
Generation of Synthetic Sequential Benchmark Circuits�

Michael Huttony, Jonathan Rosez and Derek Corneily

University of Toronto

Abstract

Programmable logic architectures increase in capacity be-
fore commercial circuits are designed for them, yielding a dis-

tinct problem for FPGA vendors: how to test and evaluate the

e�ectiveness of new architectures and software. Benchmark
circuits are a precious commodity, and often cannot be found

at the correct granularity, or in the desired quantity.

In previous work, we have de�ned important physical char-
acteristics of combinational circuits. We presented a tool

(circ) to extract them, and gave an algorithm and tool (gen)

which generates random circuits, parameterized by those char-
acteristics or by a realistic set of defaults. Though a promising

�rst step, only a small portion of real circuits are fully combi-

national.
In this paper we extend the e�ort to model sequential cir-

cuits. We propose new characteristics and generate circuits

which are sequential. This allows for the generation of truly

useful benchmark circuits, both at and beyond the sizes of next-

generation FPGAs. By comparing the post-layout properties of

the generated circuits with already existing circuits, we demon-

strate that the synthetic circuits are much more realistic than

random graphs with the same number of nodes, edges and

I/Os.

1 Introduction

In an ideal world, an FPGA vendor would use hundreds of

benchmark circuits in determining the architecture of a next

generation device, as well as developing the associated auto-
matic placement and routing software for it. In this way, the

architectural design space would be adequately explored and

the best software algorithms would be used and well-tested.
However, because the part is new, there are few designs

available at the correct granularity and size to perform this

kind of exploration. Some circuits will always exist via cus-
tomer migration from gate-arrays, synthesis from high-level

design languages, or through various other means, but these

rarely su�ce and companies are forced to purchase bench-
marks or to expend considerable e�ort creating them inter-

nally.

There exist alternatives to using \real" benchmarks of the
desired size. The PREP benchmark set [8] places a number of

disconnected copies of the same small circuit into one netlist.

Random graphs are another possibility but we have demon-
strated [7] that random graphs are too unrealistic.

�Supported by NSERC Canada and a grant from Hewlett
Packard. Departments of Computer Sciencey and Electrical and
Computer Engineeringz, University of Toronto, Ontario M5S 3G4.
fmdhutton@cs,jayar@eecg,dgc@csg.toronto.edu.

In previous work we addressed the problem of random

generation of combinational circuits [7]. We de�ned proper-
ties such as size, delay, physical shape, edge-length distribu-

tion, fanout distribution and reconvergence to describe the

physical characteristics of a purely combinational circuit after
the technology mapping stage. A public-domain tool, circ,

was developed to extract these parameters. We gave an al-

gorithm to randomly generate a circuit with an exact param-
eterization, and presented another tool, gen, which imple-

mented it. By comparing characteristics of the generated cir-

cuit that were not speci�ed as parameters to generation (post-
placement wire-length and track-count and a quanti�cation of

reconvergence) we showed that the generated circuits behaved

very comparably to real circuits, whereas random circuits of
the same size did not.

In a di�erent approach to the generation problem, Dar-

nauer and Dai [4] gave an algorithm for generating random

undirected graphs to meet a given I/O ratio and Rent param-

eter, primarily aimed at a study of routability, and with ap-

plications to creating partitioning benchmarks. They showed

the validity of their approach for relatively small combina-

tional circuits, but it is not yet clear how successful it is for

evaluating new architectures and place and route software or
for larger or sequential circuits.

In this paper we address the problem of generating sequen-

tial circuits, i.e. circuits that contain ip-ops and directed
cycles (broken by a ip-op) in the logic. We expand on the

combinational circuit characteristics by de�ning additional pa-

rameters for sequential circuits. The same approach can be
applied to modeling and generating hierarchical circuits. Us-

ing the new parameters, we have made signi�cant changes to
the basic combinational algorithm to allow for the generation

of these circuits, and added new aspects to deal with hier-

archy. The tool is capable of quickly generating electrically
valid and reasonable sequential benchmark circuits which can

be read by commercial FPGA software.

To show that that these benchmarks are realistic, we use
the approach illustrated in Figure 1. Given an industrial

benchmark circuit, we use circ to extract its parameteriza-

tion, and gen to generate a clone circuit with the precisely
speci�ed set of characteristics. We also generate a random

graph with the same number of nodes, edges and I/Os, but

otherwise unconstrained by our characterization parameters.
Then we place and route all three with an academic tool vpr

[3], and with Altera Corporation's MAX+PLUS2 software.

By comparing the post-placement and routing statistics for
the original circuit and its clone, and contrasting this to the

results for a random graph of the same size as the original cir-

cuit, we are able to show that our method generates circuits

which signi�cantly more realistic than random graphs.

