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Abstract
As Large Language Models (LLMs) grow in size
and context length, efficient inference strategies
are essential to maintain low-latency token gen-
eration. Unfortunately, conventional tensor and
data parallelism face diminishing returns when
scaling across multiple devices. We propose
a novel form—attention-level speculative paral-
lelism (ALSpec)—that predicts self-attention out-
puts to execute subsequent operations early on
separate devices. Our approach overlaps atten-
tion and non-attention computations, reducing
the attention latency overhead at 128K context
length by up to 5× and improving end-to-end de-
code latency by up to 1.65×, all without sacrific-
ing quality. We establish the fundamental pillars
for speculative execution and provide an execu-
tion paradigm that simplifies implementation. We
show that existing attention-approximation meth-
ods perform well on simple information retrieval
tasks, but they fail in advanced reasoning and
math. Combined with speculative execution, we
can approximate up to 90% of self-attention with-
out harming model correctness. Demonstrated on
Tenstorrent’s NPU devices,1 we scale up LLM
inference beyond current techniques, paving the
way for faster inference in transformer models.

1. Introduction
State-of-the-art Large Language Models (LLMs) for token
generation often rely on decoder-only transformer archi-
tectures (Touvron et al., 2023; Dubey et al., 2024; Jiang
et al., 2024; Yang et al., 2024; Almazrouei et al., 2023).
These models stack repetitive layers of self-attention and
feed-forward operations, allowing efficient scaling across
layers (Tay et al., 2022; Kim et al., 2023).
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As model sizes and context lengths increase (Chitty-Venkata
et al., 2024; Shoeybi et al., 2019; Huang et al., 2019), a sin-
gle accelerator can no longer meet the memory and compute
demands. Tensor parallelism (splitting the model weights
across devices) and data parallelism (replicating the model
weights on each device) have been widely used for large-
scale LLM inference. Despite their adoption, these tech-
niques exhibit the following problems during the causal
decode phase, hurting token-generation latency:

1. Tensor parallelism suffers from communication overhead.
Latency for operations like all-gather grows with more
devices, yielding diminishing returns with device scaling.

2. Data parallelism improves throughput with large batch
sizes but does not improve latency.

3. As the key-value (KV) caches grow with context length,
self-attention becomes a bottleneck and increases overall
latency (see Section 5.1 and Appendix D for details).

We observe in Figure 1(left) that during token generation at
small context length, the majority of latency comes from the
non-self-attention operations, particularly the feed-forward
networks. The self-attention latency grows linearly with
context length. In contrast, the non-self-attention latency
stays constant. This motivates our question: Can we overlap
attention with other operations to hide the increasing cost
without compromising model correctness?

We propose attention-level speculation (ALSpec), replac-
ing some full self-attentions with cheaper approximations
(e.g., windowed attention with attention sink (Xiao et al.,
2024)) and verifying the approximation against the true at-
tention in parallel. When the approximation is accurate, AL-
Spec commits and skips expensive calculations. This form
of speculation, when successful, allows non-self-attention
operations to overlap in time with the self-attention oper-
ations. We find that up to 90% of the self-attention op-
erations can be safely speculated without harming output
quality. In contrast to decode-level speculation (Leviathan
et al., 2023), ALSpec can be applied to emerging model
architectures with recurrent hidden states, such as layer-
looping (Eyuboglu et al., 2024) and continuous chain-of-
thoughts (Hao et al., 2024). When computing resources are
abundant, ALSpec could be coupled with tensor parallelism
and decode-level speculation to deliver even lower latency.
Figure 1 shows that ALSpec delivers up to 5× reduction in
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Figure 1. (Left) Our key result: Llama 3.1 8B decode-stage latency across context lengths on 8 devices, comparing the 8-device full
tensor-parallel baseline with our 4-device tensor parallel plus 4-device speculative parallel at 87.5% speculation hit rate (see Section 5.1).
(Right) Comparing tensor parallel (TP), data parallel (DP), attention approximation, and ALSpec when executing 2 independent inputs on
2 devices (inputs are tensor representations of previous output tokens). TP reduces per-input latency but suffers communication overheads.
DP gives highest throughput but also high per-input latency. Approximation can suffer from output errors, despite latency improvements.
ALSpec keeps correctness and reduces latency relative to TP when speculations are correct, with latency no worse than DP.

attention latency overhead for long-context decode at 128K.
It also contrasts ALSpec with tensor-parallel, data-parallel,
and approximated attention, which we detail in Section 2.

We further contribute a speculative flash decode kernel
that computes approximate and exact attention in one pass,
adding little to no overhead for speculation. Our new execu-
tion paradigm, static graph, dynamic concurrency (SGDC)
with priority gating, maintains an op-by-op host view, while
running approximate and exact attention paths concurrently.
This mechanism delivers up to 1.65× speedup with 2× de-
vices at long context lengths, even in cases where tensor
parallelism fails to scale.

Our insight builds on prior observations that sparse atten-
tions are effective (Kitaev et al., 2020; Beltagy et al., 2020;
Xiao et al., 2024), but static approximate methods often fail
on advanced reasoning or math tasks. By only accepting
certain approximations at run time, we preserve accuracy
across a broad set of benchmarks including reasoning, math,
and information retrieval (Figure 2).

Inspired by instruction-level value prediction in CPUs, AL-
Spec exploits attention sparsity in a dynamic and robust
manner. Specifically, we demonstrate that a subset of chal-
lenges in transformer—safely exploiting the sparsity of self-
attention—can be effectively addressed through dynamic
execution with speculation. In addition to accelerating
transformer-based models, it points toward new opportu-
nities for applying generic speculation paradigms to deep
learning inference, unlocking new avenues for scaling.

2. Motivation
Self-attention tends to dominate the latency of LLM infer-
ence at larger context lengths, as every new token attends

to an increasingly large key-value (KV) cache. Various
parallelization strategies use more computing resources for
lower latency or higher throughput, including tensor par-
allelism (Shoeybi et al., 2019), data parallelism (Huang
et al., 2019), and pipeline parallelism (DeepSeek-AI et al.,
2024). Figure 1(right) qualitatively compares these methods
when running two inputs on two devices. Tensor parallelism
splits the model weights across multiple devices to acceler-
ate attention and feed-forward layers. Although it reduces
latency for a single input, it suffers from communication
overhead (e.g., all-gather of partial results), which grows
as the number of devices increases. This yields diminishing
returns when scaling past a handful of devices. Data paral-
lelism replicates the model weights on all devices and pro-
cesses multiple inputs (or tokens) simultaneously for higher
throughput. However, with interactive LLM inference, the
latency per input is paramount; data parallelism provides
minimal improvement because each input runs on one de-
vice. Pipeline parallelism (not shown) partitions the model
layers so that each device is responsible for one portion of
the forward pass. Once the pipeline fills, it can achieve the
same overall throughput as data parallelism. However, each
input still traverses all pipeline stages, yielding a similar
latency profile to data parallelism. Hence, pipeline paral-
lelism, like data parallelism, does not fundamentally reduce
inter-token decode latency.

Orthogonal to scaling up device count, sub-quadratic algo-
rithms (Gu & Dao, 2024; Katharopoulos et al., 2020; Poli
et al., 2023) and sparsity-exploiting attention approximation
methods cut attention computation and memory demands.
Reformer (Kitaev et al., 2020) replaces the standard dot-
product attention with locality-sensitive hashing (LSH) to
reduce the per-token computational complexity from linear
to logarithmic in context length. SCFA (Pagliardini et al.,
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Figure 2. Correctness evaluation of attention approximation methods on various benchmarks using Llama 3.1 8B. Baseline is the model
with unmodified attention. Attention sink fails for tasks requiring math and reasoning on specific subject area, such as MMLU PRO with
chain-of-thoughts (COT). Statically allowing attention sink only at specific layers reduces degradation, but still causes a noticeable gap.
Dynamically using attention sink with ALSpec gives consistent correctness to the baseline for all tasks at acceptance threshold λ = 0.10.

2023) further reduces the computational cost of Reformer.
Longformer (Beltagy et al., 2020) relies on sliding-window
(local) attention plus a small number of global tokens. These
approaches typically exhibit static sparsity in the sense that
the approximation pattern is fixed prior to execution. Al-
though effective in some cases (e.g., perplexity on large-
context text) or with retraining, the static nature of these
methods means the model execution graph is fixed prior to
execution, inevitably causing quality loss in scenarios where
the model needs full attention for correct results (Figure 1).

Among the approximation techniques, attention sink (Xiao
et al., 2024) is simple yet surprisingly powerful. It focuses
the self-attention on two sets of tokens: the first few to-
kens (e.g., 4) and a rolling window of S recent tokens from
the KV cache. This makes the effective context length of
attention drastically smaller than the true context length.
Attention sink achieves good performance on certain tasks
(e.g., perplexity and information retrieval), even with a small
S. However, any global information beyond the S-sized
window or the first few tokens is inaccessible, causing at-
tention sink to fail on tasks that require distant context or
advanced reasoning. Figure 2 illustrates how attention sink
on Llama 3.1 8B struggles on tasks like advanced math or
reasoning (e.g., MMLU PRO with chain-of-thought), where
it yields a noticeable quality drop compared to the baseline
(see Section 5.1 for methodology).

The success or failure of approximation appears to be layer-
specific: some layers can tolerate an approximate self-atten-
tion output, while others require exact attention. Prior work
shows that certain layers can be pruned or skipped without
significantly impacting model quality (Elbayad et al., 2020).
Consequently, one might wonder if we can statically choose
a subset of layers to apply attention sink. To concretize this
hypothesis, we design a synthetic Needles in a Haystack
test on Llama 3.1 8B. The model inputs a 16K-token con-
text containing 10 randomly inserted “secret keys.” It must
retrieve all keys from the entire text. Figure 3a shows that
a model with pure attention sink (S = 128) recovers none
of the secret keys. In contrast, the baseline model finds 8
of 10. Between these configurations, we create models that
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Figure 3. Finding needles in a haystack with Llama 3.1 8B.

selectively use attention sink with criteria that ensure only
good approximations are used: a layer accepts attention
sink if, for the given token, the L2 distance between the
attention sink output Ã and full attention output A is within
λ · L2 norm(A). A full attention sink model corresponds
to λ = ∞ and the baseline model corresponds to λ = 0.
Figure 3a shows that for λ < 0.25, up to 2/3 of the layers
can be approximated with attention sink without sacrificing
the score. Figure 3b further shows that approximations are
layer-specific: certain layers, especially the final layers, are
more likely to accept approximation without harm, corrobo-
rating prior observations that deeper layers can be pruned
with limited effect (Elhoushi et al., 2024).

Figure 2 shows that purely relying on a fixed layer-based
approximation pattern—although better than applying atten-
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tion sink to all layers—exhibits noticeable quality degrada-
tion when extended to a variety of tasks. For the middle bars,
we create fixed layer-based approximated models, where
attention sink is always used at a layer iff the likelihood
to approximate that layer is greater than p = 0.8 in Fig-
ure 3b. The static approximation models do not balance
performance gains with accuracy. Some inherently harder
inputs or tasks require additional global context; even for
the same task, the best approximation policy may vary from
token to token or layer to layer. We therefore conclude that
no single static approximation suffices; the key is to make
decisions dynamically at run time.

We need a simple yet powerful way to realize dynamic exe-
cution (Barad et al., 2024). Speculative parallelism involves
a guess about future outcomes, a verification of that guess,
and error recovery when the guess is wrong. By speculating,
systems can proceed optimistically and exploit opportuni-
ties for parallelism, even in the face of run-time uncertainty.
Speculation is a long-standing technique in computer ar-
chitecture, spanning branch, dependence, and value predic-
tion (Rau & Fisher, 1993; Lipasti & Shen, 1996; Sazeides
& Smith, 1997) to task-level speculation (Sohi et al., 1995;
Herlihy & Moss, 1993; Jeffrey et al., 2015). Speculation
enables concurrent or parallel execution of instructions or
blocks of code, but discards results when the guesses fail. In
LLMs, speculation thus far has appeared only at the decode
(or token) level via speculative decoding (Leviathan et al.,
2023; Hooper et al., 2023; Spector & Re, 2023; Li et al.,
2024; Miao et al., 2024) which drafts several tokens in par-
allel. This includes decode-level speculation that employs
attention sink (Sun et al., 2024).

