
T4: Compiling Sequential Code 
for Effective Speculative 

Parallelization in Hardware
V IC TOR A .  Y IN G
M ARK  C .  JEFFREY *
D AN IEL SAN C HEZ

I SC A 2 020

*University of Toronto starting Fall 2020



Parallelization: Gap between programmers and hardware

Multicores are everywhere Programmers still write sequential code

ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE SPECULATIVE PARALLELIZATION IN HARDWARE 2

Speculative parallelization: new architectures and compilers to parallelize 
sequential code without knowing what is safe to run in parallel

Intel Skylake-SP (2017): 28 cores per die

1.…
2.…
3.…



T4: Trees of Tiny Timestamped Tasks
Our T4 compiler exploits recently proposed hardware features:
◦ Timestamps encode order, letting tasks spawn out-of-order

◦ Trees unfold branches in parallel for high-throughput spawn

◦ Compiler optimizations make task spawn efficient

◦ Efficient parallel spawns allows for tiny tasks (10’s of instructions)
» Tiny tasks create opportunities to reduce communication and improve locality

We target hard-to-parallelize C/C++ 
benchmarks from SPEC CPU2006
◦ Modest overheads (gmean 31% on 1 core)

◦ Speedups up to 49x on 64 cores

3ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE SPECULATIVE PARALLELIZATION IN HARDWARE

swarm.csail.mit.edu



4ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE SPECULATIVE PARALLELIZATION IN HARDWARE

Background

T4 Principles in Action

T4: Parallelizing Entire Programs

Evaluation

Background

T4 Principles in Action

T4: Parallelizing Entire Programs

Evaluation



Thread-Level Speculation (TLS) [Multiscalar (’92-’98), Hydra (’94-’05), Superthreaded (’96), Atlas (’99),

Krishnan et al. (‘98-’01), STAMPede (‘98-’08), Cintra et al. (’00, ‘02), IMT (‘03), TCC (’04), POSH (‘06), Bulk (’06), Luo et al. (’09-’13), RASP (‘11), MTX (‘10-’20), and many others]

◦ Divide program into tasks (e.g., loop iterations or function calls)

◦ Speculatively execute tasks in parallel

◦ Detect dependencies at runtime and recover

Prior TLS systems did not scale many real-world programs beyond a few 
cores due to 

◦ Expensive aborts

◦ Serial bottlenecks in task spawns or commits

5ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE SPECULATIVE PARALLELIZATION IN HARDWARE



TLS creates chains of tasks

Example: maximal independent set
◦ Iterates through vertices in graph

One task per outer-loop iteration
◦ Each tasks spawns the next

◦ Hardware tries to run tasks in parallel

Hardware tracks memory accesses 
to discover data dependences

6

Time

A

B

C

D

E

F …

for (int v = 0; v < numVertices; v++) {
if (state[v] == UNVISITED) {
state[v] = INCLUDED;
for (int nbr : neighbors(v))

state[nbr] = EXCLUDED;
}

}

rd

wr

Indirect 
memory 
accesses

ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE SPECULATIVE PARALLELIZATION IN HARDWARE



Task chains incur costly misspeculation recovery

Tasks abort if they violated 
data dependence

Tasks that abort must roll 
back their effects, including 
successors they spawned or 
forwarded data to

7

Time

D′
E′

F′ …

rd

A

B

C

D

E

F …

A

B

C

D

E

F

rd

wr

…

for (int v = 0; v < numVertices; v++) {
if (state[v] == UNVISITED) {
state[v] = INCLUDED;
for (int nbr : neighbors(v))

state[nbr] = EXCLUDED;
}

}

Unselective aborts waste a lot of work
ABORT

RE-EXECUTE

ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE SPECULATIVE PARALLELIZATION IN HARDWARE



Swarm architecture
[Jeffrey et al. MICRO’15, MICRO’16, MICRO’18; Subramanian et al. ISCA’17]

