s the Problem-Based Benchmark
Suite Fearless with Rust?

Javad Abdi, Guowei Zhang, Mark C. Jeffrey
SPAA 2023

o UNIVERSITY OF

¥ TORONTO

RRRRR

Rust is gaining popularity
necause of its safety guarantees

Is the Problem-Based Benchmark Suite Fearless with Rust?

Rust is gaining popularity
necause of its safety guarantees

A A A A
>0 Rust is on its seventh =1 |= —
Developer year as the most
Survey error
loved language ... free

Rust

error
free

awsab@

Is the Problem-Based Benchmark Suite Fearless with Rust?

Rust is gaining popularity
necause of its safety guarantees

A A
609 Rust is on its seventh ; :

Developer year as the most

survey loved language ...

ws B @ @@
200

error
free
[1] Yanovski et al., ICFP 2021, GhostCell: separating permissions from data in Rust.

Is the Problem-Based Benchmark Suite Fearless with Rust?

Rust is gaining popularity
necause of its safety guarantees

5099 Rust is on its seventh

Developer year as the most

survey loved language ...

Bl Q @ @
2. 00 4

[1] Yanovski et al., ICFP 2021, GhostCell: separating permissions from data in Rust.

Is the Problem-Based Benchmark Suite Fearless with Rust?

Rust is gaining popularity
necause of its safety guarantees

Rust is on its seventh

2022

Developer year as the most
Survey

lalaVal BN EaWa Vol

error

ém@«;

[1] Yanovski et al., ICFP 2021, GhostCell: separating permissions from data in Rust.

Is the Problem-Based Benchmark Suite Fearless with Rust?

Rust claims to provide “fearless concurrency”

Fear :

Anticipation of concurrency errors that manifest at run time.

Our RQ : How does fearless concurrency translate to parallelism?

Tasks:

Offsets:

Array:

T1

T2

T3

T4

T5

T6

T

T2

T3

(Stride)

Is the Problem-Based Benchmark Suite Fearless with Rust?

(Block)

T1|T2|T3|T4| 75|76 T1 T2 T3
0l4]1|2|5]3 0|38
(SngInd) (RngInd)

Rust claims to provide “fearless concurrency”

Fear :

Anticipation of concurrency errors that manifest at run time.

Our RQ : How does fearless concurrency translate to parallelism?

Are all parallel patterns fearless in Rust?

Tasks: T1|T2|T3|T4|T5([T6 T1 T2 T3
1 | | T | \ \
Offsets: ‘:;\
Array:
(Stride) (Block)

T1({T2|T3|T4|T5|T6 T1 T2 T3
ole[7]8]8 0]3|8
(SngInd) (RngInd)

Is the Problem-Based Benchmark Suite Fearless with Rust?

Contribution: Interrogate fearless concurrency
by expressing (ir)regular parallelism

Rusty-PBBS:
o A port of PBBS in Rust with both regular and irregular patterns.

Our Case Study:

o Classification of parallel expression patterns in Rusty-PBBS.
o Evaluating Rust support and fearlessness for each pattern.

Tasks: T1|T2|T3|T4|T5|T6 T1 T2 T3 T1|{T2|T3|T4|T5|T6 T1 T2 3
OﬁsetS: ol4l112!]5]3 ol3ls
Array:

(Stride) (Block) (SngInd) (RngInd)

Is the Problem-Based Benchmark Suite Fearless with Rust?

Contribution: Interrogate fearless concurrency
by expressing (ir)regular parallelism

Rusty-PBBS:
o A port of PBBS in Rust with both regular and irregular patterns.

Our Case Study:
o Classification of parallel expression patterns in Rusty-PBBS.

o Evaluating Rust support and fearlessness for each pattern.

Tasks: T1|T2|T3|T4 T6 T1 T2 3 71|12 T T6
Offsets: 04 503
Array:

(Stride) (Block) (SngInd)

Is the Problem-Based Benchmark Suite Fearless with Rust?

Fearless regular parallelism with Rust(+Rayon)

T1|T2| T3 | T4|T5|T6

Regular parallelism:
Known set of tasks
Known dependences

(Stride)

Is the Problem-Based Benchmark Suite Fearless with Rust?

Fearless regular parallelism with Rust(+Rayon)

T1|T2| T3 | T4|T5|T6

Regular parallelism:
Known set of tasks
Known dependences

(Stride)

fn par_increment(v: &mut [u32])

{)</ stride pattern on v

v.par_iter_mut(
.for_each(|vi| *vi+=1);

Is the Problem-Based Benchmark Suite Fearless with Rust?