3. Attention-Level Speculation Overview
Attention-level speculation (ALSpec) speculates on the self-
attention output within each transformer layer. Specifically,
ALSpec approximates the self-attention with a technique
like attention sink and subsequently computes the exact self-
attention. Once the exact result arrives, ALSpec verifies
how close the approximate output is. If sufficiently close,
ALSpec accepts it; if not, it reverts to the exact output.
The “ideal scenario” of Figure 1 shows that speculation can
overlap attention with feed-forward layers, greatly reducing
latency when the prediction is correct. The “worst case”
matches data parallelism latency; if the speculation fails,
the computation must fall back to the exact path. This
approach harnesses parallel devices (or threads) to overlap
computation, hiding some of the attention latency while
preventing quality degradation when approximation fails.
We show that a simple approximation—namely attention
sink—serves effectively as the “predictor.” For each layer,
we apply it to self-attention, generate a speculated attention
output Ãi in layer i, and concurrently compute the ground-
truth output Ai. Since attention sink can fail for certain

tasks, we design a verification step to ensure correctness.
In practice, we find that over half of the layers can skip
full self-attention by verifying that Ãi ≈ Ai. Meanwhile,
ALSpec maintains baseline accuracy across tasks (Figure 2).

3.1. Low-Cost Predictor

We use a coarser version of attention sink that inputs the
first and last S tokens from the KV cache. We choose
S to be small relative to the context length (e.g., S ∈
{128, 256, 512} for a 128K context length). In Section 4.1,
we choose S as the chunk size of speculative flash decode.

3.2. Low-Cost Verification

Relaxed Verification via Lipschitz Continuity: Exact
equality between Ãi and Ai is not mandatory to preserve
correctness in LLMs; we only require that their difference
remains bounded so that final outputs have small deviations.
Lipschitz continuity (Scaman & Virmaux, 2018) provides a
theoretical tool to relate small perturbations in one layer’s
output to eventual changes in final logits. Although self-
attention alone is not Lipschitz continuous (Kim et al., 2021;
Castin et al., 2024; Geshkovski et al., 2023), feed-forward
networks, layer norms, and residual connections possess
(or can be bounded by) Lipschitz constants. In addition,
Geshkovski et al. show that self-attention’s Lipchitz constant
is bounded by CR2eCR2

, where R is the input magnitude
bound. Combining these, we derive an upper bound on
the final output’s deviation in terms of per-layer differences
∥Ãi−Ai∥. Concretely, if each approximate attention output
is within δi in ℓp-norm of the ground-truth Ai, the overall
output deviation, ϵ, is bounded by

ϵ ≤ ΣN
i=1(1 + α)N−i+1(1 + f(R)β)N−iδi (1)

where α, β, and f(R) are bounded constants for the Lip-
schitz behavior of residuals, feed-forward networks, and
self-attention inputs, respectively. A detailed proof and
discussion appear in Appendix A.

Verification Algorithm: Motivated by the above bounds
we adopt a simple threshold-based metric to accept or reject
Ãi. Concretely, we measure d(Ãi, Ai) in the ℓ2 norm and
accept if: ∥Ãi − Ai∥2 < λ · ∥Ai∥2, where λ is a small
scalar hyperparameter. Algorithm 1 sketches the speculative
execution procedure. For each layer, the algorithm (i) com-
putes Ãi using attention sink, (ii) launches a new thread
to continue the “post-attention” operations, (iii) computes
Ai in the main thread, then (iv) verifies if Ãi is sufficiently
close. If yes, it commits Ãi; otherwise, it discards the new
thread and re-runs the next operations on the main thread’s
Ai. A simple thresholding strategy effectively ensures the
algorithm does not propagate large attention errors. In ad-
dition, we show a high probability error bound on ϵ in the
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Algorithm 1 Speculative Execution with Attention Sink

Input: activation x, N layers, threshold λ
Start execution as the main thread.
for i = 1 to N do
x = ops before self attn(x) // e.g. LayerNorm
xspec = attention sink(x)
new thread = Thread(ops after self attn, xspec)
x = regular attention(x)
if L2 distance(x, xspec) < λ · L2 norm(x) then
main thread = new thread

else
Kill new thread
x =ops after self attn(x) // e.g. Feed Forward

end if
end for

order of
√
N (Appendix A.3). This is consistent with our ex-

perimental results on deeper models (Section 5.2), achieving
similar results as shallower models across benchmarks.

3.3. Example Speculative Executions

Figure 4 shows three high-level scenarios that can arise
when applying Algorithm 1 on multiple devices in parallel.
Scenario 1: More resources than work. With sufficiently
many devices, every layer’s approximate and exact attention
can run in parallel without contention. In the ideal case, all
speculations are correct, so each device can immediately
continue with post-attention operations (e.g., feed-forward
(FF) layers), yielding maximum speedup by overlapping all
FF within attention. In the mis-speculation case, when the
first approximation fails, the system reverts to full attention
for that step. Subsequent layers resume the normal specula-
tive pattern. The total latency impact of one mis-speculation
remains bounded by the time needed to execute a single at-
tention pass in full. Scenario 2: More work than resources.
In practice, we often have fewer devices than are needed to
run every speculation fully in parallel. A device may need
to wait until a prior layer finishes using the hardware be-
fore starting its own speculation. Scenario 3: Full attention
runs faster than feed-forward. In this scenario, speculation
only uses 2 devices as the prior device will be free when
FF finishes. In such cases, we combine tensor parallelism
with speculative parallelism: Figure 4 illustrates a 4-device
system using 2 devices for tensor parallelism and 2 devices
for speculative parallelism with 1:1 mapping.

In most real-world LLM usage, FF dominates run time while
attention latency grows with context length (Dao, 2024). For
context lengths up to 128K tokens, FF remains the primary
bottleneck, leading to Scenario 3, whereas Scenario 1 or
Scenario 2 only become relevant at extremely large context
lengths. Moreover, Scenario 1 & 2 require fully pipelining
or even speculating on still-speculative data (Jeffrey et al.,
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Figure 4. Algorithm 1 run-time patterns. (Scenario 1) More re-
sources than work: Each approximate and exact path can run
concurrently on separate devices. If all speculations are correct,
total latency is minimized; a mis-speculation simply triggers the ex-
act attention for one layer. (Scenario 2) More work than resources:
Some computations must wait for free devices, adding stalls. Oth-
erwise, the overlap pattern is similar to Scenario 1. (Scenario
3) Feed-forward dominates: When FF is slower than attention,
we can pipeline or combine tensor parallelism with speculative
parallelism (mapping devices 1:1) to further reduce FF latency.

2018), complicating a static execution graph. In contrast,
Scenario 3 naturally fits an op-by-op framework: one device
is used for an approximate path and another for an exact path.
No further pipelining is required. Hence, in the remainder
of this paper, we focus on implementing Scenario 3 and
extending it with tensor parallelism in real systems.

3.4. Overheads

On the communication side, combining ALSpec and TP
(Scenario 3) for n devices reduces latency vs. full TP on n
devices. In each TP operation, the bandwidth-optimal all-
reduce algorithm (Thakur et al., 2005) has each device send
and receive n−1

n of the tensor per all-reduce. While the total
bandwidth demands per device remain nearly constant as TP
device count increases, the latency of all-reduce operations
during decode are often exposed on the critical path due to
small activation sizes (Narayanan et al., 2021). This latency
is highly dependent on the underlying network topology. For
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example, in a ring topology (Sergeev & Balso, 2018), all-
reduce requires n− 1 hops of exposed latency. In contrast,
ALSpec+TP on n devices performs all-reduce across n

2
devices, with n

2 − 1 hops of exposed latency and adds 1 hop
of exposed latency for the approximating devices to send
speculated activations to the speculative FF path.

On the computation side, the ALSpec verification step in-
troduces two L2 norm calculations of the ground truth and
speculated activations. This L2 norm cost is similar to Lay-
erNorm. For decode with small activations, the L2 norm
computation is negligible compared to FF and attention.

3.5. Summary

Speculative parallelism offers a simple, dynamic exten-
sion to static approximation. Rather than retraining or
modifying model architecture, we only overlay a predic-
tion–verification mechanism. Speculative parallelism ex-
tends naturally to other sparse attention approaches, creating
a versatile framework for dynamic execution. This dynamic
viewpoint transforms approximate-attention methods like
attention sink from “always approximate” to “approximate
only when safe,” mitigating their inherent latency–quality
tradeoff. By combining run-time verification with paral-
lel computation, we overlap approximate and full-attention
paths to reduce the critical path latency.

4. Implementation
Implementing Scenario 3 poses significant challenges. Tra-
ditional frameworks assume an op-by-op execution pattern
over a static dataflow graph that maps onto well-known scal-
ing paradigms like tensor and data parallelism. By contrast,
attention-level speculation requires dynamic conditional ex-
ecution over the graph. An approximate path runs concur-
rently with computing the exact attention, and only upon
verification do we commit to one.

To make the implementation feasible, we introduce two
key optimizations. First, we design a custom Speculative
Flash Decode kernel that fully hides the cost of the approxi-
mate attention path to incur minimal penalty if a speculation
is rejected. Second, we introduce static graph, dynamic
concurrency (SGDC) with priority gating: a mechanism
to preserve op-by-op host code and a static computation
graph, while dynamically forking and merging the specu-
lative path under the hood. Verification then determines
which result to commit, controlled by a lightweight priority
gating mechanism.

4.1. Speculative Flash Decode

In Algorithm 1, the attention sink runs before the regular
attention. In the worst case, where all speculations are
rejected, the latency would be worse than pipelining. To
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Figure 5. Flash decode and speculative flash decode KV cache read
patterns. Speculative flash decode reads the first and last chunks
first and computes a partial result as speculation.

mitigate this, we modify the read pattern of the flash decode
kernel and implement an all-fused kernel that speculates for
free while computing full attention and verification at once.
Appendix B shows the full algorithm.

In short, the intuition of speculative flash decode is shown
in Figure 5. The original flash decode algorithm (Dao, 2024;
Dao et al., 2023) processes self-attention by chunks of KV
cache from the start to the decoding position, where groups
of chunks are distributed across the available cores. The
results are then aggregated using the statistics. We exploit
the order invariance in which the chunks are processed. In
speculative flash decode, we set the chunk size to be S, as-
sign the first and last chunk to be read first, and send the
aggregated partial result immediately to the next device to
execute the speculated path. The partial result is equiva-
lently the attention sink on the first and last S tokens, and
can be used later towards calculating the full self-attention
result. We then combine the verification step into the same
single kernel, using it as a drop-in replacement for PyTorch’s
scaled dot product attention.

4.2. SGDC with Priority Gating

Algorithm 2 implements Scenario 3 of Algorithm 1 on two
groups of devices by using the speculative flash decode
kernel and a small change to the runtime, namely SGDC
with Priority Gating. It uses the following methods:

• skip compute(p[k] == 0): Skips a subsequent opera-
tion’s execution when p[k] == 0, where k indicates the
device index of itself.

• all gather(p): Gathers p across d1, d2 (d with the highest
priority holds the correct x).

• speculative flash decode(x, p): Executes a speculative
decoding operation and determines the sender and re-
ceiver based on p. Sender sets pk = 2 if verification fails
and otherwise pk = 0. Receiver sets pk = 1.
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Device 1

Device 2

all_gather speculative_flash_decode (sfd)

all_gather sfd

Send speculation result

post_attn_ops (post) all_gather
Send pSend p

Send p

pre_attn_ops (pre)

…

… …

all_gather…

…

…

If verify succeed : 
skip compute post & pre

If verify fails : 
do full post & pre

Send p

Figure 6. Timing diagram of speculative execution on two devices, based on Algorithm 2. We show a segment of execution timeline from
the all-gather op in the first layer to the all-gather op in the second layer. When speculation succeeds, Device 1 skips the computation in
post- and pre-attention ops. When speculation fails, it executes them fully.

