
SAM:	Optimizing	
Multithreaded	Cores	for	
Speculative	Parallelism
MALEEN	ABEYDEERA, 	SUVINAY SUBRAMANIAN, 	MARK	JEFFREY,
JOEL EMER, 	DANIEL SANCHEZ

PACT 	2017

Executive	Summary
Analyzes	the	interplay	between	hardware	multithreading	and	speculative	parallelism	

(eg:		Thread	Level	Speculation	and	Transactional	Memory)

Conventional	multithreading	causes	performance	pathologies	on	speculative	workloads
• Increase	in	aborted	work
• Inefficient	use	of	speculation	resources

Why?	All	threads	are	treated	equally

Speculation	Aware	Multithreading	(SAM)	
• Prioritize	threads	running	 tasks	more	likely	to	commit

SAM	makes	multithreading	more	useful		

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 2

Executive	Summary
Analyzes	the	interplay	between	hardware	multithreading	and	speculative	parallelism	

(eg:		Thread	Level	Speculation	and	Transactional	Memory)

Conventional	multithreading	causes	performance	pathologies	on	speculative	workloads
• Increase	in	aborted	work
• Inefficient	use	of	speculation	resources

Why?	All	threads	are	treated	equally

Speculation	Aware	Multithreading	(SAM)	
• Prioritize	threads	running	 tasks	more	likely	to	commit

SAM	makes	multithreading	more	useful		

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 2

Outline	

Background	on	speculative	parallelism
Pitfalls	of	speculative	parallelism	with	conventional	multithreading
SAM	on	in-order	cores
SAM	on	out-of-order	cores

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 3

Background	on	Speculative	Parallelism

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 4

Parallelize	tasks	when	the	dependences	are	not	known	in	advance
Hardware	executes	all	tasks	in	parallel,	aborting	upon	conflicts
Which	task	to	abort?	Conflict	resolution	policy

Background	on	Speculative	Parallelism

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 4

Parallelize	tasks	when	the	dependences	are	not	known	in	advance
Hardware	executes	all	tasks	in	parallel,	aborting	upon	conflicts
Which	task	to	abort?	Conflict	resolution	policy

Speculative	Parallelism

Ordered
e.g.	Thread-Level	Speculation	(TLS)

(Program	order	dictates	the	conflict	resolution	order)

Unordered
e.g.	Hardware	Transactional	Memory

(Any	execution	order	is	valid,	but	high-performance
conflict	resolution	policies	define	an	order)	

Background	on	Speculative	Parallelism

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 4

Parallelize	tasks	when	the	dependences	are	not	known	in	advance
Hardware	executes	all	tasks	in	parallel,	aborting	upon	conflicts
Which	task	to	abort?	Conflict	resolution	policy

Implicit	order	among	all	tasks	in	any	speculative	system

Speculative	Parallelism

Ordered
e.g.	Thread-Level	Speculation	(TLS)

(Program	order	dictates	the	conflict	resolution	order)

Unordered
e.g.	Hardware	Transactional	Memory

(Any	execution	order	is	valid,	but	high-performance
conflict	resolution	policies	define	an	order)	

Baseline	System	- Swarm	[Jeffrey,	MICRO’	15]

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 5

void desTask(Timestamp ts , GateInput* input) {
Gate* g = input ->gate ();
bool toggledOutput = g.simulateToggle(input);
if (toggledOutput) {

for (GateInput* i : g-> connectedInputs ()) {
swarm::enqueue(desTask , ts+delay(g,i), i);

}
}

}

Baseline	System	- Swarm	[Jeffrey,	MICRO’	15]

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 5

void desTask(Timestamp ts , GateInput* input) {
Gate* g = input ->gate ();
bool toggledOutput = g.simulateToggle(input);
if (toggledOutput) {

for (GateInput* i : g-> connectedInputs ()) {
swarm::enqueue(desTask , ts+delay(g,i), i);

}
}

} Tasks	create	children	tasks
(function	ptr,		timestamp,	args)

Timestamped	tasks

Baseline	System	- Swarm	[Jeffrey,	MICRO’	15]

Tasks	appear	to	execute	in	timestamp	order

Unordered	execution	via	equal	timestamps

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 5

void desTask(Timestamp ts , GateInput* input) {
Gate* g = input ->gate ();
bool toggledOutput = g.simulateToggle(input);
if (toggledOutput) {

for (GateInput* i : g-> connectedInputs ()) {
swarm::enqueue(desTask , ts+delay(g,i), i);

}
}

} Tasks	create	children	tasks
(function	ptr,		timestamp,	args)

Timestamped	tasks

Swarm	Microarchitecture

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 6

Equal	timestamps:	
global	order	via	Virtual	Time	(VT)

