
A Scalable Architecture for
Ordered Parallelism

Mark Jeffrey, Suvinay Subramanian,
Cong Yan, Joel Emer, Daniel Sanchez

MICRO 2015

  

Multicores Target Easy Parallelism
2

  

  

  

Regular: known tasks and data

Multicores Target Easy Parallelism
2

  

  

  

Regular: known tasks and data

Multicores Target Easy Parallelism
2

ü 

  

  

Irregular: unknown tasks and data
Regular: known tasks and data

Multicores Target Easy Parallelism
2

ü 

  

  

Irregular: unknown tasks and data
Regular: known tasks and data

Unordered tasks

Multicores Target Easy Parallelism
2

ü 

  

  

Irregular: unknown tasks and data
Regular: known tasks and data

Unordered tasks

Multicores Target Easy Parallelism
2

ü 

Load-balancing
Synchronization ≈   

  

Irregular: unknown tasks and data
Regular: known tasks and data

Unordered tasks Ordered tasks

Multicores Target Easy Parallelism
2

ü 

Load-balancing
Synchronization ≈  û 

  

Irregular: unknown tasks and data
Regular: known tasks and data

Unordered tasks Ordered tasks

Multicores Target Easy Parallelism
2

ü 

Load-balancing
Synchronization ≈  û 

Ordering is a simple and general form of synchronization

Irregular: unknown tasks and data
Regular: known tasks and data

Unordered tasks Ordered tasks

Multicores Target Easy Parallelism
2

  

  

Ordering is a simple and general form of synchronization

Irregular: unknown tasks and data
Regular: known tasks and data

Unordered tasks Ordered tasks

Support for order enables widespread parallelism

Multicores Target Easy Parallelism
2

  

  

