A Scalable Architecture for
Ordered Parallelism

Marlk Jeffrey, Suvinay Subramanian,
Cong Yan, Joel Emer, Daniel Sanchez

MICRO 2015

H Bl Massachusetts
I I I Institute of [ﬁ% «2

Technology CSAIL NVIDIA.

Multicores Target Easy Parallelism

Multicores Target Easy Parallelism

Regular: known tasks and data

Multicores Target Easy Parallelism

Regular: known tasks and data

Multicores Target Easy Parallelism

Regular: known tasks and data

Irregular: unknown tasks and data

Multicores Target Easy Parallelism

Regular: knowr

Irregular: unkno

Unordered tasks

Multicores Target Easy Parallelism

Regular: known tasks and data
Irregular: unknown tasks and dato

Unordered tasks

~_ Load-balancing
~ [[
Synchronization

Multicores Target Easy Parallelism

Regular: known tasks and data
wn tasks and data

Ordered tasks [Unordered tasks

~_ Load-balancing
~ [] []
Synchronization

Multicores Target Easy Parallelism

Regular: known tasks and data
wn tasks and data

Ordered tasks |Unordered tasks

~_ Load-balancing
~ [] []
Synchronization

Multicores Target Easy Parallelism

Regular: known tasks and data

wn tasks and data

Ordered tasks |Unordered tasks

Ordering is a simple and general form of synchronization

Multicores Target Easy Parallelism

Regular: known tasks and data

wn tasks and data

Ordered tasks Unordered tasks

Ordering is a simple and general form of synchronization

Support for enables widespread parallelism

Qutline

Understanding Ordered Parallelism

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

3

source

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

3

source

2 4 3
2
3
Tasks
A
>
0 1 2 3 4 5 o) 7 8

Order = Distance from source node

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

3

source

2 4 3
2
3
Tasks
A
>
0 1 2 3 4 5 o) 7 8

Order = Distance from source node

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

3

source

2 4 3
2
3
Tasks
A C
B
>
0 1 2 3 4 5 o) 7 8

Order = Distance from source node

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

3

source

2 4 3
2
3
Tasks
A C
B
>
0 1 2 3 4 5 o) 7 8

Order = Distance from source node

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

3

source

2 4 3
2 2
3
Tasks
A C B E D
B
>

0 1 2 3 4 5 o) 7 8

Order = Distance from source node

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

3

source

2 4 3
2 2
3
Tasks
A C B E D
B
>

0 1 2 3 4 5 o) 7 8

Order = Distance from source node

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

source 3 3
2 4 3
2 2
3
Tasks
A C B E D
B D
>
0 1 2 3 4 5 o) 7 8

Order = Distance from source node

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

source 3 3
2 4 3
2 2
3
Tasks
A C B E D
B D
>
0 1 2 3 4 5 o) 7 8

Order = Distance from source node

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

source 3 3
2 4 3
2 2
3
Tasks
A C B E D
B D
>
0 1 2 3 4 5 o) 7 8

Order = Distance from source node

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

1 1

source 3 3
2 4 3
2 2
3
Tasks
A C B E D
B D E
>
0 1 2 3 4 5 o) 7 8

Order = Distance from source node

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

1 1

source 3 3
2 4 3
2 2
3
Tasks
A C B E D
B D E
>
0 1 2 3 4 5 o) 7 8

Order = Distance from source node

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

1 1

source 3 3
2 4 3
2 2
3 3
Tasks
A C B E D
B D E
>
0 1 2 3 4 5 o) 7 8

Order = Distance from source node

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

1 1

source 3 3
2 4 3
2 2
3 3
Tasks
A C B E D
B D E
>
0 1 2 3 4 5 o) 7 8

Order = Distance from source node

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

1 1

source 3 3
2 4 3
2 2
3 3
Tasks
A C B E D
B D E
>
0 1 2 3 4 5 o) 7 8

Order = Distance from source node

Parallelism in Dijkstra’s Algorithm

Can execute independent tasks out of order
Tasks

A C B E D
B D E
o) 1 2 3 4 5 6 7

Order = Distance from source node

Parallelism in Dijkstra’s Algorithm

Can execute independent tasks out of order
Tasks Data dependences

& o @& ® >

0 1 2 3 4 5 o) 7 8
Order = Distance from source node

Parallelism in Dijkstra’s Algorithm

Can execute independent tasks out of order
Tasks Data dependences

& o @& ® >

0 1 2 3 4 5 o) 7 8
Order = Distance from source node

Parallelism in Dijkstra’s Algorithm

Can execute independent tasks out of order
Tasks Data dependences

e e B >

~~~
—
—

0 1 2 3 4 5 6 7 8
Order = Distance from source node

2x parallelism
(more in larger graphs)

Tasks and dependences
unknown in advance




Parallelism in Dijkstra’s Algorithm

Can execute independent tasks out of order
Tasks Data dependences

& o 00 >