Timestamp Tiebreaker

Virtual Time

Swarm	Microarchitecture

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 6

Mem / IO

M
em

/
IO

Mem / IO

M
em

/ IO

16-tile, 64-core CMP Tile Organization

Core Core Core Core

L1I/D L1I/D L1I/D L1I/D

L2

L3 SliceRouter

Task Unit

Tile

Equal	timestamps:	
global	order	via	Virtual	Time	(VT)

Timestamp Tiebreaker

Virtual Time

Swarm	Microarchitecture

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 6

Mem / IO

M
em

/
IO

Mem / IO

M
em

/ IO

16-tile, 64-core CMP Tile Organization

Core Core Core Core

L1I/D L1I/D L1I/D L1I/D

L2

L3 SliceRouter

Task Unit

Tile

Equal	timestamps:	
global	order	via	Virtual	Time	(VT)

Tasks	execute	out-of-order,
but	commit	in	VT	order

Timestamp Tiebreaker

Virtual Time

Commit	queue:	state	of	tasks	waiting	to	commit

Outline	

Background	on	speculative	parallelism
Pitfalls	of	speculative	parallelism	with	conventional	multithreading
SAM	on	in-order	cores
SAM	on	out-of-order	cores

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 7

Pitfalls	of	Speculation-Oblivious	Multithreading

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 8

System	configuration:
64-core	SMT	system
In-order	core	with	2-wide	issue
Speculation-oblivious	 round-robin	 order

Pitfalls	of	Speculation-Oblivious	Multithreading

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 8

System	configuration:
64-core	SMT	system
In-order	core	with	2-wide	issue
Speculation-oblivious	 round-robin	 order

Pitfalls	of	Speculation-Oblivious	Multithreading

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 8

Insights:
1.	Multithreading	can	be	highly	beneficial

System	configuration:
64-core	SMT	system
In-order	core	with	2-wide	issue
Speculation-oblivious	 round-robin	 order

Micro-ops	issued	from
committed tasks

No	ready	micro-ops	to	issue

Pitfalls	of	Speculation-Oblivious	Multithreading

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 8

Insights:
1.	Multithreading	can	be	highly	beneficial

However,	multithreading	can	also	lead	to:
2.	Increased	aborts

System	configuration:
64-core	SMT	system
In-order	core	with	2-wide	issue
Speculation-oblivious	 round-robin	 order

Micro-ops	issued	from
committed tasks

No	ready	micro-ops	to	issue

Micro-ops	issued	from
aborted	tasks

Pitfalls	of	Speculation-Oblivious	Multithreading

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 8

Insights:
1.	Multithreading	can	be	highly	beneficial

However,	multithreading	can	also	lead	to:
2.	Increased	aborts
3.	Inefficient	use	of	speculation	resources

System	configuration:
64-core	SMT	system
In-order	core	with	2-wide	issue
Speculation-oblivious	 round-robin	 order

Micro-ops	issued	from
committed tasks

No	ready	micro-ops	to	issue

Micro-ops	issued	from
aborted	tasks

Resource	stalls

Pitfalls	of	Speculation-Oblivious	Multithreading

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 8

Insights:
1.	Multithreading	can	be	highly	beneficial

However,	multithreading	can	also	lead	to:
2.	Increased	aborts
3.	Inefficient	use	of	speculation	resources

Unlikely-to-commit	tasks	hurt	the
throughput	of	likely-to-commit	ones

System	configuration:
64-core	SMT	system
In-order	core	with	2-wide	issue
Speculation-oblivious	 round-robin	 order

Micro-ops	issued	from
committed tasks

No	ready	micro-ops	to	issue

Micro-ops	issued	from
aborted	tasks

Resource	stalls

Speculation-Aware	Multithreading

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 9

Prioritize	threads	according	to	their	
conflict	resolution	priorities

Reduce	Speculation	Resource	Stalls
(tasks	commit	early)	

Reduce	Aborts
(focus	resources	on	tasks	likely	to	commit)	

Outline	

Background	on	speculative	parallelism
Pitfalls	of	speculative	parallelism	with	conventional	multithreading
SAM	on	in-order	cores
SAM	on	out-of-order	cores

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 10

SAM	on	in-order	cores

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 11

SMT
Issue

Fetch Decode leslesRegister
Files

Pipe 0
Pipe 1

Int ALU
FP ALU

Int ALU
Mem/DCache

Thread
micro-op
queues

SAM	on	in-order	cores

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 11

SMT
Issue

Fetch Decode leslesRegister
Files

Pipe 0
Pipe 1

Int ALU
FP ALU

Int ALU
Mem/DCache

Thread
micro-op
queues

SAM	on	in-order	cores

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 11

SMT
Issue

Fetch Decode leslesRegister
Files

Pipe 0
Pipe 1

Int ALU
FP ALU

Int ALU
Mem/DCache

Thread
micro-op
queues

Conflict resolution
priority updates
(Virtual Times)

