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Rust is gaining popularity
necause of its safety guarantees
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Rust claims to provide “fearless concurrency”

Fear :

Anticipation of concurrency errors that manifest at run time.

Our RQ : How does fearless concurrency translate to parallelism?
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Rust claims to provide “fearless concurrency”

Fear :

Anticipation of concurrency errors that manifest at run time.

Our RQ : How does fearless concurrency translate to parallelism?

Are all parallel patterns fearless in Rust?
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Contribution: Interrogate fearless concurrency
by expressing (ir)regular parallelism

Rusty-PBBS:
o A port of PBBS in Rust with both regular and irregular patterns.

Our Case Study:

o Classification of parallel expression patterns in Rusty-PBBS.
o Evaluating Rust support and fearlessness for each pattern.
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Contribution: Interrogate fearless concurrency
by expressing (ir)regular parallelism

Rusty-PBBS:
o A port of PBBS in Rust with both regular and irregular patterns.

Our Case Study:
o Classification of parallel expression patterns in Rusty-PBBS.

o Evaluating Rust support and fearlessness for each pattern.
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Fearless regular parallelism with Rust(+Rayon)

T1|T2| T3 | T4|T5|T6

Regular parallelism:
Known set of tasks
Known dependences

(Stride)
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Fearless regular parallelism with Rust(+Rayon)

T1|T2| T3 | T4|T5|T6

Regular parallelism:
Known set of tasks
Known dependences

(Stride)

fn par_increment(v: &mut [u32])

{ )</ stride pattern on v

v.par_iter_mut(
.for_each(|vi| *vi+=1);

Is the Problem-Based Benchmark Suite Fearless with Rust?



Fearless regular parallelism with Rust(+Rayon)

T1|T2| T3 | T4|T5|T6

Regular parallelism:
Known set of tasks
Known dependences

(Stride)

fn par_increment(v: &mut [u32])

{ stride pattern on v
v.par_iter_mutCy=-____ P

.for each01v1| *yit=T);

Is the Problem-Based Benchmark Suite Fearless with Rust?



Fearless regular parallelism with Rust(+Rayon)

T1|T2 | T3 | T4grT5|T6

Regular parallelism:
Known set of tasks
Known dependences

(Stride)

fn par_increment(v: &mut [u32])

{ stride pattern on v
v.par_iter_mutCy=-____ P

.for each01v1| *yit=T);

| . Bttt
~ Cannot — No data
" access V races

Is the Problem-Based Benchmark Suite Fearless with Rust?



Fearless regular parallelism with Rust(+Rayon)

Regular parallelism:
Known set of tasks
Known dependences

fn par_increment(v: &mut [u32])

{ stride pattern on v
v.par_iter_mut()y=-____ g
.for each01v1| *yit=T);
) -
Cannot No data
task : —

dCCess v races

Is the Problem-Based Benchmark Suite Fearless with Rust?

T3 | T4gpT5 | T6

T1|T2

(Stride)

T1

T2

T3

(Block)




Fearless regular parallelism with Rust(+Rayon)
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T6

Regular parallelism:
Known set of tasks
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Irregular parallelism remains scary

fn indirect increment(v: &mut [u32], offsets: &[usize])

{
(0..v.len()).into_par_iter()«" parallel loop

.for_each(|i]|
v[offsets[i]] += 1
)
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fn indirect increment(v: &mut [u32], offsets: &[usize])

{
(0..v.len()).into_par_iter()«" parallel loop

.for_each(|i]|
v[offsets[i]] += 1 «— Dangerous

)5
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{
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Irregular parallelism remains scary

fn indirect increment(v: &mut [u32], offsets: &[usize])

{

(0..v.len()).into_par_iter()«" parallel loop

Rust solutions for irregular parallelism are not fearless
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Does this matter?
rregular parallelism is common in PBBS!

Regular parallelism

Irregular parallelism X

xX X NN
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Does this matter?
rregular parallelism is common in PBBS!
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Does this matter?
rregular parallelism is common in PBBS!
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Conclusions

Regular Irregular
parallelism parallelism

Easy parallelism Hard parallelism github.com/mcj-group/rusty-pbbs
is fearless! is still scary...
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