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A Performance Model for Disintegrated Manycores

Jiaxiang Li, Mark C. Jeffrey, and Natalie Enright Jerger

Abstract—Chiplet-based architectures are being adopted to im-
prove manufacturing yield and reduce system cost. Unfortunately,
disintegration from a monolithic system to a chiplet-based one
hurts performance, as inter-chiplet links are typically slower than
on-chip links. We propose the first analytical model to derive
chiplet performance from the monolithic design’s performance.
We focus on modeling the impact of inter-chiplet interconnection
to explore different system-level configurations. We validate our
model with gem5 using an average error rate of 5.4%.

Index Terms—Chiplets, analytical models

I. INTRODUCTION

ODERN high-performance monolithic chips are ap-
M proaching the reticle limit. Large monolithic chips have
lower manufacturing yields, resulting in higher costs. Breaking
one large chip into multiple smaller chiplets improves yield
and reduces cost. One chiplet design can also be reused across
different product lines, which amortizes design costs. Due
to these advantages, chiplet-based designs are being widely
adopted by multiple companies, such as Intel [1] and AMD [2].

Although chiplets improve manufacturing for large systems,
they introduce performance penalties compared to monolithic
designs. Inter-chiplet links have longer latencies and lower
bandwidths compared to on-chip network links, which hurt the
performance of inter-chiplet packets. Simulation-based studies
demonstrate that these packet penalties variably hurt total
run time across different workloads [3]. However, simulation
approaches are limited in the number of workloads and con-
figurations they can evaluate due to long simulation times.
Hence, we need a straightforward approach to quickly reason
about chiplet performance at a high level. Such an approach
helps hardware engineers do early stage design exploration and
software engineers optimize programs for chiplet systems.

Analytical models help us understand the impact of different
design choices on the system’s performance and enable rapid
design-space exploration. We propose an analytical model
for CPU chiplet systems to model the performance penalty
introduced by the slow inter-chiplet links. Our model reduces
the total simulation time from O(mn) to O(m) to evaluate
m workloads on n different configurations. Considering the
combination of different chiplet sizes and inter-chiplet link
configurations, n can be a large number. We validate our model
against simulation and the results show an average error rate
of 5.4% across 8 Splash-4 workloads [4] running on 64 cores.
We also present a performance-per-cost exploration case study
combining our model and an existing chiplet cost model.

II. BACKGROUND AND MOTIVATION

Chiplet-based design can improve yield and reduce cost.
Multiple small chips are integrated together and connected by
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Fig. 1. Comparing 64-core monolithic and chiplet-based systems.
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Fig. 2. (a) Normalized workload runtime across different chiplet size
configurations on the x-axis (num chips, cores per chip). (b) An example
Top-Down breakdown where chiplets increase backend-bound cyles.

advanced packaging technology, such as an MCM, interposer,
etc. Fig. 1 shows a 64-core monolithic chip split into 16 4-core
chiplets. This approach achieves comparable system scale at a
lower cost. However, package-level interconnects do not have
equivalent latency and bandwidth as on-chip interconnects,
leading to a performance penalty for chiplets.

As chiplet-based designs proliferate, it is important to under-
stand the chiplet performance penalty. Prior work [3] simulates
and correlates the performance degradation of running 29
benchmarks on two specific chiplet configurations, but is
costly to extend to other workloads and configurations. Fig. 2a
shows the runtime of Water and Cholesky from Splash-4 [4]
under different configurations (see Sec. IV for methodology).
We vary the chiplet row and column sizes between 2, 4, and
8. Each data point in Fig. 2a is labeled by the corresponding
chiplet size configuration. For example, (4, 16) implies 4
chiplets with 16 cores per chiplet. For each chiplet size
configuration, there can be multiple ways to split the system
and Fig. 2a shows a (4, 16) system split in 3 different ways.

