
Disintegrating Manycores: Which Applications Lose and Why?

Isidor R. Brkić
igi.brkic@mail.utoronto.ca

University of Toronto
Canada

Mark C. Je�rey
mcj@ece.utoronto.ca
University of Toronto

Canada

ABSTRACT

The economics of Moore’s Law are stumbling, so vendors of many-

core architectures are transitioning from single-die monolithic de-

signs to multi-chiplet disintegrated systems within a package. Disin-

tegration lowers cost for the same number of cores but bottlenecks

the interconnect. Ideally, disintegration should increase perfor-

mance per dollar: cost savings should outweigh the disintegration

slowdown. Although industry has reported cost savings, the perfor-

mance penalty of disintegration is not well studied.

This paper presents the �rst characterization, to our knowledge,

of disintegration performance penalty across a diverse suite of

applications. Unsurprisingly, applications with high speedups on

monolithic systems continue to scale well on disintegrated systems,

and vice versa. However, the disintegration slowdown compared to

an equivalently sized monolith exhibits high variance across appli-

cations, with some achieving just over half the performance. Why

do some applications get a performance per dollar win, while others

lose? Through regression analysis, we �nd that metrics relating

to the network-on-package bandwidth and data sharing correlate

with disintegration slowdown. Programmers were already cau-

tioned against shared mutable data on monolithic systems, yet data

sharing is unavoidable in many applications. These applications

will be disproportionately harmed in the disintegrated future.

CCS CONCEPTS

• Networks → Network on chip; • Computer systems organi-

zation→ Multicore architectures.

KEYWORDS

silicon interposer, multi-chip module, disintegration slowdown,

chiplets, data sharing, regression

ACM Reference Format:

Isidor R. Brkić and Mark C. Je�rey. 2023. Disintegrating Manycores: Which

Applications Lose and Why?. In 16th International Workshop on Network

on Chip Architectures (NoCArc ’23), October 28, 2023, Toronto, ON, Canada.

ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3610396.3618090

1 INTRODUCTION

Moore’s Law is slowing, but user demand for higher performance

continues unabated. Absent transistor scaling, performance comes

NoCArc ’23, October 28, 2023, Toronto, ON, Canada

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The de�nitive Version of Record was published in 16th International
Workshop on Network on Chip Architectures (NoCArc ’23), October 28, 2023, Toronto, ON,
Canada, https://doi.org/10.1145/3610396.3618090.

from increased area for more parallelism or larger structures. How-

ever, increasing chip area is not a free lunch for two reasons: yield

and manufacturing limits. As the die size increases, the probability

of defects rises signi�cantly, lowering manufacturing yield and

increasing cost. Furthermore, standard manufacturing techniques

have a maximum manufacturable die size due to limits of the litho-

graphic reticle [27]. Even keeping the die size constant becomes

more costly in newer technology nodes as increasing transistor

density requires increasingly complex techniques [31].

This constraint on die area has led industry to re-integrate mul-

tiple chiplets within a package into so-called disintegrated [11, 24]

systems. They fall between integrating all logic on a single chip

and the decades-old multi-socket systems on a board. Chiplets

communicate through silicon interposers [24], the package sub-

strate [31], or other technologies [32]. Disintegrated systems are

rapidly emerging in products from AMD [17, 25, 31], Apple [4],

IBM [18], Intel [32], and Tenstorrent [29]. Disintegration allows

vendors to build systems that exceed the maximum conventional

manufacturable size, and replace infeasibly expensive monolithic

chips with practical systems due to higher yield of smaller chips.

An underlying assumption has been that disintegrated systems

provide substantially lower cost for a small performance loss. After

all, although an in-package interconnect is less performant than

one on-chip, it beats connecting packages on a board. While the

cost savings are readily apparent (e.g., AMD estimates 41% cost

reduction in the design of a 32-core system [31]), there has been

little work characterizing the performance loss.

Our goal is to understand the performance tradeo� in the transi-

tion to disintegrated systems, identifying the properties of appli-

cations that cause them to be more or less impacted. We compare

the performance of a diverse suite of 29 multithreaded applications

running on two 256-core disintegrated systems (active interposer

and multi-chip module) to a monolith with the same number of

cores and amount of cache (Sec. 3). We introduce disintegration

slowdown, the performance ratio of the disintegrated system and

the equivalently sized monolith. We �nd that applications that scale

well on monolithic systems continue to scale on the disintegrated

systems, and vice versa, but provide 0.91× and 0.72× the average

performance of the monolith, respectively (Sec. 2.2). However, these

average disintegration slowdowns do not tell the whole story, as

we observe signi�cant variance across applications. For example,

an application’s speedup on the monolithic 256-core system over

a 1-core system is a poor predictor of disintegration slowdown:

some applications with monolithic speedup >250× have worse dis-

integration slowdown (0.56×) than some with monolithic speedup

<100× (0.997×). We apply regression analysis in search of metrics

that predict disintegration slowdown, identifying that instructions

per invalidation, our data-sharing proxy for operational intensity,

correlates with R
2 ≈ 0.6 (Sec. 4).

1

https://orcid.org/0009-0007-9593-3805
https://orcid.org/0000-0003-4816-0356
https://doi.org/10.1145/3610396.3618090
https://doi.org/10.1145/3610396.3618090

NoCArc ’23, October 28, 2023, Toronto, ON, Canada Isidor R. Brkić and Mark C. Je�rey

2 MOTIVATION

Disintegrating a manycore into chiplets drives downmanufacturing

cost, with the ultimate goal of improving performance per dollar.1

Ideally, for any application, �,

%3 (�)

�3

>

%< (�)

�<

⇐⇒
%3 (�)

%< (�)
>

�3

�<

(1)

where�< and�3 are the �xed cost per manycore using monolithic

and disintegrated designs, respectively, and %< (�) and %3 (�) are

the performance running� on the monolithic and disintegrated sys-

tems, respectively. The relative disintegrated cost should decrease

more than relative disintegrated performance is harmed.

