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Fusing Adds and Shifts for Efficient Dot Products
Pavel Golikov, Karthik Ganesan, Gennady Pekhimenko, and Mark C. Jeffrey

Abstract—Dot products are heavily used in applications like
graphics, signal processing, navigation, and artificial intelligence
(AI). These AI models in particular impose significant compu-
tational demands on modern computers. Current accelerators
typically implement dot product hardware as a row of multipliers
followed by a tree of adders. However, treating multiplication and
summation operations separately leads to sub-optimal hardware.
In contrast, we obtain significant area savings by considering
the dot product operation as a whole. We propose FASED, which
fuses components of a Booth multiplier with the adder tree to
eliminate a significant portion of full adders from a baseline
INT8×INT8,4,2 design. Compared to popular dot product hard-
ware units, FASED reduces area by up to 1.9×.

Index Terms—AI accelerators, digital arithmetic, vectors.

I. INTRODUCTION

THE dot product is the workhorse of tensor-algebra-based
AI, including computer vision, recommenders, and large

language models (LLMs). This core operation replicates across
batches of inputs and across model layers to form large matrix-
matrix multiplications, demanding ever increasing throughput
from hardware. Dominating model inference time, dot prod-
ucts operate on vectors of input activations (a = [a1 . . .an])
and the model’s trainable weights (w = [w1 . . .wn]): 1

a ·w =

n∑
i=1

ai ×wi. (1)

To better utilize constrained resources like area and off-
chip bandwidth, quantization reduces the bit precision of
weights and activations. Quantization improves performance
by allowing more dot product computations per area. It in-
creases effective memory capacity and bandwidth by storing
and moving more (smaller) units of data per byte. Despite
losing precision, quantized models have retained high quality
across architectures such as LLMs, vision transformers, con-
volutional neural networks, and recommendation systems [1],
[2]. Quantized dot products are supported in accelerators from
NVIDIA [3], Google [4], and Samsung [5], among others.

Many models also exploit variable bit-width quantization:
squeezing efficiency with 2-bit weights for some layers,
while relying on larger (e.g., 4- or 8-bit) weights when
required [2], [6]. Specialized variable-width hardware remains
important [7], [8] as the alternative is over-provisioned hard-
ware (e.g., 8-bit × 8-bit or 8b×8b) that simply sign extends
low-bit values and misses opportunities for high throughput
for lower bitwidths.
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1Bolded signals represent multi-bit vectors whereas non-bolded signals
represent individual bits, e.g., ai and wi are multi-bit values in Eq. 1.
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Fig. 1. Dot product hardware.

Conventional wisdom views
multiplication separately from
accumulation [5], [7], [9].
A common multiply-accumulate
architecture is a row of multipliers
followed by an adder tree
(Fig. 1) and a final accumulator.
However, this misses a key
opportunity at the intersection of
dot products, quantization, and
binary arithmetic [10]: viewing
these operations separately leads
to wasted area.

We propose FASED, hardware for performing integer dot
products that considers multiplication and accumulation holis-
tically. We observe that one area-hungry operation performed
during multiplication can be combined with the accumulation
step to yield significant area savings. We propose two designs:
(i) FASED-FW performs dot products of 8b×2b (Sec. III-A) and
(ii) FASED-VW further supports 8b×4b and 8b×8b computations
(Sec. III-B). We evaluate FASED against variable-width dot
product hardware units based on the popular Bit Fusion [8]
AI accelerator. FASED reduces area by 1.41× to 1.91× over
the baseline with a < 9% decrease in Fmax.