Though this paper concentrates mostly on circuits taken

from exact speci�cations, gen also comes with a sophisticated
set of defaults to generate circuits \from scratch," in which the

only required parameter is the circuit size. We have developed

1

Industrial
Benchmark
Circuit

CIRC GEN

Placement and Routing

VPR and MAX+PLUS2

Original
Circuit

GEN "clone"
(from complete
parameterization)

(same number of
nodes, edges and I/O)

Random Graph

Generation
Quality
Comparison

(characterization) (generation)

original

clone

random

Circuit

Parameterization

Figure 1: Approach to Circuit Generation

a speci�cation language in which parameters can be chosen
from various standard and new statistical distributions and

provided default gen-scripts which provide compatible values

for any missing parameters in an input speci�cation. The user
can use these defaults, drawn from our experiments on MCNC

circuits and personal experience with the tools, or program

their own in the speci�cation language.
In Section 2 we briey review the characteristic de�nitions

and the algorithm from [7] for generating combinational cir-

cuits. Section 3 describes the new sequential characteristics
needed to model and generate sequential circuits hierarchi-

cally. The overall algorithm integrating combinational and

sequential generation comprises Section 4. In Section 5 we
discuss and validate the quality of the synthetic circuits by

comparing their routability with industrial benchmark circuits

and random graphs of the same size. We conclude in Section

6 and discuss extensions to the current prototype software.

2 Background: Combinational Circuits.

In this section we review the de�nitions, algorithm, and ter-

minology of [7], which dealt with combinational circuits only.

2.1 Combinational circuit parameterization. We

model a combinational circuit C by a series of scalar and vec-

tor parameters. Our base representation of a circuit is as a

graph with nodes and 2-point connections (edges, as opposed

to nets or hyper-edges). De�ne nPI and nPO as the number

of primary inputs and outputs in C, and nLOG as the num-

ber of logic nodes. Then n, the size of C, is nPI + nLOG (we

treat a PI as node type, but a PO as a property of a logic

node). For any node x, fanin(x) is the number of edges en-

tering x. Similarly, fanout(x) is the number of edges leaving
x and max fanout(C) is MAXffanout(x)g over all x in C. We

assume that fanin(x) is always bounded by some constant k

(typically 4), but that max fanout(C) is bounded only by n.
De�ning fanouts[i], i=0..max fanout, as the number of nodes

in C with fanout i, we have the fanout distribution of C. The

number of edges nedges in C is the sum, over all x in C, of
fanin(x) (equivalently the sum of fanout(x)).

The remaining parameters are related to combinational de-

lay. Each node x has a maximum combinational delay, de�ned
by d(x) = 0 if x is a PI, otherwise d(x) = 1 + MAX(d(yi))

over all inputs yi to x. The combinational delay of C, d(C) is

the maximum d(x) over all x in C. De�ne ni as the number

of nodes in C with combinational delay i. Then the shape

distribution of C is shape(C) = [ni], i = 0::d(C). For an edge

e = (x; y), de�ne length(e) = d(y) � d(x). De�ne ei as the
number of edges in C with length i, inducing the edge-length

distribution, edges(C) = [ei], i = 0::d(C). An edge of length-

one is a unit edge and of any other length a long edge. In

[7], we found that shape (similarly edges) does vary from cir-

out-degree set edge set

node sets

11
1

1 0
1

1 1

1 1
1

1
1

1
1 22

2 3

0

1

44

D E

n

n

n

n

0

1

2

n
3

4

I, II

steps

3

2

5

6

7

(a) Input (b) After Step II

III, IV, V

steps

1

3 717

4

2

11

5

8

6

16

9

22

12 20

10

18

21

15 25

19 23

14

13

24

(c) Final Circuit

Figure 2: The Combinational Generation Algorithm.

cuit to circuit, but that there is a typical class of distributions

which applies to most real circuits but di�ers from the shapes
of random graphs.

2.2 Generating combinational circuits. Also in [7], we

described an algorithm for generating combinational circuits

from the list parameters described above: n, nPI , nPO, nedges,

k, max fanout, max delay and the fanouts, shape, and edge-

length (edges) distributions. The algorithm will create a graph

(netlist) on n nodes and nedges edges, such that each node x

is assigned one fanout value from the set represented by the

fanouts, that assigned value corresponds to the actual fanout

of x in the graph, combinational delay is well-de�ned for all
nodes (i.e. d(y) < d(x) for all fanins y of x, and at least one

fanin y0 has d(y0) = d(x)-1), fanin is bounded by k for all

nodes, and all fanins to x are distinct (i.e. any signal enters a
logic node at most once).

The algorithm for generating a combinational circuit is il-

lustrated in Figure 2, and we give a brief overview of it here.
The parameterization de�nes a set of disconnected nodes at

each combinational delay level (Figure 2(a)), and sets of unas-

signed edges and fanouts. We initially consider all nodes on
the same level as collapsed to a single level-node. Step I com-

putes boundaries on the maximum and minimum in and out-

degree of each level. Step II assigns the majority of edges be-
tween levels, yielding the intermediate representation shown

in the Figure 2(b). Step III partitions the total out-degree of

each level into ni values chosen from fanouts. Step IV di-
vides the level-nodes into individual nodes and assigns fanout

values each. Step V connects edges (currently between levels)

to nodes, and introduces some local clustering to the netlist.
The overall algorithm yields a circuit as shown in Figure 2(c).