When does disintegration pay o� and why do some applications

lose? We call the left hand side, %3 (�)/%< (�), disintegration slow-

down. For a given disintegrated and monolithic system, the relative

cost (right hand side) is �xed (e.g., 0.59× for the 32-core, 4-chiplet

AMD EPYC [31]). However, the disintegration slowdown depends

not only on the �xed disintegrated and monolithic architectures,

but also on the application, �. Prior work on disintegration has

(i) summarized disintegration slowdown averaged across a suite of

applications [6], (ii) measured disintegration slowdown on applica-

tions amenable to data partitioning to reduce communication [36],

or (iii) has not measured disintegration slowdown in particular [7,

10, 12, 24, 31, 32, 35, 42, 48, 49, 50]. To the best of our knowledge, no

prior work has characterized the variance in performance penalty

of disintegration across applications from disparate domains, nor

characterized its cause. The following subsections provide brief

background on disintegration technology and motivate this work

by showing the high variance of disintegration slowdown.

2.1 Disintegration (variably) reduces cost

Fig. 2 shows our baselinemonolithic tiled, cache-coherentmanycore

with 256 cores. Each tile has a group of cores with private L1 caches.

The cores in a tile share an L2 cache, and each tile has a slice of a

fully shared L3 cache. Tiles are connected through a mesh network-

on-chip (NoC). Even with simple and small cores, a system this

large or larger would be costly to manufacture as chip yield decays

superlinearly with area [13].

Disintegrated systems reintegrate chiplets to reduce overall cost.

First, they reduce manufacturing cost as the signi�cant yield im-

provement with lower area allows assembling a large system with

smaller, cheaper chips [44]. Second, they amortize design cost: just

as the shift to single-chip multiprocessors made large families of

1Other objectives include performance/W/$ or applying utility functions to perfor-
mance [37], but are out of scope for this paper.

256 core, 64 tile chip

Core

L1 I/D

Core

L1 I/D

Core

L1 I/D

Core

L1 I/D

RouterLLC Bank

L2

Logical Tile Organization

Tile

M
e

m
 C

tr
l

M
e

m
 C

tr
l

M
e

m
 C

tr
l

M
e

m
 C

tr
l

M
e

m
 C

tr
l

M
e

m
 C

tr
l

M
e

m
 C

tr
l

M
e

m
 C

tr
l

M
e

m
 C

tr
l

M
e

m
 C

tr
l

M
e

m
 C

tr
l

M
e

m
 C

tr
l

M
e

m
 C

tr
l

M
e

m
 C

tr
l

M
e

m
 C

tr
l

M
e

m
 C

tr
l

M
e

m
 C

tr
l

M
e

m
 C

tr
l

M
e

m
 C

tr
l

M
e

m
 C

tr
l

M
e

m
 C

tr
l

M
e

m
 C

tr
l

M
e

m
 C

tr
l

M
e
m

 C
tr

l
M

e
m

 C
tr

l
M

e
m

 C
tr

l
M

e
m

 C
tr

l

M
e

m
 C

tr
l

M
e

m
 C

tr
l

M
e

m
 C

tr
l

M
e

m
 C

tr
l

M
e
m

 C
tr

l
M

e
m

 C
tr

l
M

e
m

 C
tr

l
M

e
m

 C
tr

l
M

e
m

 C
tr

l
M

e
m

 C
tr

l
M

e
m

 C
tr

l

Mem CtrlMem CtrlMem CtrlMem Ctrl Mem CtrlMem Ctrl Mem CtrlMem Ctrl Mem CtrlMem Ctrl Mem CtrlMem Ctrl Mem CtrlMem CtrlMem CtrlMem Ctrl Mem CtrlMem CtrlMem CtrlMem Ctrl Mem CtrlMem CtrlMem CtrlMem Ctrl Mem CtrlMem Ctrl

Mem CtrlMem CtrlMem CtrlMem Ctrl Mem CtrlMem CtrlMem CtrlMem CtrlMem Ctrl Mem CtrlMem CtrlMem Ctrl

Figure 2: Tiled 256-core monolithic manycore design with

three-level cache hierarchy

related processors economically feasible by replicating a core de-

sign [33], disintegrated systems enable populating a package with

two, four, eight, or more chips to create a diverse product line from

few chip designs [31].

Disintegrated systems require a means to reassemble and inter-

connect the chips within a package. The more integrated the tech-

nology the better the inter-chip bandwidth, latency, and energy [44]

but the higher the cost. These include 3D stacking, interposers, sili-

con bridge interconnects, and multi-chip modules (MCM). We defer

to prior work for summaries of this large technology space [10, 14,

24]. In this paper, we sample two representative points in the space

with distinct cost and bandwidth/latency properties, focusing on ac-

tive silicon interposers and MCMs. The latter are already deployed

commercially in AMD EPYC and Ryzen [25, 31] and will likely con-

nect chips in the Tenstorrent Grendel [29]. The former have so far

been of academic interest, but represent a high-performance design

point in the Universal Chiplet Interconnect (UCIe) standard [14]

with support from AMD, IBM, Intel, among other vendors.

Active Silicon Interposers: Fig. 1a illustrates a disintegrated sys-

tem connecting two chips through a silicon interposer. Although

the interposer area is comparable to the sum of chiplet area, it only

supports communication, making its active area a small fraction

to reduce the probability of defects and improve yield. At a high

level, there are two types of interposers: active (with powered tran-

sistors and logic) and passive (only metal wires). Fig. 1b zooms

in on the chips and an active silicon interposer, which includes

repeaters to reduce latency [12, 42] and routers to enable sophis-

ticated network topologies [24]. In contrast, passive interposers

have worse communication characteristics but achieve higher yield.

