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ABSTRACT

Many irregular algorithms converge more quickly when they exe-

cute tasks in a speci�c order. When this order is discovered at run

time, the algorithm demands a dynamic task scheduler. Scaling a

priority scheduler to large systems with many cores is challenging

and while many concurrent priority schedulers (CPS) have been

proposed, a general classi�cation of their design space is still lack-

ing. We survey prior work and propose three dimensions for the

design of CPSs: the degree of synchrony, the drift of priorities, and

the underlying data structure. We use this taxonomy to classify

existing schedulers and evaluate their strengths and weaknesses.

Building on our observations, we propose theMulti Bucket Queue

(MBQ) which targets a promising unexplored point in the design

space for concurrent priority scheduling. The MBQ leverages the

strengths of the MultiQueue and Multi-Level Bucket Queue, while

avoiding their weaknesses, yielding a CPS that keeps threads busy

and running useful work, yet with high-e�ciency queue operations.

Our experimental results show that the MBQ is competitive with

or outperforms prior work.
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1 INTRODUCTION

Priority scheduling is critical to e�ciently solve important prob-

lems in domains such as graph processing, statistical inference,

numerical optimization, among others. Ordered algorithms for such

problems comprise tasks that execute in some (partial) priority

order to converge faster and reduce work compared to unordered al-

gorithms [38]. For example, the unordered Bellman-Ford algorithm

solves the single-sourced shortest paths (sssp) problem in
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$ ( |+ | |� |) time, while the ordered Dijkstra’s algorithm with a heap

takes$ ( |+ | log |+ |+|� |). Other algorithms that bene�t from priority

scheduling include greedy approximate set cover (sc) [28], deter-

ministic maximal independent set (mis) [5], push-based PageRank

(pr) [53] and residual belief propagation (rbp) [19].

The e�ciency of priority scheduling is at odds with scalability on

manycore architectures with tens to hundreds of cores. Scheduling

tasks to threads with a global priority queue sacri�ces parallelism

to contention [31]. Instead, prior concurrent priority schedulers

broadly fall under two categories with disparate bene�ts and draw-

backs: synchronous [17, 60] or asynchronous [7, 31, 36, 40, 42, 58].

Synchronous priority scheduling breaks execution into super-

steps where equal priority tasks run concurrently between barriers.

With monotonic priorities, synchronous scheduling follows a strict

priority order that is equivalent to sequential execution, enabling

work-e�cient scheduling. With unordered tasks per superstep, syn-

chronous schedulers employ e�cient data structures with good

spatial locality like bucket queues [15, 17, 60]. Unfortunately, barri-

ers limit parallelism as threads idle, waiting for stragglers to �nish

the superstep. The more available cores, the more aggregate cy-

cles wasted due to just one straggler. At the extreme, execution is

sequential in supersteps with only a few tasks between barriers.

Asynchronous priority scheduling allows concurrent execution

of tasks across priority values to eliminate idling. Asynchronous

scheduling may retain the strict priority order with speculative

task-level parallelism [27, 29]. The system speculates that tasks

can safely execute out of priority order but rolls back their e�ects

upon a detected misspeculation. Unfortunately, the bene�ts of work

e�ciency (when aborts are rare) are overwhelmed by the overheads

of speculation in software [12, 25, 26]. Asynchronous scheduling

without speculation provides only a relaxed priority order: a best

e�ort to dispatch tasks to threads in priority order.

Asynchronous relaxed priority scheduling keeps threads busy

and avoids speculation overheads but introduces a tradeo� between

work ine�ciency and data structure contention/computational com-

plexity. To limit the priority drift [46] and therefore reduce the

amount of redundant work, some prior schedulers maintain what

we call a global ordering. These schedulers provide probabilistic

guarantees on the relative rank of a popped task compared to all

other tasks in the scheduler [7, 40, 42]. This keeps the parallel prior-

ity schedule close to the sequential priority schedule. Unfortunately,

maintaining this global ordering demands frequent communication

between threads and the scheduler and prior work has employed

expensive, irregular data structures, such as heaps and skip lists, to

maintain the rank guarantees [7, 20, 21, 40, 42, 47, 52, 61]. To drive

down communication and data structure overheads, other work

only strives to maintain what we call local ordering. Threads push

and pop to thread-private task queues and occasionally synchronize
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with a global scheduler [31, 36, 56, 58]. These distributed designs al-

leviate some synchronization overhead and allow for a lightweight

and scalable design, but local ordering makes threads more likely

to work on lower-priority tasks and to wrongly execute moot [39]

tasks. This improved scalability comes at the cost of redundant

work [25, 40, 47]. In short, prior schedulers trade o� idling threads,

redundant work, and data structure ine�ciency.

This paper presents theMulti Bucket Queue (MBQ),1 a concurrent

priority scheduler that targets an unexplored point in this design

space (Sec. 2) to reap performance and e�ciency improvements.

The Multi Bucket Queue keeps threads busy with an asynchronous

design, avoids useless work with global ordering, yet employs e�-

cient underlying data structures. In short, our design marries the

MultiQueue (MQ) [42] and the multi-level bucket queue [15, 17,

60], yet exploits their union with key optimizations (Sec. 3). We

evaluate the Multi Bucket Queue across 8 applications relative to

the MultiQueue [42], OBIM [36], PMOD [58], Julienne [17], and

synchronous PBBS implementations [8] (Sec. 4). The Multi Bucket

Queue achieves gmean speedup over the baseline MultiQueue by

5.3×; Julienne by 2.3×; PBBS by 1.6×; and is competitive with OBIM

& PMOD with 1.07× and 1.01× slowdowns, respectively.

In short, the key contributions of this paper are:

• A taxonomy of existing concurrent priority schedulers.

• A characterization of (i) tradeo�s between work e�ciency and

performance across synchronous and asynchronous schedulers

and (ii) scheduling overheads imposed by data structures.

• The MBQ, a previously unexplored point in the taxonomy.

2 MOTIVATION

Algorithms for the single-source shortest paths (sssp) problem on

graphs with non-negative weights bene�t from a dynamic priority

task order and illustrate the tradeo�s in this work. Listing 1 shows

Dijkstra’s sequential algorithm that initializes the priority queue

scheduler with the source vertex (line 5) then repeatedly pops the

vertex with current minimum distance from the source. Each task

(outer loop iteration) examines the prospective distances for v’s

neighbors and, upon �nding a lower-distance path, re-inserts the

neighbor into the priority queue as a new task (lines 12-15). Every

vertex has a rank relative to all other vertices in the scheduler.

Vertices with equal distance to the source are arbitrarily ordered

and are viewed in the same priority level. Dijkstra’s sequential

algorithm is optimal for graphs with non-negative weights as it

follows a strict priority order by popping the top-ranked vertex.

