Fusing Adds and Shifts for Efficient Dot Products

Pavel Golikov, Karthik Ganesan, Gennady Pekhimenko, and Mark C. Jeffrey

Abstract—Dot products are heavily used in applications like graphics, signal processing, navigation, and artificial intelligence (AI). These AI models in particular impose significant computational demands on modern computers. Current accelerators typically implement dot product hardware as a row of multipliers followed by a tree of adders. However, treating multiplication and summation operations separately leads to sub-optimal hardware. In contrast, we obtain significant area savings by considering the dot product operation as a whole. We propose FASED, which fuses components of a Booth multiplier with the adder tree to eliminate a significant portion of full adders from a baseline INT8×INT8,4,2 design. Compared to popular dot product hardware units, FASED reduces area by up to $1.9\times$.

Index Terms—AI accelerators, digital arithmetic, vectors.

I. INTRODUCTION

The dot product is the workhorse of tensor-algebra-based AI, including computer vision, recommenders, and large language models (LLMs). This core operation replicates across batches of inputs and across model layers to form large matrix-matrix multiplications, demanding ever increasing throughput from hardware. Dominating model inference time, dot products operate on vectors of input activations ($\mathbf{a} = [\mathbf{a_1} \dots \mathbf{a_n}]$) and the model's trainable weights ($\mathbf{w} = [\mathbf{w_1} \dots \mathbf{w_n}]$):

$$\mathbf{a} \cdot \mathbf{w} = \sum_{i=1}^{n} \mathbf{a_i} \times \mathbf{w_i}. \tag{1}$$

To better utilize constrained resources like area and offchip bandwidth, *quantization* reduces the bit precision of weights and activations. Quantization improves performance by allowing more dot product computations per area. It increases effective memory capacity and bandwidth by storing and moving more (smaller) units of data per byte. Despite losing precision, quantized models have retained high quality across architectures such as LLMs, vision transformers, convolutional neural networks, and recommendation systems [1], [2]. Quantized dot products are supported in accelerators from NVIDIA [3], Google [4], and Samsung [5], among others.

Many models also exploit *variable bit-width quantization*: squeezing efficiency with 2-bit weights for some layers, while relying on larger (e.g., 4- or 8-bit) weights when required [2], [6]. Specialized variable-width hardware remains important [7], [8] as the alternative is over-provisioned hardware (e.g., 8-bit \times 8-bit or $8b\times8b$) that simply sign extends low-bit values and misses opportunities for high throughput for lower bitwidths.

Received 14 August 2025; revised 16 October 2025; accepted 19 November 2025. All authors are with the University of Toronto, Canada. Gennady Pekhimenko is also with NVIDIA. (e-mail: golikovp@cs.toronto.edu).

¹Bolded signals represent multi-bit vectors whereas non-bolded signals represent individual bits, e.g., $\mathbf{a_i}$ and $\mathbf{w_i}$ are multi-bit values in Eq. 1.

Conventional wisdom views multiplication separately from accumulation [5], [7], A common multiply-accumulate architecture is a row of multipliers followed by an adder (Fig. 1) and a final accumulator. However, this misses a opportunity at the intersection of dot products, quantization, and binary arithmetic [10]: viewing these operations separately leads to wasted area.

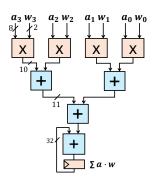


Fig. 1. Dot product hardware.

We propose FASED, hardware for performing integer dot products that considers multiplication and accumulation holistically. We observe that one area-hungry operation performed during multiplication can be combined with the accumulation step to yield significant area savings. We propose two designs: (i) FASED-FW performs dot products of $8b \times 2b$ (Sec. III-A) and (ii) FASED-VW further supports $8b \times 4b$ and $8b \times 8b$ computations (Sec. III-B). We evaluate FASED against variable-width dot product hardware units based on the popular Bit Fusion [8] AI accelerator. FASED reduces area by $1.41 \times$ to $1.91 \times$ over the baseline with a < 9% decrease in F_{max} .

II. BACKGROUND AND MOTIVATION

Fig. 1 shows the hardware unit for a 4-input dot product. The inputs to the *multipliers* are 2-bit model weights (\mathbf{w}) and 8-bit activations (a). Each cycle, the unit multiplies four pairs of values and sums them using the *adder* tree to produce the final result. Throughout this paper, we label 1-bit full adders (Fig. 2a) as "FA" and use the term "adder" for a chain of m 1-bit full adders, which is used to add two m-bit numbers.