~~~
—
—

0 1 2 3 4 5 o) 7 8
Order = Distance from source node

2x parallelism
(more in larger graphs)

Tasks and dependences
unknown in advance

Need speculative execution to elide order constraints

Insights about Ordered Parallelism

Insights about Ordered Parallelism

1. With perfect speculation, parallelism is plentiful

Insights about Ordered Parallelism

1. With perfect speculation, parallelism is plentiful
Ideal schedule G

Insights about Ordered Parallelism

1. With perfect speculation, parallelism is plentiful
Ideal schedule G

800x

Insights about Ordered Parallelism

1. With perfect speculation, parallelism is plentiful
Ideal schedule

800x

2. Tasks are tiny: 32 instructions on average

Insights about Ordered Parallelism

1. With perfect speculation, parallelism is plentiful
Ideal schedule

800x

2. Tasks are tiny: 32 instructions on average

3. Independent tasks are far away in program order

Insights about Ordered Parallelism

1. With perfect speculation, parallelism is plentiful
Ideal schedule

800x

2. Tasks are tiny: 32 instructions on average

3. Independent tasks are far away in program order

@ @ @ @ Can execute N tasks ahead

N-task window of the earliest active task

Insights about Ordered Parallelism

1. With perfect speculation, parallelism is plentiful
Ideal schedule

800x

2. Tasks are tiny: 32 instructions on average

3. Independent tasks are far away in program order

@ @ @ @ Can execute N tasks ahead

. = of the earliest active task
N-task window @)

Insights about Ordered Parallelism

1. With perfect speculation, parallelism is plentiful
Ideal schedule

800x
26Xx

2. Tasks are tiny: 32 instructions on average

3. Independent tasks are far away in program order

@ @ @ @ Can execute N tasks ahead

: = of the earliest active task
N-task window @

Insights about Ordered Parallelism

1. With perfect speculation, parallelism is plentiful
Ideal schedule

800x
26Xx

180x
2. Tasks are tiny: 32 instructions on average

3. Independent tasks are far away in program order

@ @ @ @ Can execute N tasks ahead

: = of the earliest active task
N-task window @

Insights about Ordered Parallelism

6
1. With perfect speculation, parallelism is plentiful
Ideal schedule
800x
26x
180x

2. Tasks are tiny: 32 instructions on average

3. Independent tasks are far away in program order

@ @ @ @ 2 Can execute N tasks ahead

: @ ™ of the earliest active task
N-task window Tk

Need a large window of speculation

Prior Work Can’t Mine Ordered Parallelism
7

Prior Work Can’t Mine Ordered Parallelism
7

Thread-Level Speculation (TLS) parallelizes loops and
function calls in sequential programs

Prior Work Can’t Mine Ordered Parallelism
7

Thread-Level Speculation (TLS) parallelizes loops and
function calls in sequential programs

800x 1.1x

Prior Work Can’t Mine Ordered Parallelism
7

Thread-Level Speculation (TLS) parallelizes loops and
function calls in sequential programs

Execution order # creation order

800x 1.1x

Prior Work Can’t Mine Ordered Parallelism
7

Thread-Level Speculation (TLS) parallelizes loops and
function calls in sequential programs

Execution order # creation order

Task-scheduling priority queues

800x I introduce false data dependences

Prior Work Can’t Mine Ordered Parallelism
7

Thread-Level Speculation (TLS) parallelizes loops and
function calls in sequential programs

Execution order # creation order
Task-scheduling priority queues

800x I introduce false data dependences

Sophisticated parallel algorithms yield limited speedup

Prior Work Can’t Mine Ordered Parallelism
7

Thread-Level Speculation (TLS) parallelizes loops and
function calls in sequential programs

