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Executive	summary
Many-cores	must	exploit	cache	locality	to	scale
Current	speculative	systems,	e.g.	TLS	or	TM,	do	not	exploit	locality
Spatial	Hints:	run	tasks	likely	to	access	the	same	data	in	the	same	place
◦ A	software-given	hint	denotes	the	data	a	new	task	is	likely	to	access	
◦ Hardware	maps	tasks	with	the	same	hint	to	the	same	place
◦ Hardware	uses	hints	to	perform	locality-aware	load	balancing

Our	techniques	make	speculative	parallelism	practical	at	large	scale
◦ It	is	easy	to	modify	programs	to	convey	locality	through	hints
◦ Performance	improves	by	3.3x	at	256	cores
◦ We	reduce	network	traffic	by	6.4x	and	wasted	work	by	3.5x
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Prior	speculative	systems	scale	poorly
TRANSACTIONAL	MEMORY	(TM)	SCHEDULERS

Reduce	wasted	work	of	coarse-grain	txns

Limit	concurrency:	When	to	run	a	task?

SPATIAL	HINTS

Make	accesses	local	for	fine-grain	tasks

Less	data	movement:	Where	to	run	a	task?
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Spatially	map	tasks	for	improved	locality	and	less	waste



Prior	non-speculative	 locality	techniques
do	not	work	for	speculation
STATIC	TASK	MAPPING

Data	dependences	known	a	priori
◦ Linear	algebra,	Anton	2	[ASPLOS	‘13]

Graph	partitioning
◦ Localizes communication	and	scheduling
◦ Slow	preprocessing	step
◦ Cannot	adapt	to	imbalance

DYNAMIC	TASK	MAPPING

Work	stealing
◦ Cheap,	local	enqueues
◦ Steals	to	adapt	to	imbalance
◦ Limited	application	types
◦ Stealing	interfereswith	speculation
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Baseline	Architecture:
Swarm	[MICRO	‘15]
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General	execution	model	supports
ordered	and	unordered	parallelism

Baseline	Swarm	execution	model
Programs	consist	of	timestamped tasks
◦ Tasks	can	create	children	tasks	with	>=	timestamp
◦ Tasks	appear	to	execute	in	timestamp	order
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swarm::enqueue(function_pointer, 
timestamp, 
arguments...);



Baseline	Swarm	architecture
Speculatively	executes	tasks	out	of	order

Large	hardware	task	queues

Scalable	ordered	speculation	

Scalable	ordered	commits
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64-tile,	256-core	chip Tile	organization

Core Core Core Core
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Efficiently	supports	tiny	speculative	tasks



Spatial	Hints	in	Action
COMBINING	SPECULATION	AND	LOCALITY
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Example:	Discrete	event	simulation	(DES)
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Extracting	parallelism	in	DES
Execute	independent	tasks	out	of	order
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2.4x	parallelism
(more	in	larger	circuits)

Parallelism	is	plentiful	despite	data	dependences



1

128

256

Sp
ee
du
p

1c 128c 256c

Random

1

128

256

Sp
ee
du
p

1c 128c 256c

Random
Stealing

Speculation	scales	poorly	without	locality
Swarm	sends	new	tasks	to	random tiles	
◦ Good	for	load	balance
◦ Poor	locality	hurts	scalability	beyond	100	cores

Work	stealing:	a	non-speculative	scheduler
◦ Enqueuenew	tasks	locally
◦ Steal	from	the	most-loaded	tile
◦ Not	a	good	strategy	for	DES
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Where	is	the	locality?
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Each	task	operates	on	a	single	gate

The	gate	is	known	when	the	task	is	created

With	fine-grain	tasks,	most	data	accessed	is	known	at	creation	time
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Data-centric	speculation	scales	well
Hints: map	each	gate	to	a	statically-chosen	tile
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But	we	can	do	better!
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1. Less	data	movement

2. Conflicts	are	local,	cheap,	and	less	frequent

Send	new	tasks	for	a	gate	
to	its	corresponding	tile
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Load-balanced	speculation	scales	best
Static	gate-to-tile	mapping	may	cause	hotspots
◦ E.g.	some	gates	toggle	more	frequently

Dynamically	remap gates	(Hints)	across	tiles
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Load-Balanced	
Hints