In Section 4 we will overview the modi�cations necessary for

sequential circuits.
The gen system actually has two phases. The above algo-

rithm describes the second phase, generation of a circuit from

an exact speci�cation. More typically, the user will specify
only a few of the scalar parameters, and the front-end to gen

will create the remaining parameters from the default scripts

2

Primary inputs

Sequential level 0

Flip−flops

Sequential level 1

(level 0 only)

Sequential level 2

Primary output (any level)

Primary output (any level)

Back
edges

combinational
sub−circuit

combinational
sub−circuit

combinational
sub−circuit

Figure 3: Abstract Model of a 3-Level Sequential Circuit

(mentioned earlier). The parameter selection phase will then
complete the parameterization to generate an exact speci�ca-

tion, and pass a complete description to the main algorithm.

2.3 Quality of combinational gen-circuits. We

demonstrated the validity of the combinational chararacter-
ization and the generation algorithm using MCNC circuits

and the process illustrated in Figure 1, as discussed in the

Section 1 (though we used vpr alone for the combinational
experiments.) We found that the post-placement wirelength

of the gen clone-circuits di�ered by 11%, on average, from

the source circuit, whereas the corresponding random graph
di�ered by 63% on average. Looking only at the largest 12

circuits, the numbers were 28% and 218%, respectively.

The major weakness of the �rst gen was that it did not
handle sequential circuits. In addition to being more di�cult

to generate, sequential circuits would be more di�cult to place

and route, because the underlying graph is more complex. The
extensions to the model to deal with sequential circuits and

to generate them comprise the remainder of this paper.

3 A Model For Sequential Circuits.

In order to generate sequential circuits, it is necessary to form

a model of what we mean by a sequential circuit. We describe

this as a hierarchy of two or more1 combinational circuits con-

nected by \ip-op-edges" (FF-edges) and \back-edges," as

shown in Figure 3. We assume that there are D-type ip-ops

between combinational portions of a circuit, so all nodes are

of type PI, logic or ip-op. Recall that PO is a property

of a logic node, not a separate node type. For simplicity, all

ip-ops in a circuit will share a single global clock, which is

not represented in the netlist.
Under this model, the de�nitions of primary input, pri-

mary output, and all fanout measures remain as before. How-

ever, combinational delay is modi�ed so that any ip-op node
is at combinational delay 0, independent of its (single) input.

The sequential level, level(x) of node x is de�ned as 0 if x is a

primary input, 1 + level(y) for a ip-op x with input y, and

MIN(level(yi)) over all inputs yi to x otherwise. Notice that

all primary inputs must thus occur in sequential level 0. De-

�ne an edge (x; y) to be a forward-edge if level(x) = level(y)
and a back-edge if level(x) > level(y). All other edges are

necessarily FF-edges connecting a logic node to a ip-op at

the immediately next sequential level. The de�nition of edge-

1By our de�nitions, a single level would be a purely combinational
circuit.

length is as before, even if the nodes are at di�erent sequential
levels, except that FF-edges are always of length one. The size

of the circuit is now n=nLOG+nPI+nDFF .
We de�ne a sequential circuit as a hierarchy of combina-

tional sub-circuits which are connected together with FF-edges

and back-edges, as illustrated in Figure 4. To generate the in-
terface where these sub-circuits are to be joined, we introduce

ghost input (GI) and ghost output (GO) ports in each sub-

circuit. These are reserved fanin (fanout) ports attached to
logic nodes in the combinational circuit. Note that GI and

GO ports correspond more closely to edges than to nodes,

since a single node can have up to k � 1 ghost inputs and up
to max fanout ghost outputs. The number of ghost outputs,

nGO, is divided into those which will eventually feed a ip-op

(nlatch) and the remainder, which will become the source of a
back-edge. A �nal sequential circuit will have no ghost inputs

or outputs, as they will have all been \glued" together into

back-edges (a ghost output connected to a ghost input at a pre-
ceding sequential level) or FF-edges (a ghost output connected

to a ip-op at the immediately next level2). Ghost outputs

are assigned (in sub-circuit generation) such that nodes with

a ghost output destined for FF-edge connection will have just

that one ghost output3.

Though the hierarchy and locality in a sequential circuit

is partly captured by the number of ghost inputs and ghost

outputs between sub-circuits, it is also important to describe

the shape of these connections. This is because combinational

delay constrains us to connecting ghost outputs at a lower

combinational delay level than the corresponding ghost input

(though any ghost output can be connected to a ip-op).

De�ne the vector GIshape[d] as the number of ghost inputs

at combinational delay d, d=0::max delay, and GOshape[d]

similarly for ghost outputs. These will introduce a topological

constraint on the connections between di�erent sub-circuits

in addition to simply the number of connections. In practice,

we �nd that these vectors are important, especially for gener-
ating clones, because they often uncover \quirky" aspects of

di�erent circuits. Note that the GIshape for one level and the

GOshape for the other level in a 2-level circuit will roughly
correspond, but would only correspond exactly if all edges in

the circuit were unit-edges, which is not usually the case.