A chip-to-interposer interconnect enables so-called micro-bump

C4 bumpsmicro-bumps

organic package substrate

chip 1 chip 2

interposer_

(a) Interposer interconnect

interposer

RouterRouter

chip 1

Tile Tile

RouterRouter RouterRouter

chip 2

Tile Tile

(b) Active interposers may have routers and repeaters

organic package substrate

C4 bumps

chip 1chip 1 chip 2chip 2

(c) Substrate interconnect making amulti-chip

module

Figure 1: Cross-section of on-package interconnects for two chiplets

2

Disintegrating Manycores: Which Applications Lose and Why? NoCArc ’23, October 28, 2023, Toronto, ON, Canada

connections whereas chip-to-package reintegration requires C4

bumps. Micro-bumps are smaller and more densely packed than

C4 bumps (e.g., 9× [24]) leading to higher inter-chip bandwidth

through the interposer than through the package substrate.

Multi-ChipModules: Fig. 1c shows a system connecting two chips

through the package substrate. MCMs are cheaper than interposer-

based systems as they demand fewer silicon layers. However, the

package substrate does not support active logic such as routers or

repeaters. The need for C4 bumps limits wire density and bandwidth.

The lack of repeaters drives up inter-chip long-wire latency.

2.2 Disintegration (variably) hurts performance

Keeping cores and cache equal with a monolith, disintegration

improves peak performance per dollar by keeping peak performance

constant, but what is the actual performance loss and how does

it vary across applications? Fig. 3 compares the performance of a

monolithic system (x-axis) against a disintegrated system (y-axis)

with 256 cores across 34 application-input pairs (see Sec. 3 for

methodology). Each point in the scatter plot represents the speedups

normalized to the performance of a 1-core system, averaged over

10 runs of a benchmark with the same input. The x-axis values

(monolith) are the same in Fig. 3a and Fig. 3b, while the y-axis values

come from an interposer- and MCM-based system, respectively.

Unsurprisingly, disintegration hurts performance on average,

shown by the blue least-squares-error lines of best �t. We force

these lines through the origin. The coe�cient of determination (R2)

0 50 100 150 200 250 300
Monolithic Speedup

0

50

100

150

200

250

300

D
is

in
te

g
ra

te
d

 s
p

e
e

d
u

p

R2 = 0.99

s4barnes

s
4

c
h

o
le

s
k
y

blackscholes

sf-yt

(a) Interposer

0 50 100 150 200 250 300
Monolithic Speedup

0

50

100

150

200

250

300

D
is

in
te

g
ra

te
d

 s
p

e
e

d
u

p

R2 = 0.92

s4barnes

s
4

c
h

o
le

s
k
y

blackscholes

sf-yt

(b) MCM

Figure 3: Comparing disintegrated vs. monolithic perfor-

mance on a 256-core system normalized to a 1-core system

0 50 100 150 200 250 300
Monolithic Speedup

0.80

0.85

0.90

0.95

1.00

D
is

in
te

g
ra

ti
o

n
 S

lo
w

d
o

w
n

R2 = 0.02s4barnes

s4cholesky

blackscholes

sf-yt

(a) Interposer

0 50 100 150 200 250 300
Monolithic Speedup

0.5

0.6

0.7

0.8

0.9

1.0

D
is

in
te

g
ra

ti
o

n
 S

lo
w

d
o

w
n

R2 = 0.00

s4barnes

s4cholesky

blackscholes

sf-yt

(b) MCM

Figure 4: Comparing disintegration slowdown vs. monolithic

performance on a 256-core system

shows a strong linear correlation between disintegrated speedup

and monolithic speedup (R2 =1 implies perfect correlation and

R
2 =0 implies no correlation). The slopes indicate that interposer

and MCM systems achieve 0.91× and 0.72× the performance of

the monolith, respectively. This average relative performance is

promising if disintegration su�ciently reduces cost.

More interestingly, monolithic speedup does not perfectly predict

disintegrated speedup for individual applications. Fig. 4 highlights

this issue, keeping the x-axis the same but plotting what we call

disintegration slowdown on the y-axis: disintegrated speedup nor-

malized to monolithic speedup, or %3 (�)/%< (�) from Eq. 1. For

example, a y-axis value of one indicates a benchmark took equal

time to execute on both systems, whereas a value of 0.5 indicates

the disintegrated system took twice as long to complete.

Fig. 4 shows high variance in disintegration slowdown across

applications, with near-zero correlation with monolithic speedup

and near-zero slope in the line of best �t. For example, applications

blackscholes and sf both scale well (to the right) on the monolith

but their disintegration slowdown varies wildly. At the lower end

of scalability, barnes is heavily penalized on the MCM, whereas

cholesky is closer to the average disintegration slowdown. The

standard deviations in disintegration slowdown are 0.046× and

0.116× for the interposer and MCM, respectively.

Our goal in this work is to explain this variance in disintegration

slowdown. What causes the performance of some applications to be

penalized so much more than others? More concretely, we search

for application characteristics (x-axis values) that are correlated

with this slowdown (y-axis) to explain the performance penalty of

disintegration. We focus on the %3 (�)/%< (�) ratio, and defer to

prior work for �3/�< [31, 41, 42, 43, 44].

3 EXPERIMENTAL METHODOLOGY

Modeled manycores: We modify the open-source2 cycle-level,

event-driven Swarm [22, 23] simulator based on Pin [30, 34] to eval-

uate the impact on performance of 256-core disintegrated systems

relative to the monolith shown in Fig. 2. Parameters are given in

Table 1. We use detailed core, cache, network, and main memory

models, and do not use any Swarm task management or speculation

as all benchmarks are multithreaded.

