and Prioritization
	Speculative Execution and Versioning
	Virtual Time-Based Conflict Detection
	Selective Aborts
	Scalable Ordered Commits
	Handling Limited Queue Sizes
	Analysis of Hardware Costs

	Experimental Methodology
	Evaluation
	Swarm Scalability
	Swarm vs. Software Implementations
	Swarm Analysis
	Sensitivity Studies
	Swarm Case Study: astar

	Additional Related Work
	Summary

	Spatial Hints: Data-Centric Execution of Speculative Parallel Programs
	Motivation
	Spatial Task Mapping with Hints
	Hint API and ISA Extensions
	Hardware Mechanisms
	Adding Hints to Benchmarks

	Evaluation of Spatial Hints
	Experimental Methodology
	Effectiveness of Hints
	Comparison of Schedulers

	Improving Locality and Parallelism with Fine-Grain Tasks
	Evaluation

	Data-Centric Load-Balancing
	Evaluation
	Putting It All Together

	Additional Related Work
	Scheduling in Speculative Systems
	Scheduling in Non-Speculative Systems

	Summary

	Espresso and Capsules: Harmonizing Speculative and Non-Speculative Execution in Architectures for Ordered Parallelism
	Motivation
	Speculation Benefits Are Input-Dependent
	Combining Speculative and Non-Speculative Tasks
	Software-Managed Speculation Improves Parallelism

	Espresso Execution Model
	Espresso Semantics
	MAYSPEC: Tasks That May Speculate
	Exception Model

	Capsules
	Untracked Memory
	Safely Entering a Capsule
	Capsule Execution
	Capsule Programming Example

	Implementation
	Espresso Microarchitecture
	Capsules Implementation

	Evaluation
	Methodology
	Espresso Evaluation
	Capsules Case Study: Dynamic Memory Allocation
	Capsules Case Study: Disk-Backed Key-Value Store

	Additional Related Work
	Task Scheduling and Synchronization
	Restricted vs. Unrestricted Speculative Tasks
	Open-Nested Transactions

	Summary

	Fractal: An Execution Model for Fine-Grain Nested Speculative Parallelism
	Motivation
	Fractal Uncovers Abundant Parallelism
	Fractal Eases Parallel Programming
	Fractal Avoids Over-Serialization

	Fractal Execution Model
	Programming Interface

	Fractal Implementation
	Fractal Virtual Time
	Supporting Unbounded Nesting
	Handling Tiebreaker Wrap-Arounds
	Putting It All Together

	Evaluation
	Methodology
	Fractal Uncovers Abundant Parallelism
	Fractal Avoids Over-Serialization
	Zooming Overheads
	Discussion

	Additional Related Work
	Nesting in Transactional Memory
	Nesting in Thread-Level Speculation
	Nesting in Non-Speculative Systems

	Summary

	Conclusion
	Future Work

