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ABSTRACT

The dawning of the age of accelerators has been a boon for computer

architects and more broadly design and innovation in the computer

hardware industry. However, as we spin and respin new accelerator

designs, we must be cognizant of the broader sustainability impli-

cations of frequent redesign and accelerator churn. Speci�cally, we

introduce the notion of lifetime carbon amortization and impact

of legacy carbon due to frequent design refreshes. We argue for a

more thoughtful and sustainable approach to accelerator design

and deployment.

1 INTRODUCTION

Hardware specialization has become commonplace to enable mod-

ern applications with high computational intensity in the face of a

Moore’s Law slowdown. Relative to general-purpose CPUs, domain-

speci�c accelerators have advantages such as decreased latency and

increased energy e�ciency [8]. However, domains that are su�-

ciently popular to warrant the cost and labor of specialization have

applications that tend to evolve quickly. One such celebrity do-

main is deep learning, where new models quickly rise in popularity

and create massive demand (e.g., transformers [14]). New models

may not map well to accelerators designed for older models (e.g.,

CNNs). For example, in the Google TPU family of chips, custom

hardware is added in each generation to support the latest model

innovations [9]. For hyper-specialized hardware to keep up with

this rapid application-driven change, new chips must be designed

often enough to stay relevant.

Although acceleration o�ers well-known performance and en-

ergy bene�ts at run time, the environmental impact of deploying

so many generations of accelerators remains unclear. This is con-

cerning, as designers of specialized hardware make an implicit

judgment that the application they target is worth the associated

carbon footprint. Pro�table models with high computational de-

mands such as those for chatbots and recommendation systems are

often deployed by large companies headquartered in the developed

world. This leads to disconnect between those who bene�t most

from DNNs and those who are most directly harmed by the impacts

of climate change in the developing world [7]. In this work, we

discuss the carbon impact of frequently updating accelerators and

provide recommendations for sustainable accelerator deployment.

2 BACKGROUND

The carbon emissions attributed to the lifetime of one computing

device consist of two components: embodied and operational emis-

sions [5]. Embodied emissions include those generated during the

manufacturing of the device. Operational emissions stem from the

usage of device, due to the CO2 emitted by its power source. How-

ever, with datacenters shifting to more renewable energy sources,

operational emissions are decreasing [6]. Major datacenter opera-

tors such as Google and Meta intend to reduce the carbon footprints

of their operations. Meta already powers 100% of their datacenters

with renewable energy [1], while Google aims to do so by 2030 [2].

Assuming these pledges are upheld, a device’s embodied carbon

footprint will dominate its operational carbon footprint.

The total carbon footprint of a device per unit time is a combi-

nation of its operational emissions and a fraction of the embodied

emissions. The longer a device is in use, the lower the embodied

emissions per unit time, as this component is amortized over time.

This observation enables holistically analyzing carbon footprint

over multiple generations.

3 LIFETIME CARBON AMORTIZATION

Embodied carbon has been viewed as a one-time cost incurred at

manufacturing time. Consequently, its impact is di�cult to analyze

over the lifetime of the chip. Amortization can characterize the

utility attained from the investment of embodied carbon.

3.1 Embodied carbon across chip generations

We present two ways of viewing embodied carbon emissions: in-

tragenerational and intergenerational embodied carbon. The former

is a one-time carbon emissions investment for a chip design that

will be used for a given period of time. However, the domain using

this chip may outlive the usefulness of that single chip generation;

new chip generations that support increasing application demands

lead to a chip family. Therefore, intragenerational embodied car-

bon is accumulated across multiple generations, resulting in the

intergenerational embodied carbon of the chip family.

Fig. 1 illustrates the total (intergenerational) embodied carbon

footprint over time for a chip family.1 It increases with a step each

time a new chip generation is manufactured.When new generations

are manufactured at a regular cadence (Fig. 1a), the convex hull

increases linearly. But increasingly rapid evolution of application

1If operational carbon emissions reach zero, then intergenerational embodied carbon
emissions equal intergenerational total carbon emissions.
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(b) Increasingly frequent releases

Figure 1: Total embodied carbon over time as eight genera-

tions are manufactured on (a) a regular schedule and (b) an

increasingly frequent schedule.

demands could provoke an increasingly rapid rate of new chip

designs (Fig. 1b), causing intergenerational embodied carbon to

increase superlinearly. The trend of increasing embodied emissions

can be slowed by either reducing embodied carbon emissions in the

manufacturing process or undergoing fewer manufacturing cycles

by extending the lifetime of each chip. Ultimately, intergenerational

embodied carbon increases monotonically.