Fearless regular parallelism with Rust(+Rayon)

T1|T2| T3 | T4|T5|T6

Regular parallelism:
Known set of tasks
Known dependences

(Stride)

fn par_increment(v: &mut [u32])

{ stride pattern on v
v.par_iter_mutCy=-____ P

.for each01v1| *yit=T);

Is the Problem-Based Benchmark Suite Fearless with Rust?

Fearless regular parallelism with Rust(+Rayon)

T1|T2 | T3 | T4grT5|T6

Regular parallelism:
Known set of tasks
Known dependences

(Stride)

fn par_increment(v: &mut [u32])

{ stride pattern on v
v.par_iter_mutCy=-____ P

.for each01v1| *yit=T);

| . Bttt
~ Cannot — No data
" access V races

Is the Problem-Based Benchmark Suite Fearless with Rust?

Fearless regular parallelism with Rust(+Rayon)

Regular parallelism:
Known set of tasks
Known dependences

fn par_increment(v: &mut [u32])

{ stride pattern on v
v.par_iter_mut()y=-____ g
.for each01v1| *yit=T);
) -
Cannot No data
task : —

dCCess v races

Is the Problem-Based Benchmark Suite Fearless with Rust?

T3 | T4gpT5 | T6

T1|T2

(Stride)

T1

T2

T3

(Block)

Fearless regular parallelism with Rust(+Rayon)

T1| T2

T6

Regular parallelism:
Known set of tasks

stride pattern on v

v.par_iter_mutCy=-____
.for each01v1| *yit=T);
) o
Cannot No data
task : =

dCCess v races

Is the Problem-Based Benchmark Suite Fearless with Rust?

Irregular parallelism remains scary

fn indirect increment(v: &mut [u32], offsets: &[usize])

{
(0..v.len()).into_par_iter()«" parallel loop

.for_each(|i]|
v[offsets[i]] += 1
)

Is the Problem-Based Benchmark Suite Fearless with Rust?

T1

T6

Irregular parallelism remains scary

fn indirect increment(v: &mut [u32], offsets: &[usize])

{
(0..v.len()).into_par_iter()«" parallel loop

.for_each(|i]|
v[offsets[i]] += 1 «— Dangerous

)5

Is the Problem-Based Benchmark Suite Fearless with Rust?

T1

T6

Irregular parallelism remains scary

fn indirect increment(v: &mut [u32], offsets: &[usize])

{
(0..v.len()).into_par_iter()«" parallel loop

.for_each(|i| Compile error
V[offsets[i]] #=1]— Danpefous

);

T1|T2|T3|T4|T5|T6

Is the Problem-Based Benchmark Suite Fearless with Rust?

Irregular parallelism remains scary

fn indirect increment(v: &mut [u32], offsets: &[usize])

{
(0..v.len()).into_par_iter()«" parallel loop

.for_each(|i| Compile error
V[offsets[i]] #=1]— Danpefous

);

Duplicates: Synchronization 0

offsets

Is the Problem-Based Benchmark Suite Fearless with Rust?

T1

T6

Irregular parallelism remains scary

fn indirect increment(v: &mut [u32], offsets: &[usize])

{
(0..v.len()).into_par_iter()«" parallel loop

.for_each(|i| Compile error
V[offsets[i]] #=1]— Danpefous

), Tj T? T3 | T4 T5 T6
} . . | *e“*4 T
Duplicates: Synchronization 3
%)
40_5 (SngInd)
Vg
=
S

Unsafe without checks ¢
Unique < Unsafe with checks i

Synchronization s 1

Is the Problem-Based Benchmark Suite Fearless with Rust?

Irregular parallelism remains scary

fn indirect increment(v: &mut [u32], offsets: &[usize])

{
(0..v.len()).into_par_iter()«" parallel loop

.for_each(|i| Compile error
V[offsets[i]] #=1]— Danpefous

) AR EEE
Duplicates: Synchronization 0 X
% (SngInd)
% Unsafe without checks s
Unique < Unsafe with checks i
Synchronization D 1

Is the Problem-Based Benchmark Suite Fearless with Rust?

Irregular parallelism remains scary

fn indirect increment(v: &mut [u32], offsets: &[usize])

{
(0..v.len()).into_par_iter()«" parallel loop

.for_each(|i| Compile error
V[offsets[i]] #=1]— Danpefous

))
}
. Duplicates: Synchronization 0
()]
% Unsafe without checks (s
Unique < Unsafe with checks i
Synchronization s 1

Is the Problem-Based Benchmark Suite Fearless with Rust?

T1

T1 T2

T3

Irregular parallelism remains scary

fn indirect increment(v: &mut [u32], offsets: &[usize])

{

(0..v.len()).into_par_iter()«" parallel loop

Rust solutions for irregular parallelism are not fearless

Duplicates: Synchronization 0 P/ 4 &N
% (SngInd)
% < Unsafe without checks e 1 @y [
Unique < Unsafe with checks @)
Synchronization . @ (RngInd)

Is the Problem-Based Benchmark Suite Fearless with Rust?