Outline
3

¨ Understanding Ordered Parallelism
¨ Swarm
¨ Evaluation

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

Order = Distance from source node
0 1 2 3 4 5 6 7 8

Tasks

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

Order = Distance from source node
0 1 2 3 4 5 6 7 8

Tasks

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

A C

B

Order = Distance from source node
0 1 2 3 4 5 6 7 8

Tasks

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

A C

B

Order = Distance from source node
0 1 2 3 4 5 6 7 8

Tasks

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

C

2

A C

B

B D

Order = Distance from source node
0 1 2 3 4 5 6 7 8

E

Tasks

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

C

2

A C

B

B D

Order = Distance from source node
0 1 2 3 4 5 6 7 8

E

Tasks

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

B

C

3

2

A C

B

B

D

D

Order = Distance from source node
0 1 2 3 4 5 6 7 8

E

Tasks

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

B

C

3

2

A C

B

B

D

D

Order = Distance from source node
0 1 2 3 4 5 6 7 8

E

Tasks

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

B

C

3

2

A C

B

B

D

D

Order = Distance from source node
0 1 2 3 4 5 6 7 8

E

Tasks

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

B

C

D
3

1

2

A C

B

B

D

D

E

Order = Distance from source node
0 1 2 3 4 5 6 7 8

E

Tasks

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

B

C

D
3

1

2

A C

B

B

D

D

E

Order = Distance from source node
0 1 2 3 4 5 6 7 8

E

Tasks

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

B

C

D

E

3
1

3

2

A C

B

B

D

D

E

Order = Distance from source node
0 1 2 3 4 5 6 7 8

E

Tasks

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

B

C

D

E

3
1

3

2

A C

B

B

D

D

E

Order = Distance from source node
0 1 2 3 4 5 6 7 8

E

Tasks

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

B

C

D

E

3
1

3

2

A C

B

B

D

D

E

Order = Distance from source node
0 1 2 3 4 5 6 7 8

E

Tasks

Parallelism in Dijkstra’s Algorithm
5

Can execute independent tasks out of order

A C

B

B

D

D

E

Order = Distance from source node
0 1 2 3 4 5 6 7 8

E

Tasks

Parallelism in Dijkstra’s Algorithm
5

Can execute independent tasks out of order

A C

B

B

D

D

E

Order = Distance from source node
0 1 2 3 4 5 6 7 8

E

Tasks Data dependences

Parallelism in Dijkstra’s Algorithm
5

Can execute independent tasks out of order

A C

B

B

D

D

E

Order = Distance from source node
0 1 2 3 4 5 6 7 8

E

Tasks

A C

B

B

D

D

E

E
Valid schedule

Data dependences

Parallelism in Dijkstra’s Algorithm
5

Can execute independent tasks out of order

A C

B

B

D

D

E

Order = Distance from source node
0 1 2 3 4 5 6 7 8

E

Tasks

A C

B

B

D

D

E

E
Valid schedule

Data dependences

2x parallelism
(more in larger graphs)
Tasks and dependences

unknown in advance

Parallelism in Dijkstra’s Algorithm
5

Can execute independent tasks out of order

A C

B

B

D

D

E

Order = Distance from source node
0 1 2 3 4 5 6 7 8

E

Tasks

A C

B

B

D

D

E

E
Valid schedule

Data dependences

2x parallelism
(more in larger graphs)
Tasks and dependences

unknown in advance

Need speculative execution to elide order constraints

  

  
  

Insights about Ordered Parallelism
6

1. With perfect speculation, parallelism is plentiful

  
  

Insights about Ordered Parallelism
6

1. With perfect speculation, parallelism is plentiful

  
  

Insights about Ordered Parallelism
6

A C

B

B

D

D

E

E
Ideal schedule

Parallelism
max 800x

window=64 26x
window=1k 180x

1. With perfect speculation, parallelism is plentiful

  
  

Insights about Ordered Parallelism
6

A C

B

B

D

D

E

E
Ideal schedule

Parallelism
max 800x

window=64 26x
window=1k 180x

1. With perfect speculation, parallelism is plentiful

2. Tasks are tiny: 32 instructions on average
  

Insights about Ordered Parallelism
6

A C

B

B

D

D

E

E
Ideal schedule

Parallelism
max 800x

window=64 26x
window=1k 180x

1. With perfect speculation, parallelism is plentiful

2. Tasks are tiny: 32 instructions on average
3. Independent tasks are far away in program order

Insights about Ordered Parallelism
6

A C

B

B

D

D

E

E
Ideal schedule

Parallelism
max 800x

window=64 26x
window=1k 180x

1. With perfect speculation, parallelism is plentiful

2. Tasks are tiny: 32 instructions on average
3. Independent tasks are far away in program order

Insights about Ordered Parallelism
6

A C

B

B

D

D

E

E
Ideal schedule

A C B D E

N-task window

Can execute N tasks ahead
of the earliest active task

Parallelism
max 800x

window=64 26x
window=1k 180x

1. With perfect speculation, parallelism is plentiful

2. Tasks are tiny: 32 instructions on average
3. Independent tasks are far away in program order

Insights about Ordered Parallelism
6

A C

B

B

D

D

E

E
Ideal schedule

A C B D E

N-task window

Can execute N tasks ahead
of the earliest active task

Parallelism
max 800x

window=64 26x
window=1k 180x

1. With perfect speculation, parallelism is plentiful

2. Tasks are tiny: 32 instructions on average
3. Independent tasks are far away in program order

Insights about Ordered Parallelism
6

A C

B

B

D

D

E

E
Ideal schedule

A C B D E

N-task window

Can execute N tasks ahead
of the earliest active task

Parallelism
max 800x

window=64 26x
window=1k 180x

1. With perfect speculation, parallelism is plentiful

2. Tasks are tiny: 32 instructions on average
3. Independent tasks are far away in program order

Insights about Ordered Parallelism
6

A C

B

B

D

D

E

E
Ideal schedule

A C B D E

N-task window

Can execute N tasks ahead
of the earliest active task

Parallelism
max 800x

window=64 26x
window=1k 180x

1. With perfect speculation, parallelism is plentiful

2. Tasks are tiny: 32 instructions on average
3. Independent tasks are far away in program order

Insights about Ordered Parallelism
6

A C

B

B

D

D

E

E
Ideal schedule

Need a large window of speculation

A C B D E

N-task window

Can execute N tasks ahead
of the earliest active task

Prior Work Can’t Mine Ordered Parallelism

  