Unfortunately, this optimal sequential algorithm parallelizes

poorly [31]. With a large number of threads, a scheduler must

balance parallelism with the amount of redundant work gener-

ated. Many tasks pushed by Dijkstra’s algorithm are empty [31] or

moot [39]: they exit at line 9 without doing any work. All tasks that

execute fully in the sequential implementation are useful work [31],

as they set the vertex’s distance to its �nal value. However, when

moot tasks are popped out of order they could execute fully instead

of exiting early, doing work that is redundant—does not contribute

to the algorithm’s output. Any descendants of these redundant tasks

are themselves either moot or redundant, allowing wrongfully exe-

cuted tasks to degrade the work e�ciency [10] of the algorithm—the

1We release the source code here https://github.com/mcj-group/mbq.

1 PriorityQueue pq;

2 int prios[G.n]; // current min priority per vertex

3 for (int v : G.V) prios[v] = INF;

4 prios[source] = 0;

5 pq.push(0, source ); // start with source

6 while (!pq.empty ()) {

7 int prio , v = pq.pop();

8 // early exit for moot tasks

9 if (prio > prios[v]) continue;

10 for (int nbr : G.edges[v]) {

11 int p = prio + distance(v, nbr);

12 if (p < prios[nbr]) {

13 prios[nbr] = p;

14 pq.push(p, nbr);

15 }

16 }

17 }

Listing 1: The Dijkstra sssp algorithm using a priority queue.

amount of work performed by the parallel algorithm compared to

the best sequential one [17].

Prior software techniques and scheduler designs strive to scale

parallel priority-ordered algorithm implementations with greater

numbers of cores. However, these designs continue to face chal-

lenges in keeping (i) all cores well utilized, (ii) the algorithm work–

e�cient, and (iii) the implementation overheads in check. Pushing

the scalability and e�ciency of concurrent priority scheduling in

software remains an active research problem.

2.1 The design space of priority schedulers

We present a taxonomy to understand these tradeo�s and how

prior work navigates them (Sec. 2.2). We break the design space

into three dimensions: the degree of synchrony, the drift of priorities,

and the underlying data structure.

The degree of synchrony trades work e�ciency for parallelism.

Synchronous scheduling grants better work e�ciency than asyn-

chronous, but can be penalized with limited parallelism per super-

step, leading to idling threads. Although asynchronous scheduling

sidesteps the latter, it risks generating more redundant work.

A synchronous scheduler groups tasks into di�erent priority

levels separated by barriers. Tasks in the same priority level execute

concurrently but all tasks in one level must complete before those

in the next level can start. This maintains a strict priority order

but restricts the amount of parallelism. With few tasks per priority

level, many core cycles are wasted as threads spin at the barrier.

With variable task length, synchronous scheduling is subject to

one or more straggler threads that process the last few large tasks.

Synchronous schedulers can coarsen [25] priorities to relax the

order. Coarsening assigns tasks with similar priorities to the same

priority level so the scheduler executes them as though they have

equal priority. Coarsening boosts parallelism but can hurt work

e�ciency. Even the best performing coarsening factor can leave

limited parallelism per priority level (Sec. 2.2).

Asynchronous schedulers provide �exibility as threads are not

restricted by barriers. Asynchronous scheduling can be specula-

tive for a strict priority order or relaxed. Although software-based

speculation can reduce overheads by exploiting application-speci�c

semantics like commutativity [9, 29], general-purpose speculation

leads to intolerable overheads [12, 25, 26], making strict synchro-

nous or relaxed asynchronous scheduling the only feasible choices

2

https://github.com/mcj-group/mbq


Multi Bucket �eues: E�icient Concurrent Priority Scheduling SPAA ’24, June 17–21, 2024, Nantes, France

for most software. We do not consider speculative schedulers fur-

ther. Relaxed asynchronous schedulers keep threads well utilized

in part because they can pop and execute tasks out of priority order.

Controlling the amount of generated redundant work becomes a

key challenge. Most asynchronous schedulers provide no guaran-

tees on the rank of the popped task [50]. With an unbounded rank

for popped tasks, redundant work may become signi�cant, hurting

work e�ciency and overall performance as a result.

The drift of priorities: global order vs. local order. Priority

drift [46] trades communication cost for work e�ciency. The closer

a scheduler tracks the strict priority order, the better the work

e�ciency of its encapsulating algorithm. Unfortunately, limiting

drift from the strict priority order can impose high communication

overhead. Concretely, priority drift at a given time measures the

average di�erence of priority between the globally most-prioritized

task and the priority of tasks currently executing on all threads.

Lower drift is a proxy for better work e�ciency.

A scheduler that strives for global ordering has threads work-

ing on high priority (highly ranked) tasks. Unfortunately, threads

frequently communicate with the scheduler to avoid drifting, im-

posing non-trivial synchronization overhead. An extreme example

is a single lock-protected priority queue that is accessed by multi-

ple threads. Although this scheduler concedes little priority drift,

threads are blocked on each push and pop, hindering scalability.

A scheduler that allows for local ordering processes tasks in a low-

communication, distributed manner. Typically, each thread has a

private batch of tasks to process, and subsequently processes its own

newly created tasks. With such a design, threads only occasionally

synchronize with global scheduling structures. Although locally

ordered systems reduce synchronization overhead, they are more

likely to execute moot tasks and moot descendants, doing useless

work that hurts their work e�ciency.

The underlying data structure trades the sequential cost of sched-

uler operations for work e�ciency. Scheduler overheads can sig-

ni�cantly impact overall performance [31, 58] and much of that

overhead is attributed to the underlying scheduling data struc-

tures [51] (Sec. 2.2). Asymptotically, a bucket pop takes $ (1) time,

removing the tail from the underlying bu�er, whereas a heap pop

takes $ (log=) time, growing with the = queued tasks. Moreover,

this high-level view hides the large constant factors caused by the

memory hierarchy: buckets exhibit better locality than heaps [58].

For algorithms working on large heaps, such operation overhead

becomes a burden to the scheduler. Similarly, designs built on so-

phisticated data structures are often bottlenecked on scheduler

overhead [7, 20, 58]. On the other hand, an individual heap guaran-

tees a strict priority order, whereas bucket queues with coarsened

priority levels are prone to reordering. A more relaxed underly-

ing data structure can hurt work e�ciency. To improve overall

performance, this dimension requires balancing an e�cient and

lightweight data structure with a modest increase in work.

2.2 Limitations of existing schedulers

Table 1 positions existing schedulers in our taxonomy. We charac-

terize their tradeo�s below. Sec. 4.1 details our methodology.

