
Data-Centric	Execution	of	
Speculative	Parallel	Programs
MARK	JEFFREY, 	SUVINAY	SUBRAMANIAN,	
MALEEN	ABEYDEERA,	
JOEL	EMER,	DANIEL	SANCHEZ

MICRO	2016

Executive	summary
Many-cores	must	exploit	cache	locality	to	scale
Current	speculative	systems,	e.g.	TLS	or	TM,	do	not	exploit	locality
Spatial	Hints:	run	tasks	likely	to	access	the	same	data	in	the	same	place
◦ A	software-given	hint	denotes	the	data	a	new	task	is	likely	to	access	
◦ Hardware	maps	tasks	with	the	same	hint	to	the	same	place
◦ Hardware	uses	hints	to	perform	locality-aware	load	balancing

Our	techniques	make	speculative	parallelism	practical	at	large	scale
◦ It	is	easy	to	modify	programs	to	convey	locality	through	hints
◦ Performance	improves	by	3.3x	at	256	cores
◦ We	reduce	network	traffic	by	6.4x	and	wasted	work	by	3.5x

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 2

Prior	speculative	systems	scale	poorly
TRANSACTIONAL	MEMORY	(TM)	SCHEDULERS

Reduce	wasted	work	of	coarse-grain	txns

Limit	concurrency:	When	to	run	a	task?

SPATIAL	HINTS

Make	accesses	local	for	fine-grain	tasks

Less	data	movement:	Where	to	run	a	task?

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 3

Prior	speculative	systems	scale	poorly
TRANSACTIONAL	MEMORY	(TM)	SCHEDULERS

Reduce	wasted	work	of	coarse-grain	txns

Limit	concurrency:	When	to	run	a	task?

SPATIAL	HINTS

Make	accesses	local	for	fine-grain	tasks

Less	data	movement:	Where	to	run	a	task?

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 3

Spatially	map	tasks	for	improved	locality	and	less	waste

Prior	non-speculative	 locality	techniques
do	not	work	for	speculation
STATIC	TASK	MAPPING

Data	dependences	known	a	priori
◦ Linear	algebra,	Anton	2	[ASPLOS	‘13]

Graph	partitioning
◦ Localizes communication	and	scheduling
◦ Slow	preprocessing	step
◦ Cannot	adapt	to	imbalance

DYNAMIC	TASK	MAPPING

Work	stealing
◦ Cheap,	local	enqueues
◦ Steals	to	adapt	to	imbalance
◦ Limited	application	types
◦ Stealing	interfereswith	speculation

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 4

Baseline	Architecture:
Swarm	[MICRO	‘15]

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 5

General	execution	model	supports
ordered	and	unordered	parallelism

Baseline	Swarm	execution	model
Programs	consist	of	timestamped tasks
◦ Tasks	can	create	children	tasks	with	>=	timestamp
◦ Tasks	appear	to	execute	in	timestamp	order

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 6

swarm::enqueue(function_pointer,
timestamp,
arguments...);

Baseline	Swarm	architecture
Speculatively	executes	tasks	out	of	order

Large	hardware	task	queues

Scalable	ordered	speculation	

Scalable	ordered	commits

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 7

64-tile,	256-core	chip Tile	organization

Core Core Core Core

L1I/D L1I/D L1I/D L1I/D

L2

L3	sliceRouter

Task	unit
Mem /	IO

M
em

/	I
O

Mem /	IO

M
em

/	IO
Tile

Efficiently	supports	tiny	speculative	tasks

Spatial	Hints	in	Action
COMBINING	SPECULATION	AND	LOCALITY

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 8

Example:	Discrete	event	simulation	(DES)

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 9

E

A

B

r

s

t

D

C r s t =	r	XOR	s
0 0 0
1 0 1
1 1 0

Example:	Discrete	event	simulation	(DES)

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 9

E

A

B

r

s

t

0

0

1

1

0

0

0

D

C r s t =	r	XOR	s
0 0 0
1 0 1
1 1 0

Example:	Discrete	event	simulation	(DES)

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 9

r=1

Order	=	Simulated	time	(ns)
0 1 2 3 4 5 6

Tasks

E

A

B

r

s

t

0

0

1

1

0

0

0

D

C r s t =	r	XOR	s
0 0 0
1 0 1
1 1 0

Example:	Discrete	event	simulation	(DES)