  

7

Prior Work Can’t Mine Ordered Parallelism

¨  Thread-Level Speculation (TLS) parallelizes loops and
function calls in sequential programs

  

7

Prior Work Can’t Mine Ordered Parallelism

¨  Thread-Level Speculation (TLS) parallelizes loops and
function calls in sequential programs

  

7

Max parallelism TLS parallelism

800x 1.1x

Prior Work Can’t Mine Ordered Parallelism

¨  Thread-Level Speculation (TLS) parallelizes loops and
function calls in sequential programs

  

7

Max parallelism TLS parallelism

800x 1.1x

Execution order ≠ creation order

Prior Work Can’t Mine Ordered Parallelism

¨  Thread-Level Speculation (TLS) parallelizes loops and
function calls in sequential programs

  

7

Max parallelism TLS parallelism

800x 1.1x
Task-scheduling priority queues
introduce false data dependences

Execution order ≠ creation order

Prior Work Can’t Mine Ordered Parallelism

¨  Thread-Level Speculation (TLS) parallelizes loops and
function calls in sequential programs

¨  Sophisticated parallel algorithms yield limited speedup

7

Max parallelism TLS parallelism

800x 1.1x
Task-scheduling priority queues
introduce false data dependences

Execution order ≠ creation order

Prior Work Can’t Mine Ordered Parallelism

¨  Thread-Level Speculation (TLS) parallelizes loops and
function calls in sequential programs

¨  Sophisticated parallel algorithms yield limited speedup

7

Max parallelism TLS parallelism

800x 1.1x
Task-scheduling priority queues
introduce false data dependences

1

32

64

Sp
ee
du
p

1c 32c 64c

bfs

1c 32c 64c

sssp

1c 32c 64c

astar

1c 32c 64c

msf

1c 32c 64c

des

1c 32c 64c

silo

Software-only
parallel

Execution order ≠ creation order

Swarm Mines Ordered Parallelism
8

  
  
  

1

32

64

Sp
ee
du
p

1c 32c 64c

bfs
117x

1c 32c 64c

sssp

1c 32c 64c

astar

1c 32c 64c

msf

1c 32c 64c

des

1c 32c 64c

silo

Swarm
Software-only
parallel

Swarm Mines Ordered Parallelism
8

  
  
  

1

32

64

Sp
ee
du
p

1c 32c 64c

bfs
117x

1c 32c 64c

sssp

1c 32c 64c

astar

1c 32c 64c

msf

1c 32c 64c

des

1c 32c 64c

silo

Swarm
Software-only
parallel

Swarm Mines Ordered Parallelism
8

¨  Execution model based on timestamped tasks
  
  

1

32

64

Sp
ee
du
p

1c 32c 64c

bfs
117x

1c 32c 64c

sssp

1c 32c 64c

astar

1c 32c 64c

msf

1c 32c 64c

des

1c 32c 64c

silo

Swarm
Software-only
parallel

Swarm Mines Ordered Parallelism
8

¨  Execution model based on timestamped tasks
¨  Architecture executes tasks speculatively out of order

¤ Leverages execution model to scale

1

32

64

Sp
ee
du
p

1c 32c 64c

bfs
117x

1c 32c 64c

sssp

1c 32c 64c

astar

1c 32c 64c

msf

1c 32c 64c

des

1c 32c 64c

silo

Swarm
Software-only
parallel

Outline
9

¨ Understanding Ordered Parallelism
¨ Swarm
¨ Evaluation

Swarm Execution Model
10

Programs consist of timestamped tasks
  
  
  

Swarm Execution Model
10

Programs consist of timestamped tasks
¤ Tasks can create children tasks with >= timestamp
¤ Tasks appear to execute in timestamp order
  

Swarm Execution Model
10

Programs consist of timestamped tasks
¤ Tasks can create children tasks with >= timestamp
¤ Tasks appear to execute in timestamp order
¤ Programmed with implicitly-parallel task API

0 2

3

4

4

6

7

5

swarm::enqueue(fptr,	
 ts,	
 args...);	

