
A Scalable Architecture for
Reprioritizing Ordered Parallelism

Gilead Posluns, Yan Zhu, Guowei Zhang, Mark C. Jeffrey
ISCA 2022

Ordered algorithms use priority schedules

2

Ordered algorithms use priority schedules

2

pq = init();
while (!pq.empty())

task, ts = pq.dequeueMin()
task(ts)

Ordered algorithms use priority schedules

Priority schedules accelerate convergence

2

Dijkstra’s SSSP
Residual Belief Propagation

Breadth First Search

pq = init();
while (!pq.empty())

task, ts = pq.dequeueMin()
task(ts)

Ordered algorithms use priority schedules

Priority schedules accelerate convergence

Priority schedules are correct

2

Dijkstra’s SSSP
Residual Belief Propagation

Breadth First Search

KCore
Set Cover

Minimum Spanning Forest

Maximal Independent Set

pq = init();
while (!pq.empty())

task, ts = pq.dequeueMin()
task(ts)

Ordered algorithms use priority schedules

Priority schedules accelerate convergence

Priority schedules are correct

2

Dijkstra’s SSSP
Residual Belief Propagation

Breadth First Search

KCore
Set Cover

Minimum Spanning Forest

Maximal Independent Set

Priority schedules are powerful, but hard to parallelize

pq = init();
while (!pq.empty())

task, ts = pq.dequeueMin()
task(ts)

Hive parallelizes priority updates

Hive builds on Swarm to provide a parallel priority update operation in
speculative task-parallel hardware

Hive speculates eagerly on data, control, and scheduler dependences

Hive achieves >100x speedup over parallel software, and up to 2.8x
over Swarm at 256 cores

3

Understanding Priority Updates

4

PriorityQueue pq;
for (int v: G.V)
pq.enqueue(v, G.degree[v])

while (!pq.empty()) {
int v, int prio = pq.dequeueMin();
coreness[v] = prio;
for (int nbr : G.edges[v])
pq.decrementPrio(nbr)

}}

KCore requires priority updates

5

B

A
C

F

E
DInput

Graph

Max core of a vertex ≈ “importance” [Malliaros et al. VLDB ‘20]

To find: repeatedly remove lowest degree vertex

2

2
2

1

1
1

PriorityQueue pq;
for (int v: G.V)
pq.enqueue(v, G.degree[v])

while (!pq.empty()) {
int v, int prio = pq.dequeueMin();
coreness[v] = prio;
for (int nbr : G.edges[v])
pq.decrementPrio(nbr)

}}

KCore requires priority updates

5

B

A
C

F

E
D Task Graph

Priority = Remaining Degree
1 2 3
F
E

D
C

B
A

Task
Dependence

Input
Graph

Max core of a vertex ≈ “importance” [Malliaros et al. VLDB ‘20]

To find: repeatedly remove lowest degree vertex

PriorityQueue pq;
for (int v: G.V)
pq.enqueue(v, G.degree[v])

while (!pq.empty()) {
int v, int prio = pq.dequeueMin();
coreness[v] = prio;
for (int nbr : G.edges[v])
pq.decrementPrio(nbr)

}}

KCore requires priority updates

5

B

A
C

F

E
D Task Graph

Priority = Remaining Degree
1 2 3
F
E

D
C

B
A

DTask
Dependence

Input
Graph

Max core of a vertex ≈ “importance” [Malliaros et al. VLDB ‘20]

To find: repeatedly remove lowest degree vertex

PriorityQueue pq;
for (int v: G.V)
pq.enqueue(v, G.degree[v])

while (!pq.empty()) {
int v, int prio = pq.dequeueMin();
coreness[v] = prio;
for (int nbr : G.edges[v])
pq.decrementPrio(nbr)

}}

KCore requires priority updates

5

B

A
C

F

E
D Task Graph

Priority = Remaining Degree
1 2 3
F
E

B
A

DTask
Dependence

Input
Graph

Max core of a vertex ≈ “importance” [Malliaros et al. VLDB ‘20]

To find: repeatedly remove lowest degree vertex

C

PriorityQueue pq;
for (int v: G.V)
pq.enqueue(v, G.degree[v])

while (!pq.empty()) {
int v, int prio = pq.dequeueMin();
coreness[v] = prio;
for (int nbr : G.edges[v])
pq.decrementPrio(nbr)

}}

KCore requires priority updates

5

B

A
C

F

E
D Task Graph

Priority = Remaining Degree
1 2 3
F
E

B
A

DTask
Dependence

Input
Graph

Max core of a vertex ≈ “importance” [Malliaros et al. VLDB ‘20]

To find: repeatedly remove lowest degree vertex

C

Where’s the parallelism in KCore?