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 9

r=1

Order	=	Simulated	time	(ns)
0 1 2 3 4 5 6

Tasks

E

A

B

r

s

t

0

0

1

1

0

0

0

1

D

C r s t =	r	XOR	s
0 0 0
1 0 1
1 1 0

Example:	Discrete	event	simulation	(DES)

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 9

r=1 A=1

Order	=	Simulated	time	(ns)
0 1 2 3 4 5 6

Tasks

D0=1

E

A

B

r

s

t

0

0

1

1

0

0

0

1

D

C r s t =	r	XOR	s
0 0 0
1 0 1
1 1 0

Example:	Discrete	event	simulation	(DES)

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 9

r=1 A=1

Order	=	Simulated	time	(ns)
0 1 2 3 4 5 6

Tasks

D0=1

E

A

B

r

s

t

0

0

1

1

0

0

0

1 0

D

C r s t =	r	XOR	s
0 0 0
1 0 1
1 1 0

Example:	Discrete	event	simulation	(DES)

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 9

r=1 A=1

Order	=	Simulated	time	(ns)
0 1 2 3 4 5 6

Tasks

C0=0

D0=1

E

A

B

r

s

t

0

0

1

1

0

0

0

1 0

D

C r s t =	r	XOR	s
0 0 0
1 0 1
1 1 0

Example:	Discrete	event	simulation	(DES)

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 9

r=1 A=1

Order	=	Simulated	time	(ns)
0 1 2 3 4 5 6

Tasks

C0=0

D0=1

E

A

B

r

s

t

0

0

1

1

0

0

0

1 0

D

C r s t =	r	XOR	s
0 0 0
1 0 1
1 1 0

Example:	Discrete	event	simulation	(DES)

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 9

r=1 A=1

Order	=	Simulated	time	(ns)
0 1 2 3 4 5 6

Tasks

C0=0

D0=1

E

A

B

r

s

t

0

0

1

1

0

0

0

1 0

1D

C r s t =	r	XOR	s
0 0 0
1 0 1
1 1 0

Example:	Discrete	event	simulation	(DES)

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 9

r=1 A=1

Order	=	Simulated	time	(ns)
0 1 2 3 4 5 6

Tasks

C0=0

D0=1 E1=1

E

A

B

r

s

t

0

0

1

1

0

0

0

1 0

1D

C r s t =	r	XOR	s
0 0 0
1 0 1
1 1 0

Example:	Discrete	event	simulation	(DES)

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 9

r=1 A=1

Order	=	Simulated	time	(ns)
0 1 2 3 4 5 6

Tasks

C0=0

D0=1 E1=1

E

A

B

r

s

t

0

0

1

1

0

0

0

1 0

1

1

D

C r s t =	r	XOR	s
0 0 0
1 0 1
1 1 0

Example:	Discrete	event	simulation	(DES)

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 9

r=1 A=1

Order	=	Simulated	time	(ns)
0 1 2 3 4 5 6

Tasks

C0=0

D0=1 E1=1 t=1

E

A

B

r

s

t

0

0

1

1

0

0

0

1 0

1

1

D

C r s t =	r	XOR	s
0 0 0
1 0 1
1 1 0

Example:	Discrete	event	simulation	(DES)

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 9

r=1 A=1

Order	=	Simulated	time	(ns)
0 1 2 3 4 5 6

Tasks

C0=0

D0=1 E1=1 t=1

E

A

B

r

s

t

0

0

1

1

0

0

0

1 0

1

1

D

C r s t =	r	XOR	s
0 0 0
1 0 1
1 1 0

Example:	Discrete	event	simulation	(DES)

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 9

r=1 A=1

Order	=	Simulated	time	(ns)
0 1 2 3 4 5 6

Tasks

C0=0

D0=1 E1=1 t=1

s=1

E

A

B

r

s

t

0

0

1

1

0

0

0

1 0

1

1

D

C r s t =	r	XOR	s
0 0 0
1 0 1
1 1 0

Example:	Discrete	event	simulation	(DES)