Swarm Execution Model
10

Programs consist of timestamped tasks
¤ Tasks can create children tasks with >= timestamp
¤ Tasks appear to execute in timestamp order
¤ Programmed with implicitly-parallel task API

0 2

3

4

4

6

7

5

Conveys new work to hardware as soon as possible

swarm::enqueue(fptr,	
 ts,	
 args...);	

Swarm Execution Model
10

Programs consist of timestamped tasks
¤ Tasks can create children tasks with >= timestamp
¤ Tasks appear to execute in timestamp order
¤ Programmed with implicitly-parallel task API

0 2

3

4

4

6

7

5

Conveys new work to hardware as soon as possible

swarm::enqueue(fptr,	
 ts,	
 args...);	

Swarm Task Example: Dijkstra
11

void	
 ssspTask(Timestamp	
 dist,	
 Vertex&	
 v)	
 {	

	
 	
 if	
 (!v.isVisited())	
 {	
 	
 	
 	
 	

	
 	
 	
 	
 v.distance	
 =	
 dist;	

	
 	
 	
 	
 for	
 (Vertex&	
 u	
 :	
 v.neighbors)	
 {	

	
 	
 	
 	
 	
 	
 	
 Timestamp	
 uDist	
 =	
 dist	
 +	
 edgeWeight(v,	
 u);	

	
 	
 	
 	
 	
 	
 	
 swarm::enqueue(&ssspTask,	
 uDist,	
 u);	

	
 	
 	
 	
 }	

	
 	
 }	

}	

	

	
   	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
   	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Swarm Task Example: Dijkstra
11

void	
 ssspTask(Timestamp	
 dist,	
 Vertex&	
 v)	
 {	

	
 	
 if	
 (!v.isVisited())	
 {	
 	
 	
 	
 	

	
 	
 	
 	
 v.distance	
 =	
 dist;	

	
 	
 	
 	
 for	
 (Vertex&	
 u	
 :	
 v.neighbors)	
 {	

	
 	
 	
 	
 	
 	
 	
 Timestamp	
 uDist	
 =	
 dist	
 +	
 edgeWeight(v,	
 u);	

	
 	
 	
 	
 	
 	
 	
 swarm::enqueue(&ssspTask,	
 uDist,	
 u);	

	
 	
 	
 	
 }	

	
 	
 }	

}	

	

	
   	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
   	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Swarm Task Example: Dijkstra
11

void	
 ssspTask(Timestamp	
 dist,	
 Vertex&	
 v)	
 {	

	
 	
 if	
 (!v.isVisited())	
 {	
 	
 	
 	
 	

	
 	
 	
 	
 v.distance	
 =	
 dist;	

	
 	
 	
 	
 for	
 (Vertex&	
 u	
 :	
 v.neighbors)	
 {	

	
 	
 	
 	
 	
 	
 	
 Timestamp	
 uDist	
 =	
 dist	
 +	
 edgeWeight(v,	
 u);	

	
 	
 	
 	
 	
 	
 	
 swarm::enqueue(&ssspTask,	
 uDist,	
 u);	

	
 	
 	
 	
 }	

	
 	
 }	

}	

	

	
   	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
   	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Timestamp

Swarm Task Example: Dijkstra
11

void	
 ssspTask(Timestamp	
 dist,	
 Vertex&	
 v)	
 {	

	
 	
 if	
 (!v.isVisited())	
 {	
 	
 	
 	
 	

	
 	
 	
 	
 v.distance	
 =	
 dist;	

	
 	
 	
 	
 for	
 (Vertex&	
 u	
 :	
 v.neighbors)	
 {	

	
 	
 	
 	
 	
 	
 	
 Timestamp	
 uDist	
 =	
 dist	
 +	
 edgeWeight(v,	
 u);	

	
 	
 	
 	
 	
 	
 	
 swarm::enqueue(&ssspTask,	
 uDist,	
 u);	

	
 	
 	
 	
 }	

	
 	
 }	

}	

	

swarm::enqueue(ssspTask,	
 0,	
 sourceVertex);	

swarm::run();	

Timestamp

Swarm Architecture Overview
12

  
  
  