The de�nitions are best understood with an example. Fig-

ures 4(a) and 4(b) represent combinational sub-circuits which

will be glued together into the complete sequential circuit

shown in Figure 4(c). The sub-circuit in Figure 4(a) has
parameterization4 fn=7; level=0; nPI =3; nPO =1; nedges=

2In fact, the gluing algorithm is more general than this, and gen has
no restriction against joining nodes at the same sequential level with
compatible delays, as long as they are in di�erent sub-circuits. How-
ever, the current discussion is limited to sequential circuits which have
only a single combinational sub-circuit at each level, as pictured in Fig-
ure 3. We have written gen scripts which contain multiple combinational
sub-circuits at each sequential level, in order to generate partitioning
benchmarks with known cut-sizes. Unfortunately, there is no automatic
process for writing this kind of �ne-grained hierarchy at this time, so
the user would have to specify the sub-circuits and the GI/GO interface
completely in their gen-script.

3This is for two reasons. Firstly, we don't want to register the same
signal through two di�erent ip-ops. Secondly, we don't want to gener-
ate circuits which map poorly to FPGA logic blocks, which are typically
a 4-input LUT followed by an optional ip-op where only one of the
registered and un-registered signals are externally available.

4Note that these are partial parameter lists only, as some parameters
not relevant to the current discussion of sequential circuits are left out.

3

Ghost
output
port

Primary
inputs

Primary
output

Back
edge

Flip
flop

Ghost
input
port

Level−1 PI will
become a flip−flop
in gluing stage

(c) Complete sequential circuit

(a) Level−0 sub−circuit

(b) Level−1 sub−circuit

Figure 4: Example construction of a 2-level sequential circuit.

6; nGI = 2; nGO = 2; nlatch = 2; shape = (3; 2; 2);GIshape =
(0; 0; 2); GOshape= (0; 0; 2)g. The circuit in Figure 4(b) has

fn = 4; level = 1; nPI = 2; nGI = 0; nGO = 2; GOshape =

(0; 2); nPO =0; nlatch=0g. The complete circuit is described
by fn =11; nPI = 3; nPO =1; levels= 2; nDFF =2; nback = 2g
in addition to the speci�cation of its sub-circuits. Note that

the ip-ops serve as primary inputs in the speci�cation of the
sub-circuit, but primary inputs cannot exist at levels greater

than zero (by de�nition) in the �nal circuit, so these are con-

verted to ip-ops as they are glued to ghost outputs from the

previous level.

For an exact speci�cation of a sequential circuit, this in-

formation is su�cient to generate the complete circuit5 . An

example of a complete exact speci�cation for the MCNC cir-

cuit bbtas, output by circ as a gen-script, is shown later in

Figure 5, along with example clone-circuits produced from it.

4 The Algorithm for Sequential Generation.

In this section we describe our algorithm for generating se-

quential circuits. There are two major topics: outlining the

modi�cations to our algorithm to generate base-level sub-
circuits with ghost inputs and outputs; and describing the

process for gluing sub-circuits together.

4.1 Generating combinational sub-circuits. To gen-

erate sub-circuits, we use a modi�cation of the original com-
binational algorithm [7]. The additional constraints in the

model implied by nGI , nGO, nlatch, GIshape, and GOshape

necessitate changes throughout the algorithm, as they change
the ratio of nodes to edges, introduce nodes with no fanout,

and nodes with fanin of one when ghost inputs are present.

Because the original algorithm is rather long, it is not possible
to re-iterate all steps in su�cient detail to convey the changes,

so we will restrict the discussion here to a discussion of the

most important aspects and refer the interested reader to the
software documentation and the public-domain code available

from the authors.

Referring to the �ve steps of the algorithm in Section 2.2,
our most important changes involve the identi�cation of reg-

istered nodes, ghost inputs and ghost outputs, as follows:

1. The nlatch registered nodes must be separated from
the other ghost outputs in Step I, because we would like to

make these have no other fanouts, if possible, so they must be

known before degree allocation.
2. Ghost inputs do not need to be assigned until Step IV,

5However, if a circuit is de�ned using defaults, sequential user-
parameters such as nDFF and nBack are automatically broken into
GI and GO by the �rst phase of gen.

though we do need to take care in earlier steps to allow for
ghost inputs in the total combinational fanin of a delay-level.

The ghost inputs are assigned randomly and uniformly across
the nodes in a level with available fanin.

3. The assignment of non-registered ghost outputs are kept

until a new post-processing step VI. Sequential sub-circuits
usually have fewer available edges than fully combinational

circuits, so we use the ghost outputs, in part, to \repair" any

extra zero-fanout nodes which may exist (usually some, but
a small proportion) on the delay-level they are assigned to.

The remaining ghost outputs are not assigned uniformly. We

want to generate more realistic circuits which tend to have a
smaller number of high-fanout nodes to previous levels, rather

than many nodes with a single ghost output. To do this,

we choose a random subset of the nodes on each delay-level
requiring ghost outputs, smaller than the number of ghost

outputs available, then assign the ghost outputs uniformly to

nodes in the subset.
This process generates a combinational circuit with the

correct number of ghost inputs and outputs at the required

combinational delay levels so that the gluing process can take

multiple circuits and glue them together.