Synchronous schedulers can have limited work per barrier:

Julienne [17] is a synchronous, globally ordered framework that

Table 1: Comparison of the MBQ and prior schedulers.

Design
Barrier- Globally Lightweight

Free Ordered Structure

Julienne [17] ✔ ✔

Ord. GraphIt [60] ✔ ✔

MultiQueue [40] ✔ ✔

RELD [27] ✔ ;

Stealing MQ [42] ✔ ✔

SprayList [7] ✔ ✔

ZMSQ [61] ✔ ✔

k-LSM [56] ✔

OBIM [36] ✔ ✔

PMOD [36] ✔ ✔

MBQ (this paper) ✔ ✔ ✔

1 4 16 64 256 1024 4096

Number of vertices between barriers

0.00

0.25

0.50

0.75

1.00
CDF of all vertices processed

PDF of all barriers

Figure 1: Julienne’s work distribution with Δ-stepping on

USA roads using the Δ with the best 48-thread performance.

Blue is the CDF of all vertices processed (y-axis) with in-

creasing vertices per barrier (x-axis). Orange is the PDF of all

barriers (y-axis) with a given number of vertices (x-axis).

uses lightweight buckets as its data structure. Each bucket is an

unordered bu�er of tasks. Accessing tasks within a bucket exhibits

spatial locality, allowing for high queue operation throughput. De-

spite this advantage, Julienne forgoes much parallelism.

For example, Dijkstra’s strict ordered algorithm on road graphs

will often have fewer available tasks per priority level than there

are threads. Even coarsening priorities with Δ-stepping [34] does

not eliminate the problem. Fig. 1 shows the work distribution of

Julienne’s Δ-stepping on USA roads. The right side of the blue CDF

shows that ~half of work is done in buckets with ≤ 1024 vertices.

Even worse, the left side of the orange PDF shows that 10% of

buckets hold only 1 vertex. Table 2 shows the average number

of vertices/tasks per bucket and that the problem generalizes to

other road graphs. With USA roads, all buckets have fewer than

4096 vertices. Even with a higher average degree on Europe roads,

Julienne must face a large number of small buckets with limited

parallelism per barrier. Fig. 2 translates these measurements to run

time behavior: Julienne threads spend gmeans of 56% (sssp) and

26% (sc) of total execution time idling or sleeping at barriers. Given

limited parallelism, Julienne fails to scale with core count.

Ordered GraphIt [60] addresses this issue by fusing consecutive

buckets together to reduce the number of barriers. Although this

optimization improves performance, the issue is not fully resolved

as it remains synchronous: threads cannot execute tasks past the

current bucket, preventing them from exploiting more parallelism.
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Table 2: Parallelism of Julienne’s Δ-stepping on road graphs

using the best-performing Δ for each graph. % Small Bkts is

the fraction of buckets with fewer than 4096 tasks. Tasks/Bkt

is the average number of tasks per barrier.

Input #Vertices #Edges % Small Bkts Tasks/Bkt

USA 24 M 58 M 100% 352

USA-E 4 M 9 M 100% 716

EUR 57 M 148 M 60% 7039

NA 33 M 83 M 66% 4826

SSSP:LJ

SSSP:TW

SSSP:HYPER

SSSP:USA
SC:LJ

SC:TW

SC:HYPER
SC:USA
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Figure 2: Julienne run time breakdown at 48 threads for sssp

and sc on various inputs.
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Figure 3: Sequential run time of Dijkstra’s algorithm on LJ

using several heaps, normalized to the bucket queue. Queue

overhead is the sum of push and pop time.

Async. schedulers often su�er data structure overhead: The

MultiQueue [42] is an asynchronous, globally ordered scheduler

that uses heaps as the underlying priority queue (Table 1). It wraps

k lock-protected queues. For each pop, the rank of the returned

task is ≤ $ (: log:) with high probability, and$ (:) on average [6].

With rank guarantees, the executed tasks closely follow the global

priority order and generate little redundant work [40, 55].

Unfortunately, the MultiQueue’s work e�ciency is often over-

shadowed by data structure overhead. The $ (log=) heapify op-

erations (Sec. 2.1) are high compared to the short tasks of many

encapsulating algorithms (e.g., Listing 1), and far more expensive

than bucket operations. Fig. 3 shows the run-time breakdown of

Dijkstra’s sequential algorithm using di�erent priority queue imple-

mentations [21, 23, 49, 52], normalized to the bucket queue (Sec. 3).

These results corroborate prior work [51]: queue overheads domi-

nate execution time. In the worst case, > 80% of run time is spent

on pushes and pops with the Binomial heap. The Fibonacci heap

provides the best asymptotic complexity in all operations, yet it

is > 3× slower than a simpler 4-ary heap. Despite theoretically

e�cient heaps being developed over many years, these do not nec-

essarily yield practical performance. This presents an opportunity

for optimization on the MultiQueue.

RELD (remote enqueue, local dequeue) [27], the Stealing Mul-

tiQueue [40], and the SprayList [7] share design elements with

the MultiQueue (Table 1). RELD is designed for hardware task par-

allelism where cores always pop from a local queue but push to

random queues. The Stealing MultiQueue uses local heaps com-

bined with random stealing to ensure a work-e�cient schedule. The

SprayList uses the SkipList [20, 41] as its underlying data structure,

which also has average push/pop time complexity of$ (log=). Like

theMultiQueue, they all su�er from high overhead due to the under-

lying data structure [58]. The ZMSQ [61] builds on the Mound [32],

which is similar to a heap but optimized for concurrent accesses.

Mounds enable $ (log log=) pushes and $ (log=) pops. The ZMSQ

provides stronger rank guarantees and simpler termination than

distributed CPS designs, allowing it to outperform the SprayList at

low thread counts. However, it depends on a complex data structure

and loses its advantage with more threads.

Locally ordered schedulers increase priority drift: OBIM [36]

is an asynchronous, locally ordered scheduler with an e�cient

underlying data structure. OBIM groups tasks into priority levels

(bags) and tracks the mappings of bags with a global metadata

map. Each core maintains one local bu�er per bag and a local map

that caches the global map. A thread pushes a task to the local

bu�er corresponding to the task’s priority level, and consumes

its current bu�er until it is empty, then synchronizes with the

global map. As such, OBIM reduces communication overhead as

threads mostly work on their local bu�ers. This approach trades

o� low scheduler overhead for a more relaxed order, and OBIM

achieves superior performance compared to a plain MultiQueue.

However, threads may be stuck working on tasks in the same bag

for a long period of timewithout synchronizing with the global map,

resulting priority inversion. PMOD [58] addresses this issue with

an adaptive heuristic that dynamically changes the distribution

of priority levels based on bag utilizations. Nevertheless, OBIM &

PMOD’s distributed design inevitably allows priority inversions

and the schedule drifts away from the sequential order.