For disintegrated systems, we partition the monolithic 64-tile

network into 16 chiplets of four tiles each, providing higher yield

than four larger chiplets. Intel’s Sapphire Rapids comprises four

chips [32], Tenstorrent’s Grendel forecasts eight [29], AMD’s EPYC

has nine [31] to thirteen [25], and NVIDIA’s Simba has 36 [36].

The disintegrated interconnect topologies comprise two layers.

The network-on-chip (NoC) uses a mesh on each die (4-node ring

on cmesh and mcm), similar to products and prototypes from indus-

try [5, 15, 18, 32, 36]. The network-on-package (NoP) topology is

in�uenced by the disintegration technology. Fig. 5a and Fig. 5b show

the combined NoP and NoC topologies for our active silicon inter-

poser (cmesh) and multi-chip module (mcm) systems, respectively.

We use a misaligned concentrated mesh for the interposer [24]. Con-

centration drives down active interposer area while misalignment

improves average hop count and packet latency. Red intra-chip

links connect black on-chip routers. Dashed blue links connect

2https://github.com/SwarmArch/sim

3

NoCArc ’23, October 28, 2023, Toronto, ON, Canada Isidor R. Brkić and Mark C. Je�rey

Table 1: Con�guration of the 256-core system

Cores
256 cores in 64 tiles (4 cores/tile), 2 GHz, x86-64 ISA,
1 thread/core (like AmpereOne [2]);

Frontend 2-level bpred with 1024×10-bit BHSRs + 1024×2-bit PHT

Backend
2-way issue/rename/dispatch/commit, 36-entry issue bu�er,
72-entry ROB, 16-entry ld/st queue (similar to KNL [40])

L1 caches 32 KB, per-core, split D/I, 8-way, 2-cycle latency
L2 caches 1MB, per-tile, 8-way, inclusive, 9-cycle latency

LLC
256MB, shared, static NUCA [26] (4MB bank/tile),
16-way, inclusive, 12-cycle bank latency

Coherence MESI, 64 B lines, in-cache directories

Main mem
16 controllers at chip edges, 120-cycle latency,
30GB/s/controller

Net topology 8×8 mesh on monolith, 2×2 mesh per disintegrated chip

NoC and
Interposer

16 B links, 4 physical networks, XY routing, 1 cycle/hop when
going straight, 2 cycles on turns (like Tile64 [45]), 1 cycle per
router

mcm NoP
1 cycle each way between chip and package substrate +
3 cycles for traversal of package + 1 cycle for clock domain
crossing

cmesh NoP
1 cycle to cross between chip and interposer + 1 cycle for
clock domain crossing (like Kite [7])

(a) cmesh
(b) mcm

Figure 5: cmesh and mcm network topologies with a 4×4-chip,

2×2-tile/chip, 4-cores/tile con�guration. cmesh uses a concen-

tration factor of 4 and 5×5 XY-misalignment.

green on-interposer routers. Dotted purple links cross from on-chip

to on-interposer routers. The mcm topology resembles the Simba

network [36]. Blue links connect the chips through the package

substrate. Each chip has one router designated for o�-chip tra�c;

all o�-chip-bound messages are routed here �rst.

We implement a hierarchical, X-�rst routing algorithm: starting

from the source router, (i) route to the local o�-chip router, (ii) route

within the NoP to the o�-chip router that is local to the destination,

(iii) route to the destination. A packet skips any of these steps if

already completed (i.e., exploits intra-chip routing when possible).

A longer version of this work details cmesh and mcm routing [9].

We con�gure intra-chip and inter-chip router and link delays

similarly to recent work. We add one cycle for clock-domain cross-

ing when a packet moves to a di�erent chip [7]. Link distances in

the interposer and package substrate are approximately one side of

a chip plus the distance between chips. Assuming this wire length

is less than 10mm for chips in 11 nm, and that the metal wire in the

package substrate has similar length to one in a passive interposer,

we use one cycle per link in the active interposer and three cycles

per link in the package substrate [42].

Benchmarks: The shift to disintegration hampers the NoP. Con-

sequently, we use a diverse set of 29 multithreaded benchmarks

drawn from PARSEC [8] (blackscholes, canneal), Splash-2x [47]

(barnes, fft, lu_cb, lu_ncb, ocean_cp, ocean_ncp, radix),

Splash-4 [19] (all except fmm), PBBSv1 [39] (mis), PBBSv2 [3] (mm,

msf, sf, sa), and other graph benchmarks (cf [38], color [21]).

These exhibit a diversity of parallel and data sharing patterns

(Sec. 4). We use standard input sets for PARSEC and Splash, tri-

gramString_1M as input to sa, movielens-1m [20] (10.0k vertices,

2.00M edges) as input to cf, and East USA roads [1] (3.60M vertices,

8.78M edges) and com-youtube [28] (1.16M vertices, 2.99M edges)

as inputs to remaining benchmarks.

We exclude benchmarks from Splash and PARSEC that led to

errors. For example, some excluded benchmarks have internal max-

imum thread counts that preclude 256-thread execution. We use

the Cilk runtime for cf, color, and mis, and pthreads for all other

benchmarks. Because our Pin-based simulator does not capture cy-

cles in system calls, we replace the pthread_mutex_t in Splash-2x

with a TTAS lock.

We fast-forward each benchmark to the start of its parallel region

and simulate the full system for the entire region. We perform

ten runs per input for all benchmarks on all three systems. Each

point in a scatter plot represents one (benchmark,input) pair and is

constructed from the average of run times and/or relevant metric.

4 RESULTS

What architectural or application-level metrics explain the variance

in disintegration slowdown? We consider two general categories:

(i) classic performance metrics and (ii) network and data sharing

metrics. As in Fig. 4, we plot our proposed metrics against the

disintegration slowdown, perform linear regression, and measure

the correlation. All x-axis metrics are measured on the monolithic

system, as we �nd it typically gives better correlation; the monolith

is less constrained, so it better satis�es the resources an application

wants. We consider linear and exponential correlations and report

the better of the two.