Execution order # creation order

Task-scheduling priority queues

800x I introduce false data dependences

Sophisticated parallel algorithms yield limited speedup

64 bfs Sssp astar msf des silo

-
- - 1L
-

- Wm N I o E Em

Swarm Mines Ordered Parallelism

— Swarm - - Software-only parallel
msf | des | silo

bfs

- 1

I S —

1c 32c 64c 1c 32c 64c ic 32c 64c ic 32c 64c 1c 32c 64c 1c

Swarm Mines Ordered Parallelism

— Swarm - - Software-only parallel
msf | des | silo

- 1

— b

1c 32c 64c 1c 32c 64c ic 32c 64cic 32c 64cic 32c 64c 1c 32c 64c

Swarm Mines Ordered Parallelism

Software-only parallel

bfs des silo

32c 64c ic 32c 64c

Execution model based on timestamped tasks

Swarm Mines Ordered Parallelism

Software-only parallel

bfs des silo

32c 64cic 32c 64c
Execution model based on timestamped tasks

Architecture executes tasks speculatively out of order

Leverages execution model to scale

Qutline

[l

O Swarm

Swarm Execution Model

Programs consist of timestamped tasks

10

Swarm Execution Model

Programs consist of timestamped tasks

Tasks can create children tasks with >= timestamp

Tasks appear to execute in timestamp order

10

Swarm Execution Model

Programs consist of timestamped tasks
Tasks can create children tasks with >= timestamp
Tasks appear to execute in timestamp order

Programmed with implicitly-parallel task API

swarm: :enqueue(fptr, ts, args...);

10

Swarm Execution Model

Programs consist of timestamped tasks
Tasks can create children tasks with >= timestamp
Tasks appear to execute in timestamp order

Programmed with implicitly-parallel task API

swarm: :enqueue(fptr, ts, args...);

10

Swarm Execution Model

Programs consist of timestamped tasks
Tasks can create children tasks with >= timestamp
Tasks appear to execute in timestamp order

Programmed with implicitly-parallel task API

swarm: :enqueue(fptr, ts, args...);

10

Swarm Task Example: Dijkstra

void ssspTask(Timestamp dist, Vertex& v) {
if (!v.isVisited()) {
v.distance = dist;
for (Vertex& u : v.neighbors) {
Timestamp uDist = dist + edgeWeight(v, u);
swarm: :enqueue(&ssspTask, uDist, u);

11

Swarm Task Example: Dijkstra

void ssspTask(Timestamp dist, Vertex& v) {
if (!v.isVisited()) {
v.distance = dist;
for (Vertex& u : v.neighbors) {
Timestamp uDist = dist + edgeWeight(v, u);
swarm: :enqueue(&ssspTask, uDist, u);

11

Swarm Task Example: Dijkstra

void ssspTask(Timestamp dist, Vertex& v) {
if (!v.isVisited()) {
v.distance = dist;
for (Vertex& u : v.neighbors) {
Timestamp uDist = dist + edgeWeight(v, u);
swarm: :enqueue(&ssspTask, uDist, u);

) Timestamp

11

Swarm Task Example: Dijkstra

void ssspTask(Timestamp dist, Vertex& v) {
if (!v.isVisited()) {
v.distance = dist;
for (Vertex& u : v.neighbors) {
Timestamp uDist = dist + edgeWeight(v, u);
swarm: :enqueue(&ssspTask, uDist, u);

¥
¥

1 Timestamp

swarm: :enqueue(ssspTask, @, sourceVertex);
swarm: :run();

11

Swarm Architecture Overview

Tiled Multicore Tile Organization
| Memory controller I /)’
,/' L3 Cache Bank Router
= ol
E N L2 Cache
< -
S 'f\ |LIIZD|||.IIZD||Lll[D”I.ll[Dl
>)
2 %‘\ Core || Core || Core || Core
= z |\
\ Task Unit
L | \

| 19[]0ajuod Kiowayy |

Swarm Architecture Overview

12
Tiled Multicore Tile Organization Task Unit
| Memory controller . K
/ L3 Cache Bank Router K
/
9 P /
2 Tite |12 L2 Cache N TQ
> /
S 'f\ LLu/D | Lo ffLi/p | Lti/mp|
ba o /
z AN Core || Core || Core || Core | /
[=\
= 21\
' Task Unit
- N — CQ
| 13|[0ajuod Kiowayy | AR

Per-tile task units:
0 Task Queue: holds task descriptors

1 Commit Queue: holds speculative state of finished tasks

Swarm Architecture Overview

12
Tiled Multicore Tile Organization Task Unit
- Memory controller) K
/ L3 Cache Bank Router K
/
9 P /
2 Tite |12 L2 Cache N TQ
> /
S 'f\ LL1/D |[L1I/D || L1I/D || L1/D|
ba o /
z AN Core || Core || Core || Core | /
o =\
= 21\
' Task Unit
- N — CQ
| 19]|043u0d Mowaw | \\ .