II. BACKGROUND AND MOTIVATION

Fig. 1 shows the hardware unit for a 4-input dot product.
The inputs to the multipliers are 2-bit model weights (w) and
8-bit activations (a). Each cycle, the unit multiplies four pairs
of values and sums them using the adder tree to produce the
final result. Throughout this paper, we label 1-bit full adders
(Fig. 2a) as “FA” and use the term “adder” for a chain of m
1-bit full adders, which is used to add two m-bit numbers.
Array multiplication: Fig. 2c shows the design of the com-
monly used signed array multiplier [11], for multiplying 8-bit
and 2-bit values (8b×2b). It operates in two stages: (i) gener-
ation then (ii) accumulation of partial products. The figure
labels each partial product as aiwk, indicating the bitwise
AND of ai and wk. The partial product bits are summed to
produce the final 10-bit product (p9 . . . p0). Fig. 2c shows a
single row of adders as we focus on 8b×2b multiplication.
Booth multiplication: Booth multiplication generates the
partial product for multiple bits of the multiplicand per cycle
and accumulates them to obtain the final result [10], [11].
Fig. 2b shows a signed 8b×2b radix-4 Booth multiplier. A
radix-2m Booth multiplier processes m multiplicand bits per
cycle, so Fig. 2b takes just one cycle for the 2-bit w. The 2-bit
signed w ∈ {−2,−1, 0, 1} can have three possible magnitudes
in the first stage: 0, 1, or 2. The left mux of Fig. 2b uses |w|
to select 0, a, or 2a (= a << 1), respectively. This so-called
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(c) Signed 8b×2b array multiplier
Fig. 2. Circuits used frequently in our work. ‘FA’ and ‘HA’ indicate 1-bit
full and half adders respectively. The blue ‘+’ box is m− 1 full adders and
a single half adder, similar to (c). (b) and (c) output a×w.

Booth recoding table outputs the partial product |w| × a. The
right mux of Fig. 2b applies the sign of w by conditionally
negating |w|×a, using wsign as the select. Negating a number
in two’s complement requires (i) bit-wise inverting all the bits
and (ii) incrementing the inverted value by 1. Consequently,
the Booth multiplier requires an adder and an inverter.

Our work is motivated by two key observations. First, n
array multipliers and n Booth multipliers use the same number
of 1-bit full adders, but in the Booth multiplier, the full
adders simply increment by 1. Second, the n − 1 adders in
a dot product adder tree can be easily modified to accept
a carry-in to cheaply enable increment by 1. Our technique
leverages these observations to save area in quantized dot
product hardware.

III. FASED DESIGN

FASED is a signed-integer dot product hardware unit that
eliminates many of the adders from a Booth-inspired design
by performing increments through the carry-in signals in
the adder. FASED provides native support for variable bit-
width dot products to exploit the success of quantized models
that use 2-, 4-, or 8-bit integer weights [6], [12], [13]. To
maximize quantized performance per area, the hardware unit
performs 8b×2b dot products at twice the rate as 8b×4b dot
products, which in turn is twice as fast as 8b×8b dot products.
The alternative, supported by some prior work, only targets
the highest precision (i.e., 8b×8b) and therefore sacrifices
performance for 8b×2b and 8b×4b.

We describe FASED in two stages. First, FASED-FW only
supports fixed-width weights of 2 bits (Sec. III-A). FASED-FW
builds on the baseline shown in Fig. 1, using 8b×2b radix-4
Booth multipliers (Fig. 3). FASED-FW removes adders needed
for partial product negation (+1) by absorbing the increments
into the adder tree. Second, FASED-VW builds on FASED-FW
to support 4- and 8-bit weights with conditional multiplicand
shifting and modifying the magnitude-select signals.

A. Fixed-width FASED

Fig. 4 shows our FASED-FW design for a 4-input dot product.

We use these carry-in ports to support the +1 for conditional
negation of partial products. FASED-FWexploits that, for a n-
input dot product (n is a power of 2), each of the n−1 adders
in the adder tree can be modified to accept a carry-in. We do
so by switching the single half adder with a full adder.

We use these carry-in ports to support the +1 for condi-
tional negation of partial products. However, to support the
case that all n input weights are negative—and requiring n
such increments—we use the cin of the accumulator at the
bottom of the adder tree. With adders in the Booth multipliers
removed, a simple and functional FASED-FW would leave the
inverters and muxes above the adder tree within each purple
region. Instead, our FASED-FW in Fig. 4 conditionally negates
only one of the inputs to each adder, moving two inverters
and muxes into the adder tree. This is a useful step toward
FASED-VW.