Tiled Multicore

M
em

ory controller

Memory controller

Memory controller

M
em

or
y

co
nt

ro
lle

r

Tile

Core Core Core Core
L1I/D L1I/D L1I/D L1I/D

L2 Cache

L3 Cache Bank Router

Task Unit

Tile Organization

Swarm Architecture Overview
12

Per-tile task units:
¨  Task Queue: holds task descriptors
¨  Commit Queue: holds speculative state of finished tasks

Tiled Multicore

M
em

ory controller

Memory controller

Memory controller

M
em

or
y

co
nt

ro
lle

r

Tile

Core Core Core Core
L1I/D L1I/D L1I/D L1I/D

L2 Cache

L3 Cache Bank Router

Task Unit

Tile Organization

TQ

Task Unit

CQ

Swarm Architecture Overview
12

Per-tile task units:
¨  Task Queue: holds task descriptors
¨  Commit Queue: holds speculative state of finished tasks

Tiled Multicore

M
em

ory controller

Memory controller

Memory controller

M
em

or
y

co
nt

ro
lle

r

Tile

Core Core Core Core
L1I/D L1I/D L1I/D L1I/D

L2 Cache

L3 Cache Bank Router

Task Unit

Tile Organization

TQ

Task Unit

CQ

Commit queues provide the window of speculation

Task Unit Queues
13

¨  Task queue: holds task descriptors
¨  Commit Queue: holds speculative state of finished tasks

Task Queue

9, I
10, I
2, R
8, R
3, F

Cores Commit Queue

8

2

3

68 Task States: IDLE (I) RUNNING (R) FINISHED (F)

Task Unit Queues
13

¨  Task queue: holds task descriptors
¨  Commit Queue: holds speculative state of finished tasks

Task Queue

9, I
10, I
2, R
8, R
3, F

Cores Commit Queue

8

2

3

7, I (timestamp=7,
taskFn, args)

New Task

69 Task States: IDLE (I) RUNNING (R) FINISHED (F)

7

Task Unit Queues
14

¨  Task queue: holds task descriptors
¨  Commit Queue: holds speculative state of finished tasks

Task Queue

7, R
9, I
10, I
2, F
8, R
3, F

Cores Commit Queue

8 2
3

70 Task States: IDLE (I) RUNNING (R) FINISHED (F)

8

Task Unit Queues
15

¨  Task queue: holds task descriptors
¨  Commit Queue: holds speculative state of finished tasks

Task Queue

7, F
9, I
10, I
2, F
8, R
3, F

Cores Commit Queue

8

7
2
3

71 Task States: IDLE (I) RUNNING (R) FINISHED (F)

9 9

Task Unit Queues
16

¨  Task queue: holds task descriptors
¨  Commit Queue: holds speculative state of finished tasks

Task Queue

7, F
9, R
10, I
2, F
8, R
3, F

Cores Commit Queue

8

7
2
3

72 Task States: IDLE (I) RUNNING (R) FINISHED (F)

9 9

Task Unit Queues
16

¨  Task queue: holds task descriptors
¨  Commit Queue: holds speculative state of finished tasks

Task Queue

7, F
9, R
10, I
2, F
8, R
3, F

Cores Commit Queue

8

7
2
3

73 Task States: IDLE (I) RUNNING (R) FINISHED (F)

Similar to a reorder buffer, but at the task level

High-Throughput Ordered Commits
17

¨  Suppose 64-cycle tasks execute on 64 cores
¤ 1 task commit/cycle to scale
¤ TLS commit schemes (successor lists, commit token) too slow

  

  

  

High-Throughput Ordered Commits
17

¨  Suppose 64-cycle tasks execute on 64 cores
¤ 1 task commit/cycle to scale
¤ TLS commit schemes (successor lists, commit token) too slow

¨  We adapt “Virtual Time” [Jefferson, TOPLAS 1985]

GVT Arbiter

Tile
1

Tile
N

Tile
2

…  

  

High-Throughput Ordered Commits
17

¨  Suppose 64-cycle tasks execute on 64 cores
¤ 1 task commit/cycle to scale
¤ TLS commit schemes (successor lists, commit token) too slow

¨  We adapt “Virtual Time” [Jefferson, TOPLAS 1985]