Array multiplication: Fig. 2c shows the design of the commonly used signed array multiplier [11], for multiplying 8-bit and 2-bit values $(8b \times 2b)$. It operates in two stages: (i) generation then (ii) accumulation of partial products. The figure labels each partial product as $a_i w_k$, indicating the bitwise AND of a_i and w_k . The partial product bits are summed to produce the final 10-bit product $(p_9 \dots p_0)$. Fig. 2c shows a single row of adders as we focus on $8b \times 2b$ multiplication.

Booth multiplication: Booth multiplication generates the partial product for *multiple* bits of the multiplicand per cycle and accumulates them to obtain the final result [10], [11]. Fig. 2b shows a signed $8b \times 2b$ radix-4 Booth multiplier. A radix-2^m Booth multiplier processes m multiplicand bits per cycle, so Fig. 2b takes just one cycle for the 2-bit w. The 2-bit signed $\mathbf{w} \in \{-2, -1, 0, 1\}$ can have three possible magnitudes in the first stage: 0, 1, or 2. The left mux of Fig. 2b uses $|\mathbf{w}|$ to select 0, \mathbf{a} , or $\mathbf{2a}$ (= \mathbf{a} << 1), respectively. This so-called

(a) 1b full and half adder(b) Signed $8b \times 2b$ Booth multiplier

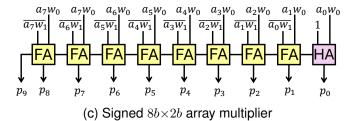


Fig. 2. Circuits used frequently in our work. 'FA' and 'HA' indicate 1-bit full and half adders respectively. The blue '+' box is m-1 full adders and a single half adder, similar to (c). (b) and (c) output $\mathbf{a} \times \mathbf{w}$.

Booth recoding table outputs the partial product $|\mathbf{w}| \times \mathbf{a}$. The right mux of Fig. 2b applies the sign of w by conditionally negating $|\mathbf{w}| \times \mathbf{a}$, using w^{sign} as the select. Negating a number in two's complement requires (i) bit-wise inverting all the bits and (ii) incrementing the inverted value by 1. Consequently, the Booth multiplier requires an adder and an inverter.

Our work is motivated by two key observations. First, narray multipliers and n Booth multipliers use the same number of 1-bit full adders, but in the Booth multiplier, the full adders simply increment by 1. Second, the n-1 adders in a dot product adder tree can be easily modified to accept a carry-in to cheaply enable increment by 1. Our technique leverages these observations to save area in quantized dot product hardware.

III. FASED DESIGN

FASED is a signed-integer dot product hardware unit that eliminates many of the adders from a Booth-inspired design by performing increments through the carry-in signals in the adder. FASED provides native support for variable bitwidth dot products to exploit the success of quantized models that use 2-, 4-, or 8-bit integer weights [6], [12], [13]. To maximize quantized performance per area, the hardware unit performs $8b \times 2b$ dot products at twice the rate as $8b \times 4b$ dot products, which in turn is twice as fast as $8b \times 8b$ dot products. The alternative, supported by some prior work, only targets the highest precision (i.e., $8b \times 8b$) and therefore sacrifices performance for $8b \times 2b$ and $8b \times 4b$.

We describe FASED in two stages. First, FASED-FW only supports fixed-width weights of 2 bits (Sec. III-A). FASED-FW builds on the baseline shown in Fig. 1, using $8b \times 2b$ radix-4 Booth multipliers (Fig. 3). FASED-FW removes adders needed for partial product negation (+1) by absorbing the increments into the adder tree. Second, FASED-VW builds on FASED-FW to support 4- and 8-bit weights with conditional multiplicand shifting and modifying the magnitude-select signals.

A. Fixed-width FASED

Fig. 4 shows our FASED-FW design for a 4-input dot product.

We use these carry-in ports to support the +1 for conditional negation of partial products. FASED-FWexploits that, for a ninput dot product (n is a power of 2), each of the n-1 adders in the adder tree can be modified to accept a carry-in. We do so by switching the single half adder with a full adder.

