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Priority schedules accelerate convergence

Priority schedules are correct
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Dijkstra’s SSSP
Residual Belief Propagation

Breadth First Search

KCore
Set Cover

Minimum Spanning Forest

Maximal Independent Set

Priority schedules are powerful, but hard to parallelize

pq = init();
while (!pq.empty())

task, ts = pq.dequeueMin()
task(ts)



Hive parallelizes priority updates

Hive builds on Swarm to provide a parallel priority update operation in 
speculative task-parallel hardware

Hive speculates eagerly on data, control, and scheduler dependences

Hive achieves >100x speedup over parallel software, and up to 2.8x
over Swarm at 256 cores
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PriorityQueue pq;
for (int v: G.V) 
pq.enqueue(v, G.degree[v])

while (!pq.empty()) {
int v, int prio = pq.dequeueMin();
coreness[v] = prio;
for (int nbr : G.edges[v]) 
pq.decrementPrio(nbr)

}}

KCore requires priority updates
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• Nearly sequential when few tasks per barrier

• Relaxed [Khan et al HPCA’22] [Yesil et al. SC’19] [Dadu et al. ISCA’21]

• Can always find parallelism
• loses efficiency as it scales
• Not always correct

• Speculation [Blelloch et al. PPoPP’12][Jeffrey et al. MICRO’15]

• Always finds parallelism
• Maintains strict ordering
• SW speculation has high overheads
• Existing HW systems do not support priority updates

Our goal is to support priority updates in speculative parallel hardware
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Task-Based Execution Model
• Programs consist of timestamp-ordered tasks
• Tasks appear to execute in timestamp order
• Scheduler is only accessed with enqueues 

7

swarm::enqueue(
fn,  //what to do
ts,  //when to do it
args //what to do it with);

Swarm’s execution model does not support priority updates

while (!pq.empty())
task, ts = pq.dequeueMin()
task(ts)



Swarm KCore is inefficient (i.e., without updates)
PriorityQueue pq;
int[] prios;
for (int v: G.V) {

prios[v] = G.degree[v];
pq.enqueue(v, prios[v]);

}
while (!pq.empty()) {

int v, int prio = pq.dequeueMin();
if (prios[v] < prio) continue;
coreness[v] = prio;
for (int nbr : G.edges[v]) 

if (prios[nbr] > prio) {
prios[nbr]--;
pq.enqueue(nbr, prios[nbr])

}}
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Manual priority tracking

Early exit for moot tasks

Tasks that exit early are moot:  they might as well not run at all
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Enqueue-only schedule has 3 more tasks than updateable schedule

Swarm runs Moot tasks, but they might as well not run at all
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Most tasks are moot (useless work in Swarm)
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No Priority Queue in Sequential Implementation
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The same as Swarm [Jeffrey et al. MICRO’15]



Priority updates are scheduler dependences

• The scheduler dependence is old
• Found in self-modifying code [Wilkes and Renwick. ‘49]

• Created by priority updates
• When a task replaces a later-scheduled task, it creates a scheduler dependence

• Can be predicated into data and control dependences
• Moot tasks are like predicated instructions in straight-line code
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STR R5, [PC, #4]
ADD R1, R1, R1

Updates have a different dependence, they need different speculation



Scheduler speculation:
Task versioning and Mootness detection
• Maintain multiple versions of each task
• 1 for each speculative update + up to 1 non-speculative

• 1 task version is speculatively valid, all others are speculatively Moot
• Speculatively Moot task versions are not runnable

• When Mootness becomes non-speculative, discard the Moot version

• Mootness can detected by comparing timestamps of parents
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Hive avoids running moot tasks and reduces their speculative state
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Methodology

Event-driven, Pin-based Simulator1
Scalability experiments up to 256 cores
• Smaller systems have fewer tiles

9 applications: KCore, Setcover, astar, 
BFS, SSSP, MSF, MIS, MM, RBP

21

64 Tiles, 256 Cores

Mem / IO

M
em

/ 
IO

Mem / IO

M
em

/ IO

32kB L1 per core 
1MB L2 per tile
256MB LLC 
4 In-order, single-issue 

scoreboarded cores/tile
64 Task Queue entries/core
16 Commit Queue entries/core

1: https://github.com/SwarmArch/sim

https://github.com/SwarmArch/sim


Software struggles to scale beyond 100c
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Swarm scales well sometimes
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Breaking down Hive vs. Swarm at 256 cores
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Hive does less work
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Hive does less work
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40%



Hive reduces queue pressure
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Conclusions and Q+A

• Priority updates are useful operations for ordered algorithms
• The scheduler dependences created by these updates require 

task versioning and mootness detection for speculation 
• Hive extracts parallelism by speculating on data, control, and 

scheduler dependences
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