6

Task
Graph

1 2 3
F
E

B
A
C

D

Task
Dependence

Where’s the parallelism in KCore?

6

Task
Graph

1 2 3
F
E

B
A
C

D

Task
Dependence

• Bulk-Synchronous [Dhulipala et al. SPAA‘17] [Dadu et al. ISCA’21]

• Effective when many tasks per barrier
• Nearly sequential when few tasks per barrier

Where’s the parallelism in KCore?

6

Task
Graph

1 2 3
F
E

B
A
C

D

Task
Dependence

• Bulk-Synchronous [Dhulipala et al. SPAA‘17] [Dadu et al. ISCA’21]

• Effective when many tasks per barrier
• Nearly sequential when few tasks per barrier

• Relaxed [Khan et al HPCA’22] [Yesil et al. SC’19] [Dadu et al. ISCA’21]

• Can always find parallelism
• loses efficiency as it scales
• Not always correct

Where’s the parallelism in KCore?

6

Task
Graph

1 2 3
F
E

D
C

B
A
C

D

Task
Dependence

• Bulk-Synchronous [Dhulipala et al. SPAA‘17] [Dadu et al. ISCA’21]

• Effective when many tasks per barrier
• Nearly sequential when few tasks per barrier

• Relaxed [Khan et al HPCA’22] [Yesil et al. SC’19] [Dadu et al. ISCA’21]

• Can always find parallelism
• loses efficiency as it scales
• Not always correct

Where’s the parallelism in KCore?

6

Task
Graph

1 2 3
F
E

B
A
C

D

Task
Dependence

• Bulk-Synchronous [Dhulipala et al. SPAA‘17] [Dadu et al. ISCA’21]

• Effective when many tasks per barrier
• Nearly sequential when few tasks per barrier

• Relaxed [Khan et al HPCA’22] [Yesil et al. SC’19] [Dadu et al. ISCA’21]

• Can always find parallelism
• loses efficiency as it scales
• Not always correct

• Speculation [Blelloch et al. PPoPP’12][Jeffrey et al. MICRO’15]

• Always finds parallelism
• Maintains strict ordering
• SW speculation has high overheads
• Existing HW systems do not support priority updates

Where’s the parallelism in KCore?

6

Task
Graph

1 2 3
F
E

B
A
C

D

Task
Dependence

• Bulk-Synchronous [Dhulipala et al. SPAA‘17] [Dadu et al. ISCA’21]

• Effective when many tasks per barrier
• Nearly sequential when few tasks per barrier

• Relaxed [Khan et al HPCA’22] [Yesil et al. SC’19] [Dadu et al. ISCA’21]

• Can always find parallelism
• loses efficiency as it scales
• Not always correct

• Speculation [Blelloch et al. PPoPP’12][Jeffrey et al. MICRO’15]

• Always finds parallelism
• Maintains strict ordering
• SW speculation has high overheads
• Existing HW systems do not support priority updates

Our goal is to support priority updates in speculative parallel hardware

Swarm [Jeffrey et al. MICRO’15] speculates without updates

Task-Based Execution Model

7

Swarm [Jeffrey et al. MICRO’15] speculates without updates

Task-Based Execution Model
• Programs consist of timestamp-ordered tasks
• Tasks appear to execute in timestamp order

7

Swarm [Jeffrey et al. MICRO’15] speculates without updates

Task-Based Execution Model
• Programs consist of timestamp-ordered tasks
• Tasks appear to execute in timestamp order

7

while (!pq.empty())
task, ts = pq.dequeueMin()
task(ts)

Swarm [Jeffrey et al. MICRO’15] speculates without updates

Task-Based Execution Model
• Programs consist of timestamp-ordered tasks
• Tasks appear to execute in timestamp order
• Scheduler is only accessed with enqueues

7

swarm::enqueue(
fn, //what to do
ts, //when to do it
args //what to do it with);

while (!pq.empty())
task, ts = pq.dequeueMin()
task(ts)