Under all configurations, Cholesky exhibits greater slow-
down than Water—up to > 40% for Cholesky vs. < 20%
for Water. They also show different sensitivity to the chiplet
configuration. For the same chiplet sizes, Water shows con-
sistent runtimes. However, for Cholesky, different chiplet
configurations lead to significantly different runtimes, even
when the size of chiplets is the same. These results show that
the chiplet performance penalty cannot be explained by one
or two factors. We need a systematic approach to understand
and explain the chiplet performance penalty.
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A. Motivation

An analytical performance model is a good candidate to
understand performance penalties as it describes the hardware
at a high level of abstraction [5], [6]. Traditionally, NoC
analytical models use queueing theory [7]. These NoC models
can be extended for chiplets, but they focus on packet latency
and not workload runtimes. Moreover, applying this method
to chiplets would be complex, due to the heterogeneity of
on-chip and inter-chiplet links, and would require low-level
details, like buffer sizes and traffic arrival rates.

A simple, high-level model would compare relative perfor-
mance of chiplet and monolithic designs. We leverage the
Top-Down method [8] for workload profiles. Fig. 2b shows
an illustrative Top-Down breakdown of how cores spend their
time (issue slots) across four top-level categories: (i) retiring,
(ii) mispeculating, or stalled on the (iii) frontend or (iv) back-
end. By determining the extent to which parts are impacted
by chiplets, we can calculate the relative performance of
chiplet architectures. Assuming monolithic and chiplet-based
multi-core designs share the same core IP, the CPU cycles
associated with frontend, bad speculation, and retiring should
remain the same. Hence, for a chiplet performance model that
aims to derive chiplet performance from the performance of
the monolith, the program runtime increase is approximately
the increase of backend-bound CPU cycles. Within backend-
bound cycles, the store-bound and L1 cache-bound cycles
should also be the same, as this part of the traffic is still
within a core and equivalent to the monolithic design. Based
on this insight, our proposed model derives the ratio of chiplet
performance (1) to monolith performance (7).

III. THE ANALYTICAL MODEL

In this section, we describe our model. Table I shows the
assumptions we make for the model. Our model supports
homogeneous chiplet systems but does not apply to heteroge-
neous chiplets. We use subscripts ¢ and m to represent terms
for chiplets and monoliths. For example, 7, and 7;,, represent
the workload runtimes on chiplet and monolithic systems.

A. How chiplets impact the latency of a packet

The NoC packet latency can be calculated as Tpqcker =
Twire + Trouter + Teontention- The chiplet-induced increase in
packet latency is therefore

ATpack‘et = Tpacket,c - Tpacket,m

= Twire7c - Twire,m + Trouter,c - Troutenm

+ Tcontention,c - Tcontention,m

- Twire,m (1)

where the final step follows from Assum. 4 and Assum. 6:
for a given packet, Touter and Teontention Would not change
from a monolith to a chiplet system. The wire latency for a
packet that traverses h hops on a monolith is

Twire,m(h) - Lo -h + S/Bo (2)

- Twire,c

where L, is the per-hop latency to traverse an on-chip link, B,
is the bandwidth of the link, and S is the size of the packet.

TABLE I
LIST OF ASSUMPTIONS

All chiplet and monolithic designs share the same core IP design and have the
same number of cores.

The thread-to-core mapping is the same. We do not explore the impact of
chiplet-specific mapping.

Cores are connected with the same mesh topology for chiplet and monolithic
systems. We leave different chiplet topology comparisons as the future work.
Both on-chip and inter-chiplet links have the same bandwidth while inter-chiplet
links have longer per-hop latency.

The total cycles the application is stalled by the interconnection is proportional to
the average packet latency.

The interconnection networks operate in the non-saturation region and the change
to Teontention 1S negligible.

1)
()
3)
“)

5

=

(6)

The same packet on a chiplet system traverses h, on-chip
links and h. inter-chiplet links. The latter have higher per-
hop latency (L.) and lower bandwidth (B.). The serialization
latency is bounded by the bottleneck link along the path:

Twire,c(hm hc) = Loho + Lchc + S/min(Boa Bc) (3)

Assum. 2 and Assum. 3 imply that h, + h. = h. Therefore,
combining Eq. 1, Eq. 2, and Eq. 3:

ATpack‘et(ho: hc) = Twire,c(hm hc) - Twire,m(ho + hc)
=(Le—Lo) - he+S-(B;' =B )
= (Lc - Lo) : hc (4)

The final step above follows from Assum. 4: B, = B,.