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 9

r=1 A=1

Order	=	Simulated	time	(ns)
0 1 2 3 4 5 6

Tasks

C0=0

D0=1 E1=1 t=1

s=1

E

A

B

r

s

t

0

0

1

1

0

0

0

1

1

0

1

1

D

C r s t =	r	XOR	s
0 0 0
1 0 1
1 1 0

Example:	Discrete	event	simulation	(DES)

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 9

r=1 A=1

Order	=	Simulated	time	(ns)
0 1 2 3 4 5 6

Tasks

C0=0

D0=1 E1=1 t=1

s=1 C1=1

B=1

E

A

B

r

s

t

0

0

1

1

0

0

0

1

1

0

1

1

D

C r s t =	r	XOR	s
0 0 0
1 0 1
1 1 0

Example:	Discrete	event	simulation	(DES)

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 9

r=1 A=1

Order	=	Simulated	time	(ns)
0 1 2 3 4 5 6

Tasks

C0=0

D0=1 E1=1 t=1

s=1 C1=1

B=1

E

A

B

r

s

t

0

0

1

1

0

0

0

1

1

0

0
1

1

D

C r s t =	r	XOR	s
0 0 0
1 0 1
1 1 0

Example:	Discrete	event	simulation	(DES)

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 9

r=1 A=1

Order	=	Simulated	time	(ns)
0 1 2 3 4 5 6

Tasks

C0=0

D0=1 E1=1 t=1

s=1 C1=1

B=1 D1=0

E

A

B

r

s

t

0

0

1

1

0

0

0

1

1

0

0
1

1

D

C r s t =	r	XOR	s
0 0 0
1 0 1
1 1 0

Example:	Discrete	event	simulation	(DES)

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 9

r=1 A=1

Order	=	Simulated	time	(ns)
0 1 2 3 4 5 6

Tasks

C0=0

D0=1 E1=1 t=1

s=1 C1=1

B=1 D1=0

E

A

B

r

s

t

0

0

1

1

0

0

0

1

1

0

0
1

1

D

C r s t =	r	XOR	s
0 0 0
1 0 1
1 1 0

Example:	Discrete	event	simulation	(DES)

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 9

r=1 A=1

Order	=	Simulated	time	(ns)
0 1 2 3 4 5 6

Tasks

C0=0

D0=1 E1=1 t=1

s=1 C1=1

B=1 D1=0 E1=0

E

A

B

r

s

t

0

0

1

1

0

0

0

1

1

0

0

1

D

C r s t =	r	XOR	s
0 0 0
1 0 1
1 1 0

Example:	Discrete	event	simulation	(DES)

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 9

r=1 A=1

Order	=	Simulated	time	(ns)
0 1 2 3 4 5 6

Tasks

C0=0

D0=1 E1=1 t=1

s=1 C1=1

B=1 D1=0 E1=0 t=0

E

A

B

r

s

t

0

0

1

1

0

0

0

1

1

0

0 D

C r s t =	r	XOR	s
0 0 0
1 0 1
1 1 0

Example:	Discrete	event	simulation	(DES)

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 9

r=1 A=1

Order	=	Simulated	time	(ns)
0 1 2 3 4 5 6

Tasks

C0=0

D0=1 E1=1 t=1

s=1 C1=1

B=1 D1=0 E1=0 t=0

E

A

B

r

s

t

0

0

1

1

0

0

0

1

1

0

0 D

C r s t =	r	XOR	s
0 0 0
1 0 1
1 1 0

Extracting	parallelism	in	DES
Execute	independent	tasks	out	of	order

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 10

r A

Order	=	Simulated	time	(ns)
0 1 2 3 4 5 6

Tasks

C

D E t

s C

B D E t

Data	dependences

r

A C

D E t

s

C

B D E t

Valid	Schedule

2.4x	parallelism
(more	in	larger	circuits)

Parallelism	is	plentiful	despite	data	dependences

1

128

256

Sp
ee
du
p

1c 128c 256c

Random

1

128

256

Sp
ee
du
p

1c 128c 256c

Random
Stealing

Speculation	scales	poorly	without	locality
Swarm	sends	new	tasks	to	random tiles	
◦ Good	for	load	balance
◦ Poor	locality	hurts	scalability	beyond	100	cores

Work	stealing:	a	non-speculative	scheduler
◦ Enqueuenew	tasks	locally
◦ Steal	from	the	most-loaded	tile
◦ Not	a	good	strategy	for	DES

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 11

des

Random

Stealing

Where	is	the	locality?