Does this matter?
rregular parallelism is common in PBBS!

Regular parallelism

Irregular parallelism X

xX X NN

Is the Problem-Based Benchmark Suite Fearless with Rust?

Does this matter?
rregular parallelism is common in PBBS!

Patterns
Regular Irregular J
Regular parallelism Bench. o 3%« 22 _
) mark = 5 - o & :%o <
Irregular parallelism X 2 ” \/
bwd vV Vv vV Vv VvV
dedup vV Vv v
dr vV Vv vV v Vv
hist vV Vv vV Vv
isort v vV Vv
Irs vV Vv Vv vV Vv
mis v v v Vv
mm 4 v v Vv
msf v vV Vv vV Vv
sa vV vV v vV vV
sf v v vV Vv
sort v v 4

Is the Problem-Based Benchmark Suite Fearless with Rust?

Does this matter?
rregular parallelism is common in PBBS!

Patterns
Regular [rregular J

Regular parallelism

g X ©E
Bemch- @ £ 8§ 5 |49 g 2
mark » =0 c c

n »n

AN
<

hist

S S
S S

isort
Irs
mis
mm
msf
sa

sf
sort

SN
S XXX
AN
SSXSXKXKX

SSSXSXKXKX

Is the Problem-Based Benchmark Suite Fearless with Rust?

Conclusions

Regular Irregular
parallelism parallelism

Easy parallelism Hard parallelism github.com/mcj-group/rusty-pbbs
is fearless! is still scary...

Is the Problem-Based Benchmark Suite Fearless with Rust?

github.com/mcj-group/rusty-pbbs

	Slide 1: Is the Problem-Based Benchmark Suite Fearless with Rust?
	Slide 2: Is the Problem-Based Benchmark Suite Fearless with Rust? Are Parallel Algorithms Ready for Prime Time (with Rust)?
	Slide 3: Rust is gaining popularity because of its safety guarantees
	Slide 4: Rust is gaining popularity because of its safety guarantees
	Slide 5: Rust is gaining popularity because of its safety guarantees
	Slide 6: Rust is gaining popularity because of its safety guarantees
	Slide 7: Rust is gaining popularity because of its safety guarantees
	Slide 8: Rust is gaining popularity because of its safety guarantees
	Slide 9: Rust is gaining popularity because of its safety guarantees
	Slide 10: Rust claims to provide “fearless concurrency”
	Slide 11: Rust claims to provide “fearless concurrency”
	Slide 12: Rust claims to provide “fearless concurrency”
	Slide 13: Rust claims to provide “fearless concurrency”
	Slide 14: Contribution: Interrogate fearless concurrency by expressing (ir)regular parallelism
	Slide 15: Contribution: Interrogate fearless concurrency by expressing (ir)regular parallelism
	Slide 16: Contribution: Interrogate fearless concurrency by expressing (ir)regular parallelism
	Slide 17: Fearless regular parallelism with Rust(+Rayon)
	Slide 18: Fearless regular parallelism with Rust(+Rayon)
	Slide 19: Fearless regular parallelism with Rust(+Rayon)
	Slide 20: Fearless regular parallelism with Rust(+Rayon)
	Slide 21: Fearless regular parallelism with Rust(+Rayon)
	Slide 22: Fearless regular parallelism with Rust(+Rayon)
	Slide 23: Fearless regular parallelism with Rust(+Rayon)
	Slide 24: Fearless regular parallelism with Rust(+Rayon)
	Slide 25: Fearless regular parallelism with Rust(+Rayon)
	Slide 26: Fearless regular parallelism with Rust(+Rayon)
	Slide 27: Irregular parallelism remains scary
	Slide 28: Irregular parallelism remains scary
	Slide 29: Irregular parallelism remains scary
	Slide 30: Irregular parallelism remains scary
	Slide 31: Irregular parallelism remains scary
	Slide 32: Irregular parallelism remains scary
	Slide 33: Irregular parallelism remains scary
	Slide 34: Irregular parallelism remains scary
	Slide 35: Irregular parallelism remains scary
	Slide 36: Irregular parallelism remains scary
	Slide 37: Irregular parallelism remains scary
	Slide 38: Irregular parallelism remains scary
	Slide 39: Irregular parallelism remains scary
	Slide 40: Irregular parallelism remains scary
	Slide 41: Does this matter? Irregular parallelism is common in PBBS!
	Slide 42: Does this matter? Irregular parallelism is common in PBBS!
	Slide 43: Does this matter? Irregular parallelism is common in PBBS!
	Slide 44: Does this matter? Irregular parallelism is common in PBBS!
	Slide 45: Conclusions