Swarm [Jeffrey et al. MICRO’15] speculates without updates

Task-Based Execution Model
• Programs consist of timestamp-ordered tasks
• Tasks appear to execute in timestamp order
• Scheduler is only accessed with enqueues

7

swarm::enqueue(
fn, //what to do
ts, //when to do it
args //what to do it with);

Swarm’s execution model does not support priority updates

while (!pq.empty())
task, ts = pq.dequeueMin()
task(ts)

Swarm KCore is inefficient (i.e., without updates)
PriorityQueue pq;
int[] prios;
for (int v: G.V) {

prios[v] = G.degree[v];
pq.enqueue(v, prios[v]);

}
while (!pq.empty()) {

int v, int prio = pq.dequeueMin();
if (prios[v] < prio) continue;
coreness[v] = prio;
for (int nbr : G.edges[v])

if (prios[nbr] > prio) {
prios[nbr]--;
pq.enqueue(nbr, prios[nbr])

}}
8

Swarm KCore is inefficient (i.e., without updates)
PriorityQueue pq;
int[] prios;
for (int v: G.V) {

prios[v] = G.degree[v];
pq.enqueue(v, prios[v]);

}
while (!pq.empty()) {

int v, int prio = pq.dequeueMin();
if (prios[v] < prio) continue;
coreness[v] = prio;
for (int nbr : G.edges[v])

if (prios[nbr] > prio) {
prios[nbr]--;
pq.enqueue(nbr, prios[nbr])

}}
8

Manual priority tracking

Swarm KCore is inefficient (i.e., without updates)
PriorityQueue pq;
int[] prios;
for (int v: G.V) {

prios[v] = G.degree[v];
pq.enqueue(v, prios[v]);

}
while (!pq.empty()) {

int v, int prio = pq.dequeueMin();
if (prios[v] < prio) continue;
coreness[v] = prio;
for (int nbr : G.edges[v])

if (prios[nbr] > prio) {
prios[nbr]--;
pq.enqueue(nbr, prios[nbr])

}}
8

Manual priority tracking

Early exit for moot tasks

Swarm KCore is inefficient (i.e., without updates)
PriorityQueue pq;
int[] prios;
for (int v: G.V) {

prios[v] = G.degree[v];
pq.enqueue(v, prios[v]);

}
while (!pq.empty()) {

int v, int prio = pq.dequeueMin();
if (prios[v] < prio) continue;
coreness[v] = prio;
for (int nbr : G.edges[v])

if (prios[nbr] > prio) {
prios[nbr]--;
pq.enqueue(nbr, prios[nbr])