2

We use these carry-in ports to support the +1 for conditional negation of partial products. However, to support the case that all n input weights are negative—and requiring nsuch increments—we use the c_{in} of the accumulator at the bottom of the adder tree. With adders in the Booth multipliers removed, a simple and functional FASED-FW would leave the inverters and muxes above the adder tree within each purple region. Instead, our FASED-FW in Fig. 4 conditionally negates only one of the inputs to each adder, moving two inverters and muxes into the adder tree. This is a useful step toward FASED-VW.

Only the right input to each adder is conditionally negated, but FASED-FW supports cases where the left input has a negative weight through term rewriting:

$$l+r=+(l+r)$$
 (2) $-l+r=-(l-r)$ (4) $l-r=+(l-r)$ (3) $-l-r=-(l+r)$ (5)

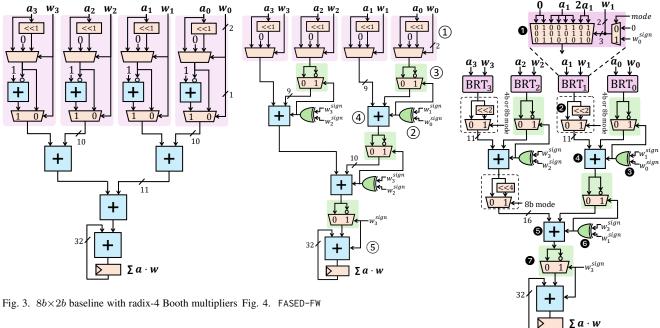
$$l - r = +(l - r)$$
 (3) $-l - r = -(l + r)$ (5)

In every rewritten equation, the outer sign matches the original sign of the left input, and is processed in the next adder level in Fig. 4. In the inner term, each rewritten equation leaves the left adder input unchanged, allowing only the right input to be conditionally negated. Specifically, if the left and right inputs have matching signs (Eq. 2 and Eq. 5) neither input is negated in the inner rewritten term. FASED-FW achieves this by using the XOR of weight signs as the mux select and adder carry-in (green background in Fig. 4). The process repeats in the next adder level, using the ignored outer signs of the first level $(w_3^{sign}$ and $w_1^{sign})$ as the inner signs for this level. Eventually this process reaches the accumulator value and the output of the adder tree is either added to or subtracted from the accumulator based on the sign of the most significant weight (w_3^{sign}) . Fig. 5 shows a concrete example of FASED-FW. Each step labeled 1 to 5 in Fig. 5 is similarly labeled in Fig. 4.

B. Variable-width FASED

FASED-VW supports multiple bit widths using different modes of operation, matching prior work [7], [8]. In 2-bit mode, the four weights and activations are the same as in Sec. III-A. In 4bit mode, FASED-VW forms two 4-bit weights by concatenating $[\mathbf{w_3w_2}]$ and $[\mathbf{w_1w_0}]$, while activations $\mathbf{a_3}$ and $\mathbf{a_2}$ are the same, as are a₁ and a₀. In 8-bit mode, all four 2-bit weight signals concatenate into one 8-bit weight and all activation signals are equal.

Hardware changes: Extending FASED-FW to support variablewidth weights requires two changes to hardware: (i) modifying the Booth recoding table (left mux in Fig. 2b) to mimic a multi-cycle Booth multiplier [10], and (ii) adding conditional shift operations. Fig. 6 shows the modified Booth recoding table (BRT) for each input pair, with one BRT shown in detail. Like FASED-FW, the BRT output remains one of 0, a, or 2a. Unlike FASED-FW, partial product selection uses 3-bit Booth groups, formed by padding the 2-bit weight segments.



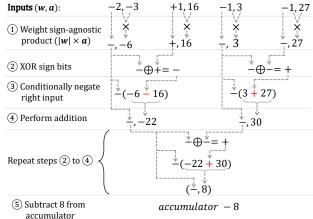


Fig. 5. Example of FASED-FW operation

Fig. 7. Bit Fusion architecture baseline

Based on the mode, FASED-VW pads each 2-bit segment wi with either 0 or the most significant bit of $\mathbf{w_{i-1}}$ to create 3-bit Booth groups. Based on the sign of a Booth group, FASED-VW then adds or subtracts the corresponding adder input. An advantage of our design is that the XOR of the signs of both Booth groups still produces the correct result in every mode. FASED-VW also introduces conditional shift operations of each adder's left input for the first two stages of the adder tree, mirroring FASED-FW's conditional negation of each adder's right input. This aligns partial products by shifting values by 2 or 4 bits to support 4- and 8-bit modes, respectively.