Algorithm 2 SGDC with Priority Gating

Input: replicated activation x, N layers, threshold λ,
replicated priority vector p, device d1, d2, device id k.
Initialize p = [p1 = 2, p2 = 0], indicating d1 holds the
correct x with higher priority.
for i = 1 to N do

with skip compute(p[k] == 0):
x = ops before self attn(x)

p = all gather(p)
x = speculative flash decode(x, p, λ)
with skip compute(p[k] == 0):

x =ops after self attn(x)
end for
return x from the correct device based on p

Figure 6 illustrates Algorithm 2. We maintain static host
code where model and input activations are replicated across
two devices, effectively data parallelism. Each device main-
tains a priority vector to track which of them holds the
correct activations. Initially, both devices hold the correct
activations; once speculations and computation skipping
happen, only one device holds it. We perform an all-gather
of the priority vector before the speculation point to deter-
mine which device has highest priority. At the speculation
point, the sender device with highest priority (indicating
correct activations) will execute the compute side of the
speculative flash decode op, and the receiver device waits
for the speculative result, then continues subsequent ops.
When the full self-attention finishes, the sender will either
skip the computation of the subsequent ops if the verifica-
tion succeeds, or proceed executing the ops normally if the
verification fails. We maintain the same ops across devices
and the host dispatches all the ops asynchronously. This
method can be extended to tensor + speculative parallelism:
when the first group comprises > 1 tensor-parallel devices,
the second group has the same number of devices with 1-1
mapping.2

2Appendix E validates SGDC with a micro-benchmark. In our
real implementation, we also sync the residual stream at attention
to ensure the KV cache and residual are calculated correctly. We
overlap it with compute so that it does not cause extra overhead.

5. Experiments
We evaluate the implementation of Algorithm 2 with the
speculative flash decode kernel to answer the following
questions: (i) Does dynamic execution really improve per-
formance on real device implementation? (ii) What rate of
speculation hit rate do we see across benchmarks? (iii) Why
is dynamic sometimes superior to static approximation?

5.1. Methodology

Model & Hardware: We answer the previous questions
with a case study of parallelizing Llama 3.1 8B model onto 8
Tenstorrent N150 chips. The model architecture and weights
are taken from the official Llama codebase without modifi-
cation and implemented on Tenstorrent N150 chips, using
the Tenstorrent Metalium (TT-Metalium) kernel library.3

The model is executed with default mixed precision con-
figuration,4 with BF16 activations, BF8 KV cache, and
BF{16,8,4} model weights. For correctness evaluations, we
run the model in BF16 precision using an NVIDIA A100
or H100 GPUs; we simulate speculation by running both
full and approximated attention (S = 128) and choosing the
approximated attention output if verification succeeds.

Benchmarks: We evaluate the correctness and specula-
tion hit rate measurement at various choices of λ. We group
the evaluations into categories of {Question Answering
(QA), Information Retrieval (IR), Reasoning, Long Con-
text, and Math}. We use the LM Evaluation Harness (Gao
et al., 2024), a framework for few-shot language model eval-
uation, with the default prompts and few-shot templates. As
we focus on how ALSpec outputs diverge from the baseline,
we do not explicitly optimize for baseline model scores.

3We conducted our experiments on Tenstorrent N150 devices
using the pre-release version of the TT-Metalium v0.55.0-rc13 soft-
ware stack. Tenstorrent has active ongoing software optimizations,
therefore the performance results presented here are preliminary
and do not reflect the latest optimized capabilities of Tenstorrent
devices. Rather, they serve to illustrate the relative performance ad-
vantage provided by ALSpec. See details about TT-Metalium (Ten-
storrent, 2024b), speculative flash decode, and SGDC with priority
gating implementation in Appendix C, D & E.

4See Appendix F for TT-Metalium Llama implementation and
performance measurement with tensor parallelism and ALSpec.
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Table 1. Evaluation of attention-level speculation at various speculation verification threshold λs for Llama 3.1 8B model across
benchmarks, grouped by categories. Each entry contains (evaluated scores (0-1)) / (speculation hit rate (0-100%)). Higher λ corresponds
to more relaxed verification, allowing higher speculation hit rates, while lower λ keeps outputs closer to the baseline.

TASK QA IR MATHEMATIC
IFEVAL GPQA COT SWDE FDA GSM8K COT MATH* MGSM COT SW

BASELINE 0.798 0.237 0.359 0.210 0.823 0.326 0.580
λ = 0.05 0.799 / 69.5% 0.257 / 38.0% 0.371 / 57.8% 0.205 / 37.5% 0.806 / 49.4% 0.332 / 21.6% 0.592 / 53.6%
λ = 0.10 0.812 / 89.8% 0.237 / 65.7% 0.389 / 83.2% 0.205 / 69.3% 0.799 / 78.9% 0.315 / 49.6% 0.584 / 77.6%
λ = 0.15 0.807 / 94.8% 0.214 / 81.1% 0.391 / 92.9% 0.190 / 85.7% 0.799 / 90.2% 0.331 / 69.3% 0.592 / 86.0%
λ = 0.20 0.805 / 98.0% 0.225 / 90.4% 0.384 / 97.0% 0.172 / 94.4% 0.795 / 94.6% 0.323 / 79.4% 0.564 / 95.4%
λ = 0.25 0.794 / 99.3% 0.208 / 95.4% 0.359 / 98.8% 0.158 / 98.2% 0.719 / 96.2% 0.266 / 86.3% 0.516 / 96.6%

TASK LONG CONTEXT REASONING
HOTPOTQA REPOBENCH-P ECON* BUSINESS* PSYCH*

BASELINE 0.920 0.756 0.328 0.470 0.289
λ = 0.05 0.920 / 18.5% 0.736 / 33.1% 0.341 / 18.9% 0.477 / 22.8% 0.232 / 23.3%
λ = 0.10 0.915 / 42.8% 0.768 / 59.6% 0.339 / 45.8% 0.490 / 50.0% 0.296 / 52.3%
λ = 0.15 0.920 / 56.8% 0.812 / 75.5% 0.321 / 63.0% 0.473 / 68.5% 0.294 / 67.5%
λ = 0.20 0.910 / 71.6% 0.756 / 85.0% 0.316 / 77.5% 0.437 / 80.7% 0.292 / 80.9%
λ = 0.25 0.705 / 80.1% 0.742 / 91.8% 0.273 / 87.7% 0.359 / 88.3% 0.281 / 91.3%

* MMLU PRO BENCHMARK WITH CHAIN OF THOUGHTS DECODING.

Measurement: We use the TT-Metalium profiler to mea-
sure the device kernel time of every operation during decode
at specific context lengths and speculation hit rates. This
performance measurement shows an ideal scalability pattern
because it does not account for host and op dispatch latency,
which are subject to the host configuration. We report la-
tency per token, which is estimated by taking the measured
kernel run time per layer and multiplied by the total num-
ber of layers (32). The metric token/s/user is calculated by
1/(latency per token).

5.2. Speculation Hit Rates and Performance Results

Table 1 shows the output quality and speculation hit rate
for λ ∈ {0.05, 0.10, 0.15, 0.20, 0.25} compared to baseline.
ALSpec with λ ∈ {0.05, 0.10} achieves on par or better
correctness on all evaluated tasks, with speculation hit rates
ranging from 18% (HotpotQA) to 90% (IFEval) depending
on the task, and most speculation hit rates exceeding 50%
for λ = 0.10. Relaxing λ to 0.15 allows the model to
speculate up to 95% of attentions successfully while doing
slightly worse on GPQA and FDA. Adjusting λ beyond 0.15
allows flexibly trading off model accuracy for computation
latency, which could be helpful depending on the use case.
Table 2 shows a subset of benchmarks with Llama 3 70B (80
decoder layers), confirming that a larger and deeper model
achieves similar speculation hit rate with limited correctness
degradation at λ ∈ {0.05, 0.10}.

Leveraging the previous experiments, we estimate perfor-
mance for Llama 3 8B on N150 chips based on commonly
observed ranges of the speculation hit rate: {50, 62.5, 75,
87.5}%. Our results show that ALSpec provides additional
scaling when tensor parallelism scaling diminishes. Figure 7
shows that full tensor parallelism provides almost no im-
provements when scaling from 4 to 8 devices at long context
length, whereas speculative + tensor parallelism continues

Table 2. Evaluation of speculative execution at various verification
thresholds λ for Llama 3.1 70B model across selected benchmarks.

TASK GPQA COT GSM8K COT HOTPOTQA

BASELINE 0.518 0.958 0.940
λ = 0.05 0.529 / 55.1% 0.950 / 64.5% 0.940 / 32.3%
λ = 0.10 0.507 / 80.0% 0.951 / 86.6% 0.945 / 59.0%
λ = 0.15 0.458 / 89.9% 0.946 / 93.9% 0.935 / 74.6%
λ = 0.20 0.446 / 95.1% 0.936 / 96.8% 0.935 / 83.3%
λ = 0.25 0.379 / 97.6% 0.897 / 98.3% 0.935 / 89.4%

to scale. In the best case (96k context length with 87.5%
speculation hit rate), ALSpec provides 1.65× improvement
in per-user throughput compared to full tensor parallelism.

5.3. Reproducibility and Estimation on GPUs

We corroborate the diminishing returns of tensor parallelism
previously seen on GPUs and estimate ALSpec performance
on GPUs. Chitty-Venkata et al. find that the Llama 3 8B
model on A100s with DeepSpeed-MII achieves around 75,
90, and 115 tokens/s per-user throughput when scaling
across 1, 2, and 4 GPUs. This scaling is similar to what
we observe on N150 devices. We measure the Llama 3 8B
decoding latency on 4 vs. 8 H100 GPUs doing TP using
the SGLang (Zheng et al., 2024) serving framework and the
FlashInfer (Ye et al., 2025) attention backend. Although we
currently lack an ALSpec CUDA implementation, we es-
timate the ALSpec performance using SP@65% + TP4.
Table 3 shows our estimation that ALSpec cuts latency
on Llama 8B by 1.28× vs. 1.09× for full TP at context
length 128K. In this case, the attention latency is only 63%
of non-attention latency, suggesting greater gains for con-
text lengths beyond 128K. Although ALSpec introduces a
new attention kernel and SGDC, it does not fundamentally
change the op-by-op and static graph execution style of a
GPU runtime. We expect that ALSpec is implementable via
CUDA graphs and conditionals (Gaiser et al., 2024).
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Figure 7. Scalability patterns of Llama 3.1 8B with full tensor parallelism (TP) and speculative parallelism at {50, 62.5, 75, 87.5}%
speculation hit rate with tensor parallelism (SP@X% + TP) on Tenstorrent N150 chips. Each plot shows the scalability at a particular
decode context length (1k, 32k, 64k, 96k, and 128k). Attention is speculative parallel using the speculative flash decode kernel with chunk
size 256 and tensor parallel by head. Feed-forward layers are tensor parallel by inner dimension. Performance estimation is obtained by
measuring the device kernel duration of every single kernel, agnostic of the dispatch and host time. At long context lengths, SP+TP (our
method) continues to scale with 8 devices while full tensor parallelism scaling diminishes.

Table 3. Latency and throughput scaling for Llama 8B inference on H100s across various context lengths. Latencies are measured per
decoder layer, and throughput is in tokens per second (tok/s). Projected ALSpec results assume 65% speculation hit rate.

CONTEXT
4XH100 ATTN

LATENCY/LAYER (US)
4XH100 NON-ATTN

LATENCY/LAYER (US)
4XH100 TP

TOK/S
8XH100 TP

TOK/S
TP

SCALING

PROJECTED
ALSPEC

@65% HIT RATE

ALSPEC
SCALING

1K 13 95 244.6 249.3 1.9% 262.0 7.1%
32K 29 100 214.2 231.3 8.0% 246.0 14.8%
64K 49 100 191.4 209.7 9.6% 237.8 24.2%
96K 56 100 178.2 194.2 9.0% 224.9 26.2%

128K 63 101 169.3 184.8 9.2% 217.5 28.5%

I'll answer each question step by step. **Question 1** The characteristic of the ring
… The answer is (G). **Question 2** To determine the characteristic of the ring 2Z,

Failed Generation from Static Approximation: 

…

Correct Generation from Speculative Execution: 

Unable to move forward to Question 2

% spec. 
accepted

0 100

Diverging Points

Points where topics from previous context is re-introduced

Prompt:

The following are multiple choice questions (with answers) about math. Think step 
by step and then finish your answer with \"the answer is (X)\" where X is the correct 
letter choice. … 

Figure 8. Example of output divergence in static approximation
model. Divergence points corresponds to tokens with low specula-
tion accuracy, where the static approximation model fails to adjust.