3.2 Characterizing accelerators under
replacement

Solely considering the embodied carbon of one device generation

obscures the impact of frequent design refreshes. For example,

several generations of Google TPUs were deployed only 1-3 years

apart. Thus, characterizing the carbon of a single generation does

not give the full picture, as frequently replaced devices have less

time to amortize per-chip embodied carbon emissions.

Fig. 2 illustrates how embodied carbon is amortized over time

when an accelerator is replaced. At the moment of deployment,

the amortized carbon goes to in�nity as the accelerator has not

yet been operational for any time. As the accelerator operates, the

embodied carbon per unit time is amortized as

1

?
·

��

C

where �� is embodied carbon, C is time from deployment, and

? is performance normalized to the previous generation. Perfor-

mance a�ects the amortization decay rate. This metric has units of

CO2/operation. The four plots of Fig. 2 show the Cartesian product

of (i) the time between manufacture of each generation, and (ii) per-

formance of a new chip generation relative to its predecessor.2

Each amortization curve represents the embodied carbon when

a new design is introduced. When a new accelerator replaces an

existing one, this is an additional embodied carbon investment

into the chip family’s application domain (e.g., tensor processing).

Therefore, future work performed by this new accelerator amortizes

both its own and the previous generations’ embodied carbon. This

can be expressed as

��1

?1 × C1
+

��2

?2 × C2
+ · · · +

��=

?= × C=

for each of = generations of a given accelerator family. Note that

C1 is time from deployment of the �rst generation, even if it is no

longer in use, and similar for other terms. When the time between

generations is short (Fig. 2(a) and (c)), the embodied carbon is

not well amortized. In other words, subsequent generations of the

2We assume a simpli�cation that the accelerator is always running at full utilization,
recognizing this is unlikely in practice [15].
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Figure 2: Amortized embodied carbon over time across 3 generations of designs with varying predecessor-relative performance

and time to replacement.

2



Intergenerational Embodied Carbon

accelerator that replace the capabilities of the previous generation

still bear the legacy carbon cost of their predecessors, thus every

generation will have an additional term when calculating its carbon

footprint.

The more frequently accelerators are replaced, the more pro-

nounced this problem becomes. The less time a �rst generation

accelerator is given to amortize its embodied carbon investment,

the higher the legacy carbon that will be passed to the second gen-

eration, and so forth. In Fig. 2, this phenomenon can be observed in

the higher peaks of amortized embodied carbon when moving from

one amortization to the next. The presence of a legacy carbon cost

will slow the speed at which the following generation will amortize

its embodied carbon per work. Since embodied carbon per use is

amortized per unit time, it is impossible to completely eliminate

legacy carbon no matter how long a previous generation is in use.

3.3 Fixed C Probe

Meaningfully weighing the impact of embodied carbon and perfor-

mance to describe the e�ects of amortization is challenging because

the maximum amortized embodied carbon value will always be

in�nity at time of deployment. In addition, generations beyond the

�rst must consider relative impact of the previous generation, so the

time cannot simply be factored out. In order to fairly compare the

impact of amortization between generations, we use a �xed time

value relative to each deployment (in�nite impulse), and calculate

each preceding generation’s C value relative to the probe as neces-

sary. This captures the e�ects of changes to embodied carbon cost,

time, and legacy carbon. It also allows for modeling of accelerators

which may not uniformly perform useful work over their entire

lifespans. An accelerator with a lower �xed C probe value is more ef-

�ciently using its embodied carbon investment. Comparing Fig. 2(b)

and (d), the higher-performance accelerator better amortizes the

embodied carbon than the lower-performance accelerator at the

�xed time C . The highly performant systems, probed at a later time

C , have little legacy carbon to pass along to the next generation. In

cases where embodied carbon cost per generation and performance

are �xed, the �xed C probe value can only increase due to the cu-

mulative nature of amortized embodied carbon. However, in some

cases the �xed C probe increases more quickly between generations,

indicating faster loss of the bene�ts of amortization. This simple

check gives an estimate of relative amortization e�ects after each

new deployment.

4 DISCUSSION

We provide examples of frequent accelerator replacement and dis-

cuss the sustainability of application acceleration. We also place

our proposed lifetime amortization model in the context of prior

work in carbon emissions modeling.