Per-tile task units:
0 Task Queue: holds task descriptors

1 Commit Queue: holds speculative state of finished tasks

Task Unit Queues
13

0 Task queuve: holds task descriptors

0 Commit Queve: holds speculative state of finished tasks

Task States: IDLE (I) RUNNING (R) FINISHED (F)

Task Queue Cores Commit Queue
10, |

Task Unit Queues

13
0 Task queuve: holds task descriptors

0 Commit Queve: holds speculative state of finished tasks

Task States: IDLE (I) RUNNING (R) FINISHED (F)

New Task Task Queue Cores Commit Queve

(timestamp=7, -

taskFn, args)

Task Unit Queues

14

0 Task queuve: holds task descriptors

0 Commit Queve: holds speculative state of finished tasks

Task States: IDLE (I) RUNNING (R) FINISHED (F)

Task Queue Cores Commit Queue
9, |
l 7

Task Unit Queues
15

0 Task queuve: holds task descriptors

0 Commit Queve: holds speculative state of finished tasks

Task States: IDLE (I) RUNNING (R) FINISHED (F)

Task Queve Cores Commit Queue
9, |
o

2

8

Task Unit Queues

16

0 Task queuve: holds task descriptors

0 Commit Queve: holds speculative state of finished tasks

Task States: IDLE (I) RUNNING (R) FINISHED (F)

Task Queue Cores Commit Queue
9, R 0
10, | 7

2

~

~

w O N
Mm A T
w

Task Unit Queues

16

0 Task queuve: holds task descriptors

0 Commit Queve: holds speculative state of finished tasks

Task States: IDLE (I) RUNNING (R) FINISHED (F)

Task Queue Cores Commit Queve
7,F
9, R 0
10, | 7
2, F 3 2
8, R 3
3, F

!

Similar to a reorder buffer, but at the task level

High-Throughput Ordered Commits

Suppose 64-cycle tasks execute on 64 cores
1 task commit/cycle to scale

TLS commit schemes (successor lists, commit token) too slow

17

High-Throughput Ordered Commits

17

Suppose 64-cycle tasks execute on 64 cores
1 task commit/cycle to scale

TLS commit schemes (successor lists, commit token) too slow

We adapt “Virtual Time” [Jefferson, TOPLAS 1985]

Tile || Tile Tile
1 2 N

GVT Arbiter

High-Throughput Ordered Commits

17

Suppose 64-cycle tasks execute on 64 cores

1 task commit/cycle to scale

TLS commit schemes (successor lists, commit token) too slow

We adapt “Virtual Time” [Jefferson, TOPLAS 1985]

Tile || Tile
1

Tile
N

N

GVT Arbiter

Tiles periodically communicate to
find the earliest unfinished task

High-Throughput Ordered Commits

17

Suppose 64-cycle tasks execute on 64 cores

1 task commit/cycle to scale

TLS commit schemes (successor lists, commit token) too slow

We adapt “Virtual Time” [Jefferson, TOPLAS 1985]

Tile || Tile Tile
1 2 N

N

GVT Arbiter

Tiles periodically communicate to
find the earliest unfinished task

High-Throughput Ordered Commits

17

Suppose 64-cycle tasks execute on 64 cores

1 task commit/cycle to scale

TLS commit schemes (successor lists, commit token) too slow

We adapt “Virtual Time” [Jefferson, TOPLAS 1985]

Tile || Tile Tile
1 2 N

N

GVT Arbiter

Tiles periodically communicate to
find the earliest unfinished task

Tiles commit all tasks that
precede it

High-Throughput Ordered Commits

17

Suppose 64-cycle tasks execute on 64 cores

1 task commit/cycle to scale

TLS commit schemes (successor lists, commit token) too slow

We adapt “Virtual Time” [Jefferson, TOPLAS 1985]

Tile || Tile Tile
1 N

N

GVT Arbiter

Tiles periodically communicate to
find the earliest unfinished task

Tiles commit all tasks that
precede it

High-Throughput Ordered Commits

17

Suppose 64-cycle tasks execute on 64 cores

1 task commit/cycle to scale

TLS commit schemes (successor lists, commit token) too slow

We adapt “Virtual Time” [Jefferson, TOPLAS 1985]