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 12

Each	task	operates	on	a	single	gate

The	gate	is	known	when	the	task	is	created

With	fine-grain	tasks,	most	data	accessed	is	known	at	creation	time

r

A C

D E t

s

C

B D E t

DES	Schedule

1

128

256

Sp
ee
du
p

1c 128c 256c

Random
Stealing

1

128

256

Sp
ee
du
p

1c 128c 256c

Hints
Random
Stealing

Data-centric	speculation	scales	well
Hints: map	each	gate	to	a	statically-chosen	tile

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 13

des

Stealing

Random

Hints

But	we	can	do	better!

A

B D

C

1. Less	data	movement

2. Conflicts	are	local,	cheap,	and	less	frequent

Send	new	tasks	for	a	gate	
to	its	corresponding	tile

D
186x

E
E

1

128

256

Sp
ee
du
p

1c 128c 256c

Hints
Random
Stealing

Load-balanced	speculation	scales	best
Static	gate-to-tile	mapping	may	cause	hotspots
◦ E.g.	some	gates	toggle	more	frequently

Dynamically	remap gates	(Hints)	across	tiles

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 14

1

128

256

Sp
ee
du
p

1c 128c 256c

LBHints
Hints
Random
Stealing

des

Stealing

Random

Hints

Load-Balanced	
Hints

Programmer	knows	most	of	the	data	accessed

Spatial	Hints	convey	program-level	knowledge	to	exploit	locality

236x

Spatial	Hints	
Implementation

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 15

Hint	mechanisms	are	straightforward
SOFTWARE

A	Spatial	Hint is	an	integer	value
◦ Given	at	task	creation	time
◦ Denotes	data	likely	to	be	accessed	by	the	task
◦ E.g.	the	gate	ID	in	DES

HARDWARE

Hashes	each	new	task’s	Hint to	a	tile	ID

Serializes	same-Hint tasks

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 16

7 4

1
1

Localize	most	data	accesses	within	a	tile
Serialize	tasks	likely	to	conflict

Load	balance	with	a	level	of	indirection
Static	hint-to-tile	mapping	may	cause	imbalance

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 17

Tile	ID
2

H
Hint
0xF00

2
Bucket

H

Reconfigurable	Tile	Map

Tile	IDHint
0xF00

1
7
1
…
61
63
40

Instead,	periodically	remap	hints	across	tiles	to	equalize	load

“Load”	is	different	for	speculation

Non-speculative	systems	use #	queued	tasks	as	a	proxy	for	load

When	imbalanced,	speculative	systems	often
◦ Don’t	run	out	of	work
◦ Abort	more	work	or	strain	speculation	resources

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 18

Remap	hints	to	tiles	to	balance	#	of	committed	cycles	per	tile

2
Bucket

H

Reconfigurable	Tile	Map

Tile	IDHint
0xF00

1
7
1
…
61
63
40

Adding	hints	to	applications	is	easy
void desTask(Timestamp ts, GateInput* input) {
Gate* g = input->gate();
bool toggledOutput = g.simulateToggle(input);
if (toggledOutput) {
// Toggle all inputs connected to this gate
for (GateInput* i : g->connectedInputs())

swarm::enqueue(desTask,
/*Timestamp*/ ts + delay(g, i),
/*Hint*/ i->gate()->id, i);

}
}

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 19

One	line	of	code	to	express	the	Gate	ID	as	a	Hint

Benchmark Hint Why?
des Gate	ID Map	tasks	for	same	gate	to	same	tile

nocsim Router	ID Frequent	intra-router	communication
bfs,	sssp,
astar,	color

Cache-line	
address Several	vertices	reside	on	the	same	line

silo (Table	ID,	
primary	key) Each	task	accesses	one	database	tuple

genome,
kmeans Multiple

Adding	hints	to	applications	is	easy

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 20

See	the	paper	for	more	details!
Load	balance	reconfiguration	algorithm

Choice	of	application	hints

Relationship	between	task	size	and	hint	effectiveness

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 21

Evaluation

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 22

Methodology
Event-driven,	Pin-based	simulator

Target	system:	256-core,	64-tile	chip

Scalability	experiments	from	1–256	cores
◦ Scaled-down	systems	have	fewer	tiles

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 23

Core Core Core Core

L1I/D L1I/D L1I/D L1I/D

L2

L3	sliceRouter

Task	unit
Mem /	IO

M
em

/	I
O

Mem /	IO

M
em

/	IO

Tile

64	MB	shared	L3	(1MB/tile)

256	KB	per-tile	L2s

16	KB	per-core	L1s

16K	task	queue	entries	(64/core)
4K	commit	queue	entries	(16/core)