Programmer	knows	most	of	the	data	accessed

Spatial	Hints	convey	program-level	knowledge	to	exploit	locality

236x



Spatial	Hints	
Implementation
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Hint	mechanisms	are	straightforward
SOFTWARE

A	Spatial	Hint is	an	integer	value
◦ Given	at	task	creation	time
◦ Denotes	data	likely	to	be	accessed	by	the	task
◦ E.g.	the	gate	ID	in	DES

HARDWARE

Hashes	each	new	task’s	Hint to	a	tile	ID

Serializes	same-Hint tasks
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1
1

Localize	most	data	accesses	within	a	tile
Serialize	tasks	likely	to	conflict



Load	balance	with	a	level	of	indirection
Static	hint-to-tile	mapping	may	cause	imbalance
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Instead,	periodically	remap	hints	across	tiles	to	equalize	load



“Load”	is	different	for	speculation

Non-speculative	systems	use #	queued	tasks	as	a	proxy	for	load

When	imbalanced,	speculative	systems	often
◦ Don’t	run	out	of	work
◦ Abort	more	work	or	strain	speculation	resources
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Remap	hints	to	tiles	to	balance	#	of	committed	cycles	per	tile
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Adding	hints	to	applications	is	easy
void desTask(Timestamp ts, GateInput* input) {  
Gate* g = input->gate();  
bool toggledOutput = g.simulateToggle(input);  
if (toggledOutput) {    
// Toggle all inputs connected to this gate
for (GateInput* i : g->connectedInputs()) 

swarm::enqueue(desTask,
/*Timestamp*/ ts + delay(g, i),
/*Hint*/ i->gate()->id, i);

}
}
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One	line	of	code	to	express	the	Gate	ID	as	a	Hint



Benchmark Hint Why?
des Gate	ID Map	tasks	for	same	gate	to	same	tile

nocsim Router	ID Frequent	intra-router	communication
bfs,	sssp,
astar,	color

Cache-line	
address Several	vertices	reside	on	the	same	line

silo (Table	ID,	
primary	key) Each	task	accesses	one	database	tuple

genome,
kmeans Multiple

Adding	hints	to	applications	is	easy
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See	the	paper	for	more	details!
Load	balance	reconfiguration	algorithm

Choice	of	application	hints

Relationship	between	task	size	and	hint	effectiveness
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Evaluation
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Methodology
Event-driven,	Pin-based	simulator

Target	system:	256-core,	64-tile	chip

Scalability	experiments	from	1–256	cores
◦ Scaled-down	systems	have	fewer	tiles
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64	MB	shared	L3	(1MB/tile)

256	KB	per-tile	L2s

16	KB	per-core	L1s

16K	task	queue	entries	(64/core)
4K	commit	queue	entries	(16/core)

In-order,	 single-issue,	 scoreboarded



Load-Balanced	Hints 3.3x	faster	
than Random	(193x gmean vs	58x)
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Hints	make	speculation	practical
on	large-scale	systems
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Stealing	is	inconsistent	
across	benchmarks

Load-Balanced	Hints	
17%	– 27%	faster	than Hints



Hints	make	speculation	more	efficient
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Reduce	wasted	work	by	6.4x Reduce	network	traffic	by	3.5x



Conclusion
Speculative	architectures	must	exploit	locality	to	scale	to	100s	of	cores
◦ Important	to	simplify parallel	programming

Spatial	Hints	convey	app-level	knowledge	to	exploit	cache	locality

Hardware	leverages	hints	by:
◦ Sending	tasks	likely	to	access	the	same	data	to	the	same	tile
◦ Serializing tasks	likely	to	conflict
◦ Balancing	work in	a	locality-aware	and	speculation-friendly	way

Our	techniques	make	speculation	practical	on	large-scale	systems
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Thank	you!	Questions?
Speculative	architectures	must	exploit	locality	to	scale	to	100s	of	cores
◦ Important	to	simplify parallel	programming

Spatial	Hints	convey	app-level	knowledge	to	exploit	cache	locality

Hardware	leverages	hints	by:
◦ Sending	tasks	likely	to	access	the	same	data	to	the	same	tile
◦ Serializing tasks	likely	to	conflict
◦ Balancing	work in	a	locality-aware	and	speculation-friendly	way

Our	techniques	make	speculation	practical	on	large-scale	systems
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