Fig. 4 breaks down the work done when executing sssp by the

number of tasks executed. We observe that on USA roads, the

number of tasks that execute redundant work (see beginning of

Sec. 2) accounts for 38% of all tasks which do work. There are

few moot tasks recorded on USA roads despite the high level of

redundant work. This indicates that priority inversions allow some

threads to waste signi�cant time exploring suboptimal paths locally

LJ TW HYPER USA
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Figure 4: Work normalized to the amount of useful work on

sssp at 48 threads.
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before the global scheduler correct them. On social network graphs,

OBIM & PMOD generate a large number of moot tasks, up to 2.1×

the number of useful work. This abundance of short moot tasks

cause signi�cant overhead in performance (Sec. 4). The MultiQueue

(shown as MQ) performs almost no redundant work and generates a

small number of moot tasks, demonstrating that a globally ordered

scheduler avoids the redundant work of locally ordered schedulers.

The k-LSM [56] similarly avoids contention by only occasionally

synchronizing thread-local structures with a global queue. This

approach su�ers increasing priority drift as the number of threads

increases, because its rank guarantee degrades linearly with both

thread count and local queue capacity to account for the inaccessi-

bility of the local queues of all other threads.

RELD occupies a middle ground where its pops from local queues

degrade work e�ciency compared to the MultiQueue [42], but its

random pushes remain closer to a global ordering than a locally

ordered CPS like OBIM or PMOD.

Putting it all together: We propose that a high-performance CPS

should be asynchronous to allow for high scalability even on low-

connectivity graphs such as road networks. It should maintain a

global ordering to achieve work e�ciency. Finally, it should use an

e�cient underlying data structure to reduce scheduler overhead.

3 THE MULTI BUCKET QUEUE

We design the Multi Bucket Queue (MBQ) to drive down thread

idling, priority drift, and queue overheads. We achieve these goals

by (i) allowing relaxation and using several lock-protected internal

queues, (ii) having threads select random internal queues for pushes

and pops, and (iii) using internal bucket queues. The �rst two draw

on the strengths of the MultiQueue while the latter draws on the

strength of Julienne and OBIM. We present the MBQ design in

layers of abstraction and detail: the interface for threads and queue

selection (Sec. 3.1), the bucket queue design (Sec. 3.2), and �nally

optimizations (Sec. 3.3). Without loss of generality, we assume the

highest ranked task has minimum priority value.

3.1 Queue selection

Like the MultiQueue, the MBQ wraps � ·) lock-protected internal

queues, where ) is the number of threads and � is a constant (4 in

this paper). Listing 2 shows a simpli�ed implementation. The push

method selects a random uncontended queue as the destination. The

pop method selects two random queues and removes the element

from the queue with highest priority, if uncontended. pop may �nd

that both queues are empty, but this does not imply that all queues

are empty. Prior work details termination/emptiness detection [55]

and we use their sssp approach for all algorithms.

3.2 Multi-level bucket queue

In place of a heap, the MBQ uses a multi-level bucket queue for

the Queue type in Listing 2. Listing 3 shows the simpli�ed imple-

mentation for one queue. A bucket queue maps every application

priority level (e.g., vertex distance in sssp) to one bucket. We �rst

assume support for an in�nite number of priority levels (buckets),

then handle �nite storage.

Each Bucket is a resizable FIFO ring bu�er of elements of type

E. It has head and tail pointers. It initially allocates a starting

1 class MultiQueue <Queue , E> {

2 Queue <E> queues[C * T];

3

4 void push(E task) {

5 int q = random(0, C * T);

6 while (! queues[q]. tryLock ())

7 q = random(0, C * T);

8 queues[q].push(task);

9 queues[q]. unlock ();

10 }

11

12 E pop() {

13 while (true) {

14 int q1, q2 = randomTwo(0, C * T);

15 E top1 = queues[q1].top();

16 E top2 = queues[q2].top();

17 if (top1 < top2) swap(q1, q2);

18 if (! queues[q1]. tryLock ()) continue;

19 E task = queues[q1].pop();

20 queues[q1]. unlock ();

21 return task;

22 }

23 }

24 }

Listing 2: Simpli�ed MultiQueue implementation with tem-

plated Queue type. A heap Queue gives the classic MQ while a

multi-level bucket queue gives a base MBQ.

capacity (default to 128) to minimally satisify the number of tasks

in this priority level. The push method copies the input task into

the tail location and increments tail with wraparound. When

the Bucket is full, our implementation doubles the capacity2 of

the bu�er with realloc. The pop method returns the task at head

and increments headwith wraparound, unless the Bucket is empty.

These operations are constant time (amortized for push) and exhibit

spatial locality for repeated calls. We exploit this opportunity with

task batching (Sec. 3.3).

Each BucketQueue has an ordered set of Buckets (line 2). Its

push method determines the priority level for task (line 7) and

pushes it into the appropriate Bucket (line 8). In the common case,

pop returns a task from the highest priority bucket (lines 16-17),

tracked by bucket index minBkt.When that bucket is empty, minBkt

advances by one to try popping from the next bucket (line 18).

Conversely, if push receives a higher priority task than all queued

tasks, minBkt drops to the incoming task’s bucket (line 9).

A BucketQueue of in�nite buckets is impractical, so we constrain

the set to �niteN buckets. eToBucket extracts a task’s priority level

and maps it to one of the N buckets in the current range. Like Juli-

enne, it maps any task with priority level above the range to a

reserved OVERFLOW bucket. Tasks in this bucket are completely un-

ordered, so should not be popped from it directly. Instead, when pop

advances minBkt to reach OVERFLOW (line 14), all other buckets are

necessarily empty, so it unpacks the OVERFLOW bucket (lines 22-30).

This shifts the mapping of priority levels upward and remaps all

over�owed tasks to the new range. Unlike Julienne, the asynchrony

of the MBQ allows for cases where push receives a task with prior-

ity level below the current range of this BucketQueue. eToBucket

maps such tasks to the UNDERFLOW bucket. Such support for un-

der�ow is also required for algorithms with non-monotonically

2Bucket can downsize if underutilized, but we omit this: performance degrades due to
(i) packing tasks to the start of bu�er, and (ii) reallocations from �uctuating capacities.
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1 class BucketQueue <E> {

2 Bucket <E> buckets[N];

3 int minBkt = INFINITY;

4 int curRange; // The current range of mappings

5

6 void push(E task) {

7 int b = eToBucket(task);

8 buckets[b].push(task);

9 minBkt = MIN(minBkt , b);

10 }

11

12 E pop() {

13 while (true) {

14 if (minBkt == OVERFLOW) unpackOverflow ();

15 if (minBkt == OVERFLOW) return EMPTY_TASK;

16 if (! buckets[minBkt ].empty ())

17 return buckets[minBkt ].pop();

18 minBkt ++;

19 }

20 }

21

22 void unpackOverflow () {

23 curRange ++; // shifts the eToBucket mapping

24 while (! buckets[OVERFLOW ].empty ()) {

25 E task = buckets[OVERFLOW ].pop();

26 int b = eToBucket(task);

27 if (b == OVERFLOW) push(task);

28 else buckets[b].push(task);

29 }

30 }

31 }

Listing 3: Simpli�ed bucket queue implementation.

increasing priorities. The UNDERFLOW constant is equal to zero to

ensure it represents the highest priority bucket. The UNDERFLOW

bucket typically has low occupancy as tasks rarely map below the

current range. In the rare case (astar) where under�ow has high

occupancy, the BucketQueue unpacks the UNDERFLOW bucket in a

way similar to unpackOverflow (not shown).