Example: Consider the dot product of $\mathbf{a} \cdot \mathbf{w} = \begin{bmatrix} 0 & 3 \end{bmatrix} \cdot \begin{bmatrix} 0 & -5 \end{bmatrix}^T$ on FASED-VW using 4-bit weights. We detail the steps with **1** to and label the corresponding hardware in Fig. 6. The right subtree (BRT_1 and BRT_0) computes 3×-5 . As $-5 = 1011_2$, $\mathbf{w_1} = 10_2$ and $\mathbf{w_0} = 11_2$. The two Booth groups are $10\underline{1}$ and 110 (padded bits are underlined) and these index into the BRT muxes (1) in Fig. 6). Thus, the outputs of both BRT_1 and BRT_{θ} are $3 (= \mathbf{a_1} = \mathbf{a_0})$.

In 4-bit mode, FASED-VW shifts the output of BRT_1 by

2 bits (2): $000000011_2 << 2=000001100_2=12$. Next, FASED-VW XORs w_1^{sign} and w_0^{sign} (3), finding same-signed partial products (Eq. 5): $1 \oplus 1 = 0$. The carry-in to adder \bullet is thus 0 and the output of BRT_0 is not inverted. The output of adder \bullet is 12 + 3 = 15. The output of the corresponding left adder is 0 because $\mathbf{a_3} = \mathbf{a_2} = \mathbf{w_3} = \mathbf{w_2} = 0$.

Fig. 6. FASED-VW

XOR \odot computes $0 \oplus 1 = 1$, indicating that FASED-VW must subtract the right input from the left input, i.e., invert the right input of adder 6 and set its carry-in to 1. This results in 0-15=-15. Finally, \bullet selects the non-negated output of adder **6** and sets the carry-in to the accumulator as w_3^{sign} =0 and its right input as -15.

IV. EVALUATION

We compare the area of FASED against the fixed- and variable-width dot product units of DNN inference accelerators, as the dot product unit is the core component of both 1D and 2D architectures. For example, FASED can be integrated into a weight-stationary or input-stationary systolic array as a drop-in replacement for a column of processing elements.

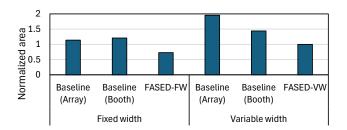


Fig. 8. Area of FASED and baselines, normalized to FASED-VW. Lower is better.

A. Methodology

We compare FASED to four baselines based on Bit Fusion [8]. Bit Fusion was originally proposed for CNN and recurrent models but has since been built upon in many subsequent works targeting CNNs [14], LLMs [7], and video analytics [15]. Bit Fusion supports large-width products via the sum of conditionally shifted small-width multipliers. Bit Fusion originally used $2b \times 2b$ multipliers as their basic building block. However, as this is inefficient for $8b \times 2b$ dot products, our baselines use $8b \times 2b$ multipliers, following the methodology of Bit Fusion. Our baselines use carry-propagate adders throughout all designs. We leave multi-operand adder optimizations such as carry-save adders to future work.

We construct four baselines by varying two design parameters: (i) support for fixed- or variable-width dot products, and (ii) use of array or radix-4 Booth multipliers. The fixed-width baselines serve as an ablation study. Our fixed-width Booth baseline (base-bfw) is identical to Fig. 3. Fig. 7 shows our variable-width array baseline (base-avw), which uses wider $8b \times 3b$ multipliers to correctly perform unsigned multiplication, matching Bit Fusion [8]. Thus, base-avw adds a row of 1-bit full adders in each multiplier to accumulate the third partial sum. Conditional shifters align partial products inside the adder tree, similar to FASED-VW and prior work [14], [15]. We implement all designs in Verilog and obtain area/delay with Yosys (v0.43) and OpenRoad/OpenSTA (v2.0-17598) [16].

B. Results

Fig. 8 shows the area of FASED and our baselines, separating fixed- and variable-width designs. On the fixed-width side, FASED-FW requires $1.52\times$ less area than base-afw. FASED-FW significantly decreases the area of base-bfw by eliminating many adders *because it treats the dot product holistically*. FASED-FW more than makes up the overhead of Booth to outperform base-afw.