Table 2 summarizes our �ndings, reporting the correlations from

each scatter plot. A longer version of this work analyzes every plot

leading to a cell in this table [9]. For brevity, we showcase scatter

plots for key metrics of interest in Fig. 6 and only for mcm.

4.1 Performance metrics poorly predict
disintegration slowdown

Workload characterization often measures average instructions

per cycle (IPC), consumed memory bandwidth, and operational

intensity. However, we �nd all three poorly predict disintegration

slowdown (i.e., correlation is low) [9]. These metrics are core- and

memory-centric and are less sensitive to the NoP in particular.

We plot disintegration slowdown vs. operational intensity in

Fig. 6a, as it gives the best R2 of 0.32 on mcm. Deviating from

Williams et al. [46], we compute operational intensity as the num-

ber of instructions per byte of data accessed from memory, as not

all benchmarks use �oating point. The line of best �t looks expo-

nential on the logarithmic x-axis. There is a weak trend of reduced

slowdown with increasing operational intensity, but this metric is

insu�cient to explain the variance in disintegration slowdown.

4

Disintegrating Manycores: Which Applications Lose and Why? NoCArc ’23, October 28, 2023, Toronto, ON, Canada

20 22 24 26 28 210 212

Operational Intensity (instrs/byte)

0.5

0.6

0.7

0.8

0.9

1.0

D
is

in
te

g
ra

ti
o
n
 S

lo
w

d
o
w

n

R2 = 0.32

s4barnes

s4cholesky

blackscholes

sf-yt

(a) Operational intensity

26 28 210 212 214

Injected NoP BW (MB/s/tile)

0.5

0.6

0.7

0.8

0.9

1.0

D
is

in
te

g
ra

ti
o
n
 S

lo
w

d
o
w

n
R2 = 0.42 s4barnes

s4cholesky

blackscholes

sf-yt

(b) Total injection bandwidth

2−1 21 23 25 27 29

LLC Invalidation BW (MB/s/tile)

0.5

0.6

0.7

0.8

0.9

1.0

D
is

in
te

g
ra

ti
o
n
 S

lo
w

d
o
w

n

R2 = 0.50 s4barnes

s4cholesky

blackscholes

sf-yt

(c) Inv injection bandwidth

26 28 210 212 214 216 218

LLC Inv Intensity (instr/Inv)

0.5

0.6

0.7

0.8

0.9

1.0

D
is

in
te

g
ra

ti
o
n
 S

lo
w

d
o
w

n

R2 = 0.58s4barnes

s4cholesky

blackscholes

sf-yt

(d) Invalidation intensity

Figure 6: Comparing disintegration slowdown of mcm vs. key metrics measured on the monolith

Table 2: Application metrics and their correlation with disin-

tegration slowdown

Metric Group Metric
Correlation

(cmesh) (mcm)

Performance

IPC 0.26 0.14

Consumed Memory Bandwidth 0.02 0.13

Operational Intensity [46] 0.18 0.32

Base Network
Network Injection Bandwidth 0.31 0.42

Average Network Latency 0.06 0.06

Network

Injection

Breakdown

GetS 0.32 0.41

GetX 0.40 0.49

Inv (Invalidate) 0.48 0.50

InvX (Downgrade) 0.46 0.57

Data Response 0.34 0.46

PutS (Clean Eviction) 0.00 0.10

PutX (Dirty Eviction) 0.04 0.05

Data Sharing

Read Sharers 0.04 0.07

Invalidation Intensity 0.63 0.58

Downgrade Intensity 0.55 0.59

Sharing Fraction [16] 0.34 0.31

4.2 Network and data sharing metrics are better

Since the NoP is the key system component constrained by disin-

tegration, we consider the correlation of disintegration slowdown

with average network injection bandwidth from tiles and aver-

age packet latency. Unsurprisingly, Fig. 6b shows that benchmarks

better utilizing the monolith network (injecting more) have more

performance degradation with disintegration, however, the correla-

tion is weak. Table 2 reports almost no correlation with latency.

We break down network tra�c by components and �nd stronger

correlation of disintegration slowdown with invalidation (Inv) and

downgrade (InvX) tra�c. Fig. 6c plots disintegration slowdown

vs. the bandwidth of Inv messages injected from the LLC. Inv and

InvX requests are caused by read-write sharing and synchroniza-

tion among threads. Ideally, such data would be perfectly reused

(shared) by threads before being evicted o� chip, reducing o�-chip

memory tra�c. Since these messages traverse the NoP, their band-

width should correlate with performance impact, given the slower

disintegrated network. Evidently, with R
2 ≈0.5, this does not tell

the entire story.

We develop invalidation intensity as a sharing analogue for op-

erational intensity: instructions per Inv message, rather than in-

structions per byte from memory. This metric is a proxy for the

period, in instructions, at which readers of data are invalidated due

to sharing. Fig. 6d plots disintegration slowdown vs. invalidation in-

tensity. Since frequency is constant in our model, Fig. 6d ultimately

factors out average IPC from Fig. 6c. With an invalidation rate nor-

malized by instructions rather than cycles, invalidation intensity

is less (albeit still) dependent on microarchitecture. Fig. 6d shows

that disintegration slowdown worsens as the invalidation intensity

increases: more sharing causes more performance penalty.