5.4. When Does Static Approximation Go Wrong?

In some cases, static approximation is unable to generate
key tokens that influence the direction of the conversation,
indicating that full attention to the context is required. This
usually happens at a change of topic token. Figure 8 illus-
trates a specific example in MMLU PRO MATH where the

model is given a math problem with 5-shot examples. We vi-
sualize each token, shaded by its speculation rate, generated
by the speculative execution model. The static approxima-
tion model is unable to switch to the second question during
generation, hence diverging. The diverging point is a token
with a low speculation rate, where it changes the topic from
Question 1 to 2. Similarly, we mark the points where topics
from previous contexts were introduced and they overlap
with tokens with small speculation rates. Overall, dynamic
execution via ALSpec detects large approximation errors
and adaptively recalibrates to maintain generation quality.

6. Conclusion
We presented ALSpec as a new paradigm for scaling LLM
inference, addressing the shortcomings of existing tensor
and data parallelism methods. By leveraging predictions
of attention outputs, our approach overlaps computations
to reduce latency while maintaining model accuracy. The
successful implementation on TT-Metalium underscores the
practicality of our method. While this work focuses on
speculating attention, the underlying principles of specu-
lative parallelism are general and hold potential for wider
applicability. Future research will explore the generalization
of this technique, particularly in mechanisms to repair and
eliminate error accumulation, as well as generic op-level
speculative parallelism, which extends these principles be-
yond attention to optimize a broader range of ops in LLMs.
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Alrassy, P., Zhang, P., Li, P., Vasic, P., Weng, P., Bhargava,
P., Dubal, P., Krishnan, P., Koura, P. S., Xu, P., He, Q.,
Dong, Q., Srinivasan, R., Ganapathy, R., Calderer, R.,
Cabral, R. S., Stojnic, R., Raileanu, R., Girdhar, R., Patel,
R., Sauvestre, R., Polidoro, R., Sumbaly, R., Taylor, R.,
Silva, R., Hou, R., Wang, R., Hosseini, S., Chennabas-
appa, S., Singh, S., Bell, S., Kim, S. S., Edunov, S., Nie,
S., Narang, S., Raparthy, S., Shen, S., Wan, S., Bhosale,
S., Zhang, S., Vandenhende, S., Batra, S., Whitman, S.,
Sootla, S., Collot, S., Gururangan, S., Borodinsky, S., Her-
man, T., Fowler, T., Sheasha, T., Georgiou, T., Scialom,
T., Speckbacher, T., Mihaylov, T., Xiao, T., Karn, U.,
Goswami, V., Gupta, V., Ramanathan, V., Kerkez, V.,
Gonguet, V., Do, V., Vogeti, V., Petrovic, V., Chu, W.,
Xiong, W., Fu, W., Meers, W., Martinet, X., Wang, X.,
Tan, X. E., Xie, X., Jia, X., Wang, X., Goldschlag, Y.,
Gaur, Y., Babaei, Y., Wen, Y., Song, Y., Zhang, Y., Li, Y.,
Mao, Y., Coudert, Z. D., Yan, Z., Chen, Z., Papakipos, Z.,
Singh, A., Grattafiori, A., Jain, A., Kelsey, A., Shajnfeld,
A., Gangidi, A., Victoria, A., Goldstand, A., Menon, A.,
Sharma, A., Boesenberg, A., Vaughan, A., Baevski, A.,
Feinstein, A., Kallet, A., Sangani, A., Yunus, A., Lupu,
A., Alvarado, A., Caples, A., Gu, A., Ho, A., Poulton,
A., Ryan, A., Ramchandani, A., Franco, A., Saraf, A.,
Chowdhury, A., Gabriel, A., Bharambe, A., Eisenman, A.,
Yazdan, A., James, B., Maurer, B., Leonhardi, B., Huang,
B., Loyd, B., Paola, B. D., Paranjape, B., Liu, B., Wu, B.,
Ni, B., Hancock, B., Wasti, B., Spence, B., Stojkovic, B.,
Gamido, B., Montalvo, B., Parker, C., Burton, C., Mejia,
C., Wang, C., Kim, C., Zhou, C., Hu, C., Chu, C.-H.,
Cai, C., Tindal, C., Feichtenhofer, C., Civin, D., Beaty,
D., Kreymer, D., Li, D., Wyatt, D., Adkins, D., Xu, D.,
Testuggine, D., David, D., Parikh, D., Liskovich, D., Foss,
D., Wang, D., Le, D., Holland, D., Dowling, E., Jamil,
E., Montgomery, E., Presani, E., Hahn, E., Wood, E.,

Brinkman, E., Arcaute, E., Dunbar, E., Smothers, E., Sun,
F., Kreuk, F., Tian, F., Ozgenel, F., Caggioni, F., Guzmán,
F., Kanayet, F., Seide, F., Florez, G. M., Schwarz, G.,
Badeer, G., Swee, G., Halpern, G., Thattai, G., Herman,
G., Sizov, G., Guangyi, Zhang, Lakshminarayanan, G.,
Shojanazeri, H., Zou, H., Wang, H., Zha, H., Habeeb,
H., Rudolph, H., Suk, H., Aspegren, H., Goldman, H.,
Damlaj, I., Molybog, I., Tufanov, I., Veliche, I.-E., Gat,
I., Weissman, J., Geboski, J., Kohli, J., Asher, J., Gaya,
J.-B., Marcus, J., Tang, J., Chan, J., Zhen, J., Reizenstein,
J., Teboul, J., Zhong, J., Jin, J., Yang, J., Cummings, J.,
Carvill, J., Shepard, J., McPhie, J., Torres, J., Ginsburg,
J., Wang, J., Wu, K., U, K. H., Saxena, K., Prasad, K.,
Khandelwal, K., Zand, K., Matosich, K., Veeraragha-
van, K., Michelena, K., Li, K., Huang, K., Chawla, K.,
Lakhotia, K., Huang, K., Chen, L., Garg, L., A, L., Silva,
L., Bell, L., Zhang, L., Guo, L., Yu, L., Moshkovich,
L., Wehrstedt, L., Khabsa, M., Avalani, M., Bhatt, M.,
Tsimpoukelli, M., Mankus, M., Hasson, M., Lennie, M.,
Reso, M., Groshev, M., Naumov, M., Lathi, M., Keneally,
M., Seltzer, M. L., Valko, M., Restrepo, M., Patel, M.,
Vyatskov, M., Samvelyan, M., Clark, M., Macey, M.,
Wang, M., Hermoso, M. J., Metanat, M., Rastegari, M.,
Bansal, M., Santhanam, N., Parks, N., White, N., Bawa,
N., Singhal, N., Egebo, N., Usunier, N., Laptev, N. P.,
Dong, N., Zhang, N., Cheng, N., Chernoguz, O., Hart,
O., Salpekar, O., Kalinli, O., Kent, P., Parekh, P., Saab,
P., Balaji, P., Rittner, P., Bontrager, P., Roux, P., Dollar,
P., Zvyagina, P., Ratanchandani, P., Yuvraj, P., Liang, Q.,
Alao, R., Rodriguez, R., Ayub, R., Murthy, R., Nayani,
R., Mitra, R., Li, R., Hogan, R., Battey, R., Wang, R.,
Maheswari, R., Howes, R., Rinott, R., Bondu, S. J., Datta,
S., Chugh, S., Hunt, S., Dhillon, S., Sidorov, S., Pan, S.,
Verma, S., Yamamoto, S., Ramaswamy, S., Lindsay, S.,
Lindsay, S., Feng, S., Lin, S., Zha, S. C., Shankar, S.,
Zhang, S., Zhang, S., Wang, S., Agarwal, S., Sajuyigbe,
S., Chintala, S., Max, S., Chen, S., Kehoe, S., Satter-
field, S., Govindaprasad, S., Gupta, S., Cho, S., Virk, S.,
Subramanian, S., Choudhury, S., Goldman, S., Remez,
T., Glaser, T., Best, T., Kohler, T., Robinson, T., Li, T.,
Zhang, T., Matthews, T., Chou, T., Shaked, T., Vontimitta,
V., Ajayi, V., Montanez, V., Mohan, V., Kumar, V. S.,
Mangla, V., Albiero, V., Ionescu, V., Poenaru, V., Mi-
hailescu, V. T., Ivanov, V., Li, W., Wang, W., Jiang, W.,
Bouaziz, W., Constable, W., Tang, X., Wang, X., Wu,
X., Wang, X., Xia, X., Wu, X., Gao, X., Chen, Y., Hu,
Y., Jia, Y., Qi, Y., Li, Y., Zhang, Y., Zhang, Y., Adi, Y.,
Nam, Y., Yu, Wang, Hao, Y., Qian, Y., He, Y., Rait, Z.,
DeVito, Z., Rosnbrick, Z., Wen, Z., Yang, Z., and Zhao,
Z. The llama 3 herd of models. arXiv preprint, 2024.
doi:10.48550/arXiv.2407.21783.

Elbayad, M., Gu, J., Grave, E., and Auli, M. Depth-adaptive
transformer. In Proc. International Conference on Learn-

11

https://doi.org/10.48550/arXiv.2407.21783


Attention-Level Speculation

ing Representations (ICLR), 2020. URL https://
openreview.net/forum?id=SJg7KhVKPH.

Elhoushi, M., Shrivastava, A., Liskovich, D., Hosmer, B.,
Wasti, B., Lai, L., Mahmoud, A., Acun, B., Agarwal,
S., Roman, A., Aly, A., Chen, B., and Wu, C.-J. Layer-
Skip: Enabling early exit inference and self-speculative
decoding. In Proc. Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp.
12622–12642, 2024. doi:10.18653/v1/2024.acl-long.681.

Eyuboglu, S., Zinsley, D., Saad-Falcon, J., Arora, S., Rudra,
A., Zou, J., and Re, C. Towards smaller language
models via layer looping. In Proc. Workshop on Effi-
cient Systems for Foundation Models II @ ICML2024,
2024. URL https://openreview.net/forum?
id=2N3CtUdoB0.

Gaiser, J., Fontaine, D., Hoffman, H., Jones, S., and Oh, F.
Dynamic control flow in CUDA graphs with conditional
nodes. NVIDIA Developer Technical Blog, May 2024.

Gao, L., Tow, J., Abbasi, B., Biderman, S., Black, S., DiPofi,
A., Foster, C., Golding, L., Hsu, J., Le Noac’h, A., Li, H.,
McDonell, K., Muennighoff, N., Ociepa, C., Phang, J.,
Reynolds, L., Schoelkopf, H., Skowron, A., Sutawika, L.,
Tang, E., Thite, A., Wang, B., Wang, K., and Zou, A. The
language model evaluation harness, July 2024.

Geshkovski, B., Letrouit, C., Polyanskiy, Y., and Rigollet,
P. The emergence of clusters in self-attention dynam-
ics. In Proc. Conference on Neural Information Process-
ing Systems (NeurIPS), volume 36, pp. 57026–57037,
2023. URL https://openreview.net/forum?
id=aMjaEkkXJx.

Gu, A. and Dao, T. Linear-time sequence modeling
with selective state spaces. In Proc. Conference on
Language Modeling (COLM), 2024. URL https:
//openreview.net/forum?id=tEYskw1VY2.

Hao, S., Sukhbaatar, S., Su, D., Li, X., Hu, Z., Weston,
J., and Tian, Y. Training large language models to rea-
son in a continuous latent space. arXiv preprint, 2024.
doi:10.48550/arXiv.2412.06769.

Herlihy, M. and Moss, J. E. B. Transactional mem-
ory: architectural support for lock-free data struc-
tures. In Proc. International Symposium on Computer
Architecture (ISCA), pp. 289–300. ACM/IEEE, 1993.
doi:10.1145/165123.165164.