Task
Unit

SAM	on	in-order	cores

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 11

SMT
Issue

Fetch Decode leslesRegister
Files

Pipe 0
Pipe 1

Int ALU
FP ALU

Int ALU
Mem/DCache

Thread
micro-op
queues

SAM issue priorities
(higher is better)

Sort
Max

Ready

52:9

52:7
17:1
95:4

Virtual Times

3

2
4

1

Issue
ThreadID

Conflict resolution
priority updates
(Virtual Times)

Task
Unit

Experimental	Methodology

Baseline	System
• Swarm	+	Wait-N-GoTM [Jafri	et	al.	ASPLOS’13]	conflict	resolution	techniques
• Cycle-accurate,	event-driven,	Pin-based	simulator
• Model	systems	up	to	64	cores
• Cores:	2	wide	issue,	up	to	8	threads	per	core	

Benchmarks
• Ordered	:	Swarm	[Jeffrey	et	al.	MICRO’15,	MICRO’16]	– 8	benchmarks
• Unordered	:	STAMP	[Minh	et	al. IISWC’	08]	– 8	benchmarks	

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 12

SAM	makes	multithreading	more	effective

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 13

1 Thread

Ordered Benchmarks Unordered Benchmarks

SAM	makes	multithreading	more	effective

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 13

8 Thread Round Robin
1 Thread

Ordered Benchmarks Unordered Benchmarks

SAM	makes	multithreading	more	effective

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 13

8 Thread SAM
8 Thread Round Robin
1 Thread

Ordered Benchmarks Unordered Benchmarks

SAM	makes	multithreading	more	effective

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 13

8 Thread SAM
8 Thread Round Robin
1 Thread

Ordered Benchmarks Unordered Benchmarks

8	threaded	cores		
outperform	single	
threaded	cores	by	
1.85X

With	SAM,	the	benefit
increases	to	2.33X

SAM	makes	multithreading	more	effective

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 13

8 Thread SAM
8 Thread Round Robin
1 Thread

Ordered Benchmarks Unordered Benchmarks

8	threaded	cores		
outperform	single	
threaded	cores	by	
1.85X

With	SAM,	the	benefit
increases	to	2.33X

SAM	makes	multithreading	more	effective

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 13

8 Thread SAM
8 Thread Round Robin
1 Thread

Ordered Benchmarks Unordered Benchmarks

8	threaded	cores		
outperform	single	
threaded	cores	by	
1.85X

With	SAM,	the	benefit
increases	to	2.33X

Why	does	SAM	help?

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 14

SAM	matches	RR	when	there	
are	no	pathologies

Micro-ops	issued Unused	issue	slots	(reason)
Committed Aborted Resource Not	ready Other

Why	does	SAM	help?

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 14

SAM	matches	RR	when	there	
are	no	pathologies

SAM	reduces	wasted	work

Micro-ops	issued Unused	issue	slots	(reason)
Committed Aborted Resource Not	ready Other

Why	does	SAM	help?

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 14

SAM	matches	RR	when	there	
are	no	pathologies

SAM	reduces	wasted	work

SAM	reduces	resource	stalls

Micro-ops	issued Unused	issue	slots	(reason)
Committed Aborted Resource Not	ready Other

Outline	

Background	on	speculative	parallelism
Pitfalls	of	speculative	parallelism	with	conventional	multithreading
SAM	on	in-order	cores
SAM	on	out-of-order	cores

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 15

SAM	on	out-of-order	cores
Unlike	in-order	cores,	priorities	affect	pipeline	
efficiency
• A	single	thread	can	clog	core	resources	
• Increased	wrong	path	execution

Despite	these,	prioritizing	tasks	is	better	

Need	for	aggressive	prioritization	affects	core	design
• Shared,	not	partitioned	ROBs

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 16

SMT
Issue

Fetch Decode

Thread
micro-op
queues

Issue
Buffer

Physical
Reg
File

Pipe 0 Reorder
Buffer

Pipe 1

In-flight uops (for ICount)

3 9 4 2

SAM priorities

3 4 2 1

Conflict resolution
priority updates
(from task unit)

Conflict res. priorities

2 3 2 1

SAM	tradeoffs with	out-of-order	cores

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 17

Micro-ops	issued Unused	issue	slots	(reason)
Committed Aborted Resource Not	ready OtherWrong	path