5 CONCLUSION

In the pursuit of larger and higher performance systems, the mi-

croprocessor industry is shifting to disintegration: reassembling

smaller chiplets within a package. This improves yield and reduces

cost, with one key goal of improving performance per dollar for

customers. However, the performance penalty due to running ap-

plications on disintegrated systems has not been well studied. This

paper presented a characterization of the impacts of disintegration

on application performance, focusing on active silicon interposer

and package substrate (mcm) interconnects. On average, application

scaling remains similar between the monolith and disintegrated de-

signs, although the cheaper the disintegration technology, theworse

the average performance penalty. However, the per-application

normalized disintegration slowdown has no correlation with mono-

lithic performance and has high variance, with some applications

experiencing nearly twice the average performance slowdown. We

introduced invalidation intensity as a metric for data sharing rate

and �nd it correlates with disintegration slowdown with R
2 of

about 0.6, stronger than correlation with injected network band-

width. These results corroborate our intuition that data sharing,

in particular, stresses the network because accesses to shared data

are not further limited by memory bandwidth. Future work could

continue the search for a near-perfect predictor of disintegration

slowdown, ideally using microarchitecture-independent metrics,

then leverage those insights to develop architectural and software

mechanisms to mitigate disintegration slowdown.

5

NoCArc ’23, October 28, 2023, Toronto, ON, Canada Isidor R. Brkić and Mark C. Je�rey

6 ACKNOWLEDGMENTS

We sincerely thank Tarek Abdelrahman, Javad Abdi, Natalie Enright

Jerger, Gilead Posluns, Guowei Zhang, Guozheng Zhang, and the

anonymous reviewers for their helpful feedback. Some text in this

paper was edited using ChatGPT. This work was supported in

part by the Digital Research Alliance of Canada, the University of

Toronto, NSERC, and an Ontario QEII-GSST.

REFERENCES
[1] 2006. 9th DIMACS Implementation Challenge: Shortest Paths. http://www.dis.un

iroma1.it/~challenge9, archived at https://perma.cc/5KYT-YM36. (2006).
[2] The Ampere Team. 2023. Ampere Computing unveils new AmpereOne processor

family with 192 custom cores. Ampere Computing Press. (May 2023).
[3] Daniel Anderson, Guy E. Blelloch, Laxman Dhulipala, Magdalen Dobson, and

Yihan Sun. 2022. “The problem-based benchmark suite (PBBS), v2.” In PPoPP.
[4] Apple. 2022. Apple unveils M1 Ultra, the world’s most powerful chip for a personal

computer . Apple Newsroom. (2022).
[5] Mohamed Arafa, Bahaa Fahim, Sailesh Kottapalli, Akhilesh Kumar, Lily P.

Looi, Sreenivas Mandava, Andy Rudo�, Ian M. Steiner, Bob Valentine, Geetha
Vedaraman, and Sujal Vora. 2019. “Cascade Lake: next generation Intel Xeon
scalable processor.” IEEE Micro, 39, 2.

[6] Akhil Arunkumar, Evgeny Bolotin, BenjaminCho, UgljesaMilic, Eiman Ebrahimi,
Oreste Villa, Aamer Jaleel, Carole-Jean Wu, and David Nellans. 2017. “MCM-
GPU: multi-chip-module gpus for continued performance scalability.” In ISCA-
44.

[7] Srikant Bharadwaj, Jieming Yin, Bradford Beckmann, and Tushar Krishna. 2020.
“Kite: a family of heterogeneous interposer topologies enabled via accurate
interconnect modeling.” In DAC-57.

[8] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. “The
PARSEC benchmark suite: characterization and architectural implications.” In
PACT-17.

[9] Isidor R. Brkić. 2023. The Performance Cost of Disintegrated Manycores: Which
Applications Lose and Why? Master’s thesis. University of Toronto.

[10] Grigory Chirkov and David Wentzla�. 2023. “Seizing the bandwidth scaling of
on-package interconnect in a post-Moore’s law world.” In ICS’23.

[11] Mark Cianchetti, Nicolás Sherwood-Droz, and Christopher Batten. 2010. “Im-
plementing system-in-package with nanophotonic interconnect.” In WINDS.

[12] Ayse Coskun, Furkan Eris, Ajay Joshi, Andrew B. Kahng, Yenai Ma, and Vaish-
nav Srinivas. 2018. “A cross-layer methodology for design and optimization of
networks in 2.5d systems.” In ICCAD Article 101.

[13] J.A. Cunningham. 1990. “The use and evaluation of yield models in integrated
circuit manufacturing.” IEEE TSM, 3, 2.

[14] Debendra Das Sharma, Gerald Pasdast, Zhiguo Qian, and Kemal Aygun. 2022.
“Universal chiplet interconnect express (UCIe): an open industry standard for
innovations with chiplets at package level.” IEEE TCPMT, 12, 9.

[15] Mark Evers, Leslie Barnes, and Mike Clark. 2022. “The AMD next-generation
“Zen 3” core.” IEEE Micro, 42, 3.

[16] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C.
Kaynak, A.D. Popescu, A. Ailamaki, and B. Falsa�. 2012. “Clearing the clouds: a
study of emerging scale-out workloads on modern hardware.” In ASPLOS-XVII.

[17] Brian Gaide, Dinesh Gaitonde, Chirag Ravishankar, and Trevor Bauer. 2019.
“Xilinx adaptive compute acceleration platform: Versal architecture.” In FPGA.

[18] Ofer Geva, Chris Berry, Robert Sonnelitter, David Wolpert, Adam Collura,
Thomas Strach, Di Phan, Cedric Lichtenau, Alper Buyuktosunoglu, Hubert
Harrer, Je�rey Zitz, Chad Marquart, Douglas Malone, Tobias Webel, Adam
Jatkowski, John Isakson, Dina Hamid, Mark Cichanowski, Michael Romain,
Faisal Hasan, Kevin Williams, Jesse Surprise, Chris Cavitt, and Mark Cohen.
2022. “IBM Telum: a 16-Core 5+ GHz DCM.” In ISSCC.

[19] Eduardo José Gómez-Hernández, Juan M. Cebrian, Stefanos Kaxiras, and Al-
berto Ros. 2022. “Splash-4: a modern benchmark suite with lock-free constructs.”
In IISWC.