Execution model:
◦ Program comprises timestamped tasks
◦ Tasks spawn children with greater or 

equal timestamp
◦ Tasks appear to run sequentially,

in timestamp order

Detects order violations and 
selectively aborts dependent tasks

Distributed task units queue, 
dispatch, and commit multiple tasks 
per cycle
◦ <2% area overhead
◦ Runs hundreds of tiny speculative tasks

8ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE SPECULATIVE PARALLELIZATION IN HARDWARE



9ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE SPECULATIVE PARALLELIZATION IN HARDWARE

Background

T4 Principles in Action

T4: Parallelizing Entire Programs

Evaluation



T4’s decoupled spawn enables selective aborts

T4 compiles sequential C/C++ to 
exploit parallelism on Swarm

Put most work into worker tasks 
at the leaves of the task tree
◦ Use Swarm’s mechanisms for 

cheap selective aborts

10

for (int v = 0; v < numVertices; v++) {
if (state[v] == UNVISITED) {
state[v] = INCLUDED;
for (int nbr : neighbors(v))

state[nbr] = EXCLUDED;
}

}

Time…

D′
rd

wr

A

B

C

D

E

F

rd

Spawners

Workers

ABORT

RE-EXECUTE

ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE SPECULATIVE PARALLELIZATION IN HARDWARE



Tiny tasks make aborts cheap
Isolate contentious memory 
accesses into tiny tasks, to limit 
the damage when they abort

11ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE SPECULATIVE PARALLELIZATION IN HARDWARE

wr

wr wr

Time
…

Time

wr

wr wr

…

for (int v = 0; v < numVertices; v++) {
if (state[v] == UNVISITED) {
state[v] = INCLUDED;
for (int nbr : neighbors(v))

state[nbr] = EXCLUDED;
}

}

Parallelize outer loop only:

Parallelize both loops:Tiny tasks (a few instructions)
are difficult to spawn effectively



Tiny tasks (a few instructions)
are difficult to spawn effectively

T4’s balanced task trees enable scalability

Spawners recursively divide 
the range of iterations

12

for (int v = 0; v < numVertices; v++) {
if (state[v] == UNVISITED) {
state[v] = INCLUDED;
for (int nbr : neighbors(v))

state[nbr] = EXCLUDED;
}

}

ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE SPECULATIVE PARALLELIZATION IN HARDWARE

…
…
…
…

Spawners

Workers

Spawners

Balanced spawner trees reduce critical 
path length to O(log(tripcount))



13ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE SPECULATIVE PARALLELIZATION IN HARDWARE

Background

T4 Principles in Action

T4: Parallelizing Entire Programs

Evaluation



T4: Parallelizing entire real-world programs
T4 divides the entire program into tasks starting 
from the first instruction of main()

T4 automatically generates tasks from
◦ Loop iterations
◦ Function calls
◦ Continuations of the above

T4 extracts nested parallelism from
the entire program despite
◦ Loops with unknown tripcount
◦ Opaque function calls
◦ Data-dependent control flow
◦ Arbitrary pointer manipulation

14ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE SPECULATIVE PARALLELIZATION IN HARDWARE



Progressive expansion of unknown-tripcount loops

Progressive expansion generates balanced spawner
trees for loops with unknown tripcount

- loops with break statements

- while loops

15ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE SPECULATIVE PARALLELIZATION IN HARDWARE

int i = 0;
while (status[i]) {

if (foo(i)) break;
i++;

}:

Source code: void iter(Timestamp i) {
if (!done) {
if (!status[i]) done = 1;
else if (foo(i)) done = 1;

}
}

0

iter(0)

iter(1)

4

iter(4)

iter(5)

2

iter(2)

iter(3)

6

iter(6)

iter(7)
10

iter(10)

iter(11)
8

iter(8)

iter(9)
12

iter(12)

iter(13)



Continuation-passing style eliminates the call stack

Problem: Independent function spawns serialize on stack-frame 
allocation

Solution:
◦ When needed, T4 allocates continuation closures on the heap instead
◦ T4 optimizations ensure most tasks don’t need memory allocation
◦ These software techniques could apply to any TLS system

16ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE SPECULATIVE PARALLELIZATION IN HARDWARE

g

g

f

f

f

f
for (int i = 0; i < N; i++) {

float x = f();
if (x > 0.0) g(x);

}



M
e

m
o

ry co
n

tro
ller / IO

Memory controller / IO

Memory controller / IO

M
e

m
o

ry
 c

o
n

tr
o

lle
r /

 I
O

0xE6823

Spatial-hint generation for locality
Tiny tasks may access only one 
memory location, which is known 
when the task is spawned.