Hooper, C., Kim, S., Mohammadzadeh, H., Genc, H.,
Keutzer, K., Gholami, A., and Shao, S. SPEED:
Speculative pipelined execution for efficient decod-
ing. In Proc. NeurIPS Workshop on Efficient Natu-
ral Language and Speech Processing (ENLSP), 2023.
doi:10.48550/arXiv.2310.12072.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen,
M., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., and Chen, z.
GPipe: Efficient training of giant neural networks using
pipeline parallelism. In Proc. Conference on Neural
Information Processing Systems (NeurIPS), volume 32,
2019. URL https://proceedings.neurips.
cc/paper_files/paper/2019/file/
093f65e080a295f8076b1c5722a46aa2-Paper.
pdf.

Jeffrey, M. C., Subramanian, S., Yan, C., Emer, J., and
Sanchez, D. A scalable architecture for ordered paral-
lelism. In Proc. International Symposium on Microar-
chitecture (MICRO), pp. 228–241. IEEE/ACM, 2015.
doi:10.1145/2830772.2830777.

Jeffrey, M. C., Ying, V. A., Subramanian, S., Lee, H. R.,
Emer, J., and Sanchez, D. Harmonizing speculative and
non-speculative execution in architectures for ordered par-
allelism. In Proc. International Symposium on Microar-
chitecture (MICRO), pp. 217–230. IEEE/ACM, 2018.
doi:10.1109/MICRO.2018.00026.

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A.,
Savary, B., Bamford, C., Chaplot, D. S., de Las Casas,
D., Hanna, E. B., Bressand, F., Lengyel, G., Bour, G.,
Lample, G., Lavaud, L. R., Saulnier, L., Lachaux, M.,
Stock, P., Subramanian, S., Yang, S., Antoniak, S., Scao,
T. L., Gervet, T., Lavril, T., Wang, T., Lacroix, T., and
Sayed, W. E. Mixtral of experts. arXiv preprint, 2024.
doi:10.48550/ARXIV.2401.04088.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F.
Transformers are RNNs: Fast autoregressive transformers
with linear attention. In Proc. International Conference
on Machine Learning (ICML), volume 119, pp. 5156–
5165. PMLR, 2020. URL https://proceedings.
mlr.press/v119/katharopoulos20a.html.

Kim, H., Papamakarios, G., and Mnih, A. The Lipschitz con-
stant of self-attention. In Proc. International Conference
on Machine Learning (ICML), volume 139, pp. 5562–
5571. PMLR, 2021. URL https://proceedings.
mlr.press/v139/kim21i.html.

Kim, S., Hooper, C., Wattanawong, T., Kang, M., Yan,
R., Genc, H., Dinh, G., Huang, Q., Keutzer, K., Ma-
honey, M. W., Shao, Y. S., and Gholami, A. Full
stack optimization of transformer inference: a survey.
In Proc. Workshop on Architecture and System Support
for Transformer Models (ASSYST), 2023. URL https:
//openreview.net/forum?id=GtyQbLUUagE.

Kitaev, N., Kaiser, L., and Levskaya, A. Reformer: The effi-
cient transformer. In Proc. International Conference on
Learning Representations (ICLR), 2020. URL https:
//openreview.net/forum?id=rkgNKkHtvB.

12

https://openreview.net/forum?id=SJg7KhVKPH
https://openreview.net/forum?id=SJg7KhVKPH
https://doi.org/10.18653/v1/2024.acl-long.681
https://openreview.net/forum?id=2N3CtUdoB0
https://openreview.net/forum?id=2N3CtUdoB0
https://openreview.net/forum?id=aMjaEkkXJx
https://openreview.net/forum?id=aMjaEkkXJx
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=tEYskw1VY2
https://doi.org/10.48550/arXiv.2412.06769
https://doi.org/10.1145/165123.165164
https://doi.org/10.48550/arXiv.2310.12072
https://proceedings.neurips.cc/paper_files/paper/2019/file/093f65e080a295f8076b1c5722a46aa2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/093f65e080a295f8076b1c5722a46aa2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/093f65e080a295f8076b1c5722a46aa2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/093f65e080a295f8076b1c5722a46aa2-Paper.pdf
https://doi.org/10.1145/2830772.2830777
https://doi.org/10.1109/MICRO.2018.00026
https://doi.org/10.48550/ARXIV.2401.04088
https://proceedings.mlr.press/v119/katharopoulos20a.html
https://proceedings.mlr.press/v119/katharopoulos20a.html
https://proceedings.mlr.press/v139/kim21i.html
https://proceedings.mlr.press/v139/kim21i.html
https://openreview.net/forum?id=GtyQbLUUagE
https://openreview.net/forum?id=GtyQbLUUagE
https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=rkgNKkHtvB


Attention-Level Speculation

Leviathan, Y., Kalman, M., and Matias, Y. Fast in-
ference from transformers via speculative decoding.
In Proc. International Conference on Machine Learn-
ing (ICML), volume 202, pp. 19274–19286. PMLR,
2023. URL https://proceedings.mlr.press/
v202/leviathan23a.html.

Li, Y., Wei, F., Zhang, C., and Zhang, H. EAGLE: Spec-
ulative sampling requires rethinking feature uncertainty.
In Proc. International Conference on Machine Learn-
ing (ICML), volume 235, pp. 28935–28948. PMLR,
2024. URL https://proceedings.mlr.press/
v235/li24bt.html.

Lipasti, M. and Shen, J. Exceeding the dataflow limit via
value prediction. In Proc. International Symposium on
Microarchitecture (MICRO), pp. 226–237. IEEE/ACM,
1996. doi:10.1109/MICRO.1996.566464.

Miao, X., Oliaro, G., Zhang, Z., Cheng, X., Wang, Z.,
Zhang, Z., Wong, R. Y. Y., Zhu, A., Yang, L., Shi,
X., Shi, C., Chen, Z., Arfeen, D., Abhyankar, R., and
Jia, Z. SpecInfer: Accelerating large language model
serving with tree-based speculative inference and ver-
ification. In Proc. International Conference on Archi-
tectural Support for Programming Languages and Op-
erating Systems (ASPLOS), pp. 932–949. ACM, 2024.
doi:10.1145/3620666.3651335.

Naor, A. On the banach-space-valued azuma inequality and
small-set isoperimetry of alon–roichman graphs. Com-
binatorics, Probability and Computing, 21(4):623–634,
2012. doi:10.1017/S0963548311000757.

Narayanan, D., Shoeybi, M., Casper, J., LeGresley, P., Pat-
wary, M., Korthikanti, V., Vainbrand, D., Kashinkunti,
P., Bernauer, J., Catanzaro, B., Phanishayee, A., and Za-
haria, M. Efficient large-scale language model training
on GPU clusters using Megatron-LM. In Proc. of the
International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (SC). ACM, 2021.
doi:10.1145/3458817.3476209.

Pagliardini, M., Paliotta, D., Jaggi, M., and Fleuret, F. Fast
attention over long sequences with dynamic sparse flash
attention. In Proc. Conference on Neural Information
Processing Systems (NeurIPS), volume 36, pp. 59808–
59831, 2023. URL https://openreview.net/
forum?id=UINHuKeWUa.

Poli, M., Massaroli, S., Nguyen, E., Fu, D. Y., Dao, T.,
Baccus, S., Bengio, Y., Ermon, S., and Re, C. Hyena
hierarchy: Towards larger convolutional language mod-
els. In Proc. International Conference on Machine
Learning (ICML), volume 202, pp. 28043–28078. PMLR,
2023. URL https://proceedings.mlr.press/
v202/poli23a.html.

Rau, B. R. and Fisher, J. A. Instruction-level par-
allel processing: History, overview, and perspec-
tive. The Journal of Supercomputing, 7(1):9–50, 1993.
doi:10.1007/BF01205181.

Sazeides, Y. and Smith, J. The predictability of data val-
ues. In Proc. International Symposium on Microar-
chitecture (MICRO), pp. 248–258. IEEE/ACM, 1997.
doi:10.1109/MICRO.1997.645815.

Scaman, K. and Virmaux, A. Lipschitz regularity
of deep neural networks: analysis and efficient
estimation. In Proc. Conference on Neural Infor-
mation Processing Systems (NeurIPS), volume 31,
2018. URL https://proceedings.neurips.
cc/paper_files/paper/2018/file/
d54e99a6c03704e95e6965532dec148b-Paper.
pdf.

Sergeev, A. and Balso, M. D. Horovod: fast and easy
distributed deep learning in TensorFlow. arXiv preprint,
2018. doi:10.48550/arXiv.1802.05799.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J.,
and Catanzaro, B. Megatron-LM: Training multi-billion
parameter language models using model parallelism.
arXiv preprint, 2019. doi:10.48550/arXiv.1909.08053.

Sohi, G. S., Breach, S. E., and Vijaykumar, T. N. Multi-
scalar processors. In Proc. International Symposium on
Computer Architecture (ISCA), pp. 414–425. ACM/IEEE,
1995. doi:10.1145/223982.224451.

Spector, B. F. and Re, C. Accelerating LLM inference
with staged speculative decoding. In Workshop on Ef-
ficient Systems for Foundation Models @ ICML2023,
2023. URL https://openreview.net/forum?
id=RKHF3VYjLK.

Sun, H., Chen, Z., Yang, X., Tian, Y., and Chen, B. Triforce:
Lossless acceleration of long sequence generation with
hierarchical speculative decoding. In Proc. Conference
on Language Modeling (COLM), 2024. URL https:
//openreview.net/forum?id=HVK6nl3i97.

Tay, Y., Dehghani, M., Bahri, D., and Metzler, D. Efficient
transformers: A survey. ACM Computing Surveys, 55(6),
2022. doi:10.1145/3530811.

Tenstorrent. Llama3 models. GitHub Repository, 2024a.
URL https://github.com/tenstorrent/
tt-metal/blob/v0.55.0-rc13/models/
demos/llama3/README.md.

Tenstorrent. TT-Metallium, 2024b. URL https://
tenstorrent.com/software/tt-metalium.

13

https://proceedings.mlr.press/v202/leviathan23a.html
https://proceedings.mlr.press/v202/leviathan23a.html
https://proceedings.mlr.press/v235/li24bt.html
https://proceedings.mlr.press/v235/li24bt.html
https://doi.org/10.1109/MICRO.1996.566464
https://doi.org/10.1145/3620666.3651335
https://doi.org/10.1017/S0963548311000757
https://doi.org/10.1145/3458817.3476209
https://openreview.net/forum?id=UINHuKeWUa
https://openreview.net/forum?id=UINHuKeWUa
https://proceedings.mlr.press/v202/poli23a.html
https://proceedings.mlr.press/v202/poli23a.html
https://doi.org/10.1007/BF01205181
https://doi.org/10.1109/MICRO.1997.645815
https://proceedings.neurips.cc/paper_files/paper/2018/file/d54e99a6c03704e95e6965532dec148b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/d54e99a6c03704e95e6965532dec148b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/d54e99a6c03704e95e6965532dec148b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/d54e99a6c03704e95e6965532dec148b-Paper.pdf
https://doi.org/10.48550/arXiv.1802.05799
https://doi.org/10.48550/arXiv.1909.08053
https://doi.org/10.1145/223982.224451
https://openreview.net/forum?id=RKHF3VYjLK
https://openreview.net/forum?id=RKHF3VYjLK
https://openreview.net/forum?id=HVK6nl3i97
https://openreview.net/forum?id=HVK6nl3i97
https://doi.org/10.1145/3530811
https://github.com/tenstorrent/tt-metal/blob/v0.55.0-rc13/models/demos/llama3/README.md
https://github.com/tenstorrent/tt-metal/blob/v0.55.0-rc13/models/demos/llama3/README.md
https://github.com/tenstorrent/tt-metal/blob/v0.55.0-rc13/models/demos/llama3/README.md
https://tenstorrent.com/software/tt-metalium
https://tenstorrent.com/software/tt-metalium


Attention-Level Speculation

Tenstorrent. TT-Metalium™ Guide, 2024c. URL https:
//github.com/tenstorrent/tt-metal/
blob/v0.55.0-rc13/METALIUM_GUIDE.md.