}}
8

Manual priority tracking

Early exit for moot tasks

Tasks that exit early are moot: they might as well not run at all

Updateable schedules are efficient

9

B

A
C

F

E
D

Input graph

Task
Dependence

Updateable schedules are efficient

9

B

A
C

F

E
D

Input graph

Updateable Task Graph

1 2 3

Task
Dependence

Priority = Remaining Degree

Updateable schedules are efficient

9

B

A
C

F

E
D

Input graph

Updateable Task GraphSwarm Task Graph

1 2 3

Task
Dependence

Priority = Remaining Degree
1 2 3

Priority = Remaining Degree

Updateable schedules are efficient

9

B

A
C

F

E
D

Input graph

Updateable Task GraphSwarm Task Graph

1 2 3
F
E

D
C

B
A

Task
Dependence

Priority = Remaining Degree
1 2 3
F
E

D
C

B
A

Priority = Remaining Degree

Updateable schedules are efficient

9

E
Input graph

Updateable Task GraphSwarm Task Graph

1 2 3

E
D

Task
Dependence

Priority = Remaining Degree
1 2 3

E
D

D D

Priority = Remaining Degree

Updates change
priority of a task

“Updates”
enqueue a
new Task

Updateable schedules are efficient

9

Input graph

Updateable Task GraphSwarm Task Graph

1 2 3
D

Task
Dependence

Priority = Remaining Degree
1 2 3

DD

D D

Priority = Remaining Degree

Updates change
priority of a task

“Updates”
enqueue a
new Task

Updateable schedules are efficient

9

Input graph

Updateable Task GraphSwarm Task Graph

1 2 3

C

D

Task
Dependence

Priority = Remaining Degree
1 2 3

C

D

Priority = Remaining Degree

Updates change
priority of a task

“Updates”
enqueue a
new Task

Updateable schedules are efficient

9

Input graph

Updateable Task GraphSwarm Task Graph

1 2 3

C

D

Task
Dependence

Priority = Remaining Degree
1 2 3

C

D

Priority = Remaining Degree

Updates change
priority of a task

“Updates”
enqueue a
new Task

Enqueue-only schedule has 3 more tasks than updateable schedule

Swarm runs Moot tasks, but they might as well not run at all

Moot tasks outnumber useful dequeues

10

M
oo

t T
as

ks
/U

se
fu

l T
as

k 100

10

1

KCore
Set Cover

BFS SSSP MSF MIS RBP

Moot tasks outnumber useful dequeues

10

M
oo

t T
as

ks
/U

se
fu

l T
as

k 100

10

1

KCore
Set Cover

BFS SSSP MSF MIS RBP

Most tasks are moot (useless work in Swarm)

The Hive Execution Model

11

Understanding Hive tasks and objects

12

void removeV(int v, Timestamp ts) {
coreness[v] = ts;
for (int nbr : G.edges[v]) {
Timestamp prev = hive::getTS(nbr);
if (prev > ts)
hive::update(&removeV, nbr, prev-1);

}}

Understanding Hive tasks and objects

12

void removeV(int v, Timestamp ts) {
coreness[v] = ts;
for (int nbr : G.edges[v]) {
Timestamp prev = hive::getTS(nbr);
if (prev > ts)
hive::update(&removeV, nbr, prev-1);

}}

Understanding Hive tasks and objects

12

void removeV(int v, Timestamp ts) {
coreness[v] = ts;
for (int nbr : G.edges[v]) {
Timestamp prev = hive::getTS(nbr);
if (prev > ts)
hive::update(&removeV, nbr, prev-1);

}}

Task
Function

Understanding Hive tasks and objects

12

void removeV(int v, Timestamp ts) {
coreness[v] = ts;
for (int nbr : G.edges[v]) {
Timestamp prev = hive::getTS(nbr);
if (prev > ts)
hive::update(&removeV, nbr, prev-1);

}}

A

B

C

D

E

F

B

A
C

F

E
D

Object

Task
Function

Object Table

Understanding Hive tasks and objects

12

void removeV(int v, Timestamp ts) {
coreness[v] = ts;
for (int nbr : G.edges[v]) {
Timestamp prev = hive::getTS(nbr);
if (prev > ts)
hive::update(&removeV, nbr, prev-1);

}}

A

B

C

D

E

F

B

A
C

F

E
D

Object

Timestamp

Task
Function

Object Table

2
3
3
1
1

2

Understanding Hive tasks and objects

12

void removeV(int v, Timestamp ts) {
coreness[v] = ts;
for (int nbr : G.edges[v]) {
Timestamp prev = hive::getTS(nbr);
if (prev > ts)
hive::update(&removeV, nbr, prev-1);

}}

A

B

C

D

E

F

B

A
C

F

E
D

Object

Timestamp

Task
Function

Object Table

2
3
3
1
1

2

Update binds a task to an object and schedules it to run

void removeV(int v, Timestamp ts) {
coreness[v] = ts;
for (int nbr : G.edges[v]) {
Timestamp prev = hive::getTS(nbr);
if (prev > ts)
hive::update(&removeV, nbr, prev-1);

}}

Updating an occupied Hive object

13

A

B

C

D

E

F

B

A
C

F

E
D

2
3
3
1
1

2
Object Table

void removeV(int v, Timestamp ts) {
coreness[v] = ts;
for (int nbr : G.edges[v]) {
Timestamp prev = hive::getTS(nbr);
if (prev > ts)
hive::update(&removeV, nbr, prev-1);

}}

Updating an occupied Hive object

13

A

B

C

D

E

F
E

2
3
3
1
1

2
E

E

E

D

D
D

Object Table

void removeV(int v, Timestamp ts) {
coreness[v] = ts;
for (int nbr : G.edges[v]) {
Timestamp prev = hive::getTS(nbr);
if (prev > ts)
hive::update(&removeV, nbr, prev-1);