B. How chiplets impact the communication part of a workload

Chiplets potentially increase the time that cores stall on
shared-memory communication. For a given workload, this
communication comprises multiple packets that traverse the
NoC or inter-chiplet network. These packets have different
chiplet hop counts (h.) and sizes, which are determined by
both workload and topology. Given Assum. 5, the increase
in cycles stalled due to the network depends on the average
packet latency for the monolith and chiplet, or specifically:

E[ATpack’et] = Ethr[hc] : ATpacket(hc)
=35, Pr[he] - (Le — Lo) - he
= (L.— L,) - E[h.] (®)]

where the expectation sums over the set of inter-chiplet hop
counts that could be taken by all packets, and Pr[h.] accounts
for the fraction of packets that traverse exactly h,. inter-chiplet
links. In other words, the average chiplet-induced increase in
packet latency is simply a linear function of the difference
in link latency, depending on the workload’s average packet
chiplet hop count (E[h,]). Calculating E[h.] requires the work-
load’s node-to-node traffic distribution. Given Assum. 2, the
traffic distribution should be the same across monolithic and
chiplet systems. The traffic distribution for the monolith can
be collected either through simulation or software profiling.

C. How chiplets impact workload runtime

We now model the normalized chiplet-induced increase
in runtime, i.e., YTC , naively assuming the program uses no
synchronization. We relax that assumption in Sec. III-D. We

use the Top-Down runtime breakdown [8] to quantify the
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CPU stall cycles that may be increased by chiplets. Follow-
ing Assum. 1 and Sec. II-A, the affected cycles are those that
potentially stall on inter-chiplet packets: L2-cache-bound, L3-
cache-bound (if applicable), and memory-bound cycles. We
aggregate these three stall types into combined interconnect-
bound (itcn) cycles.

As distinguished by the top grey bars of Fig. 2b, the
runtime of a workload comprises interconnect-bound and non-
interconnect-bound cycles, averaged across threads.

Tm = E[Titcn,m] + ]E[Tﬂitcn,m]
TC = E[ﬂtcn,c] + E[T—\itcn,c]

With Assum. 1 and no synchronization, E[T ey ] and
E[T-itcn,c) are the same. The performance difference should
arise from interconnect-bound cycles:

Tc - Tm = E[ntcn,c] - E[Titcn,m] (6)

Following Assum. 5 and substituting Eq. 5,

E[Eten,c] _ E[Tpacket,c} _ ]E[Tpacket,m] +E[ATpacket]
E[Titcn,M] E[Tpacket,m] E[Tpacket,m]
L.—L,)-Elh.
=1+ M (7
]E[Tpack:et,m]
Let fiten,m = % be the fraction of total workload

time spent stalled on interconnect-bound cycles by the mono-

lith. Let cjen, = % Then, combining Eq. 6 and Eq. 7,

the relative increase in workload runtime on the chiplet is

Tc o E[T‘itcn,c] E[Titcn,m] _
Tm = 1 + Tm - Tm — ]- + fztcn,m (aztcn - ]-)
(Lc — LO) ) ]E[hc}
1 o o) Pl ®)
f fen, E[Tpacket,m]

In words, Eq. 8 scales the monolith-normalized increase
in average packet latency (the fraction term) by the ratio of
time a monolith’s cores stall on interconnect-bound cycles
(fiten,m)- Elhe), E[Tpacket,m)s and fiien m are empirically
measured through simulation or profiling each workload on the
monolithic system. The difference in link latencies is constant.