Tile || Tile Tile
1 N

N

GVT Arbiter

Tiles periodically communicate to
find the earliest unfinished task

Tiles commit all tasks that
precede it

Speculative Execution Example

O

Timestamp order

Core O 0]
Core 1
Core 2

Time

18

Speculative Execution Example

Timestamp order

Core O 0 1
Core 1 3
Core 2

Time

18

Speculative Execution Example

@ —@
5

Timestamp order

Core O 0 1
Core 1 3
Core 2

Time

Tasks can execute even if parent is still speculative

Uncovers more parallelism

18

Speculative Execution Example

@ —@
-9

Timestamp order

5

>

Core O 0] 1
Core 1 3 4
Core 2 5

Time

Tasks can execute even if parent is still speculative

Uncovers more parallelism

Speculative Execution Example

0—0—E€
-9

Timestamp order

5

>

Core O 0] 1 2
Core 1 3 4
Core 2 5
>
Time

Tasks can execute even if parent is still speculative

Uncovers more parallelism

Speculative Execution Example

@ 1 2 { Data dependence
N

@

Timestamp order

Core O 0 1 _ -2
Core 1 3 | 4
Core 2 5
>
Time

Tasks can execute even if parent is still speculative

Uncovers more parallelism

18

Speculative Execution Example

@ 1 2 { Data dependence
N

@

Timestamp order

Core O 0 1 _ -2
Core 1 3 | 4
Core 2 5
>
Time

Tasks can execute even if parent is still speculative
Uncovers more parallelism

May trigger cascading (but selective) aborts

18

Speculative Execution Example

Core O 0 1 -2
T
Core 1 3 4
Core 2 5
>
Time

Tasks can execute even if parent is still speculative
Uncovers more parallelism

May trigger cascading (but selective) aborts

18

Swarm Speculation Mechanisms
19

Key requirements for speculative execution:
Fast commits

Large speculative window = Small per-task speculative state

Swarm Speculation Mechanisms
19

Key requirements for speculative execution:
Fast commits

Large speculative window = Small per-task speculative state

Eager versioning + timestamp-based conflict detection
Bloom filters for cheap read/write sets [Yen, HPCA 2007]

Swarm Speculation Mechanisms
19

Key requirements for speculative execution:
Fast commits

Large speculative window =2 Small per-task speculative state

Eager versioning + timestamp-based conflict detection
Bloom filters for cheap read/write sets [Yen, HPCA 2007]

Uses hierarchical memory system to filter conflict checks

Swarm Speculation Mechanisms
19

Key requirements for speculative execution:
Fast commits

Large speculative window = Small per-task speculative state

Eager versioning + timestamp-based conflict detection
Bloom filters for cheap read/write sets [Yen, HPCA 2007]

Uses hierarchical memory system to filter conflict checks

Enables two helpful properties
Forwarding of still-speculative data

On rollback, corrective writes abort dependent tasks only

Qutline

L]
L]

1 Evaluation

20

Evaluation Methodology

21

-1 Event-driven, sequential, Pin-based simulator
0 Target system: 64-core, 16-tile chip

. Memory controller - //

N g(/ Router| | L3 Cache Bank | 16 MB shared L3 (1MB /tile)

E i § L2 Cache 256 KB per-tile L2s

§ - f:\ [Lu/pl [Luypl[L/pl Ll 32 KB per-core L1s

g %‘\ Core||Core| Core| Core

< g\ 4096 task queue entries (64 /core)

N Task Unit 1024 commit queue entries (16 /core)

_| 19]|01ju0> KioWia|y |

256-byte, 8-way Bloom filters

Evaluation Methodology

21

-1 Event-driven, sequential, Pin-based simulator

0 Target system: 64-core, 16-tile chip

Memory controller /
. g{/l Router | L3 Cache Bank | 16 MB shared L3 (1MB /tile)
?‘é, Tile g L2 Cache 256 KB per-tile L2s
E E\ LL1/pl[Ly/pfin/pliLi/pl 32 KB per-core L1s
E %‘\ Core || Core | Core||Core
< A ask queue entries (64 /core)
N Task Unit Mommit queue entries (16 /core)

_| 19]|01ju0> KioWia|y |

256-byte, 8-way Bloom filters

Evaluation Methodology

21

Event-driven, sequential, Pin-based simulator

Target system: 64-core, 16-tile chip

Memory controller /
. g{/l Router | L3 Cache Bank | 16 MB shared L3 (1MB /tile)
E’ Tile g L2 Cache 256 KB per-tile L2s
E g\ LL1/pl[Ly/pfin/pliLi/pl 32 KB per-core L1s
g %‘\ Core || Core | Core||Core
< A ask queue entries (64 /core)
N Task Unit Mommit queue entries (16 /core)

_| 19]|01ju0> KioWia|y |

256-byte, 8-way Bloom filters

Scalability experiments from 1-64 cores

Scaled-down systems have fewer tiles

Swarm vs. Software Versions
22

— Swarm - - Software-only parallel
msf | des | silo

- L

—be

1c 32c 64c1c 32c 64c ic 32c 64cic 32c 64cic 32c 64c 1c 32c B4c

Swarm vs. Software Versions
22

Software-only parallel

bfs des |

silo
, .