Thakur, R., Rabenseifner, R., and Gropp, W. Opti-
mization of collective communication operations in
MPICH. The International Journal of High Perfor-
mance Computing Applications, 19(1):49–66, 2005.
doi:10.1177/1094342005051521.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Ham-
bro, E., Azhar, F., Rodriguez, A., Joulin, A., Grave,
E., and Lample, G. Llama: Open and efficient
foundation language models. arXiv preprint, 2023.
doi:10.48550/arXiv.2302.13971.

Vasiljevic, J., Bajic, L., Capalija, D., Sokorac, S., Ignjatovic,
D., Bajic, L., Trajkovic, M., Hamer, I., Matosevic, I.,
Cejkov, A., Aydonat, U., Zhou, T., Gilani, S. Z., Paiva,
A., Chu, J., Maksimovic, D., Chin, S. A., Moudallal, Z.,
Rakhmati, A., Nijjar, S., Bhullar, A., Drazic, B., Lee,
C., Sun, J., Kwong, K.-M., Connolly, J., Dooley, M.,
Farooq, H., Chen, J. Y. T., Walker, M., Dabiri, K., Mabee,
K., Lal, R. S., Rajatheva, N., Retnamma, R., Karodi, S.,
Rosen, D., Munoz, E., Lewycky, A., Knezevic, A., Kim,
R., Rui, A., Drouillard, A., and Thompson, D. Compute
substrate for software 2.0. IEEE Micro, 41(2):50–55,
2021. doi:10.1109/MM.2021.3061912.

Xiao, G., Tian, Y., Chen, B., Han, S., and Lewis, M. Ef-
ficient streaming language models with attention sinks.
In Proc. International Conference on Learning Represen-
tations (ICLR), 2024. URL https://openreview.
net/forum?id=NG7sS51zVF.

Yang, A., Yang, B., Hui, B., Zheng, B., Yu, B., Zhou, C.,
Li, C., Li, C., Liu, D., Huang, F., Dong, G., Wei, H., Lin,
H., Tang, J., Wang, J., Yang, J., Tu, J., Zhang, J., Ma, J.,
Yang, J., Xu, J., Zhou, J., Bai, J., He, J., Lin, J., Dang,
K., Lu, K., Chen, K., Yang, K., Li, M., Xue, M., Ni, N.,
Zhang, P., Wang, P., Peng, R., Men, R., Gao, R., Lin,
R., Wang, S., Bai, S., Tan, S., Zhu, T., Li, T., Liu, T.,
Ge, W., Deng, X., Zhou, X., Ren, X., Zhang, X., Wei,
X., Ren, X., Liu, X., Fan, Y., Yao, Y., Zhang, Y., Wan,
Y., Chu, Y., Liu, Y., Cui, Z., Zhang, Z., Guo, Z., and
Fan, Z. Qwen2 technical report. arXiv preprint, 2024.
doi:10.48550/arXiv.2407.10671.

Ye, Z., Chen, L., Lai, R., Lin, W., Zhang, Y., Wang, S.,
Chen, T., Kasikci, B., Grover, V., Krishnamurthy, A.,
and Ceze, L. Flashinfer: Efficient and customizable
attention engine for llm inference serving. In Proc.
Conference on Machine Learning and Systems (MLSys),
2025. URL https://openreview.net/forum?
id=RXPofAsL8F.

Zheng, L., Yin, L., Xie, Z., Sun, C., Huang, J., Yu, C. H.,
Cao, S., Kozyrakis, C., Stoica, I., Gonzalez, J. E., Barrett,
C., and Sheng, Y. SGLang: Efficient execution of struc-
tured language model programs. In Proc. Conference
on Neural Information Processing Systems (NeurIPS),
2024. URL https://openreview.net/forum?
id=VqkAKQibpq.

14

https://github.com/tenstorrent/tt-metal/blob/v0.55.0-rc13/METALIUM_GUIDE.md
https://github.com/tenstorrent/tt-metal/blob/v0.55.0-rc13/METALIUM_GUIDE.md
https://github.com/tenstorrent/tt-metal/blob/v0.55.0-rc13/METALIUM_GUIDE.md
https://doi.org/10.1177/1094342005051521
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.1109/MM.2021.3061912
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF
https://doi.org/10.48550/arXiv.2407.10671
https://openreview.net/forum?id=RXPofAsL8F
https://openreview.net/forum?id=RXPofAsL8F
https://openreview.net/forum?id=VqkAKQibpq
https://openreview.net/forum?id=VqkAKQibpq


Attention-Level Speculation

A. A Proof for Verification Error Bound
Error bound on speculation steps is essential to rigorously quantify the trade-offs between efficiency and accuracy. Such
bounds ensure that the simplified model maintains acceptable performance levels while providing theoretical guarantees on
the maximum potential loss in accuracy.

We accept the speculated attention output when its value is close enough to the ground truth (i.e., within a threshold δ) in
some metric space. To find this appropriate metric space and its corresponding δ, however, requires search in an almost
infinite space if done empirically.

Instead, we frame the problem as follows:

On a model with M speculation points, given some metric d, for ϵ > 0, for each speculation point i ∈ 1...N , find threshold
δi such that for every ground truth hidden state Hi and speculated hidden state H̃i, if d(Hi, H̃i) < δi for all i, then the
distance between the final output d(HN , H̃N ) < ϵ.

To derive the relationship between δ and ϵ, we apply the Lipschitz regularity of neural network (Scaman & Virmaux, 2018).
We consider the Llama (Touvron et al., 2023) architecture, consists of layer normalization, self-attention, feed-forward
neural networks, and residual connections. When the self-attention output Ai is being speculated as Ãi, a verifier with
threshold δi guarantees d(Ai, Ãi) < δi, otherwise the speculation would be rejected.

A.1. Worst Case Error Bound

Since we are interested in bounding the error in Rn which is a Banach space, we denoted the distance function d(A,B) as
∥A−B∥p that is the p-norm of Rd. Note that the norm induced metrics are translation invariant in Banach spaces:

∥X − Y ∥ = ∥(X +A)− (Y +A)∥, ∀X,Y,A ∈ Rd

Those metrics also follow triangular inequality:

∥X − Y ∥+ ∥X − Z∥ ≤ ∥X − Z∥, ∀X,Y, Z ∈ Rd

Follow the same assumption as in Section 3.2, suppose that for each layer, the self-attention output speculation error is
bounded by ∥Ai − Ãi∥ < δi. Then we can easily obtain the bound for residual connections:

∥(Hi +Ai)− (Hi + Ãi)∥ = ∥Ai − Ãi∥ < δi

Following the residual connection of self-attention is the LayerNorm and MLP. Since both LayerNorm and MLP are
Lipschitz continuous, their composite is also Lipschizt continuous.

∥NormMLP (Ai)−NormMLP (Ãi))∥ ≤ αi∥Ai − Ãi∥

It follows ∥∥∥(Ai +NormMLP (Ai))−
(
Ãi +NormMLP (Ãi)

)∥∥∥
=
∥∥∥(Ai − Ãi) +

(
NormMLP (Ai))−NormMLP (Ãi)

)∥∥∥
≤
∥∥∥(Ai − Ãi)

∥∥∥+ ∥∥∥(NormMLP (Ai))−NormMLP (Ãi)
)∥∥∥

<δi + αiδi

=(1 + αi)δi

At the next speculation point (the self-attention in layer i+1) the non-speculative and speculative inputs are Hi+1 and H̃i+1

respectively. We denote self-attention outputs Ai+1, Ãi+1, and ˜̃Ai+1 as the non-speculative path output, speculative input
followed by non-speculative output, and speculative input followed by speculative output respectively. We note that to obtain
a bound for d(Ai+1,

˜̃Ai+1), we can once again apply triangular inequality of the metric space and the result from (Castin
et al., 2024), which the Lipschitz constant of self-attention, f(R), is a function of the input magnitude R:

∥Ai+1 − ˜̃Ai+1∥

≤ ∥Ai+1 − Ãi+1∥+ ∥Ãi+1 − ˜̃Ai+1∥
≤ f(R)∥Hi+1 − H̃i+1∥+ δi+1
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In general, let Hi and H̃i be the non-speculative and speculative input of layer i, and αi and βi be Lipschitz constants of
layer i, then:

∥Hi+1 − H̃i+1∥ ≤ (1 + αi)((1 + f(R)βi)∥Hi − H̃i∥δi)
where ∥H2 − H̃2∥ ≤ (1 + α1)δ1

(2)

Simplifying Equation by assuming the same upper bound α and β across all layers, we obtain the following relationship
between {δi} and ϵ:

ϵ = ∥HN − H̃N∥ ≤ ΣN
i=1(1 + α)N−i+1(1 + f(R)β)N−iδi (3)

A.2. Free choice of Lp and linear approximation of Equation 1

For any finite dimension Banach space, any two norms on the space are equivalent (≈). Here we show a simplified proof for
our norms Lp where 1 ≤ p ≤ ∞. Let x ∈ Rn and 1 < p < r <∞.
When x = 0⃗, this obviously holds. Consider x ̸= 0⃗. Then

∥x∥r =(

n∑
k=1

|xk|r)1/r

≥((max
k∈n
|xk|)r)1/r

=max
k∈n
|xk|

=∥x∥∞

Note that

∥x∥rr
∥x∥r∞

=

∑n
k=1 |xk|r

(maxi∈n |xi|)r

=

n∑
k=1

|xk|r

(maxi∈n |xi|)r

=

n∑
k=1

(
|xk|

(maxi∈n |xi|)
)r

≤
n∑

k=1

(
|xk|

(maxi∈n |xi|)
)p

=

n∑
k=1

|xk|p

(maxi∈n |xi|)p

=
∥x∥pp
∥x∥p∞

Which gives

∥x∥r = ∥x∥∞(
∥x∥rr
∥x∥r∞

)1/r ≤ ∥x∥∞(
∥x∥pp
∥x∥p∞

)1/r ≤ ∥x∥∞(
∥x∥pp
∥x∥p∞

)1/p = ∥x∥p

Note this holds for p, r > 0. We can use the same argument to show that ∥x∥p ≤ ∥x∥1. Also,

n∥x∥∞ =

n∑
k=1

max
i∈n
|xi|

≥
n∑

k=1

|xk|

=∥x∥1
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This shows that ∥x∥∞ ≤ ∥x∥r ≤ ∥x∥p ≤ ∥x∥1 ≤ n∥x∥∞. Using this fact, the choice of lp would at most differ by a
constant of n that only depends on the dimensionality but not the magnitude of the input vector.

When α and β are small, we can approximate the error bound linearly. We have that

ϵ ≤ΣN
i=1(1 + α)N−i+1(1 + f(R)β)N−iδi

=

N∑
i=1

N−i+1∑
j=0

(
N − i+ 1

j

)
αN−i+1−j

N−i∑
j=0

(
N − i

j

)
(f(R)β)N−i−j

 δi

≈
N∑
i=1

N−i+1∑
j=0

(
N − i

j

)
αN−i−j

N−i∑
j=0

(
N − i

j

)
(f(R)β)N−i−j

 δi

≈
N∑
i=1

(1 + (N − i)α) (1 + (N − i)f(R)β) δi

≈
N∑
i=1

(1 + (N − i)(α+ f(R)β)) δi

≈
(
N +

1

2
N2

)
(α+ f(R)β)δ

Which δ ≥ δi is an overall bound. This bound holds for the worst case; all errors are in the same direction. However, this is
highly unlike in practice and it has a dependence on N2. As a result, the threshold chosen using this bound for rejecting
speculation is too small and not useful.

A.3. High Probability Error Bound

However, with stronger assumptions, we can obtain a better error bound. Assume that the errors in the speculation rounds
are independent and follow some distribution with mean 0. In other words, the direction of the error will not be biased
towards any direction. By rejecting errors that exceeding some bound, we ensure that speculated results are bounded by the
ball centered on the ground truth x, with radius λ · ∥x∥. This is a martingale:

E[H̃i+1 −Hi+1|H̃i] = 0

With the causal softmax attention
H = V softmax(QKT )

The approximation is obtained as
Ã = QKT (:, B)

And
H̃ = V (B, :)softmax(Ã)

Where B is a subset of columns of KT . With the error being bounded:

∥Hi+1 − H̃i+1∥2 ≤ λ∥H̃i∥2

With Azuma-type inequality for Banach space-valued martingales (Naor, 2012), there exists some universal constant c > 0
such that.