}}

Updating an occupied Hive object

13

A

B

C

D

E

F
E

2
3
3
1
1

2
E

E

E

D

D
D

3

2

Object Table

Moot

void removeV(int v, Timestamp ts) {
coreness[v] = ts;
for (int nbr : G.edges[v]) {
Timestamp prev = hive::getTS(nbr);
if (prev > ts)
hive::update(&removeV, nbr, prev-1);

}}

Updating an occupied Hive object

13

A

B

C

D

E

F
E

2
3
3
1
1

2
E

E

E

D

D
D

3

2Hive doesn’t waste time or space on moot tasks

Object Table

Moot

Benchmark Increment UpdateMin Cancel Update
KCore ü

Set Cover ü ü

Astar ü

Breadth First Search ü

SSSP ü

Minimum Spanning Forest ü ü

Maximal Independent Set ü

Maximal Matching ü

Residual Belief Propagation ü

Hive supports many programming patterns

14

Benchmark Increment UpdateMin Cancel Update
KCore ü

Set Cover ü ü

Astar ü

Breadth First Search ü

SSSP ü

Minimum Spanning Forest ü ü

Maximal Independent Set ü

Maximal Matching ü

Residual Belief Propagation ü

Hive supports many programming patterns

14

Benchmark Increment UpdateMin Cancel Update
KCore ü

Set Cover ü ü

Astar ü

Breadth First Search ü

SSSP ü

Minimum Spanning Forest ü ü

Maximal Independent Set ü

Maximal Matching ü

Residual Belief Propagation ü

Hive supports many programming patterns

14

No Priority Queue in Sequential Implementation

Parallelizing Priority Updates

15

Hive speculates to run tasks in parallel

For each task, Hive speculates that:
• Eager data speculation: Predecessors have already performed their writes

• Eager control speculation: Its parent will not abort

• Eager scheduler speculation: It will not be replaced by an update

16

Hive speculates to run tasks in parallel

For each task, Hive speculates that:
• Eager data speculation: Predecessors have already performed their writes

• Eager control speculation: Its parent will not abort

• Eager scheduler speculation: It will not be replaced by an update

16

The same as Swarm [Jeffrey et al. MICRO’15]

Priority updates are scheduler dependences

• The scheduler dependence is old
• Found in self-modifying code [Wilkes and Renwick. ‘49]

• Created by priority updates
• When a task replaces a later-scheduled task, it creates a scheduler dependence

• Can be predicated into data and control dependences
• Moot tasks are like predicated instructions in straight-line code

17

STR R5, [PC, #4]
ADD R1, R1, R1

Priority updates are scheduler dependences

• The scheduler dependence is old
• Found in self-modifying code [Wilkes and Renwick. ‘49]

• Created by priority updates
• When a task replaces a later-scheduled task, it creates a scheduler dependence

• Can be predicated into data and control dependences
• Moot tasks are like predicated instructions in straight-line code

17

STR R5, [PC, #4]
ADD R1, R1, R1

Updates have a different dependence, they need different speculation

Scheduler speculation:
Task versioning and Mootness detection
• Maintain multiple versions of each task
• 1 for each speculative update + up to 1 non-speculative

• 1 task version is speculatively valid, all others are speculatively Moot
• Speculatively Moot task versions are not runnable

• When Mootness becomes non-speculative, discard the Moot version

• Mootness can detected by comparing timestamps of parents

18

Scheduler speculation:
Task versioning and Mootness detection
• Maintain multiple versions of each task
• 1 for each speculative update + up to 1 non-speculative

• 1 task version is speculatively valid, all others are speculatively Moot
• Speculatively Moot task versions are not runnable

• When Mootness becomes non-speculative, discard the Moot version

• Mootness can detected by comparing timestamps of parents

18

Hive avoids running moot tasks and reduces their speculative state

Hive extends the Swarm architecture

19

Swarm hardware additions Hive hardware additions

64-tile, 256-core chip

Mem / IO

M
em

/
IO

Mem / IO

M
em

/ IO

Tile

Hive extends the Swarm architecture

19

Swarm hardware additions Hive hardware additions

64-tile, 256-core chip

Mem / IO

M
em

/
IO

Mem / IO

M
em

/ IO

Tile

Core Core Core Core

L1I/D L1I/D L1I/D L1I/D

L3 & Dir BankRouter

Tile organization

L2
GVT Arb.