Baseline	policy	- ICount	(IC)

sssp – 8	threads

SAM	tradeoffs with	out-of-order	cores

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 17

Micro-ops	issued Unused	issue	slots	(reason)
Committed Aborted Resource Not	ready OtherWrong	path

Baseline	policy	- ICount	(IC)

SAM	is	more	beneficial	with	dynamically	shared	ROBs
Reduces	aborts	+	resource	stalls

sssp – 8	threads

SAM	tradeoffs with	out-of-order	cores

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 17

Micro-ops	issued Unused	issue	slots	(reason)
Committed Aborted Resource Not	ready OtherWrong	path

Baseline	policy	- ICount	(IC)

SAM	is	more	beneficial	with	dynamically	shared	ROBs
Reduces	aborts	+	resource	stalls

But	reduced	pipeline	efficiency

sssp – 8	threads

SAM	tradeoffs with	out-of-order	cores

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 17

Micro-ops	issued Unused	issue	slots	(reason)
Committed Aborted Resource Not	ready OtherWrong	path

Baseline	policy	- ICount	(IC)

SAM	is	more	beneficial	with	dynamically	shared	ROBs
Reduces	aborts	+	resource	stalls

But	reduced	pipeline	efficiency
Increase	in	wrong-path	issues	+	not-ready	stalls

sssp – 8	threads

Adaptive	SAM	policy

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 18

Micro-ops	issued Unused	issue	slots	(reason)
Committed Aborted Resource Not	ready OtherWrong	path

Adaptive	SAM	policy

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 18

Hardware	counters	to	track	cycles	Micro-ops	issued Unused	issue	slots	(reason)
Committed Aborted Resource Not	ready OtherWrong	path

Adaptive	SAM	policy

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 18

Aborted Resource Not	readyWrong	path

Hardware	counters	to	track	cycles	Micro-ops	issued Unused	issue	slots	(reason)
Committed Aborted Resource Not	ready OtherWrong	path

Adaptive	SAM	policy

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 18

Aborted Resource Not	readyWrong	path

Hardware	counters	to	track	cycles	

+

Micro-ops	issued Unused	issue	slots	(reason)
Committed Aborted Resource Not	ready OtherWrong	path

Adaptive	SAM	policy

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 18

Aborted Resource Not	readyWrong	path

Hardware	counters	to	track	cycles	

Cycles	lost	to	
task	level	speculation

+

Micro-ops	issued Unused	issue	slots	(reason)
Committed Aborted Resource Not	ready OtherWrong	path

Adaptive	SAM	policy

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 18

Aborted Resource Not	readyWrong	path

Hardware	counters	to	track	cycles	

Cycles	lost	to	
task	level	speculation

Cycles	lost	to	
pipeline	inefficiencies

+ +

>	

Use	SAM	 Use	ICount

True False

Micro-ops	issued Unused	issue	slots	(reason)
Committed Aborted Resource Not	ready OtherWrong	path

SAM	on	OoO cores	(all	benchmarks)

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 19

At	8	threads	/	core:
• Multithreading	improves	performance	

over	single	threaded	cores	by	1.1x

Average	over	all	benchmarks

Micro-ops	issued Unused	issue	slots	(reason)
Committed Aborted Resource Not	ready OtherWrong	path

SAM	on	OoO cores	(all	benchmarks)

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 19

At	8	threads	/	core:
• Multithreading	improves	performance	

over	single	threaded	cores	by	1.1x
• With	SAM,	improvement	rises	to	1.5x

Average	over	all	benchmarks

Micro-ops	issued Unused	issue	slots	(reason)
Committed Aborted Resource Not	ready OtherWrong	path

SAM	on	OoO cores	(all	benchmarks)

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 19

At	8	threads	/	core:
• Multithreading	improves	performance	

over	single	threaded	cores	by	1.1x
• With	SAM,	improvement	rises	to	1.5x

Adaptive	policy	slightly	increases	
performance	at	2	and	4	threads

Average	over	all	benchmarks

Micro-ops	issued Unused	issue	slots	(reason)
Committed Aborted Resource Not	ready OtherWrong	path

Conclusion

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 20

Conventional	multithreading	causes	performance	pathologies	on	speculative	workloads
• Increase	in	aborted	work
• Inefficient	use	of	speculation	resources

Speculation	Aware	Multithreading	(SAM)	
Prioritize	threads	running	tasks	more	likely	to	commit

SAM	makes	multithreading	more	useful

Questions?

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 21

Conventional	multithreading	causes	performance	pathologies	on	speculative	workloads
• Increase	in	aborted	work
• Inefficient	use	of	speculation	resources

Speculation	Aware	Multithreading	(SAM)	
Prioritize	threads	running	tasks	more	likely	to	commit

SAM	makes	multithreading	more	useful