P(∥H̃N −HN∥2 ≥ ϵ) ≤ e4 · exp

(
− cϵ2∑N

i=1 λ
2∥H̃i∥22

)

Rearranging the equation, with probability δ ∈ (0, 1), we have

ϵ ≤

√
(4− log δ)λ2

∑N
i=1 ∥H̃i∥22

c
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Choose δ = 0.05, with some addition assumption that ∥Hi∥2 are “on the same scale” due to layer norm, we replace them
with a universal constant ∥H∥2. Now with probability 95%,

∥H̃N −HN∥2 ≤
√

(4− log 0.05)λ2N∥H∥22
c

∥H̃N −HN∥2
∥H∥2

≤λ
√

7N

c

This bound has much better dependence on N which is the total number of speculations than the last bound. However,
it relies on unbiased assumption on speculation error that is yet to be proved. In practice, λ = 0.1 worked well in varies
benchmarks and this bound is much closer to 0.1.
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B. Speculative Flash Decode Algorithm
The speculative flash decode algorithm builds upon the standard Flash Attention 2 (Dao, 2024). In the scope of this work,
we only consider the forward pass for inference application. During the decode stage, the activation query matrix (Q), with
sequence length 1, is very small and fits into the on-chip SRAM. The keys (K) and values (V) matices, particularly at
large context length, are large and can only live in the slower DRAM. In flash decode, input Q is replicated across parallel
workers and each worker computes partial attention output (with local statistics) using a portion of K and V by running
the standard flash attention algorithm with chunk size S. Next, the partial outputs are gathered and reduced on the reducer
worker using the local statistics by applying the online softmax trick. In the extreme case of having only a single worker,
flash decode is the same as flash attention. In the algorithm below, we skip the details of how flash attention is computed and
we simply call O,m,l = flash attention(Q,K,V) to obtain the partial output O and statistics m & l.

Speculative flash decode builds upon the flash decode algorithm with a few modifications. The kernel consists of the sender,
which computes the full and speculative attention outputs, and the receiver, which waits for the speculative results to arrive.
First, one (or two) of the workers compute the partial output using first and last chunk of K and V, which the result serves
as the speculated attention output. Then, the worker continues to finish the rest of its own assigned K and V chunks. Finally,
the reducer worker computes the full output using the partial outputs from each worker and the speculative output. We show
speculative flash decode in Algorithm 3 below:

Algorithm 3 Speculative Flash Decode (forward pass for inference)

1: Require:
2: nworkers: total number of parallel workers
3: m: total number of chunks
4: Q: query of size 1× d (fits in on-chip SRAM)
5: {K1, . . . ,Km}: key chunks in DRAM
6: {V1, . . . ,Vm}: value chunks in DRAM
7: Routines:
8: flash attention(Q, [K], [V])→ (O,m, l)
9: send to receiver(·), send to output worker(·)

10: online softmax combine(·)
11: // SENDER (run on each worker)
12: chunks per worker← ⌈m/nworkers⌉
13: assigned chunks← range of chunk indices for this worker, excluding 1 and m
14: if worker id = 1 then
15: (Os,ms, ls)← flash attention

(
Q, [K1,Km], [V1,Vm]

)
{Speculative output}

16: send to receiver(Os)
17: send to output worker(Os,ms, ls)
18: end if
19: (O(i),m(i), l(i))← flash attention

(
Q, [Kj | j ∈ assigned chunks], [Vj | j ∈ assigned chunks]

)
20: send to output worker(O(i),m(i), l(i))

21: // OUTPUT WORKER (on sender)
22: Gather all partial outputs (O(i),m(i), l(i)) from each worker
23: Gather speculative (Os,ms, ls) from worker 1
24: (O,m, l)← online softmax combine

(
{(O(i),m(i), l(i))}nworkers

i=1 ∪ {(Os,ms, ls)}
)

25: return O

26: // RECEIVER
27: wait for speculative output Os to arrive from worker 1
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C. Tenstorrent N150 Chips Specification and Tenstorrent Metalium (TT-Metalium) Framework
C.1. Tenstorrent Overview

Tenstorrent specializes in high-performance computing solutions for artificial intelligence (AI) and machine learning (ML)
workloads. Their primary focus is on designing innovative hardware accelerators and software frameworks that enable
efficient inference and training of deep learning models. By leveraging custom processor architectures optimized for AI
workloads, Tenstorrent aims to push the boundaries of energy efficiency and computational throughput.

C.2. N150 Wormhole Chips

The N150 Wormhole chip is an AI accelerator designed for High Performance Computing (HPC) applications such as high-
throughput and low-latency machine learning inference. These chips are designed to be highly flexible and scalable. Each
chip contains a mesh of 72 TensixTM compute cores connected via 2 network-on-chip (NOCs), offering 262 Tera-FLOPs of
FP8 performance. Moreover, with on-board ethernet, N150 chips can be interconnected in various topologies consisting of
2, 4, 8, and 32 N150 devices.

Figure 9. Architecture of a GraySkullTM device, the predecessor to the WormholeTM. Image taken from (Tenstorrent, 2024c).

C.3. TensixTM Core

The TensixTM core is a crucial building block on the Wormhole device. It consists of 5 small RISC-V processors (also
known as Baby RISCVs), that handle compute, data movement, and dispatch of instructions. For compute, a Matrix Engine
(FPU) is used to perform various binary operations on small 32x32 matrices (known as tiles), such matrix-multiplication,
dot-product, and other element-wise operations. Alongside, a Vector engine (SPU) is used for special operations such as
GELU, exponential, and sqrt. For memory, each core has access to 1.5MB of high-bandwidth SRAM (L1) as well as
12GB of GDDR6 off-chip DRAM. A Data movement engine is also available on each core, connected to 2 NOCs. By
creating a mesh of cores via these NOCs, the N150 provides access to a high capacity of 108 MB of SRAM, allowing for
the TensixTM cores to operate at “silicon peak” performance. To allow users to leverage the powerful capabilities of the
N150 chip, Tenstorrent has developed a low-level kernel library: TT-Metalium (Tenstorrent, 2024c).

C.4. TT-Metalium

TT-Metalium, also known as TT-Metalium, is an open-source low-level kernel operations library that allows users to enable
high-performance machine learning applications on Tenstorrent hardware, such as the N150 chip. At a fundamental level,
TT-Metalium assigns a 1:1 mapping between each TensixTM core and a thread, discarding the need for complex thread
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scheduling. Using TT-Metalium, users can leverage bare-metal programming to write kernels in C/C++ that run directly
on each TensixTM core and perform computation on tilized input tensors. With the fine-grained control enabled by the
TT-Metalium framework, the mesh of TensixTM cores on the N150 chip can be leveraged in a robust and powerful manner,
overall supporting highly intensive machine learning workloads.

C.5. Kernel programming with TT-Metalium

Programming a TensixTM core on TT-Metalium mainly consists of writing three kernels – a reader, writer, and compute.
There are other advanced types of kernels available, such as dispatch and ethernet data movement kernels, however, they are
not relevant to the user when bringing up general operations, and can be accessed via an abstraction layer. To implement an
operation, the reader kernel is programmed to read data from L1 or DRAM memory and pass it off to the compute kernel
via local buffers in L1. After the compute kernel has completed the operation (using the FPU/SFU), it packs out the data
into another local buffer, where it is then accessed by the writer kernel. The writer kernel is responsible for formatting the
data as required and providing outputs either in L1 or DRAM. As these three kernels run in parallel, there is native support
for overlapping data movement with computation, where the reader/writer kernel can transfer data while the compute kernel
is busy. It is also important to note that the compute kernel only supports tilized inputs to maximize utilization, and as such,
the reader/writer kernels must format input tensors in this manner. Moreover, a set of data movement APIs, that leverage the
NOC, are available inside each reader/writer kernel, allowing each core to access the L1 memory of any other core. Putting
all of this together, TT-Metalium can be used to create efficient data patterns across the N150 chip, resulting in powerful
implementations of operations used in machine learning.

Figure 10. The workflow of a TensixTM core. Image taken from (Tenstorrent, 2024c).

C.6. TT-NN and Execution Paradigm

Powered by TT-Metalium in the background, TT-NN is a user-friendly library implemented in Python that enables fast
bring-up of machine learning models without sacrificing performance. It provides easy-to-use APIs to perform machine
learning operations on N-dimensional tensors, similarly to PyTorch. Additionally, TT-Metalium objects such as a Multi-
Device tensor are exposed in TT-NN, allowing users to easily implement algorithms and paradigms that span multiple N150
chips and leverage distributed computing. When running models implemented in TT-NN, operations are dispatched by the
host and scheduled to run on Tenstorrent hardware via the PCIe link. Once results are ready on device, they are sent back to
the host.
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D. Speculative Flash Decode Implementation on TT-Metalium
We implement the speculative flash decode kernel on TT-Metalium based on the existing flash decode kernel implemen-
tation (Cai, 2024). All kernels on TT-Metalium are programmed directly on the TensixTM cores to take advantage of the
parallelism and tile-based granularity offered by the hardware. Each N150 chips consists of 64 worker cores and math is
done on tiles with size 32× 32. In the case of flash decode, we parallelize the batch and key/value heads across the cores,
and put the query heads (usually ≤ 32) within a tile.

We illustrate this idea using Llama 3.1 8B’s group query attention, which contains 32 query heads and 8 k/v heads,
with head dimension 128. Assuming batch 1, during decode, query has sequence length of 1 so the shape of Q is
[S = 1, B = 1, H = 32, D = 128], and the shape of shape of K and V are [B = 1, H = 8, S,D = 128]. In this case, we
parallelize the k/v heads across the 64 cores, with 8 cores per head. Each of the 8 cores then each takes a chunk of K and V
fractured in the sequence length dimension and run the speculative flash decode algorithm (Appendix B). We illustrate the
implementation in Figure 11:

Core/Work Assignment

First 
chunk

Last 
chunk

…

Key Value Cache

Head 1

Head 2

Head 8
…

s/w r/w w w

…

CCL

s/w r/w w w

s/w r/w w w

1. Speculative portion finishes

s/w r/w w w

…

CCL

s/w r/w w w

s/w r/w w w

Write via NOC

Semaphore INC

Write via Ethernet

Sender Chip

CCL core (inter-chip 
communication)

Speculate
/worker

Reduce    
/worker

worker worker

CCL

Receiver 
Chip

2. All worker finishes, do reduction step

s/w r/w w w

s/w r/w w w

s/w r/w w w

…

…

…

3. Reducer do verification and update priority tensor

Figure 11. Speculative flash decode implementation on TT-Metalium. Each k/v head is split across 8 cores in the sequence length
dimension. For each head, one core computes speculative and partial attention output, one core computes partial attention output and
reduction, and the rest of the cores computes partial attention output only. When speculative results is finish, the worker core signals the
CCL core to send result to the receiver chip via ethernet link. The rest follows the standard flash decode implementation, where partial
outputs are gathered and reduced on the reduction core. In the end, we fused the verification step and update the priority vector.

Overall, speculative flash decode yields almost no overhead compared to standard flash decode in our performance
measurement. The speculative portion computes towards the final output, and communication across chip is done on separate
core via ethernet. When parallelizing attention across multiple devices using tensor parallelism, we split the k/v heads across
the chip so that each head gets more workers per head. For example, splitting onto 2 chips gives 4 k/v heads per chip, and
split across 8 chips gives 1 k/v head per chip. In practice, parallelizing across the heads yields diminishing returns when
each chip receives “too little” work. In the case of having all 64 cores computing a single head, the bottleneck is NOC rather
than compute due to the NOC transactions at the reduction step. For this reason, we see diminishing returns when scaling to
8 devices doing full tensor parallelism, and a better alternative would be doing 4 device tensor parallelism + ALSpec for
scaling up to 8 devices. Figure 12 demonstrates speculative flash decode, sender & receiver side kernel durations, across
context length for tensor parallel Llama 3.1 8B attention across 1,2,4 & 8 devices with chunk size {128, 256, 512}.
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Llama 3.1 8B Attention with Speculative Flash Decode
Chunk Size 128 Chunk Size 256 Chunk Size 512

Figure 12. Speculative flash decode kernel duration for Llama 3.1 8B shape with chunk size {128, 256, 512}.
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E. SGDC with Priority Gating Implementation on TT-Metalium
The static graph dynamic concurrency (SGDC) paradigm, refers to having a static operation graph generated by the host
but having the devices execute concurrently based on a function, which in our case is the priority gating mechanism. For
the speculative flash decode algorithm, the dynamic concurrency comes in the form of % speculation acceptance and the
resulting overlap between attention and post-attention operations, which varies layer-to-layer and token-to-token. To support
this paradigm, we made a change to the run-time behavior of the TT-Metalium framework.