[20] F. Maxwell Harper and Joseph A. Konstan. 2015. “The MovieLens datasets:
history and context.” ACM TiiS, 5, 4.

[21] William Hasenplaugh, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson.
2014. “Ordering heuristics for parallel graph coloring.” In SPAA.

[22] Mark C. Je�rey, Suvinay Subramanian, Maleen Abeydeera, Joel Emer, and
Daniel Sanchez. 2016. “Data-centric execution of speculative parallel programs.”
In MICRO-49.

[23] Mark C. Je�rey, Suvinay Subramanian, Cong Yan, Joel Emer, and Daniel
Sanchez. 2015. “A scalable architecture for ordered parallelism.” In MICRO-48.

[24] Ajaykumar Kannan, Natalie Enright Jerger, and Gabriel H. Loh. 2015. “Enabling
interposer-based disintegration of multi-core processors.” In MICRO-48.

[25] Chris Karamatas. 2023. AMD EPYC 9004 processor architecture overview. AMD
Documentation Hub. (June 2023).

[26] Changkyu Kim, Doug Burger, and Stephen W. Keckler. 2002. “An adaptive,
non-uniform cache structure for wire-delay dominated on-chip caches.” In
ASPLOS-X.

[27] Gary Lauterbach. 2021. “The path to successful wafer-scale integration: the
Cerebras story.” IEEE Micro, 41, 6.

[28] Jure Leskovec and Andrej Krevl. 2014. SNAP datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data. (2014).

[29] Wei-han Lien. 2023. “From mW to MW: scalable RISC-V processors for AI
everywhere.” In Proc. of the RISC-V Summit Europe. (May 2023).

[30] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geo�
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. “Pin:
Building customized program analysis tools with dynamic instrumentation.”
In PLDI.

[31] Samuel Na�ziger, Noah Beck, Thomas Burd, Kevin Lepak, Gabriel H. Loh,
Mahesh Subramony, and Sean White. 2021. “Pioneering chiplet technology and
design for the AMD EPYC and Ryzen processor families : industrial product.”
In ISCA-48.

[32] Nevine Nassif, Ashley O. Munch, Carleton L. Molnar, Gerald Pasdast, Sitaraman
V. Lyer, Zibing Yang, Oscar Mendoza, Mark Huddart, Srikrishnan Venkatara-
man, Sireesha Kandula, Ra� Marom, Alexandra M. Kern, Bill Bowhill, David R.
Mulvihill, Srikanth Nimmagadda, Varma Kalidindi, Jonathan Krause, Moham-
mad M. Haq, Roopali Sharma, and Kevin Duda. 2022. “Sapphire Rapids: the
next-generation Intel Xeon scalable processor.” In ISSCC.

[33] Kunle Olukotun and Lance Hammond. 2005. “The future of microprocessors.”
ACM Queue, 3, 7.

[34] Heidi Pan, Krste Asanović, Robert Cohn, and Chi-Keung Luk. 2005. “Control-
ling program execution through binary instrumentation.” SIGARCH Computer
Architecture News, 33, 5.

[35] Hesam Shabani and Xiaochen Guo. 2019. “ClusCross: a new topology for silicon
interposer-based network-on-chip.” In NOCS.

[36] Yakun Sophia Shao, Jason Clemons, Rangharajan Venkatesan, Brian Zimmer,
Matthew Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter, Nathaniel Pinckney,
Priyanka Raina, Stephen G. Tell, Yanqing Zhang, William J. Dally, Joel Emer,
C. Thomas Gray, Brucek Khailany, and Stephen W. Keckler. 2019. “Simba:
scaling deep-learning inference with multi-chip-module-based architecture.”
In MICRO-52.

[37] Scott Shenker. 1995. “Fundamental design issues for the future internet.” IEEE
JSAC, 13, 7.

[38] Julian Shun and Guy E Blelloch. 2013. “Ligra: a lightweight graph processing
framework for shared memory.” In PPoPP.

[39] Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Aapo
Kyrola, Harsha Vardhan Simhadri, and Kanat Tangwongsan. 2012. “Brief an-
nouncement: the problem based benchmark suite.” In SPAA.

[40] Avinash Sodani, Roger Gramunt, Jesus Corbal, Ho-Seop Kim, Krishna Vinod,
Sundaram Chinthamani, Steven Hutsell, Rajat Agarwal, and Yen-Chen Liu.
2016. “Knights Landing: Second-generation Intel Xeon Phi product.” IEEE Micro,
36, 2.

[41] Dylan Stow, Itir Akgun, Russell Barnes, Peng Gu, and Yuan Xie. 2016. “Cost
analysis and cost-driven IP reuse methodology for SoC design based on 2.5d/3d
integration.” In ICCAD.

[42] Dylan Stow, Itir Akgun, and Yuan Xie. 2019. “Investigation of cost-optimal
network-on-chip for passive and active interposer systems.” In SLIP.

[43] Dylan Stow, Yuan Xie, Taniya Siddiqua, and Gabriel H. Loh. 2017. “Cost-
e�ective design of scalable high-performance systems using active and passive
interposers.” In ICCAD.

[44] Lisa Su and Sam Na�ziger. 2023. “Innovation for the next decade of compute
e�ciency.” In ISSCC.

[45] David Wentzla�, Patrick Gri�n, Henry Ho�mann, Liewei Bao, Bruce Edwards,
Carl Ramey, Matthew Mattina, Chyi-Chang Miao, John F. Brown III, and Anant
Agarwal. 2007. “On-chip interconnection architecture of the Tile Processor.”
IEEE Micro, 27, 5.

[46] Samuel Williams, Andrew Waterman, and David Patterson. 2009. “Roo�ine:
an insightful visual performance model for multicore architectures.” Commun.
ACM, 52, 4.