Node

Task unit

Hive extends the Swarm architecture

19

Swarm hardware additions Hive hardware additions

64-tile, 256-core chip

Mem / IO

M
em

/
IO

Mem / IO

M
em

/ IO

Tile

Commit
queue

Task queue

Task send
buffer

Task unit structures

Core Core Core Core

L1I/D L1I/D L1I/D L1I/D

L3 & Dir BankRouter

Tile organization

L2
GVT Arb.

Node

Task unit

Memory

Hive extends the Swarm architecture

19

Swarm hardware additions Hive hardware additions

64-tile, 256-core chip

Mem / IO

M
em

/
IO

Mem / IO

M
em

/ IO

Tile

Commit
queue

Task queue

Task send
buffer

Task unit structures

Core Core Core Core

L1I/D L1I/D L1I/D L1I/D

L3 & Dir BankRouter

Tile organization

L2
GVT Arb.

Node

Task unit

Memory

Hive extends the Swarm architecture

19

Swarm hardware additions Hive hardware additions

64-tile, 256-core chip

Mem / IO

M
em

/
IO

Mem / IO

M
em

/ IO

Tile

Commit
queue

Task queue

Task send
buffer

Object map

Task unit structures

Core Core Core Core

L1I/D L1I/D L1I/D L1I/D

L3 & Dir BankRouter

Tile organization

L2
GVT Arb.

Node

Task unit

Memory

Hive extends the Swarm architecture

19

Swarm hardware additions Hive hardware additions

64-tile, 256-core chip

Mem / IO

M
em

/
IO

Mem / IO

M
em

/ IO

Tile

Commit
queue

Task queue

Task send
buffer

Object map

Task unit structures

Core Core Core Core

L1I/D L1I/D L1I/D L1I/D

L3 & Dir BankRouter

Tile organization

L2
GVT Arb.

Node

Task unit

Memory

Hive
Object Table

A
B
C
D
E
F

Hive extends the Swarm architecture

19

Swarm hardware additions Hive hardware additions

64-tile, 256-core chip

Mem / IO

M
em

/
IO

Mem / IO

M
em

/ IO

Tile

Commit
queue

Task queue

Task send
buffer

Object map

Task unit structures

Core Core Core Core

L1I/D L1I/D L1I/D L1I/D

L3 & Dir BankRouter

Tile organization

L2
GVT Arb.

Node

Task unit

Memory

Hive
Object Table

9% Task Unit Area Increase
3% Area of a Nehalem Processor

+20B

A
B
C
D
E
F

Evaluation

20

Methodology

Event-driven, Pin-based Simulator1
Scalability experiments up to 256 cores
• Smaller systems have fewer tiles

9 applications: KCore, Setcover, astar,
BFS, SSSP, MSF, MIS, MM, RBP

21

64 Tiles, 256 Cores

Mem / IO

M
em

/
IO

Mem / IO

M
em

/ IO

32kB L1 per core
1MB L2 per tile
256MB LLC
4 In-order, single-issue

scoreboarded cores/tile
64 Task Queue entries/core
16 Commit Queue entries/core

1: https://github.com/SwarmArch/sim

https://github.com/SwarmArch/sim

Software struggles to scale beyond 100c

22

Sp
ee

du
p

Sp
ee

du
p

System Size System Size System Size System Size

Parallel
SW

Swarm
Hive

Swarm scales well sometimes

23

Sp
ee

du
p

Sp
ee

du
p

Parallel
SW

Swarm
Hive

System Size System Size System Size System Size

Parallel
SW

Swarm
Hive

Hive is faster than Swarm

24

Sp
ee

du
p

Sp
ee

du
p

System Size System Size System Size System Size

Parallel
SW

Swarm
Hive

Hive is faster than Swarm

24

Sp
ee

du
p

Sp
ee

du
p

System Size System Size System Size System Size

2.8x

Hive is up to 2.8x faster than Swarm

Breaking down Hive vs. Swarm at 256 cores

25

Hive does less work

26

Hive does less work

26

40%

Hive reduces queue pressure

27

Conclusions and Q+A

• Priority updates are useful operations for ordered algorithms
• The scheduler dependences created by these updates require

task versioning and mootness detection for speculation
• Hive extracts parallelism by speculating on data, control, and

scheduler dependences

28

Gilead Posluns, Yan Zhu, Guowei Zhang, Mark C. Jeffrey
ISCA 2022