4.2 Gluing sub-circuits. The problem of joining sub-

circuits together into the �nal sequential circuit C is essentially

one of appropriately matching the ghost ports between the
sub-circuits into back-edges and FF-edges.

When gluing begins, we have a list of sub-circuits Ci,

i = 1::c to be connected, sorted by increasing sequential
level. Each sub-circuit contains a list GIlist of ghost inputs,

a list FF outlist of ghost outputs which have been labeled as

targeting a ip-op (from nlatch in the speci�cation), a list
GOlist of other ghost outputs intended for back-edges and a

list FF inlist of primary inputs in sub-circuits at non-zero

sequential levels which will become ip-ops. Each ghost in-

put and output is attached to a node in the sub-circuit, and

inherits the combinational delay of that node.

The matching is constrained by combinational delay and

sequential levels. We cannot join a node at sequential level l

to a node at level l+1, unless that node is a PI (i.e. intended

to become a ip-op). We also cannot join a node to any
node at a level beyond l+1 without violating the de�nition of

sequential level on the nodes of C. Similarly, we cannot join

a ghost output on a node x to a ghost input on a node y if
d(x) � d(y), without violating the combinational delay of y,

and we cannot connect two ghost outputs attached to x with

two ghost inputs to y, or we create a duplicate fanin to y.

This problem reduces to a standard bipartite matching

problem and there are known exact algorithms to solve it.

However, the exact approaches are based on network-ow al-
gorithms which are too slow (i.e. O(n

p
n) time) to allow us to

generate large circuits. Furthermore, in order to apply the ge-

ometric locality heuristic used in combinational generation to
gluing, and later to extend the gluing algorithm to one which

does not �nd all connections, but leaves some ghost inputs

and outputs disconnected (as would be desired for multi-level
hierarchical generation) we would require weighted matching,

which uses O(n2 log n) time [9]. Since the other parts of gen

operate in either linear or O(n log n) time, this would not be

acceptable.

Thus we approach the gluing problem heuristically with a

4

greedy algorithm. The most important aspect of the opera-
tion is to properly order the connections so as to increase the

chances of �nding a good solution. A solution which fails to
connect all possible edges will result in gen later having to

diverge from its input-speci�cation by creating extra ip-ops

or by moving ghost inputs or outputs to di�erent nodes.
Because registered ghost outputs are labeled separately

from the other ghost outputs, the problems of gluing back-

edges and gluing FF-edges are independent. However, di�er-
ent sub-circuits do \compete" for back-edges. We give priority

to earlier sequential levels by processing in the following order

(justi�ed later):

for i = 0..c /* c is the num sub-circuits */

connect back-edges from other Cj to GIs of Ci.
connect FF-edges from registered GO

of Ci to next-level PIs other Cj

end for

4.2.1 Locality of connection. We have previously al-

luded to a \locality metric" in making combinational connec-
tions between nodes in Step V. De�ne the index of a node as

an integer proportional to the node's location in the node-list

for a given delay level in any sub-circuit (the 0..ni � 1 order-
ing of the ni nodes in delay level i, scaled to the maximum

width over all combinational levels). When edges are con-

nected in Step V of the base algorithm, we probabilistically

favour connections between nodes which have closer indices,

in order to introduce clustering in the circuit. This form of

geometric clustering is evident when viewing pictures of cir-

cuits generated by heuristic graph-drawing packages such as

DOT [5] (e.g. see Figure 2(c)).

In order to generate realistic circuits it is important to

continue this process when connecting nodes to ip-ops and

back-edges, or we generate circuits with many crossing edges

which are overly di�cult to place and route. Thus, we con-
tinue to use the node-index for sequential gluing.

4.2.2 Gluing back-edges. The algorithm for gluing back

edges to the ghost inputs of one circuit Ci from all other sub-

circuits is as follows.

First create a destination list of all ghost inputs in Ci and a

source list of all ghost outputs in the other sub-circuits which

are at later sequential levels. Sort both lists by increasing
index within decreasing delay. The purpose of this order is

to use up the highest delay ghost outputs �rst (because they

are more likely to not �nd a matching ghost input and then
require a ip-op or movement later), and to match them to

the highest delay ghost inputs with which they are compatible.

Given that, we want to match indices as best as possible.
Now proceed through the source list in order. De�ne the

match value of a source node x with a destination node y

as 1 if (x; y) is an invalid edge (by the constraints above),
and d(y) � d(x) otherwise. We search the destination list for

the �rst node with lowest match value, which also lines up a

compatible index by the sorting. Note that we don't actually
have to look at the entire destination list: this can be done in

O(d) time, using a couple of additional pointers indexed into

the destination list, and combinational delay d is essentially a

constant so the algorithm is fast.

The time required for this gluing phase is dominated by the

sorting, so we need O(n log n) time6 per sub-circuit, of which
there are a constant number. Note that \n" in the algorithmic

complexity refers to the number of back-edges in C, which is
typically about 5-10% of the size of the whole circuit7 .