[47] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and
Anoop Gupta. 1995. “The SPLASH-2 programs: characterization and method-
ological considerations.” In ISCA-22.

[48] Florian Zaruba, Fabian Schuiki, and Luca Benini. 2021. “Manticore: a 4096-core
RISC-V chiplet architecture for ultrae�cient �oating-point computing.” IEEE
Micro, 41, 2.

[49] Shiqing Zhang, Mahmood Naderan-Tahan, Magnus Jahre, and Lieven Eeckhout.
2023. “SAC: sharing-aware caching in multi-chip GPUs.” In ISCA-50 Article 43.

[50] Hao Zheng, Ke Wang, and Ahmed Louri. 2020. “A versatile and �exible chiplet-
based system design for heterogeneous manycore architectures.” In DAC-57.

6

https://alliancecan.ca
http://www.dis.uniroma1.it/~challenge9
http://www.dis.uniroma1.it/~challenge9
https://perma.cc/5KYT-YM36
https://amperecomputing.com/press/ampere-unveils-processor-ampereone-192-cores
https://amperecomputing.com/press/ampere-unveils-processor-ampereone-192-cores
https://doi.org/10.1145/3503221.3508422
https://nr.apple.com/d2I7r618E8
https://nr.apple.com/d2I7r618E8
https://doi.org/10.1109/MM.2019.2899330
https://doi.org/10.1109/MM.2019.2899330
https://doi.org/10.1145/3079856.3080231
https://doi.org/10.1145/3079856.3080231
https://doi.org/10.1109/DAC18072.2020.9218539
https://doi.org/10.1109/DAC18072.2020.9218539
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1145/3577193.3593702
https://doi.org/10.1145/3577193.3593702
https://www.csl.cornell.edu/winds2010/abstracts/cianchetti-winds2010.pdf
https://www.csl.cornell.edu/winds2010/abstracts/cianchetti-winds2010.pdf
https://doi.org/10.1145/3240765.3240768
https://doi.org/10.1145/3240765.3240768
https://doi.org/10.1109/66.53188
https://doi.org/10.1109/66.53188
https://doi.org/10.1109/TCPMT.2022.3207195
https://doi.org/10.1109/TCPMT.2022.3207195
https://doi.org/10.1109/MM.2022.3152788
https://doi.org/10.1109/MM.2022.3152788
https://doi.org/10.1145/2248487.2150982
https://doi.org/10.1145/2248487.2150982
https://doi.org/10.1145/3289602.3293906
https://doi.org/10.1109/ISSCC42614.2022.9731541
https://doi.org/10.1109/IISWC55918.2022.00015
https://doi.org/10.1145/2827872
https://doi.org/10.1145/2827872
https://doi.org/10.1145/2612669.2612697
https://doi.org/10.1109/MICRO.2016.7783708
https://doi.org/10.1145/2830772.2830777
https://doi.org/10.1145/2830772.2830808
https://doi.org/10.1145/2830772.2830808
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/white-papers/58015-epyc-9004-tg-architecture-overview.pdf
https://doi.org/10.1145/605397.605420
https://doi.org/10.1145/605397.605420
https://doi.org/10.1109/MM.2021.3112025
https://doi.org/10.1109/MM.2021.3112025
http://snap.stanford.edu/data
https://riscv-europe.org/media/proceedings/plenary/2023-06-08-10h00-Wei-han-LIEN-slides.pdf
https://riscv-europe.org/media/proceedings/plenary/2023-06-08-10h00-Wei-han-LIEN-slides.pdf
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.1109/ISCA52012.2021.00014
https://doi.org/10.1109/ISCA52012.2021.00014
https://doi.org/10.1109/ISSCC42614.2022.9731107
https://doi.org/10.1109/ISSCC42614.2022.9731107
https://doi.org/10.1145/1095408.1095418
https://doi.org/10.1145/1127577.1127587
https://doi.org/10.1145/1127577.1127587
https://doi.org/10.1145/3313231.3352363
https://doi.org/10.1145/3313231.3352363
https://doi.org/10.1145/3352460.3358302
https://doi.org/10.1145/3352460.3358302
https://doi.org/10.1109/49.414637
https://doi.org/10.1145/2442516.2442530
https://doi.org/10.1145/2442516.2442530
https://doi.org/10.1145/2312005.2312018
https://doi.org/10.1145/2312005.2312018
https://doi.org/10.1109/MM.2016.25
https://doi.org/10.1145/2966986.2980095
https://doi.org/10.1145/2966986.2980095
https://doi.org/10.1145/2966986.2980095
https://doi.org/10.1109/SLIP.2019.8771333
https://doi.org/10.1109/SLIP.2019.8771333
https://doi.org/10.1109/ICCAD.2017.8203849
https://doi.org/10.1109/ICCAD.2017.8203849
https://doi.org/10.1109/ICCAD.2017.8203849
https://doi.org/10.1109/ISSCC42615.2023.10067810
https://doi.org/10.1109/ISSCC42615.2023.10067810
https://doi.org/10.1109/MM.2007.4378780
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/223982.223990
https://doi.org/10.1145/223982.223990
https://doi.org/10.1109/MM.2020.3045564
https://doi.org/10.1109/MM.2020.3045564
https://doi.org/10.1145/3579371.3589078
https://doi.org/10.1109/DAC18072.2020.9218654
https://doi.org/10.1109/DAC18072.2020.9218654

	Abstract
	1 Introduction
	2 Motivation
	2.1 Disintegration (variably) reduces cost
	2.2 Disintegration (variably) hurts performance

	3 Experimental Methodology
	4 Results
	4.1 Performance metrics poorly predict disintegration slowdown
	4.2 Network and data sharing metrics are better

	5 Conclusion
	6 Acknowledgments