Only the right input to each adder is conditionally negated,
but FASED-FW supports cases where the left input has a
negative weight through term rewriting:

l + r = +(l + r) (2)
l − r = +(l − r) (3)

−l + r = −(l − r) (4)
−l − r = −(l + r) (5)

In every rewritten equation, the outer sign matches the original
sign of the left input, and is processed in the next adder level
in Fig. 4. In the inner term, each rewritten equation leaves the
left adder input unchanged, allowing only the right input to be
conditionally negated. Specifically, if the left and right inputs
have matching signs (Eq. 2 and Eq. 5) neither input is negated
in the inner rewritten term. FASED-FW achieves this by using
the XOR of weight signs as the mux select and adder carry-in
(green background in Fig. 4). The process repeats in the next
adder level, using the ignored outer signs of the first level
(wsign

3 and wsign
1 ) as the inner signs for this level. Eventually

this process reaches the accumulator value and the output
of the adder tree is either added to or subtracted from the
accumulator based on the sign of the most significant weight
(wsign

3 ). Fig. 5 shows a concrete example of FASED-FW. Each
step labeled ① to ⑤ in Fig. 5 is similarly labeled in Fig. 4.

B. Variable-width FASED

FASED-VW supports multiple bit widths using different modes
of operation, matching prior work [7], [8]. In 2-bit mode, the
four weights and activations are the same as in Sec. III-A. In 4-
bit mode, FASED-VW forms two 4-bit weights by concatenating
[w3w2] and [w1w0], while activations a3 and a2 are the
same, as are a1 and a0. In 8-bit mode, all four 2-bit weight
signals concatenate into one 8-bit weight and all activation
signals are equal.
Hardware changes: Extending FASED-FW to support variable-
width weights requires two changes to hardware: (i) modifying
the Booth recoding table (left mux in Fig. 2b) to mimic a
multi-cycle Booth multiplier [10], and (ii) adding conditional
shift operations. Fig. 6 shows the modified Booth recoding
table (BRT) for each input pair, with one BRT shown in
detail. Like FASED-FW, the BRT output remains one of 0, a,
or 2a. Unlike FASED-FW, partial product selection uses 3-bit
Booth groups, formed by padding the 2-bit weight segments.
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Fig. 3. 8b×2b baseline with radix-4 Booth multipliers
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Fig. 7. Bit Fusion architecture baseline

Based on the mode, FASED-VW pads each 2-bit segment wi

with either 0 or the most significant bit of wi−1 to create 3-bit
Booth groups. Based on the sign of a Booth group, FASED-VW
then adds or subtracts the corresponding adder input. An
advantage of our design is that the XOR of the signs of both
Booth groups still produces the correct result in every mode.
FASED-VW also introduces conditional shift operations of each
adder’s left input for the first two stages of the adder tree,
mirroring FASED-FW’s conditional negation of each adder’s
right input. This aligns partial products by shifting values by
2 or 4 bits to support 4- and 8-bit modes, respectively.
Example: Consider the dot product of a ·w = [0 3] · [0 −5]T

on FASED-VW using 4-bit weights. We detail the steps with ❶ to
❼ and label the corresponding hardware in Fig. 6. The right
subtree (BRT1 and BRT0 ) computes 3×−5. As −5 = 10112,
w1 = 102 and w0 = 112. The two Booth groups are 101
and 110 (padded bits are underlined) and these index into the
BRT muxes (❶ in Fig. 6). Thus, the outputs of both BRT1

and BRT0 are 3 (= a1 = a0).
In 4-bit mode, FASED-VW shifts the output of BRT1 by

2 bits (❷): 0000000112 << 2 = 0000011002 = 12. Next,
FASED-VW XORs wsign

1 and wsign
0 (❸), finding same-signed

partial products (Eq. 5): 1
⊕

1 = 0. The carry-in to adder ❹ is
thus 0 and the output of BRT0 is not inverted. The output of
adder ❹ is 12 + 3 = 15. The output of the corresponding left
adder is 0 because a3 = a2 = w3 = w2 = 0.

XOR ❻ computes 0
⊕

1 = 1, indicating that FASED-VW
must subtract the right input from the left input, i.e., invert the
right input of adder ❺ and set its carry-in to 1. This results
in 0−15 = −15. Finally, ❼ selects the non-negated output of
adder ❺ and sets the carry-in to the accumulator as wsign

3 =0
and its right input as −15.