Hardware uses these spatial hints 
to improve locality:
◦ maps each address to a tile.

◦ Send tasks for that address to that tile.

17ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE SPECULATIVE PARALLELIZATION IN HARDWARE

A

C1

B

C2



Manual annotations for task splitting

Programmer may add task 
boundaries for tiny tasks

Guaranteed to have
no effect on program output

Added <0.1% to source code

18ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE SPECULATIVE PARALLELIZATION IN HARDWARE



T4 implementation in LLVM/Clang

Intraprocedural passes: small compile times (linear in code size)
Use all standard LLVM optimizations to generate high-quality code
More in the paper:
◦ Topological sorting to generate timestamps
◦ Bundling stack allocations to the heap with privatization
◦ Loop task coarsening to reduce false sharing of cache lines
◦ Case studies and sensitivity studies

19ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE SPECULATIVE PARALLELIZATION IN HARDWARE

Object file
Clang

frontend

LLVM backend

Optimizations

(e.g., -O3)
x86_64 code 

generation

C/C++ 

source 

code

T4 Parallelization 

Passes

T4 Parallelization 

Passes



20ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE SPECULATIVE PARALLELIZATION IN HARDWARE

Background

T4 Principles in Action

T4: Parallelizing Entire Programs

Evaluation



Methodology
1-, 4-, 16-, and 64-core systems

C/C++ benchmarks from SPEC CPU2006

All speedups normalized to serial code compiled with clang -O3

21ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE SPECULATIVE PARALLELIZATION IN HARDWARE

4-wide superscalar out-of-order cores 
(Haswell-like)

32 KB L1 caches
1 MB L2 cache per 4-core tile
4 MB L3 slice per 4-core tile

256 entries 64 entries/tile (1024 tasks for 64-core chip) 

4 4×4 mesh networks



T4 scales to tens of cores

22

Hot loops have some 
independent iterations

Hot loops have serializing 
variables updated every iteration

ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE SPECULATIVE PARALLELIZATION IN HARDWARE



T4 overheads are moderate

23ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE SPECULATIVE PARALLELIZATION IN HARDWARE

Serial code, -O3        Parallelized with T4

Task-spawn overheads are geo. mean 31%



Parallelization redoubles performance

24ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE SPECULATIVE PARALLELIZATION IN HARDWARE

Cores spend most time executing useful work, not aborting

Pa
ra

lle
l s

p
ee

d
u

p



Parallelization redoubles performance

25ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE SPECULATIVE PARALLELIZATION IN HARDWARE

T4 scales many programs to tens of cores

Pa
ra

lle
l s

p
ee

d
u

p



Contributions
T4 compiler provides parallelization needed to allow sequential 
programmers to use multicores

T4 broadens the applications for which speculative parallelization is 
effective by exploiting the recent Swarm architecture
◦ Parallelization of sequential C/C++ yields speedups of up to 49× on 64 cores

New code transformations:
◦ Decoupled spawners enable cheap selective aborts of tiny tasks
◦ Progressive expansion: balanced task trees for unknown-tripcount loops
◦ Stack elimination and loop task coarsening reduce false sharing
◦ Task spawn optimizations

26ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE SPECULATIVE PARALLELIZATION IN HARDWARE



Questions?
T4 is open-source and available for you to build on:

Join online Q&A @ ISCA: First paper in Session 2B on June 1, 2020
9am in Los Angeles, Noon in New York, 6pm in Brussels, Midnight in Beijing

27ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE SPECULATIVE PARALLELIZATION IN HARDWARE

swarm.csail.mit.edu