In-order,	 single-issue,	 scoreboarded

Load-Balanced	Hints 3.3x	faster	
than Random	(193x gmean vs	58x)

1

256

512

Sp
ee
du
p

bfs

1

256

512 sssp

1

128

256 astar

1

64

128

Sp
ee
du
p

color

1

128

256 des

1

256

512 nocsim

1

128

256

Sp
ee
du
p

1c 128c 256c

silo

1

64

128

1c 128c 256c

genome

1

128

256

1c 128c 256c

kmeans

Random

1

256

512

Sp
ee
du
p

bfs

1

256

512 sssp

1

128

256 astar

1

64

128

Sp
ee
du
p

color

1

128

256 des

1

256

512 nocsim

1

128

256

Sp
ee
du
p

1c 128c 256c

silo

1

64

128

1c 128c 256c

genome

1

128

256

1c 128c 256c

kmeans

Hints Random

1

256

512

Sp
ee
du
p

bfs

1

256

512 sssp

1

128

256 astar

1

64

128

Sp
ee
du
p

color

1

128

256 des

1

256

512 nocsim

1

128

256

Sp
ee
du
p

1c 128c 256c

silo

1

64

128

1c 128c 256c

genome

1

128

256

1c 128c 256c

kmeans

LBHints Hints Random

1

256

512

Sp
ee
du
p

bfs

1

256

512 sssp

1

128

256 astar

1

64

128

Sp
ee
du
p

color

1

128

256 des

1

256

512 nocsim

1

128

256

Sp
ee
du
p

1c 128c 256c

silo

1

64

128

1c 128c 256c

genome

1

128

256

1c 128c 256c

kmeans

LBHints Hints Random Stealing

Hints	make	speculation	practical
on	large-scale	systems

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 24

Stealing	is	inconsistent	
across	benchmarks

Load-Balanced	Hints	
17%	– 27%	faster	than Hints

Hints	make	speculation	more	efficient

0.0

0.2

0.4

0.6

0.8

1.0

Ab
or

te
d

C
yc

le
s

R L R L R L R L R L R L R L R L R L
bfs sssp

astar
color des

nocsim silo
genome

kmeans

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 25

0.0

0.2

0.4

0.6

0.8

1.0

N
oC

 d
at

a
tra

ns
fe

rre
d

R L R L R L R L R L R L R L R L R L
bfs sssp

astar
color des

nocsim silo
genome

kmeans

Reduce	wasted	work	by	6.4x Reduce	network	traffic	by	3.5x

Conclusion
Speculative	architectures	must	exploit	locality	to	scale	to	100s	of	cores
◦ Important	to	simplify parallel	programming

Spatial	Hints	convey	app-level	knowledge	to	exploit	cache	locality

Hardware	leverages	hints	by:
◦ Sending	tasks	likely	to	access	the	same	data	to	the	same	tile
◦ Serializing tasks	likely	to	conflict
◦ Balancing	work in	a	locality-aware	and	speculation-friendly	way

Our	techniques	make	speculation	practical	on	large-scale	systems

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 26

Thank	you!	Questions?
Speculative	architectures	must	exploit	locality	to	scale	to	100s	of	cores
◦ Important	to	simplify parallel	programming

Spatial	Hints	convey	app-level	knowledge	to	exploit	cache	locality

Hardware	leverages	hints	by:
◦ Sending	tasks	likely	to	access	the	same	data	to	the	same	tile
◦ Serializing tasks	likely	to	conflict
◦ Balancing	work in	a	locality-aware	and	speculation-friendly	way

Our	techniques	make	speculation	practical	on	large-scale	systems

DATA-CENTRIC	EXECUTION	OF	SPECULATIVE	PARALLEL	PROGRAMS 27