On the variable-width side, FASED-VW requires $1.41\times$ less area than base-bywand $1.91\times$ less area than base-avw. Interestingly, the switch from array to Booth *decreases* area by $1.36\times$, due to the overhead of the extra row of full adders in base-avw. Booth multipliers obviate this problem because they were designed to accumulate one partial product per cycle with only one row of 1-bit full adders—accumulating multiple partial products across different bit width modes comes naturally. FASED-VW area improvements come from its holistic treatment of multiplication and accumulation, on top of a more efficient variable-width multiplier design. FASED scales

to larger vector sizes by increasing the number of multipliers and the size of the adder tree. Our experiments show that FASED exhibits similar scaling behavior to the baselines.

We also compared FASED against MANT [7], a recent LLM accelerator supporting $8b \times 2b$ as the basic operation, that uses the Bit Fusion approach to support 2-, 4- and 8-bit weights. The MANT dot product unit area far exceeds that of FASED or our baselines as it requires additional hardware to accumulate a second set of partial products. The novelty of MANT lies in a quantization technique that is orthogonal to our own; we exclude MANT from our results as it would be unfair to compare directly with FASED.

The hardware changes for FASED have only a minor impact on F_{max} . Compared to base-afw, FASED-FW sees a < 9% drop in F_{max} , while FASED-VW sees a < 7% drop compared to base-avw. We believe that pipelining can close this gap but we leave this exploration to future work.

V. CONCLUSION

Dot products are the essential operation underpinning many important AI models. We show that the typical hardware for computing signed integer dot products is sub-optimal. We propose FASED, which treats the multiplication and summation steps in dot products holistically. By modifying a radix-4 Booth multiplier, FASED significantly reduces area of dot product computation. Compared to a popular variable bitwidth dot product unit, FASED-VW reduces area by up to $1.9\times$.

ACKNOWLEDGEMENTS

We thank reviewers for feedback. We gratefully acknowledge support from NSERC, Fujitsu, and the Vector Institute.

REFERENCES

- K. Liu et al., "Low-bit model quantization for deep neural networks: A survey," arXiv preprint, 2025.
- [2] M. Li et al., "Contemporary advances in neural network quantization: A survey," in IJCNN, 2024.
- [3] D. Salvator et al., "Int4 precision for AI inference," NVIDIA Developer Technical Blog, 2019.
- [4] N. Jouppi et al., "TPU v4: An optically reconfigurable supercomputer for machine learning with hardware support for embeddings," in ISCA, 2023.
- [5] J.-W. Jang et al., "Sparsity-aware and re-configurable NPU architecture for Samsung flagship mobile SoC," in ISCA, 2021.
- [6] R. Gong et al., "A survey of low-bit large language models: Basics, systems, and algorithms," arXiv preprint, 2024.
- [7] W. Hu *et al.*, "M-ANT: Efficient low-bit group quantization for LLMs via mathematically adaptive numerical type," in *HPCA*, 2025.
- [8] H. Sharma et al., "Bit Fusion: Bit-level dynamically composable architecture for accelerating deep neural network," in ISCA, 2018.
- [9] T. Chen et al., "DianNao: a small-footprint high-throughput accelerator for ubiquitous machine-learning," in ASPLOS, 2014.
- [10] A. D. Booth, "A signed binary multiplication technique," The Quarterly Journal of Mechanics and Applied Mathematics, 1951.
- [11] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs. Oxford University Press, 2010.
- [12] C. Zeng *et al.*, "ABQ-LLM: Arbitrary-bit quantized inference acceleration for large language models," in *AAAI*, 2025.
- [13] G. Xiao et al., "SmoothQuant: Accurate and efficient post-training quantization for large language models," in ICML, 2023.
- [14] S.-F. Hsiao et al., "Flexible multi-precision accelerator design for deep convolutional neural networks considering both data computation and communication," in VLSI-DAT, 2020.
- [15] Y. Kim et al., "DACAPO: Accelerating continuous learning in autonomous systems for video analytics," in ISCA, 2024.
- [16] T. Ajayi et al., "Toward an open-source digital flow: First learnings from the OpenROAD project," in DAC, 2019.