3.3 Optimizations

Coarsening is a well known technique [34] for bucket-based sched-

ulers that increases parallelism when synchronous [17] or reduces

communication frequency when asynchronous [36]. Although the

MBQ is asynchronous, like (synchronous) Julienne, coarsening in-

creases the number of tasks that fall within the active range of

buckets. Like prior work, we apply this technique to a subset of

algorithms by adding a programmer-de�ned scaling factor Δ in

eToBucket to right-shift priority levels. More priority coarsening

(a larger Δ) causes fewer expensive calls to unpackOverflow but

more task reordering and worse work e�ciency.

Batching is another known optimization in the context of Multi-

Queue descendents [40, 55]. The key idea is to amortize the cost

to access a remote queue over several task pushes or pops. Heap-

based schedulers use batching to amortize synchronization, but still

su�er from high queue operation complexity and random mem-

ory accesses with poor locality (Sec. 2.2). In contrast, the MBQ is

uniquely positioned to not only amortize syncronization cost, but

to further exploit spatial locality: tasks reside in contiguous chunks

per bucket. With the MBQ, task batching transforms individual

queue operations into e�cient contiguous memory accesses.

Our MBQ implementation gives each thread two thread-local,

�xed-size bu�ers to hold tasks for push and pop. During pop, while

the random internal queue is locked, the MBQ extracts a batch of

tasks from the queue into the local pop bu�er. To constrain priority

drift, the MBQ only extracts tasks from the highest priority bucket,

even if the bucket has fewer tasks than the pop-batch size. The

thread’s subsequent pop calls pull tasks from its local pop bu�er.

While running a task, a thread builds a batch of children tasks

to eventually push into the MBQ. When the push bu�er �lls up,

push inserts the tasks to one random internal queue in bulk. When

a thread depletes its pop bu�er, before it pops another batch from

a queue in bulk, it empties its push bu�er by pushing the tasks to a

random queue (like prior work [40]). This design decision increases

communication cost but reduces priority drift, as each thread makes

their tasks available to pop by other threads. Instead of directly

consuming from the local push bu�er like OBIM,3 threads ensure

that tasks are popped from a highly prioritized bucket.

Prefetching builds on task batching. After �lling the pop bu�er,

each thread prefetches the necessary data (priorities, edge data, etc)

for the tasks in its batch before it begins processing the tasks. Even

with task batching, processing tasks still involves random memory

reads/writes which are likely to miss in the cache. Prefetching for

each batch transforms these misses into cache hits.

4 EVALUATION

We evaluate the Multi Bucket Queue performance across eight

benchmarks that require, or bene�t from, priority scheduling. We

then tease apart the impact of its optimizations, and characterize

its sensitivity to Δ, batch size, and number of buckets.

4.1 Methodology

Hardware:We run experiments on an x86_64 machine with 187GB

of DRAM and 2 sockets, each with an Intel Platinum 8260 Cascade

Lake processor running at 2.4 GHz. Each socket has 24 cores, for a

total of 48 threads (hyper-threading disabled).

Benchmarks: Table 3 summarizes the benchmarks we use to eval-

uate the Multi Bucket Queue and other systems. We use the given

priority-ordered variants of pr and rbp which terminate when the

algorithm reaches a convergence threshold. We use two versions

of mis: deterministic reservations [9] as a baseline and a relaxed

version [5] for priority schdulers. For Julienne’s sc, priorities are

computed as logarithmic set costs to bound the total number of

buckets. We found that Julienne’s source code trims the input graph

during cache warm-up and measures timing on the trimmed graph.

We removed this trimming in our evaluation. astar inputs a graph

augmented with geographical data for a more directed exploration

than ppsp, prioritizing tasks according to the current path dis-

tance plus the great-circle distance to the destination. We adapt

Swarm [27]’s implementation of astar for evaluation.

For every benchmark, we embed all schedulers (and the MBQ)

within the given framework to ensure the non-scheduler data struc-

tures remain unchanged. For example, sc is derived from Julien-

ne/Ligra source code, sssp is derived fromGalois, and mis is derived

3In OBIM, a thread pushes a task to the local bu�er that corresponds to the task’s
priority level, it can also pop from that same local bu�er if it corresponds to the most
prioritized level observed by the thread’s local map.
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Table 3: Benchmarks and their baseline frameworks and implementations.

Abbrv. Name Implementation Description

sssp Single-Source Shortest Path Galois [36] Δ-step [34] Finds shortest paths to all vertices from a source.
ppsp Point-to-Point Shortest Path Galois [36] Δ-step [34] Finds the shortest path from a source to a destination.
bfs Breadth-First Search Galois [36] Finds the shortest path with unit edge weights to all vertices from a source.
pr PageRank Galois [36] Push-Based [53] Computes and ranks the importance of vertices on a graph.
mis Maximal Independent Set PBBSv2 [8] Greedy [5] Finds a set of non-adjacent vertices where all excluded vertices are adjacent to an included one.
sc Approximate Set Cover Ligra [48] Greedy [28] Finds sets that are$ (log=)-approximate of the optimal cover.
rbp Residual Belief Propagation Relaxed [4] Statistical inference algorithm used for Markov Random Fields.
astar A∗ path �nding [24] Swarm [27]/Chronos [2] Finds the shortest path from a source to a destination using geographically directed search.

Table 4: Input graphs.

Abbrv. Input #Vertices #Edges

LJ Soc-LiveJournal [14] 5 M 69 M

TW Twitter [30] 42 M 1468 M

HYPER Hyperlink2012-hosts [33] 102 M 2043 M

USA USA roads [1] 24 M 58 M

GER Germany roads [37] a 12 M 32 M

Ising [13] b 1 M 2 M
a Contains latitude and longitude coordinate data.
b = × = grid, each edge represents a pair of messages.

from PBBSv2, so we embed the schedulers within those frameworks,

respectively. Task prioritization remains the same across schedulers

for a given benchmark. Furthermore, we have veri�ed that the bit

representation of task descriptors (e.g., vertex ID) matches that in

OBIM chunks and in Julienne buckets. This gives us con�dence that

di�erence in performance come from the di�erence in schedulers.