The reason that the main algorithm processes sub-circuits

in order of their sequential level is that the earlier levels typ-
ically have both many more nodes and greater combinational

delay, and also a more complex overall structure (later lev-

els often reduce to a register-�le with only a couple of logic
nodes.)

4.2.3 Gluing Edges to Flip-Flops. The process for
gluing nodes with ghost outputs labeled as latches to primary

inputs at the next sequential level is more straightforward. For

each adjacent pair of levels, create a source and destination
list as before, sort the lists by index (independent of delay),

and line up nodes directly (the lists are the same size, by the

original speci�cation of the sub-circuits). This is an additive
factor of O(n log n) time to the preceding steps, so the entire

gluing algorithm remains O(n log n) time (In this case, n refers

to the number of ip-ops in the circuit which is, in practice,
not the entire size of the circuit.)

Note that the order in which sub-circuits are considered is
unimportant, as the connections are independent.

4.2.4 Post-processing. As mentioned earlier, it is not
always the case that a perfect matching exists for the back-

edges. A post-processing step is necessary to resolve the re-

maining incompatible ghost inputs and ghost outputs. In this
step ghost inputs and outputs are moved to suitable candi-

dates elsewhere in the sub-circuits until matches are found.

In extreme cases (agged by warnings from gen) up to 40%
of back-edges can be unresolved before post-processing, but

typically only 0-5% of ghost inputs and outputs (which com-

prise less than 1% of all edges) remain after the main gluing
algorithm.

5 Validating the Quality of gen-circuits

As mentioned in the introduction, we test the viability of se-

quential gen-circuits by generating clones of industrial bench-

mark circuits, and comparing the post-placement and routing

statistics from vpr and MAX+PLUS2 for the original circuit

with that of the clone circuit and a equivalently sized (in terms
of nodes, edges and I/O) random graph. The circuits referred

to here are actual industrial circuits belonging to Altera. The

�rst author was able to perform these experiments while em-
ployed there on a summer internship.

Before giving the routing results, we need to describe how

we generate the random graphs used for comparison.

5.1 Generating random graphs. We generate a random
directed graph on n nodes and ne edges with nPI primary in-

puts, nPO primary outputs, with nDFF available ip-ops (for

breaking combinational cycles, as we want only synchronous
designs) and kmax-bounded fanin. The algorithm is as follows.

1. Determine the maximum k such that 2 � k � n is less

6Due to the fact that the node lists are already sorted, we can reduce
this to an O(n�d) algorithm with appropriate data-structures. However,
given the tight constants which exist for sorting algorithms, we believe
the constant for doing this would dominate logn for all reasonable n,
so it is not of practical interest to do so. The same applies to most (but
not all) sorts which occur in gen.

7This doesn't change the abstract complexity, but the algorithm runs
faster in practice

5

than ne. Create a random permutation � of size 2 � k � n, to
represent 2 � k � n nodes, and join nodes �2i and �2i+1 with an

edge, i = 0::(k � n)� 1. This creates a graph on 2 � k � n nodes
with k � n edges, where each node is connected to exactly one

other, i.e. a random matching.

2. Now collapse all nodes labeled �ki::�(k+1)i�1 into a
single node xi. The result is an n node undirected graph

where the degree of each node is exactly k (a k-regular graph8)

and the distribution of graphs generated is guaranteed to be
uniformly distributed over all k-regular graphs of size n.

3. Direct all edges from lower-numbered nodes to higher,

to get a directed graph. Randomly label nPI fanin-0 nodes as
PI (similarly nPO) fanout-0 nodes as PO). Randomly connect

non-labeled fanout-0 and fanout-0 nodes by new edges until

they are exhausted, then continue randomly connecting ran-
dom nodes to random nodes with fanin less than kmax until

the graph contains ne edges. When it is necessary to con-

nect a node to a node of a lower number, separate the two by
a ip-op if one remains to allocate, otherwise search for an

alternate connection that does not involve a back-edge.

This process generates a graph with the speci�ed number

of each node-type and the speci�ed number of edges. A more

standard de�nition random graph (i.e. G(n; p) on n nodes

with each edge existing with probability p), would not be an

interesting comparison with gen, because it is much too hard

to place and route (e.g. it contains a clique on log(n) nodes,

almost always).

The graphs generated by the above process could be seen

as a \�rst pass" version of gen which takes fewer parameters

into account. In fact, this algorithm alone would be an im-

provement over most naive approaches to generating random

graphs for benchmarks. Comparing real circuits to clones and

these random graphs is essentially measuring how far along

the scale from \random" to \real" the current gen approach

has traveled.

5.2 Comparing Routing Results. Table 1 shows the

comparison between the original, gen and random circuits af-

ter placement and global routing by vpr9 [3] and implementa-

tion on an Altera 10K20-RC240 FPGA [2] by MAX+PLUS2.

