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Executive	Summary
Analyzes	the	interplay	between	hardware	multithreading	and	speculative	parallelism	

(eg:		Thread	Level	Speculation	and	Transactional	Memory	 )

Conventional	multithreading	causes	performance	pathologies	on	speculative	workloads
• Increase	in	aborted	work
• Inefficient	use	of	speculation	resources

Why?	All	threads	are	treated	equally

Speculation	Aware	Multithreading	(SAM)	
• Prioritize	threads	running	 tasks	more	likely	to	commit

SAM	makes	multithreading	more	useful		

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 2



Executive	Summary
Analyzes	the	interplay	between	hardware	multithreading	and	speculative	parallelism	

(eg:		Thread	Level	Speculation	and	Transactional	Memory	 )

Conventional	multithreading	causes	performance	pathologies	on	speculative	workloads
• Increase	in	aborted	work
• Inefficient	use	of	speculation	resources

Why?	All	threads	are	treated	equally

Speculation	Aware	Multithreading	(SAM)	
• Prioritize	threads	running	 tasks	more	likely	to	commit

SAM	makes	multithreading	more	useful		

SAM	:	OPTIMIZING	MULTITHREADED	CORES	FOR	SPECULATIVE	PARALLELISM 2



Outline	

Background	on	speculative	parallelism
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Background	on	Speculative	Parallelism
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Parallelize	tasks	when	the	dependences	are	not	known	in	advance
Hardware	executes	all	tasks	in	parallel,	aborting	upon	conflicts
Which	task	to	abort?	Conflict	resolution	policy
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Speculative	Parallelism

Ordered
e.g.	Thread-Level	Speculation	(TLS)

(Program	order	dictates	the	conflict	resolution	order)

Unordered
e.g.	Hardware	Transactional	Memory

(Any	execution	order	is	valid,	but	high-performance
conflict	resolution	policies	define	an	order)	
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Baseline	System	- Swarm	[Jeffrey,	MICRO’	15]
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void desTask(Timestamp ts , GateInput* input) {
Gate* g = input ->gate ();
bool toggledOutput = g.simulateToggle(input); 
if ( toggledOutput ) { 

for (GateInput* i : g-> connectedInputs ()) {
swarm::enqueue(desTask , ts+delay(g,i), i); 

}
}

}
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Baseline	System	- Swarm	[Jeffrey,	MICRO’	15]

Tasks	appear	to	execute	in	timestamp	order

Unordered	execution	via	equal	timestamps
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Swarm	Microarchitecture
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Equal	timestamps:	
global	order	via	Virtual	Time	(VT)

Timestamp Tiebreaker

Virtual Time
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System	configuration:
64-core	SMT	system
In-order	core	with	2-wide	issue
Speculation-oblivious	 round-robin	 order
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Speculation-Aware	Multithreading
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Prioritize	threads	according	to	their	
conflict	resolution	priorities

Reduce	Speculation	Resource	Stalls
(tasks	commit	early)	

Reduce	Aborts
(focus	resources	on	tasks	likely	to	commit)	
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Experimental	Methodology

Baseline	System
• Swarm	+	Wait-N-GoTM [Jafri	et	al.	ASPLOS’13]	conflict	resolution	techniques
• Cycle-accurate,	event-driven,	Pin-based	simulator
• Model	systems	up	to	64	cores
• Cores:	2	wide	issue,	up	to	8	threads	per	core	

Benchmarks
• Ordered	:	Swarm	[Jeffrey	et	al.	MICRO’15,	MICRO’16]	– 8	benchmarks
• Unordered	:	STAMP	[Minh	et	al. IISWC’	08]	– 8	benchmarks	
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SAM	matches	RR	when	there	
are	no	pathologies

SAM	reduces	wasted	work
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Micro-ops	issued Unused	issue	slots	(reason)
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SAM	on	out-of-order	cores
Unlike	in-order	cores,	priorities	affect	pipeline	
efficiency
• A	single	thread	can	clog	core	resources	
• Increased	wrong	path	execution

Despite	these,	prioritizing	tasks	is	better	

Need	for	aggressive	prioritization	affects	core	design
• Shared,	not	partitioned	ROBs
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SAM	tradeoffs with	out-of-order	cores
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Committed Aborted Resource Not	ready OtherWrong	path

Baseline	policy	- ICount	(IC)

SAM	is	more	beneficial	with	dynamically	shared	ROBs
Reduces	aborts	+	resource	stalls

But	reduced	pipeline	efficiency
Increase	in	wrong-path	issues	+	not-ready	stalls

sssp – 8	threads



Adaptive	SAM	policy
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SAM	on	OoO cores	(all	benchmarks)
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At	8	threads	/	core:
• Multithreading	improves	performance	

over	single	threaded	cores	by	1.1x
• With	SAM,	improvement	rises	to	1.5x

Adaptive	policy	slightly	increases	
performance	at	2	and	4	threads
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Conclusion
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• Increase	in	aborted	work
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Speculation	Aware	Multithreading	(SAM)	
Prioritize	threads	running	tasks	more	likely	to	commit

SAM	makes	multithreading	more	useful
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