We compile all benchmarks with -O3 using clang (version 16)

with OpenCilk [45] (version 2.1) for mis and sc, and gcc (version 9)

for all other benchmarks. We use C++ STL seq_cst memory order.

Inputs: Table 4 shows social network graphs, real-world road

graphs, and synthetic graphs used as inputs to our benchmarks.

The social network graphs follow the power-law distribution [35,

59]. Most vertices have few neighbors while a few vertices have

many neighbors. We set edge weights of non-road input graphs to

be uniformly random in the range [1, 255]. We use LJ, TW, HYPER,

and USA for all benchmarks except rbp and astar. We evaluate

rbp on a 103×103 Ising grid. We evaluate astar on Germany roads,

as it contains latitude and longitude coordinate data.

Tuning and Measurements: For benchmarks and schedulers that

require tuning (e.g., OBIM), we begin with a search for the optimal

Δ value for each (benchmark, input, thread count) con�guration.

Fixing Δ, we then tune other parameters such as OBIM’s chunk

size and MBQ’s batch size to �nd the optimal set of parameters.

We use the MultiQueue (MQ) as baseline and its optimized variant

(with prefetching and task batching) for further comparison. For

the MBQ, we use 64 buckets per bucket queue. We report run times

with a 10% trimmed mean, and perform enough runs to achieve

95% con�dence intervals ≤ 6% for runs less than 1 second and ≤

3% for runs > 1 second.

4.2 Performance of the Multi Bucket Queue

Table 5 and Table 6 show 1- and 48-thread tuned run times (1T &

48T); slowdowns relative to the best 48-thread run time (SD), and

the self-relative speedups scaling from 1 to 48 threads (SC). The

optimized versions of the MBQ and the MQ are labeled with -O. At

48 threads, across all con�gurations, the MBQ-O outperforms the

baseline MultiQueue by gmean 5.3× and up to 31× (pr,TW) and the

MQ-O by gmean 1.8× and up to 8.9× (pr,TW). On sssp, ppsp, bfs,

and pr, MBQ-O performs comparably with OBIM and PMOD, with

1.07× and 1.01× gmean slowdowns respectively. On sssp, mis, and

sc, MBQ-O achieves gmean speedups of 1.6× and 2.3× over PBBS

and Julienne, respectively. Fig. 5 shows normalized work across

benchmarks, demonstrating that MBQ-O performs little redundant

work as it maintains global ordering just like the MQ.

sssp, ppsp and bfs: MBQ-O is competitive with or exceeds OBIM

and PMOD on power-law graphs. However, USA shows a limitation

of the MBQ: the Galois schedulers outperform it, even though it

has better work e�ciency. Granted, for sssp on USA, MBQ-O is

9.4× faster than Julienne at 48-threads, corroborating prior limit

studies of Julienne [60]. USA has a small frontier with little work per

bucket, evenwith ideal coarsening (Sec. 2.2). Under these conditions,

redundant work is a smaller overhead than the communication costs

of maintaining a global ordering [58] for a moderate core count.

Prior work [40] has found that OBIM’s work increase on USA starts

to degrade performance at over 64 cores, which is larger than our

evaluation system. We prototyped a locally-ordered version of the

Multi Bucket Queue and found that it outperformed OBIM and

PMOD on this input on our system. HD-CPS [47] introduced the

idea of a controller that dynamically switches a CPS between local

and global ordering, and we leave integrating such a controller into

the Multi Bucket Queue for future work.

pr & rbp: The tasks in these benchmarks have �oating point math,

making them longer than others, yet the MQs still causes signi�-

cant scheduler overhead as its queues are bloated with tasks. On

pr, MBQ-O outperforms OBIM and PMOD on USA and TW, and

remains competitive for the other inputs, up to 15% slower (HYPER).

mis:We compare with the PBBS incrementalMISwhich uses deter-

ministic reservations [9]. In each round, PBBS attempts to process

all unprocessed vertices in parallel, commits those that precede

all their neighbours, and saves unprocessed vertices for the next

round. The relaxed-orderedMBQ and the MQs perform many fewer

iterations than PBBS, as they process vertices with a priority order

rather than synchronous parallel steps. With the help of our opti-

mizations and a carefully ordered schedule, theMBQ-O outperform

PBBS across all inputs.
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Table 5: Overall Performance. 1T and 48T show the run time (seconds) for 1 thread and 48 threads, respectively, bolding the

lowest. -O for MBQ and MQ denote optimized versions. SD reports the slowdown compared to the best run 48T time. Lower

values are better with a value of 1 being the fastest, in dark green. SC shows the self-relative speedup scaling from 1 to 48

threads; the higher the better.

LiveJournal Twitter Hyperlink2012-hosts USA-roads

Scheduler 1 T 48 T SD SC 1 T 48 T SD SC 1 T 48 T SD SC 1 T 48 T SD SC

sssp

MBQ-O 1.72 .106 1.05 16.3 24.6 1.24 1 19.9 43.6 1.98 1 22.1 2.35 .482 1.46 4.88
OBIM 2.43 .101 1 24.0 42.7 1.69 1.36 25.3 61.3 2.00 1.01 30.7 3.50 .335 1.01 10.4
PMOD 2.58 .113 1.12 22.9 44.5 1.75 1.41 25.4 65.3 1.99 1.01 32.7 4.19 .331 1 12.7
Julienne 1.80 .182 1.80 9.90 29.6 3.05 2.46 9.71 43.0 3.33 1.69 12.9 2.54 4.52 13.7 0.562
MQ-O 3.91 .163 1.61 24.0 53.7 2.21 1.78 24.3 82.8 3.58 1.81 23.1 5.32 .581 1.76 9.16
MQ 4.65 .527 5.22 8.83 60.2 5.34 4.30 11.3 93.1 8.59 4.34 10.8 6.48 1.08 3.27 5.98

ppsp

MBQ-O 1.63 .109 1.10 15.0 29.8 1.22 1 24.4 34.1 1.25 1 27.2 2.51 .322 1.67 7.80
OBIM 2.52 .099 1 25.5 41.6 1.76 1.44 23.6 41.2 1.28 1.02 32.2 2.83 .193 1 14.6
PMOD 2.67 .114 1.15 23.4 44.4 1.73 1.41 25.7 43.0 1.35 1.08 31.7 3.26 .194 1.01 16.8
MQ-O 3.79 .161 1.63 23.6 57.6 2.01 1.65 28.7 56.4 1.90 1.52 29.6 3.91 .491 2.54 7.97
MQ 4.51 .512 5.17 8.81 63.4 4.99 4.08 12.7 62.4 4.60 3.67 13.6 5.15 .780 4.04 6.60