GVT Arbiter

Tile
1

Tile
N

Tile
2

… ¨  Tiles periodically communicate to
find the earliest unfinished task

  

High-Throughput Ordered Commits
17

¨  Suppose 64-cycle tasks execute on 64 cores
¤ 1 task commit/cycle to scale
¤ TLS commit schemes (successor lists, commit token) too slow

¨  We adapt “Virtual Time” [Jefferson, TOPLAS 1985]

GVT Arbiter

Tile
1

Tile
N

Tile
2

… ¨  Tiles periodically communicate to
find the earliest unfinished task

  

High-Throughput Ordered Commits
17

¨  Suppose 64-cycle tasks execute on 64 cores
¤ 1 task commit/cycle to scale
¤ TLS commit schemes (successor lists, commit token) too slow

¨  We adapt “Virtual Time” [Jefferson, TOPLAS 1985]

GVT Arbiter

Tile
1

Tile
N

Tile
2

… ¨  Tiles periodically communicate to
find the earliest unfinished task

¨  Tiles commit all tasks that
precede it

High-Throughput Ordered Commits
17

¨  Suppose 64-cycle tasks execute on 64 cores
¤ 1 task commit/cycle to scale
¤ TLS commit schemes (successor lists, commit token) too slow

¨  We adapt “Virtual Time” [Jefferson, TOPLAS 1985]

GVT Arbiter

Tile
1

Tile
N

Tile
2

… ¨  Tiles periodically communicate to
find the earliest unfinished task

¨  Tiles commit all tasks that
precede it

With large commit queues, many tasks commit at once

Amortizes commit costs among many tasks

High-Throughput Ordered Commits
17

¨  Suppose 64-cycle tasks execute on 64 cores
¤ 1 task commit/cycle to scale
¤ TLS commit schemes (successor lists, commit token) too slow

¨  We adapt “Virtual Time” [Jefferson, TOPLAS 1985]

GVT Arbiter

Tile
1

Tile
N

Tile
2

… ¨  Tiles periodically communicate to
find the earliest unfinished task

¨  Tiles commit all tasks that
precede it

With large commit queues, many tasks commit at once

Speculative Execution Example
18

  
  
  

0

Time

Core 0

Core 1

Core 2

0

Timestamp order

Speculative Execution Example
18

  
  
  

0 1

3

Time

Core 0

Core 1

Core 2

0 1

3

Timestamp order

Speculative Execution Example
18

¨  Tasks can execute even if parent is still speculative
¤ Uncovers more parallelism
  

0 1

3

Time

Core 0

Core 1

Core 2

0 1

3

Timestamp order

Speculative Execution Example
18

¨  Tasks can execute even if parent is still speculative
¤ Uncovers more parallelism
  

0 1

3
5

4

Time

Core 0

Core 1

Core 2

0 1

3 4

5

Timestamp order

Speculative Execution Example
18

¨  Tasks can execute even if parent is still speculative
¤ Uncovers more parallelism
  

0 1

3

2

5

4

Time

Core 0

Core 1

Core 2

0 1

3 4

5

2

Timestamp order

Speculative Execution Example
18

¨  Tasks can execute even if parent is still speculative
¤ Uncovers more parallelism
  

0 1

3

2

5

4

Time

Core 0

Core 1

Core 2

0 1

3 4

5

2

Timestamp order

Data dependence

Speculative Execution Example
18

¨  Tasks can execute even if parent is still speculative
¤ Uncovers more parallelism
¤ May trigger cascading (but selective) aborts

0 1

3

2

5

4

Time

Core 0

Core 1

Core 2

0 1

3 4

5

2

Timestamp order

Data dependence

Speculative Execution Example
18

¨  Tasks can execute even if parent is still speculative
¤ Uncovers more parallelism
¤ May trigger cascading (but selective) aborts

0 1

3

2

5

4

Time

Core 0

Core 1

Core 2

0 1

3 4

5

2

Timestamp order

Data dependence

Swarm Speculation Mechanisms
19

¨  Key requirements for speculative execution:
¤ Fast commits
¤ Large speculative window à Small per-task speculative state