D. How synchronization impacts workload runtime

Sec. III-C naively assumes the workload does not use
synchronization but this can underestimate the performance
degradation of chiplets. Load imbalance or high contention
causes some threads to wait at a barrier or on a lock,
respectively. For example, Fig. 3 shows four threads using
one lock to grant exclusive access to a critical section. Thread
1 acquires the lock first, then runs other thread-private code
afterward. It would likely stall with interconnect-bound cycles
for lock acquire (transfer), accesses to shared mutable data,
and lock release. Meanwhile, the other threads wait on the
lock. With local' spinning synchronization, most cycles spent
waiting are accounted in the Top-Down method as retiring
or L1-bound stalls; with blocking synchronization, the thread
yields. In both cases, a thread’s waiting will not be counted
as interconnect-bound cycles.

'E.g., test-and-test-and-set instead of test-and-set

Wait Transfer -Crit[cql Release Other
section
Thread 0= | -
Thread 1= 1 ->
Thread 2= | -
Thread 3= | ad

Fig. 3. An example of 4 threads accessing one critical section using a lock.

Synchronization invalidates Eq. 6. On one hand, chiplets
increase the cycles a thread spends acquiring/releasing a
contended lock as well as the time it spends in the critical
section, because these can cause interconnect-bound stalls.
Eq. 7 accounts for this. On the other hand, chiplets increase
the cycles spent by waiting threads, but these would fall
under T-;;.,. We address this by augmenting Eq. 6 to further
decompose 1. ;¢., into time spent waiting on synchronization
and the other non-interconnect, non-waiting cycles:

Tc - Tm = E[ﬂtcn,c] + E[Twait,c] - E[ntcn,m] - E[Twait,m]
)

E[Twait,m) is determined both by how many threads are
waiting for each critical section and the average synchro-
nization period [9] (latency of transfer, critical section, and
release). Following Assum. 2, the number of waiting threads
for each critical section is the same for the monolith and
chiplets. Consequently, the relative increase in time spent
waiting (W) is proportional to the relative increase
of time in critical sections. We make a simplifying assump-
tion to determine this relative increase of time in critical
sections: critical section code has similar interconnect-bound
behavior as thread-private code. Mathematically, we assume
the ratio of interconnect-bound cycles to non-waiting and

non-interconnect-bound cycles is the same within and outside

critical sections. Let fuqit.m = ET%”’"] Taken all together,
E[Twait,c} ~ Tc _E[Twait,c}
E[Twait,m] Tm - E[Twait,m]
_ ]E[Titcn,c} - E[Titcn,m] + Tm - E[Twait,m]
Tm - E[Twait,m]
fitcn m
= JHNM (e — 1) + 1 (10)
1— fwait,m ( ! )
where the second step substitutes T, — E[Tyq4t.c] from Eq. 9.
Let cpait = W. Combining Eq. 9 and Eq. 10:
E -1 + E[Tz’tcn,c] _ E[Etcn,m] E[Twait,c] _ ]E[Twait,m]

1) =+ fwait,m (Oéwm‘t — 1)
~1+ <fucn,m + fw‘l”mfmfmn> (gteon — 1)

1- fwait,m

=1+ fitcn,m (aitcn -

Substituting Eq. 7 and simplifying, we present our analytical
model for the performance degradation of a chiplet system,
normalized to the monolith:
Tc ~ f iten,m

~ 1+ :
1- fwait,m

(Lc — LO) ) E[hC]
]E[Tpacket,m]
Eq. 11 generalizes Eq. 8 by normalizing fitcn,m by non-

waiting time. Similar to Eq. 8, L, and L. are constant and
the rest are empirically measured on a monolithic system.

Tm

(11)
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TABLE II
SIMULATION CONFIGURATION

Cores 64 2GHz 000 x86 cores
Cache MESI two-level protocol
hierarch 64 KB L1D cache per core; 32 KB L1I cache per core;
Y 1MB L2 cache per core
Memory 15ns latency, 40 GB/s per channel
Topology  8x8 Mesh with 16 memory controllers on both sides.
Interconnec- 1 cycle for all routers; 1 cycle for NoC links
tion config 9 cycles for chiplet links; Use X-Y routing for all configs
= (1,64,5) HEE (2,32,H) 3 (2,32,V) BB (4,16,H) [ (4,16,5)
C3 (4.16,v) [EE (8,8H) [3 (8,8V) [ (164,5)

1.0
0.9
0.8

Normalized
performance

0.7

\)a‘“esow\esw e f’o“’i)fo“\ oce®®  adth et
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Fig. 4. Model-predicted chiplet runtime normalized by simulated runtime.
H, V, and S indicate whether the chiplets are laid horizontal or vertical
rectangulars or squares.