bfs

MBQ-O .629 .043 1.16 14.6 11.5 .540 1 21.4 17.8 .960 1.04 18.5 2.48 .375 2.09 6.60
OBIM .910 .037 1 24.6 14.8 .698 1.29 21.2 23.9 .921 1 26.0 3.19 .179 1 17.8
PMOD 1.04 .042 1.14 24.8 16.8 .848 1.57 19.8 26.8 1.01 1.10 26.5 3.25 .202 1.13 16.1
MQ-O 1.38 .061 1.65 22.6 20.2 .926 1.71 21.8 39.5 1.75 1.90 22.6 4.65 .450 2.51 10.3
MQ 1.75 .288 7.78 6.09 22.8 2.42 4.48 9.45 45.5 4.49 4.88 10.1 5.70 1.01 5.66 5.63

pr

MBQ-O 62.2 2.99 1.04 20.8 760 32.3 1 23.6 1115 49.6 1.15 22.5 171 7.44 1 23.0
OBIM 63.4 2.86 1 22.2 849 34.1 1.06 24.9 1190 45.2 1.05 26.3 256 7.71 1.04 33.2
PMOD 67.4 2.95 1.03 22.8 835 34.0 1.05 24.5 1194 43.1 1 27.7 201 8.05 1.08 25.0
MQ-O 173 7.35 2.57 23.6 12915 287 8.89 45.0 7618 264 6.13 28.9 541 23.7 3.19 22.8
MQ 186 16.1 5.64 11.5 14499 1001 31.0 14.5 9092 893 20.7 10.2 589 55.5 7.45 10.6

mis

MBQ-O .330 .027 1 12.2 3.81 .196 1 19.4 10.8 .394 1 27.5 1.15 .071 1 16.3
PBBS .355 .050 1.85 7.10 6.65 .246 1.26 27.0 13.2 .547 1.39 24.1 1.16 .160 2.25 7.27
MQ-O .737 .027 1 27.3 8.59 .280 1.43 30.7 21.9 .658 1.67 33.2 3.56 .142 2.00 25.1
MQ .976 .217 8.04 4.50 11.1 2.01 10.3 5.53 29.0 7.71 19.6 3.76 4.92 1.38 19.4 3.57

sc

MBQ-O 2.41 .128 1 18.8 87.6 4.12 1.28 21.3 172 4.73 1 36.3 4.60 .172 1 26.8
Julienne 3.29 .412 3.22 7.97 48.9 3.22 1 15.2 111 5.32 1.12 20.9 11.7 .806 4.69 14.5
MQ-O 4.32 .164 1.28 26.3 80.1 7.07 2.20 11.3 142 5.31 1.12 26.8 12.0 .393 2.28 30.5
MQ 4.77 .535 4.18 8.92 83.2 7.41 2.30 11.2 149 9.56 2.02 15.6 14.9 1.95 11.3 7.67

Table 6: Performance for rbp on Ising and astar on GER.

1 T 48 T SD SC

rbp

MBQ-O 242 6.22 1 38.9

MQ-O 462 9.86 1.58 46.9

MQ 499 14.1 2.26 35.5

astar

MBQ-O 2.24 .172 1 13.0

MQ-O 6.29 .243 1.41 25.9

MQ 6.87 .264 1.53 26.0

Table 7: The average cover sizes at 48 T for SC.

Scheduler LJ TW HYPER USA

MBQ-O 956862 3846446 10449388 10711057

Julienne 956256 3845055 10447779 10706927

MQ-O 957241 3854513 10506879 10703222

MQ 956015 3845631 10449950 10703485

sc: The MBQ-O outperforms Julienne on LJ, HYPER and USA as it

is barrier-free. Similarly, the MQ-O delivers on-par or even better

performance than Julienne on these graphs. However, on the highly

connected TW input there is a large number of cardinality updates,
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Figure 5: Work normalized to the amount of useful work

(sssp, ppsp, bfs, mis and astar) or the lowest amount of work

(pr, rbp and sc). We use Ising as input for rbp, GER for astar,

and HYPER for the other benchmarks.

incurring signi�cant overhead in re-bucketing sets. Prior work [60]

found that Julienne’s method of lazily updating the buckets is highly

e�cient, which matches our �ndings on TW.

We recognize that sc is a greedy algorithm. Unlike deterministic

versions, MBQ’s reordering of tasks can produce a lower quality

output, resulting in a larger cover size compared to sequential

execution. Table 7 shows that our relaxed implementation of sc

achieves only slightly larger cover sizes compared to Julienne.

8



Multi Bucket �eues: E�icient Concurrent Priority Scheduling SPAA ’24, June 17–21, 2024, Nantes, France

SSSP PPSP BFS PR MIS SC RBP Astar
0.0

1.0

2.0

3.0

4.0

N
o

rm
a

liz
e

d
 R

u
n

 T
im

e

11.2

Bucket(Batch&Prefetch) Bucket(Batch) Bucket

Figure 6: The run times of di�erent versions of the Multi

Bucket Queue at 48 threads, normalized to MBQ-O (in green).

Lower is better. The inputs are Ising for rbp, GER for astar,

and HYPER for the rest.

4.3 Impact of optimizations

We perform an ablation study to evaluate the performance improve-

ment of our optimizations to the MBQ. Fig. 6 shows 48-thread run

time on all benchmarks normalized to MBQ-O (in green) then in-

crementally disables prefetching then task batching. First, disabling

prefetching (in yellow) increases run time by gmean 6% and up to

20% (mis). Next, disabling task batching (in red) results in serious

performance degradation: relative to MBQ-O, run times are gmean

2.6× longer, up to 11.2× (mis). As described in Sec. 3.3, the struc-

ture of buckets naturally exhibits locality, and task batching fully

exploits this opportunity.

4.4 Sensitivity studies

Tuning Δ: The Δ value is a programmer-de�ned parameter that

a�ects the distribution of priority levels. Increasing Δ coarsens

priorities, increasing the available parallelism within each priority

level. With more tasks in a priority level, the Multi Bucket Queue

can bene�t more from locality, improving performance. However,

the Δ value cannot be increased in�nitely, as it also increases prior-

ity inversion. Amaximally coarsened priority schedule is unordered,

resulting in redundant work and worse work e�ciency.