  
  
  

  
  
  

Swarm Speculation Mechanisms
19

¨  Key requirements for speculative execution:
¤ Fast commits
¤ Large speculative window à Small per-task speculative state

¨  Eager versioning + timestamp-based conflict detection

¤ Bloom filters for cheap read/write sets [Yen, HPCA 2007]
  

  
  
  

Swarm Speculation Mechanisms
19

¨  Key requirements for speculative execution:
¤ Fast commits
¤ Large speculative window à Small per-task speculative state

¨  Eager versioning + timestamp-based conflict detection

¤ Bloom filters for cheap read/write sets [Yen, HPCA 2007]
¤ Uses hierarchical memory system to filter conflict checks

  
  
  

Swarm Speculation Mechanisms
19

¨  Key requirements for speculative execution:
¤ Fast commits
¤ Large speculative window à Small per-task speculative state

¨  Eager versioning + timestamp-based conflict detection

¤ Bloom filters for cheap read/write sets [Yen, HPCA 2007]
¤ Uses hierarchical memory system to filter conflict checks

¨  Enables two helpful properties
1.  Forwarding of still-speculative data
2.  On rollback, corrective writes abort dependent tasks only

Outline
20

¨ Understanding Ordered Parallelism
¨ Swarm
¨ Evaluation

Evaluation Methodology
21

¨  Event-driven, sequential, Pin-based simulator

¨  Target system: 64-core, 16-tile chip

  
  

M
em

ory controller

Memory controller

Memory controller

M
em

or
y

co
nt

ro
lle

r

Tile

Core Core Core Core

L1I/D L1I/D L1I/D L1I/D
L2 Cache

L3 Cache Bank Router

Task Unit

16 MB shared L3 (1MB/tile)
256 KB per-tile L2s
32 KB per-core L1s

4096 task queue entries (64/core)
1024 commit queue entries (16/core)
256-byte, 8-way Bloom filters

Evaluation Methodology
21

¨  Event-driven, sequential, Pin-based simulator

¨  Target system: 64-core, 16-tile chip

  
  

M
em

ory controller

Memory controller

Memory controller

M
em

or
y

co
nt

ro
lle

r

Tile

Core Core Core Core

L1I/D L1I/D L1I/D L1I/D
L2 Cache

L3 Cache Bank Router

Task Unit

16 MB shared L3 (1MB/tile)
256 KB per-tile L2s
32 KB per-core L1s

4096 task queue entries (64/core)
1024 commit queue entries (16/core)
256-byte, 8-way Bloom filters

Evaluation Methodology
21

¨  Event-driven, sequential, Pin-based simulator

¨  Target system: 64-core, 16-tile chip

¨  Scalability experiments from 1-64 cores
¤ Scaled-down systems have fewer tiles

M
em

ory controller

Memory controller

Memory controller

M
em

or
y

co
nt

ro
lle

r

Tile

Core Core Core Core

L1I/D L1I/D L1I/D L1I/D
L2 Cache

L3 Cache Bank Router

Task Unit

16 MB shared L3 (1MB/tile)
256 KB per-tile L2s
32 KB per-core L1s

4096 task queue entries (64/core)
1024 commit queue entries (16/core)
256-byte, 8-way Bloom filters

1

32

64

Sp
ee
du
p

1c 32c 64c

bfs
117x

1c 32c 64c

sssp

1c 32c 64c

astar

1c 32c 64c

msf

1c 32c 64c

des

1c 32c 64c

silo

Swarm
Software-only
parallel

Swarm vs. Software Versions
22

  
  
  

1

32

64

Sp
ee
du
p

1c 32c 64c

bfs
117x

1c 32c 64c

sssp

1c 32c 64c

astar

1c 32c 64c

msf

1c 32c 64c

des

1c 32c 64c

silo

Swarm
Software-only
parallel

Swarm vs. Software Versions
22

43x – 117x faster than serial versions
  
  

1

32

64

Sp
ee
du
p

1c 32c 64c

bfs
117x

1c 32c 64c

sssp

1c 32c 64c

astar

1c 32c 64c

msf

1c 32c 64c

des

1c 32c 64c

silo

Swarm
Software-only
parallel

Swarm vs. Software Versions
22

43x – 117x faster than serial versions
3x – 18x faster than parallel versions

  