The benchmarks used are all of the appropriate size (between
60 and 100% logic utilization, with most in the higher end

of the range) for exercising this 10K20 part, which has 1152

LCELLS (logic blocks) and 240 user I/O pins.
The �rst column gives each circuit a name. The second

column gives the total wirelength after global routing. Then

we give the percentage of extra wiring (beyond that required
for the original) required by the corresponding clone circuit

and random graph. Similarly, we then have the track-count

(channel width) followed by the percentage increase in track-
count for the corresponding clone circuit and random graph.

The last two columns show the percentage increase in \rout-

ing resources" used by the clone circuit and the random circuit
when implemented on the 10K20 FPGA. To respect informa-

tion about the benchmark circuits which is proprietary to Al-

8There are details to deal with the double and and self-connections
between nodes without sacri�cing the uniform distribution, but these
are beyond the current discussion.

9Vpr uses the model of a symmetric array of logic blocks, similar
to a gate-array or a Xilinx 4000 series FPGA, and reports the total
wirelength and the maximum channel width (number of tracks) used
after global routing.

vpr wire vpr tracks 10K20 tracks

clone rand clone rand clone rand

Circuit orig %di� %di� orig %di� %di� %di� %di�

A 5102 21 144 6 16 83 14 132

B 7719 64 215 5 80 160 71 .

C 6344 27 160 6 16 116 30 .

D 6818 20 147 6 16 133 32 .

E 6609 53 266 5 60 160 35 .

F 4293 57 188 5 40 140 41 197

G 4147 2 158 5 0 140 16 208

H 5107 21 137 5 40 120 0 123

I 4692 19 155 5 40 160 23 132

J 6087 34 153 5 60 120 51 165

K 9313 42 202 6 33 133 38 .

L 6546 36 222 6 33 100 55 .

M 7748 86 248 5 100 220 85 .

N 10794 -43 52 10 -40 30 -41 .

O 8070 17 140 7 14 100 25 .

P 5562 88 268 5 80 180 90 .

Q 6460 71 167 5 80 160 . .

S 6417 29 166 5 40 140 24 .

T 4662 28 170 6 0 83 16 108

U 8828 2 156 6 16 150 53 .

V 4876 81 201 4 75 175 63 174

W 4837 28 143 4 50 150 34 117

mean 6358 35% 175% 5.5 38% 134% 36% 151%

Table 1: Routability comparisons between original benchmark

circuits, gen-clones and random graphs (`.' indicates a no-�t).

tera the actual resource usage in the device is not displayed|
for this study it is only the percentage di�erence that is of

interest.

For our metric of FPGA resource usage, we count the to-
tal number of full-horizontal, half-horizontal and vertical lines

used by the design in a 10K20, as reported by MAX+PLUS2.

Because we are using an actual device, it is possible that a
design does not \�t." Though all original circuits do �t in the

10K20, 1 of the clone circuits and 13 of the random graphs

did not, and these are indicated by a `.' in the table.

The last row of the table indicates the averages for each

column. For the last two columns, the missing data is not

included in the average.

We �nd that the clone circuits are, in general, harder to

place and route than are the original circuits we took the speci-

�cations from, though a given clone is always closer to the orig-

inal than the corresponding random graph. On average, the

clone circuits used 35% more wirelength and 38% more tracks

than the original circuit, whereas the random graphs used
graphs used 175% more wirelength and 134% more tracks.

This is further reected in the implementation of the clone and

random circuits on the commercial FPGA where (when they
did �t) the clone circuits used an average of 36% more rout-

ing resources and the random graphs used 151% more routing

resources. We also �nd that about half of the random graphs
do not �t at all in the part, whereas only one clone failed to

�t. In [6, 7] we give the de�nition of a measure quantifying

reconvergence in a circuit. By this measure, gen circuits di�er
by about 0.19 on average, while random graphs di�er by 0.28

on average.

These results show that the gen clone circuits are signif-
icantly more realistic than the random graphs. However, the

gen circuits are also harder to place and route relative to the

6

a b

c d e

f g h

c f g h e f g h c f g h e

(a) Circuit bbtas

a b

c d e

f g h

c f g h e f g h f g h ee

(b) Clone circuit

/* CIRC 3.0, compiled Wed Aug 28 15:36:17 PDT 1996. */

X = { name="bbtasclone";

L0=(@.comb_circ) { name="L0"; n=8; kin=4; nPI=2; nPO=2;

nDFF=0;nEdges=7;level=0;delay=2; nBot=3; shape=(2,3,3);

nGI=13;GIshape=(4,9,0);nGO=3; GOshape=(0,0,3); nZeros=5;

POshape=(0,2,0);edges=(0,7,0);outs=(5,0,2,1);max_out=3;};

L1=(@.comb_circ) { name="L1"; n=3; kin=4; nPI=0; nDFF=3;

level=1; delay=0; nEdges=0; nBot=3; shape=(3); nGI=0;

GIshape=(0); nGO=13; GOshape=(13); nPO=0; nZeros=3;

POshape=(0); edges=(0); outs=(3); max_out=0; };

glue=(L0, L1);

};

output(circuit(X));

(c) Clone script, produced by circ.

Figure 5: The MCNC circuit bbtas, its clone script from circ,

and a resulting clone produced by gen.

originals. We believe that a greater amount of local clustering

is required, and we are currently exploring methods to provide

this.