32c 64c ic 32c 64c

43x — 117 x faster than serial versions

Swarm vs. Software Versions
22

Software-only parallel

bfs ~des

silo
, .

32c 64c ic 32c 64c

43x — 117 x faster than serial versions

3x — 18x faster than parallel versions

Swarm vs. Software Versions
22

Software-only parallel

bfs | des |

silo
, .

32c 64c ic 32c 64c

43x — 117x faster than serial versions
3x — 18x faster than parallel versions

Simple implicitly-parallel code

Swarm Uses Resources Efficiently

1 Commit EEE Abort 1 Queue [__]Stall
~—~ 100
(O]

80 |-
60 -
40 |-
20 -

Core cycles (%

bfs sssp astar msf des silo

23

Swarm Uses Resources Efficiently

1 Commit EEE Abort 1 Queue [__]Stall
100

80
60
40
20

Core cycles (%)

bfs sssp astar msf des silo

Most time spent executing tasks that commit

23

Swarm Uses Resources Efficiently

~ 100
80
60
40
20

Core cycles (%

Most time spent executing tasks that commi

1 Commit EEE Abort 1 Queue [__]Stall

des silo

bfs sssp astar msf

23

[Task queue I Commit queue
2.6K 2.6K 2.3K 2.7K
140061 == —— N ——]
1200 oA BB Bl .
1000k fd BBt Bt -
800 F--- ot 3 IR - R
600k - Ff] NN R
400 F Pl : S
200 : : : : :

Avg entries used

bfs sssp astar msf des silo

4 Swarm speculates 200-800
tasks ahead on average

Swarm Uses Resources Efficiently

< 100
80
60
40
20

Core cycles (%

Most time spent executing tasks that commi

1 Commit EEE Abort 1 Queue [__]Stall

des silo

bfs sssp astar msf

23

[Task queue I Commit queue
2.6K 2.6K 2.3K 2.7K

140061 == —— T ——]

1200 Fof - pof B .

1000 fof - fod B B .

800 F-f |1 - R .
600 Ff] 31 I
400 F+f Pl = .
200w B B0

Avg entries used

bfs sssp astar msf des silo

4 Swarm speculates 200-800
tasks ahead on average

11 Speculation adds moderate energy overheads:

15% extra network traffic

Conflict check logic triggered in 9-16% of cycles

Conclusions

Swarm exploits ordered parallelism efficiently
Necessary to parallelize many key algorithms

Simplifies parallel programming in general

24

Conclusions

Swarm exploits ordered parallelism efficiently
Necessary to parallelize many key algorithms

Simplifies parallel programming in general

Conventional wisdom: Ordering limits parallelism

24

Conclusions

Swarm exploits ordered parallelism efficiently
Necessary to parallelize many key algorithms

Simplifies parallel programming in general

Convenrionarwisaom:-Oraering imirs-paraiieiism

Expressive execution model + large window =
Only true data dependences limit parallelism

24

Conclusions

Swarm exploits ordered parallelism efficiently
Necessary to parallelize many key algorithms

Simplifies parallel programming in general

Convenrionarwisaom:-Oraering imirs-paraiieiism

Expressive execution model + large window =
Only true data dependences limit parallelism

Conventional wisdom: Speculation is wasteful

24

Conclusions

0 Swarm exploits ordered parallelism efficiently
Necessary to parallelize many key algorithms

Simplifies parallel programming in general

1 Conventonar wisaonT: OTaering (imiTs paraieiism

Expressive execution model + large window =
Only true data dependences limit parallelism
1 Converiorrar-wisdonTspecoraton s wostetul
Speculation unlocks plentiful ordered parallelism
Can trade parallelism for efficiency (e.g., simpler cores)

24

Thanks for your attention!
Questions?

A Scalable Architecture for Ordered Parallelism
Mark Jeffrey, Suvinay Subramanian, Cong Yan,
Joel Emer, Daniel Sanchez

H Bl Massachusetts
I I I Institute of [@% @2

Technology CSAIL NVIDIA.