Fig. 7 shows the e�ect of changing Δ for sssp, mis and rbp. The

blue bars show the 48-threadMBQ run times, and the red dots show

the amount of work performed, both normalized to the Δ with

the best run time. For mis, the best and worst performing Δ di�er

by 3× in run time. rbp shows a clear impact of work e�ciency.

When the Δ is small, the algorithm performs less work to converge.

As Δ increases, the amount of work also increases. Once Δ passes
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Figure 7: Sweeping Δ values for the MBQ on sssp, mis and

rbp. Δ is in powers of 2 and the x-axis shows the power. The

y-axis is 48-thread run time (bars) and amount of work (dots),

both normalized to the best performing Δ. Lower is better.

the optimal point (27), performance degrades. Tuning the Δ value

manages the tradeo� between work e�ciency and performance.

Batch sizes: We evaluate performance with push & pop batch

sizes ranging from 1 to 1024.4 We extend the batch sizes enough

to observe diminishing returns for most benchmarks and inputs.

A larger batch size can reduce scheduler overhead, as more task

pushes or pops amortize the queue lock acquisition. This reduces

contention between threads and improves locality, at the cost of

potentially higher priority drift. The batched pops are contiguous

memory accesses; batched pushes can also bene�t from locality

when most tasks are mapped to the same priority level.

Fig. 8 shows that all con�gurations bene�t from task batching

and can achieve a speedup of up to 13× compared to no batching.

mis, sc, and the search algorithms (on HYPER), bene�t from large

batches, as there are plenty of vertices in each priority level. For

mis, since our implementation is priority-ordered, the MBQ and

the MQs won’t be penalized with many re-inserted moot tasks,

even with a large batch size (see Fig. 5). This enables the use of

aggressive batching for higher performance. For sc, majority of the

popped tasks end up being moot and are immediately re-inserted

back into the scheduler with an updated priority. This issue is even

worse on highly connected inputs that generate a large number

of cardinality updates. Therefore, high pop throughput �lters out

these tasks quickly, and a large push batch size greatly reduces the

communication overhead.

On the other hand, smaller batch sizes make threads synchronize

more frequently. Since theMBQ does not pop tasks from local push

bu�ers, a lower drift improves performance when there is less

parallelism per bucket (e.g., bfs on USA). Furthermore, the best

con�guration does not necessarily have the same batch size for

push and pop. Future work could improve theMBQ by dynamically

tuning the batch sizes.

Number of buckets & priority levels: Depending on the input

and the benchmark, the distribution of tasks across priority levels

may be skewed. For sc on power-law graphs, most buckets contain

few vertices. Julienne’s implementation of sc prioritizes sets using

the logarithm of their costs to �atten this distribution. Without this,

Julienne’s sc at 48 threads is 22× and 9× slower on TW and HYPER

respectively. TheMBQ achieves the performance in Table 5 without

this optimization. Since theMBQ is barrier-free and relaxed, threads

can pop from di�erent priority levels and do not need to wait. With

the MBQ, threads quickly pass through small buckets even with a

skewed distribution of priorities.

5 RELATEDWORK

Many algorithms use priority scheduling to eliminate redundant

work or for faster convergence [18, 19, 24, 28, 34, 43, 50]. Optimized

sequential priority queue data structures, such as the Fibonacci

heap [21], Binomial heap [52], and SkipList [20, 41], provide im-

proved theoretical time complexity over binary heaps [54], but

they do not perform as well in practice [51]. Synchronizing con-

current accesses to these priority queues using techniques such as

�at-combining [22] and elimination [11] reduces contention, but

they struggle to scale to high thread counts. This issue motivates

4These are maximum batch sizes, serving as limits to thread-local bu�ers (see Sec. 3.3).
The bu�ers do not necessarily �ll up.
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Figure 8: Performance impact of push (x-axis) and pop (y-axis) batch sizes for the Multi Bucket Queue at 48 threads across

various benchmarks on two vastly di�erent graphs: USA and HYPER. Each cell represents speedup normalized to batch size of

(1, 1) in the bottom left corner per plot. The best speedup in green is highlighted with a black box and white text. The worst

performance in red is also labeled if < 1.

relaxed concurrent priority schedulers that trade away the strict

priority order for scalability.

With the proliferation of manycore architectures, parallel sched-

ulers build atop e�cient data structures to attempt to scale algo-

rithms to higher thread counts. Afek et al. [3] explore the tradeo� of

scalability versus strict linearizability. Wimmer et al. [57] apply re-

laxation to design work-stealing and k-priority data structures. The

SprayList [7] and the lock-free k-LSM priority queue [56] are asyn-

chronous schedulers that exploit relaxation. The MultiQueue [42]

builds on the ideas of relaxation and bulk parallel heaps [16, 44].

Additional optimizations such as task batching [55] target the Mul-

tiQueue to amortize the cost of queue operations. The Stealing

MultiQueue [40] adapts the MultiQueue to exploit locality and

NUMA-awareness and improves performance over the MultiQueue.

Each thread pops from a local queue, but uses work stealing to

provide a superior rank guarantee over RELD. The Multi Bucket

Queue continues this tradition by generalizing the asynchronous

and scalable MultiQueue’s structure beyond heaps.

Although designs like the MultiQueue constrain their relaxation

with theoretical rank guarantees, others have explored designs for

high scalability and low overheads. Lenharth et al. [31] showed

that work e�ciency is not the most important concern for perfor-

mance, and the Galois OBIM scheduler [31, 36] optimizes for low

scheduler overhead. With its distributed design and batching tasks

into chunks, OBIM achieves high scalability and outperforms the

SprayList and the MultiQueue. PMOD [58] improves upon OBIM

with an adaptive heuristic that increases OBIM’s bag utilization and

reduces redundant work, all while reducing the need for tuning.

The Multi Bucket Queue applies the e�ciency of asynchronous

OBIM/PMOD buckets to the global ordering of the MultiQueue.

Synchronous schedulers like Julienne [17], Ordered GraphIt [60],

and Kinetic Dependence Graphs [26] use lightweight data structures

to store tasks and can apply coarsening to increase parallelism.

However, they perform poorly on graphs or algorithms with few

tasks per priority level. The Multi Bucket Queue keeps the global

ordering property of these schedulers to maintain work e�ciency,

while discarding their synchronous execution.

6 CONCLUSION

We have presented a taxonomy which classi�es concurrent priority

schedulers (CPS) according to their synchrony, drift, and under-

lying data structure. By classifying existing schedulers with our

taxonomy we have analyzed their strengths and weaknesses, and

identi�ed an unexplored point in the design space. We have de-

signed and implemented the Multi Bucket Queue, a CPS which

combines the strengths of prior designs, and avoids their weak-

nesses. The Multi Bucket Queue is competitive with or exceeds the

performance of state-of-the-art designs across a variety of applica-

tions and inputs.
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