IV. EVALUATION

Validation. We employ the gem5 simulator [10] with Garnet
to validate the accuracy of our model. Table II shows our
configuration. We sweep the chiplet row and column size
between 2, 4, and 8. For Top-Down profiling, we integrated
an existing approach [11] to gem5. We use 8 Splash-4 [4]
workloads and measure the runtime for region of interest.

We normalize the model prediction to the gemS5 runtime for
each configuration as shown in Fig. 4; effectively, this gives
the error of the model for each configuration and workload. We
also calculate the error rate by 2 ”dic;z;;g;zzzlmonl. Across
all the simulated configurations, our model shows a 5.4%
average error rate with a worst case of 13.7%. Both versions of
LU show relatively low prediction accuracy due to the uneven
distribution of workload to threads. Threads that have finished
the assigned job idle and wait for the last threads to finish.
This irregularity results in a non-uniform packet pattern which
breaks our Assum. 5. Also, larger chiplet configurations have
higher prediction accuracy. We also sweep the inter-chiplet
latency from 3 cycles to 18 cycles to validate the generality
of our model. The results shows an average error rate of 6.3%.
Case Study. We demonstrate the utility of our model through a
design space exploration of performance-per-cost (perf/$) un-
der 8 chiplet configurations (excluding (16,4)) with 3 different
workloads. We evaluate two different packaging technology:
multi-chip module (MCM) and silicon interposer (SI). Both
configurations follow the parameters in Table II, except the
per-chiplet hop for SI is set to 3 cycles. We calculate the
recurring engineering cost using the Chiplet Actuary [12]. We
follow the die area assumption (76mm? per 8 cores) [12] and
scale it by number of cores on the chiplet.

Fig. 5a and Fig. 5b show the normalized perf/$ for two dif-
ferent packaging technologies. We classify whether a workload
is chiplet sensitive based on 5 = ﬁ# Chiplet-insensitve

wait

workloads (e.g., Water, $=0.11) shows the best perf/$ on

4
7 A A 7 A
o § 1.11 kel § 1.05 é E
Vo Vo
N O A NOj00im
‘T 5 1.01M@ E T
£¢ 8 o t£¢
EE Bl SEo.os
=2 ‘g 0.94 @ cholesky A water =2 ug @ cholesky A water
8_ os @ ocean 8_0-90 @ ocean
(1,64) (2,32) (4,16) (8, 8) (1,64) (2,32) (4,16) (8,8)

Chiplet configuration
(a) Multi-chip module

Chiplet configuration

(b) Silicon interposer

Fig. 5. Normalized performance-per-cost (higher is better).

small chiplets as they save cost. However, chiplet-sensitive
workloads (e.g., Ocean, 5=0.61) prefer the monolithic design
due to the increase of relative chiplet runtime. From the
packaging technology perspective, MCM and SI show two
different trends. MCM shows a big variation of perf/$, ranging
from 1.18x improvement at best and less than 0.92x at
worst. Cost saving overweights performance degradation for
chiplet-insensitive workloads, However, for chiplet-sensitive
workloads like ocean, it shows worse perf/$ compared to the
monolithic configuration. For SI, the perf/$ does not vary
much. The cost saving is not as significant as MCM due to the
higher packaging costs. However, the performance penalty is
also relatively low. As a result, the ST has perf/$ improvement
for all workloads in (2,32) and (4,16) configurations.

V. CONCLUSION

We introduce an analytical model to understand the per-
formance degradation from a monolithic to a chiplet systems.
We validate our model through simulation and have an average
error rate of 5.4%. Our case study demonstrates the utility of
our model for rapid design space exploration.
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