1

32

64

Sp
ee
du
p

1c 32c 64c

bfs
117x

1c 32c 64c

sssp

1c 32c 64c

astar

1c 32c 64c

msf

1c 32c 64c

des

1c 32c 64c

silo

Swarm
Software-only
parallel

Swarm vs. Software Versions
22

43x – 117x faster than serial versions
3x – 18x faster than parallel versions

Simple implicitly-parallel code

Swarm Uses Resources Efficiently
23

  
  
  

0
20
40
60
80

100

C
or

e
cy

cl
es

 (%
)

bfs sssp astar msf des silo

Commit Abort Queue Stall

Swarm Uses Resources Efficiently
23

  
  
  

0
20
40
60
80

100

C
or

e
cy

cl
es

 (%
)

bfs sssp astar msf des silo

Commit Abort Queue Stall

Most time spent executing tasks that commit

Swarm Uses Resources Efficiently
23

  
  
  

0
200
400
600
800

1000
1200
1400

Av
g

en
tri

es
 u

se
d

bfs sssp astar msf des silo

2.6K 2.6K 2.3K 2.7K
Task queue Commit queue

0
20
40
60
80

100

C
or

e
cy

cl
es

 (%
)

bfs sssp astar msf des silo

Commit Abort Queue Stall

Most time spent executing tasks that commit Swarm speculates 200-800
tasks ahead on average

Swarm Uses Resources Efficiently
23

¨  Speculation adds moderate energy overheads:
¤ 15% extra network traffic
¤ Conflict check logic triggered in 9-16% of cycles

0
200
400
600
800

1000
1200
1400

Av
g

en
tri

es
 u

se
d

bfs sssp astar msf des silo

2.6K 2.6K 2.3K 2.7K
Task queue Commit queue

0
20
40
60
80

100

C
or

e
cy

cl
es

 (%
)

bfs sssp astar msf des silo

Commit Abort Queue Stall

Most time spent executing tasks that commit Swarm speculates 200-800
tasks ahead on average

Conclusions
24

¨  Swarm exploits ordered parallelism efficiently
¤ Necessary to parallelize many key algorithms
¤ Simplifies parallel programming in general

  

  

  

Irregular
Regular

Unordered Ordered

Conclusions
24

¨  Swarm exploits ordered parallelism efficiently
¤ Necessary to parallelize many key algorithms
¤ Simplifies parallel programming in general

¨  Conventional wisdom: Ordering limits parallelism

  

  

Irregular
Regular

Unordered Ordered

Conclusions
24

¨  Swarm exploits ordered parallelism efficiently
¤ Necessary to parallelize many key algorithms
¤ Simplifies parallel programming in general

¨  Conventional wisdom: Ordering limits parallelism

  

  

Expressive execution model + large window =
Only true data dependences limit parallelism

Irregular
Regular

Unordered Ordered

Conclusions
24

¨  Swarm exploits ordered parallelism efficiently
¤ Necessary to parallelize many key algorithms
¤ Simplifies parallel programming in general

¨  Conventional wisdom: Ordering limits parallelism

¨  Conventional wisdom: Speculation is wasteful

  

Expressive execution model + large window =
Only true data dependences limit parallelism

Irregular
Regular

Unordered Ordered

Conclusions
24

¨  Swarm exploits ordered parallelism efficiently
¤ Necessary to parallelize many key algorithms
¤ Simplifies parallel programming in general

¨  Conventional wisdom: Ordering limits parallelism

¨  Conventional wisdom: Speculation is wasteful

  

Expressive execution model + large window =
Only true data dependences limit parallelism

Speculation unlocks plentiful ordered parallelism
Can trade parallelism for efficiency (e.g., simpler cores)

Irregular
Regular

Unordered Ordered

Thanks for your attention!
Questions?

A Scalable Architecture for Ordered Parallelism
Mark Jeffrey, Suvinay Subramanian, Cong Yan,

Joel Emer, Daniel Sanchez