IV. EVALUATION

We compare the area of FASED against the fixed- and
variable-width dot product units of DNN inference accelera-
tors, as the dot product unit is the core component of both 1D
and 2D architectures. For example, FASED can be integrated
into a weight-stationary or input-stationary systolic array as a
drop-in replacement for a column of processing elements.
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A. Methodology

We compare FASED to four baselines based on Bit Fu-
sion [8]. Bit Fusion was originally proposed for CNN and
recurrent models but has since been built upon in many
subsequent works targeting CNNs [14], LLMs [7], and video
analytics [15]. Bit Fusion supports large-width products via
the sum of conditionally shifted small-width multipliers. Bit
Fusion originally used 2b×2b multipliers as their basic build-
ing block. However, as this is inefficient for 8b×2b dot
products, our baselines use 8b×2b multipliers, following the
methodology of Bit Fusion. Our baselines use carry-propagate
adders throughout all designs. We leave multi-operand adder
optimizations such as carry-save adders to future work.

We construct four baselines by varying two design parame-
ters: (i) support for fixed- or variable-width dot products, and
(ii) use of array or radix-4 Booth multipliers. The fixed-width
baselines serve as an ablation study. Our fixed-width Booth
baseline (base-bfw) is identical to Fig. 3. Fig. 7 shows our
variable-width array baseline (base-avw), which uses wider
8b×3b multipliers to correctly perform unsigned multiplica-
tion, matching Bit Fusion [8]. Thus, base-avw adds a row of 1-
bit full adders in each multiplier to accumulate the third partial
sum. Conditional shifters align partial products inside the
adder tree, similar to FASED-VW and prior work [14], [15]. We
implement all designs in Verilog and obtain area/delay with
Yosys (v0.43) and OpenRoad/OpenSTA (v2.0-17598) [16].

B. Results

Fig. 8 shows the area of FASED and our baselines, separating
fixed- and variable-width designs. On the fixed-width side,
FASED-FW requires 1.52× less area than base-afw. FASED-FW
significantly decreases the area of base-bfw by eliminating
many adders because it treats the dot product holistically.
FASED-FW more than makes up the overhead of Booth to
outperform base-afw.

On the variable-width side, FASED-VW requires 1.41× less
area than base-bvwand 1.91× less area than base-avw. In-
terestingly, the switch from array to Booth decreases area by
1.36×, due to the overhead of the extra row of full adders
in base-avw. Booth multipliers obviate this problem because
they were designed to accumulate one partial product per
cycle with only one row of 1-bit full adders—accumulating
multiple partial products across different bit width modes
comes naturally. FASED-VW area improvements come from its
holistic treatment of multiplication and accumulation, on top of
a more efficient variable-width multiplier design. FASED scales

to larger vector sizes by increasing the number of multipliers
and the size of the adder tree. Our experiments show that
FASED exhibits similar scaling behavior to the baselines.

We also compared FASED against MANT [7], a recent LLM
accelerator supporting 8b×2b as the basic operation, that uses
the Bit Fusion approach to support 2-, 4- and 8-bit weights.
The MANT dot product unit area far exceeds that of FASED or
our baselines as it requires additional hardware to accumulate
a second set of partial products. The novelty of MANT lies
in a quantization technique that is orthogonal to our own;
we exclude MANT from our results as it would be unfair
to compare directly with FASED.

The hardware changes for FASED have only a minor impact
on Fmax. Compared to base-afw, FASED-FW sees a < 9%
drop in Fmax, while FASED-VW sees a < 7% drop compared
to base-avw. We believe that pipelining can close this gap but
we leave this exploration to future work.

V. CONCLUSION

Dot products are the essential operation underpinning many
important AI models. We show that the typical hardware for
computing signed integer dot products is sub-optimal. We
propose FASED, which treats the multiplication and summation
steps in dot products holistically. By modifying a radix-
4 Booth multiplier, FASED significantly reduces area of dot
product computation. Compared to a popular variable bit-
width dot product unit, FASED-VW reduces area by up to 1.9×.
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