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Regular: known tasks and data

wn tasks and data

Ordered tasks Unordered tasks

Ordering is a simple and general form of synchronization

Support for enables widespread parallelism
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Order = Distance from source node

2x parallelism
(more in larger graphs)

Tasks and dependences
unknown in advance

Need speculative execution to elide order constraints
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Insights about Ordered Parallelism

6
1. With perfect speculation, parallelism is plentiful
Ideal schedule
800x
26x
180x

2. Tasks are tiny: 32 instructions on average

3. Independent tasks are far away in program order

@ @ @ @ 2 Can execute N tasks ahead

: @ ™ of the earliest active task
N-task window Tk

Need a large window of speculation
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Thread-Level Speculation (TLS) parallelizes loops and
function calls in sequential programs

Execution order # creation order

Task-scheduling priority queues

800x I introduce false data dependences

Sophisticated parallel algorithms yield limited speedup
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Software-only parallel

bfs des silo

32c  64cic  32c  64c
Execution model based on timestamped tasks

Architecture executes tasks speculatively out of order

Leverages execution model to scale
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Swarm Task Example: Dijkstra

void ssspTask(Timestamp dist, Vertex& v) {
if (!v.isVisited()) {
v.distance = dist;
for (Vertex& u : v.neighbors) {
Timestamp uDist = dist + edgeWeight(v, u);
swarm: :enqueue(&ssspTask, uDist, u);

¥
¥

1 Timestamp

swarm: :enqueue(ssspTask, @, sourceVertex);
swarm: :run();
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0 Task queuve: holds task descriptors

0 Commit Queve: holds speculative state of finished tasks

Task States: IDLE (I) RUNNING (R) FINISHED (F)

New Task Task Queue Cores Commit Queve

(timestamp=7, -

taskFn, args)
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Task Unit Queues

16

0 Task queuve: holds task descriptors

0 Commit Queve: holds speculative state of finished tasks

Task States: IDLE (I) RUNNING (R) FINISHED (F)

Task Queue Cores Commit Queve
7,F
9, R 0
10, | 7
2, F 3 2
8, R 3
3, F

!

Similar to a reorder buffer, but at the task level
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19

Key requirements for speculative execution:
Fast commits

Large speculative window = Small per-task speculative state

Eager versioning + timestamp-based conflict detection
Bloom filters for cheap read/write sets [Yen, HPCA 2007]

Uses hierarchical memory system to filter conflict checks

Enables two helpful properties
Forwarding of still-speculative data

On rollback, corrective writes abort dependent tasks only
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Event-driven, sequential, Pin-based simulator

Target system: 64-core, 16-tile chip

Memory controller /
. g{/l Router | L3 Cache Bank | 16 MB shared L3 (1MB /tile)
E’ Tile g L2 Cache 256 KB per-tile L2s
E g\ LL1/pl[Ly/pfin/pliLi/pl 32 KB per-core L1s
g %‘\ Core || Core | Core||Core
< A ask queue entries (64 /core)
N Task Unit Mommit queue entries (16 /core)

_| 19]|01ju0> KioWia|y |

256-byte, 8-way Bloom filters

Scalability experiments from 1-64 cores

Scaled-down systems have fewer tiles
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Software-only parallel

bfs | des |

silo
, .

32c  64c ic  32c  64c

43x — 117x faster than serial versions
3x — 18x faster than parallel versions

Simple implicitly-parallel code
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4 Swarm speculates 200-800
tasks ahead on average

11 Speculation adds moderate energy overheads:

15% extra network traffic

Conflict check logic triggered in 9-16% of cycles
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Conclusions

0 Swarm exploits ordered parallelism efficiently
Necessary to parallelize many key algorithms

Simplifies parallel programming in general

1 Conventonar wisaonT: OTaering (imiTs paraieiism

Expressive execution model + large window =
Only true data dependences limit parallelism
1 Converiorrar-wisdonTspecoraton s wostetul
Speculation unlocks plentiful ordered parallelism
Can trade parallelism for efficiency (e.g., simpler cores)

24
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