5.3 An Example. Here we present a small example that
helps to understand the overall operation of gen, and the type

of variation that can occur in generating a clone. Figure 5

shows a picture of the MCNC circuit \bbtas," and a clone
circuit produced by its gen-script from circ. Note that we

use node labels to illustrate back-edges to improve readability.

Two aspects that the parameterization does not capture
are symmetry and the type of locality that would be reected

in the block-diagram of the circuit. We observe that the clone

circuit exhibits less symmetry than the original, and in larger

circuits we can see identi�able block-structure in the original

design which is not passed on to gen for duplication. Note,

however, that re-capturing the block structure and symmetry
in a at netlist are open (and very di�cult) research problems

of their own. These problems will likely have to be tackled (or

simulated with a model in gen) in order to further increase
the quality (routability) of the benchmark circuits generated.

6 Conclusions and Further Work

In this paper we have de�ned a new model for describing se-

quential circuits as a hierarchy of combinational sub-circuits.

The model includes the parameters of ghost inputs, ghost out-

puts and their delay-shapes. The model can also be used to

describe more general forms of hierarchy than simply that be-
tween sequential levels. We have given an algorithm for gen-

erating realistic sequential benchmark netlists given the exact

parameterization of a circuit in this model. This builds on
previous research in which we gave a similar algorithm for the

simpler problem of purely combinational circuits.

In addition, we have described a public-domain10 proto-

10See http://www.cs.toronto.edu/�mdhutton/gen or
http://www.eecg.toronto.edu/�jayar for details.

type software system which implements the sequential model
with a characterization program (circ V3.1) and a generation

program (gen V3.1). Using the software, we have \cloned"
a number of industrial benchmark circuits, and showed that

gen-circuits are signi�cantly closer to real circuits (in terms

of placement and routing statistics) than carefully generated
random graphs.

Gen is also capable of generating circuits \from scratch"

using a set of default scripts based on analysis of benchmark
circuits, and which can be user-modi�ed. The software exe-

cutes quickly, and can generate circuits for current FPGA sizes

with only a few minutes of CPU time. Gen is able to produce
circuits in a number of netlist formats, including Actel ADL,

Altera AHDL (TDF) and Xilinx XNF.

Circ and gen prototypes have been installed for use at
Xilinx, Altera and Actel, several CAD software companies, as

well as other industrial and academic sites. In addition, we

have contributed benchmarks created by gen to an informal
partitioning competition at the 1996 Design Automation Con-

ference (organized by Franz Brglez), and to other partitioning

researchers[1].

We see a number of areas for future exploration. One is to

modify the base generation algorithm to automatically impose

a partition hierarchy on the circuit as it is being built, possibly

similar to Darnauer and Dai's [4] use of the Rent-exponent to

introduce hierarchy in their partitioning benchmarks. Though

genwill currently output circuits of up to about 100,000 LUTs

(about 20 times the size of a modern FPGA), we believe gener-

ating high-quality large benchmarks will require some degree

of imposed symmetry and hierarchy within the netlist. A sec-

ond area for future work would be to generate \system"-level

hierarchy, by including datapath and other structured logic

which can be synthesized or produced with LPM modules and

random logic components from gen.

Acknowledgements: The authors would like to thank

Vaughn Betz for use of vpr. Special thanks to Altera Corpo-
ration for providing the �rst author with a summer internship,

during which parts of this research were performed, and for

allowing access to their benchmark circuits during that time,
and to Hewlett Packard Corporation for �nancial support.

References
[1] C. Alpert, Private communication. UCLA and IBM Austin.

[2] Altera Corporation, 1996 Data Book.

[3] V. Betz and J. Rose, Directional Bias and Non-Uniformity in

FPGA Global Routing Architectures, in 14th IEEE/ACM Int'l Con-
ference on Computer-Aided Design, 1996, pp. 652{659.

[4] J. Darnauer and W. Dai, A Method for Generating Random Cir-

cuits and Its Application to Routability Measurement, in 4th
ACM/SIGDA Int'l Symp. on FPGAs, Feb., 1996, pp. 66{72.

[5] E. R. Gasner, E. Koutso�os, S. C. North, and K.-P. Vo, A Technique

for Drawing Directed Graphs, IEEE. Trans. Soft. Eng., 19 (1993),
pp. 214{230.

[6] M. D. Hutton, Characterization and Generation of Digital Bench-

mark Circuits. Ph.D. Thesis in preparation, University of Toronto,
1996.

[7] M. D. Hutton, J. P. Grossman, J. S. Rose, and D. G. Corneil,
Characterization and Parameterized Random Generation of Dig-

ital Circuits, in 33rd ACM/SIGDA Design Automation Conference
(DAC), June., 1996, pp. 94{99. (Journal version in preparation.).

[8] Programmable Electronics Performance Corporation, PLD Bench-

mark Suite#1, V1.2. 504 Nino Ave. Los Gatos, CA 95032, 1993.

[9] R. E. Tarjan, Data Structures and Network Algorithms, Society
for Industrial and Applied Mathematics, 1983.

7

