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¨  Task queue: holds task descriptors 
¨  Commit Queue: holds speculative state of finished tasks 

Task Queue 

7, F 
9, R 
10, I 
2, F 
8, R 
3, F 

Cores Commit Queue 

8 

7 
2 
3 

73 Task States: IDLE (I)   RUNNING (R)   FINISHED (F) 

Similar to a reorder buffer, but at the task level 
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With large commit queues, many tasks commit at once 
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¨  Key requirements for speculative execution: 
¤ Fast commits 
¤ Large speculative window à Small per-task speculative state 

 
¨  Eager versioning + timestamp-based conflict detection 

¤ Bloom filters for cheap read/write sets [Yen, HPCA 2007] 
¤ Uses hierarchical memory system to filter conflict checks 

¨  Enables two helpful properties 
1.  Forwarding of still-speculative data 
2.  On rollback, corrective writes abort dependent tasks only 
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¨ Understanding Ordered Parallelism 
¨ Swarm 
¨ Evaluation 
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¨  Event-driven, sequential, Pin-based simulator 

¨  Target system: 64-core, 16-tile chip 
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¨  Event-driven, sequential, Pin-based simulator 

¨  Target system: 64-core, 16-tile chip 

¨  Scalability experiments from 1-64 cores 
¤ Scaled-down systems have fewer tiles 
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Swarm vs. Software Versions 
22 

43x – 117x faster than serial versions 
3x – 18x faster than parallel versions 

Simple implicitly-parallel code 
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¨  Speculation adds moderate energy overheads:  
¤ 15% extra network traffic 
¤ Conflict check logic triggered in 9-16% of cycles 
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Expressive execution model + large window =  
Only true data dependences limit parallelism 

Speculation unlocks plentiful ordered parallelism 
Can trade parallelism for efficiency (e.g., simpler cores) 
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Thanks for your attention! 
Questions? 

A Scalable Architecture for Ordered Parallelism 
Mark Jeffrey, Suvinay Subramanian, Cong Yan,  

Joel Emer, Daniel Sanchez 