We leverage the fact that any kernel for any operation (data movement, compute, ethernet) in TT-Metalium is launched
through a small set of C++ kernel source code files. By passing a flag at the build stage of these kernel source code files, we
can control the behaviour of the kernel launch stage. At the start of model execution, we create a multi-device priority vector
‘p‘, where each device tensor contains the device’s priority. This tensor will have the same lifetime as the entire model and is
used as the gating mechanism. Then, we pass the base memory address of this tensor to the kernel source code files using a
C++ define, SKIP COMPUTE. When a kernel is launched, it first passes through the kernel source code, where the address
specified by SKIP COMPUTE is used to check whether the kernel should be launched. As described in the paper, if the
priority of the device is 0, then the operation will be skipped. Note, the ability to use the SKIP COMPUTE can be toggled
by adding/removing the define from the build arguments of the kernel files. We make sure to remove the define before
running the speculative flash decode kernel, so as to not skip this operation.

Using this mechanism, we can enable the behaviour described by scenario 3 in Figure 5. When device 1 is a sender device
and finds that the speculated result is correct within a certain threshold, it can completely skip the post-attention operations
using the SKIP COMPUTE flag, relying on the concurrent computation performed on device 2. When viewed from the host,
this results in a static operation graph, however at the device level, we have achieved dynamic concurrency.

Sequence Length

Ti
m

e 
[m

s]

0

1

2

3

4

1k 8k 16k 32k 64k 128k

FD + MLP SFD @ 100% + MLP

Flash Decode + MLP vs Speculative Flash Decode + MLP

Figure 13. End-to-end performance using Llama3.1 8b shapes for Flash decode followed by MLP, compared to Speculative Flash Decode
at 100% specualation followed by MLP. For FD one device is used and for SFD two devices are used.
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F. Llama 3.1 8B Implementation on TT-Metalium and Performance Estimation
TT-Metalium supports native mixed precision computation at 4 different data formats on N150 chips: float32, Block Floating
Point (bfloat) 16, bfloat8 b, and bfloat4 b. These data formats can be used interchangeably within the model execution to
opportunistically speed up computation when full precision is not required. In Llama 3.1 8B’s implementation, 4/8-bit
feedforward weights and 8-bit precision KV cache has been used to reduce memory bottleneck, while operations sensitive
to precision, such as rotary embedding, are performed in full or half precisions. To ensure correctness, op, module, and
model level unit tests are performed to ensure output quality. Specifically, Pearson Correlation Coefficient (PCC) and top
1/5 scores has been used as common metrics in unit tests. Generally, quantization is applied to models only if the PCC
score is above 0.99 and top 1/5 scores are above 0.9/0.99. The empirically verified strict thresholds ensure that the model
benefits as much as it can from the mixed-precision inference without hurting the output quality. Therefore, to ensure our
performance estimation of ALSpec matches and benefits the existing Llama model implementations on TT-Metalium, we
use the default mixed-precision models brought up on the repository (Tenstorrent, 2024a).

We estimate the pure device performance of the Llama 3.1 8B model during decode phase using the following method:

• We measure the kernel latency (Device FW Duration) of the operations within a single decoder layer, excluding the
flash decode op. We call this per layer latency.

• We also measure the kernel latency of operations outside the decode (embedding and LM-head ops). We call this
fixed latency.

• We sweep the latency of flash decode and speculative flash decode op across context length, from 1K to 128K. We
denote the latency FD(K) and SFD(K) for the latency at context length K.

• For speculative flash decode, we record both the sender (SFDS(K)) and receiver (SFDR(K)) kernel latency.

• We repeat the measurement on 1, 2, 4 and 8 devices tensor parallelism.

For decode phase, the input is always the same shape, but only the KV cache gets longer as the context length increase. In the
Llama 3 implementation, the only operation that changes latency with respect to context length is the flash decode operation.
Therefore, with 32 layers in the Llama 3.1 8B model, we can obtain the token latency and tokens/s/user throughput (1/(token
latency)) at context length K using the following formula for full tensor parallelism:

token latency = fixed latency + 32 · (per layer latency + FD(K))

To estimate the token latency at a particular speculation hit rate r 5, we use the following formula:

token latency = fixed latency + ⌊32 · r⌋
(
SFDR(K) + max(SFDS(K)− SFDR(K), per layer latency)

)
+ ⌈32 · (1− r)⌉ ·

(
per layer latency + SFDS(K)

)
In short, this formula takes the overlapped attention latency when speculation hits, and full layer latency when speculation
misses. It serves as an upper bound for latency because we always round down for the number of layers with speculation
hits 6.

We present the full latency breakdown for per layer latency and fixed latency across 1, 2, 4 and 8 devices tensor parallel in
Table 4, 5, 6, & 7. One can verify the estimation in Figure 7 based on the table and the speculative flash decode latency
in Figure 12. The latency breakdown also shows how diminishing returns happen with tensor parallelism, while compute
operations such as matmul get lower latency when parallelized to more devices, CCL operation latency such as all-gather
increases, making the overall latency reduction minimal.

5Note that in our measurement, we take r as a multiple of 1/32 to ensure that full layers are doing speculation.
6This formula doesn’t account for the last attention speculation, which should overlap with the fixed latency (LM Head). We are aware

of this limitation and we use the formula for its simplicity. In the amortized case of running multiple token generation, this approximation
holds as the final attention can overlap with the pre-attention ops of the next token.
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Table 4. Llama 3.1 8B latency break down on 1 x N150 chip
Per Layer

OP CODE DEVICE FW Duration [ns]

LayerNorm 12454
Matmul 109174
ShardedToInterleaved 4299
NLPCreateHeadsDecode 21048
RotaryEmbeddingLlama 4828
RotaryEmbeddingLlama 4827
PagedUpdateCache 13166
PagedUpdateCache 13049
ScaledDotProductAttentionDecode 69853
InterleavedToSharded 1701
NLPConcatHeadsDecode 3055
Matmul 76389
Binary 1823
LayerNorm 12487
Matmul 141261
Matmul 141772
Binary 30204
Matmul 252556
Binary 2654

Total / Layer without flash decode 846747

Embedding & Lm Head
OP CODE DEVICE FW Duration [ns]

Embeddings 5745
Embeddings 5639
Transpose 13808
Transpose 13512
Slice 2091
Slice 2089
InterleavedToSharded 1694
InterleavedToSharded 1759
Reshard 3386
LayerNorm 13243
Matmul 546986
ShardedToInterleaved 9003
Matmul 545955
ShardedToInterleaved 8833
Matmul 545707
ShardedToInterleaved 8944
Matmul 547068
ShardedToInterleaved 9055
Concat 29186

Total LM Head 2313703

Table 5. Llama 3.1 8B latency break down on Tensor Parallel 2 x N150 chips.
Per Layer Context Length 1K

OP CODE DEVICE FW Duration [ns]

AllGather 19567
LayerNorm 12471
Matmul 56690
ShardedToInterleaved 2541
NLPCreateHeadsDecode 10972
RotaryEmbeddingLlama 4834
RotaryEmbeddingLlama 4820
PagedUpdateCache 8447
PagedUpdateCache 8383
ScaledDotProductAttentionDecode 64309
InterleavedToSharded 1833
NLPConcatHeadsDecode 2320
Matmul 41730
ReduceScatter 21842
Binary 1621
AllGather 20887
LayerNorm 12486
Matmul 76942
Matmul 77430
Binary 16543
Matmul 128695
ReduceScatter 19108
Reshard 3233
Binary 1620

Total / Layer without flash decode 555015

Embedding & Lm Head
OP CODE DEVICE FW Duration [ns]

Embeddings 5549
Embeddings 5767
Transpose 13570
Transpose 13590
Slice 2094
Slice 2222
InterleavedToSharded 1748
InterleavedToSharded 1701
AllGather 20607
LayerNorm 12931
Matmul 546309
ShardedToInterleaved 8779
Matmul 546729
ShardedToInterleaved 8992
Concat 17048

Total LM Head 1207636
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Table 6. Llama 3.1 8B latency breakdown on Tensor Parallel 4 x N150 chips.
Per Layer

OP CODE DEVICE FW Duration [ns]

AllGather 22378
LayerNorm 12485
Matmul 39022
ShardedToInterleaved 2057
NLPCreateHeadsDecode 6269
RotaryEmbeddingLlama 4837
RotaryEmbeddingLlama 4834
PagedUpdateCache 6260
PagedUpdateCache 6342
ScaledDotProductAttentionDecode 56024
InterleavedToSharded 1694
NLPConcatHeadsDecode 1955
Matmul 24505
ReduceScatter 24753
Binary 1517
AllGather 22055
LayerNorm 13423
Matmul 39711
Matmul 39791
Binary 15800
Matmul 68424
ReduceScatter 24764
Reshard 3212
Binary 1496

Total / Layer without flash decode 387584

Embedding & Lm Head
OP CODE DEVICE FW Duration [ns]

Embeddings 5622
Embeddings 5767
Transpose 13328
Transpose 13585
Slice 2088
Slice 2193
InterleavedToSharded 1795
InterleavedToSharded 1703
AllGather 24259
LayerNorm 12906
Matmul 546508
ShardedToInterleaved 8775

Total LM Head 638529

Table 7. Llama 3.1 8B latency breakdown Tensor Parallel on 8 x N150 chip.
Per Layer

OP CODE DEVICE FW Duration [ns]

AllGather 34069
LayerNorm 12507
Matmul 35745
ShardedToInterleaved 1620
NLPCreateHeadsDecode 3976
RotaryEmbeddingLlama 4839
RotaryEmbeddingLlama 4837
PagedUpdateCache 5007
PagedUpdateCache 5078
ScaledDotProductAttentionDecode 50096
InterleavedToSharded 1708
NLPConcatHeadsDecode 1774
Reshard 2274
AllGatherMatmul 88825
Reshard 2847
Binary 1464
AllGather 54386
LayerNorm 15771
Matmul 22705
Matmul 22899
Binary 15804
Matmul 38486
ReduceScatter 59572
Reshard 2817
Binary 1441

Total / Layer without flash decode 440451

Embedding & Lm Head
OP CODE DEVICE FW Duration [ns]

Embeddings 5641
Embeddings 5607
Transpose 13717
Transpose 13680
Slice 2095
Slice 2092
InterleavedToSharded 1707
InterleavedToSharded 1726
AllGather 43463
LayerNorm 12909
Matmul 276107
ShardedToInterleaved 5716

Total LM Head 384460
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G. Section 2 Needle in a Haystack Experiment Details
The tiny needle in a haystack experiment is served as a motivational experiment rather than a rigorous benchmark. It is
conducted on a custom dataset created with the following method:

• First, we create a large context using the text of the paper “Compute Substrate for Software 2.0” (Vasiljevic et al., 2021)
and the first 4 chapters of the book “A Tale of the Two Cities” by Charles Dickens. This makes the total context length
around 16K.

• Then, we generate 7 random MD5 hashes and insert at random places in the text.

• To ensure the result is not biased towards hash strings, we make up 3 random facts and insert at random places in the
text.

We then prompt the model with the following questions after the context:

• Start with text “Answer the following questions if you can. If you don’t know the answer, answer I don’t know.”

• Then, we put questions about fact 1, 2, and 3.

• In the end, we ask the model to repeat hashes 1-7.
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