Frequent design refresh: A popular example of a specialized

accelerator is the Google TPU for DNNs. Table 1 summarizes the

relevant speci�cations for the di�erent TPU generations. We see

that the gap between generations is shrinking, highlighting the

push for rapid design iterations. We also show additional capabili-

ties added in each generation, to match the changing requirements

of ML workloads. While the TPUv1 focused on general purpose

DNN inference, subsequent generations add hardware support to

Table 1: Operations supported in hardware for Google TPU

accelerators. For usage, I=Inference and T=Training.

TPUv1 [10] TPUv2/v3 [12] TPUv4 Lite [9] TPUv4 [9]

Year 2016 2019 2020 2022

Usage I T+I I T

Datatype INT8 BF16 BF16 BF16

SparseCores ✓ ✓ ✓

Transformer ✓ - -

↰

BERT ✓ ✓

↰

LLM ✓

speedup newer models. The TPUv2 added ‘sparse cores’ to speed

up embeddings, which are common for natural language processing

(NLP) tasks, while the TPUv4 speci�cally added support for accel-

erating LLMs. Thus, anyone wishing to obtain the fastest possible

performance for newmodels would have to switch to the latest TPU

generation. With very short development cycles of 1-3 years, these

accelerators are meant to be replaced quickly. Thus, it is unclear

whether each generation will be used long enough to o�set their

embodied carbon cost, even in the best case of 100% utilization

of these designs. Factoring the lifetime amortization into design

decisions may alter accelerator designs, leading to less churn and

more sustainable solutions.

What applications are worth accelerating? In 2023, Meta re-

leased MTIA, their �rst hardware accelerator designed speci�cally

for their in-house deep learning recommendation system (DLRS)

[4]. MTIA is specialized for a single task, making it unlikely it will

provide high performance on other tasks. Recommendation systems

are extremely pro�table (e.g., ∼35% of Amazon’s sales [11]). Thus,

it is likely Meta will continue to use the best possible DLRS, updat-

ing both the software and hardware frequently. This is also driven

by Meta evaluating their design using the total cost of ownership

(TCO), which favours solutions that yield immediate returns verses

those that are advantageous over the long term. The e�ects of this

can be seen in practice, as Meta recently announced their second

generation MTIA accelerator, less than a year after the announce-

ment of the �rst generation [13]. Such an approach does not factor

in any consideration to the environmental impact of designs which

are solely meant to achieve the highest possible performance. Al-

though new accelerators are likely to decrease operational carbon,

considering increased renewables in datacenters lessens the impact

of operational carbon as discussed earlier. Putting the embodied

carbon into perspective encourages us to ask, do these types of

accelerators provide enough (or any) societal good to be worth the

environmental cost?

Existing models: Models that have been proposed to evaluate

carbon footprint of devices include ACT [5] and FOCAL [3]. Both

models focus on evaluating the carbon footprint of individual de-

vices. The ACT model emphasizes a design philosophy that encour-

ages designing leaner accelerators that are not over-provisioned

for their QoS requirements. Reducing the complexity of an accel-

erator reduces area requirement, which is heavily correlated with

embodied carbon footprint. The FOCAL model as well uses area

as a proxy for embodied carbon footprint. However, given rapidly

increasing demand for compute resources, it is unclear whether the

advantages of over-provisioning for future-proo�ng a system are

3
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adequately considered. An accelerator that is designed to minimally

meet QoS requirements will run into the problem of more frequent

replacement if is unable to keep up with changing trends. Thus,

considering the context of an accelerator is a crucial component

of evaluating carbon footprint. Models such as ACT and FOCAL

should be used in conjunction with this work when evaluating

sustainability of accelerators.

5 CONCLUSION

In this paper, we argue that increasingly speci�c accelerators that

are quickly developed and target rapidly changing applications

are not sustainable. Although we have used deep learning and rec-

ommendation systems as motivating examples for our argument,

our observations and conclusions are relevant to other types of

accelerators including those in robotics, cryptography, cryptocur-

rency, and more. As architects we have an opportunity to shape

what applications are accelerated–in this process, we must ask

ourselves who bene�ts from that acceleration and who bears the

environmental costs of manufacturing accelerators. Ideally, a strong

societal bene�t should guide and shape our designs. Furthermore,

we encourage architects to consider incorporation of some general

purpose elements or recon�gurability or other hardware incentives

for users to keep a speci�c generation of hardware in use for longer.

Finally, while we have focused our discussion on environmental

impacts of manufacturing, frequent accelerator replacement has

another key environmental downside: generation of large quanti-

ties of e-waste. As future work, we plan to further elaborate on our

model and incorporate other key considerations such as waste into

our evaluation.
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