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Abstract

A upward plane drawing of a directed acyclic graph is a straight line drawing in the

Euclidean plane such that all directed arcs point upwards. Thomassen [30] has given

a non-algorithmic, graph-theoretic characterization of those directed graphs with a

single source that admit an upward drawing. We present an e�cient algorithm to

test whether a given single-source acyclic digraph has a plane upward drawing and,

if so, to �nd a representation of one such drawing.

The algorithm decomposes the graph into biconnected and triconnected compo-

nents, and de�nes conditions for merging the components into an upward drawing

of the original graph. For the triconnected components we provide a linear algo-

rithm to test whether a given plane representation admits an upward drawing with

the same faces and outer face, which also gives a simpler (and algorithmic) proof of

Thomassen's result. The entire testing algorithm (for general single source directed

acyclic graphs) operates in O(n2) time and O(n) space.
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Chapter 1

Introduction

There are a wide range of results dealing with drawing, representing, or testing

planarity of graphs. F�ary [16] showed that every planar graph can be drawn in

the plane using only straight lines for the edges. Tutte [33] showed that every

3-connected planar graph admits a convex straight-line drawing, where the facial

cycles other than the unbounded face are all convex polygons. The �rst linear

time algorithm for testing planarity of a graph was given by Hopcroft and Tarjan

[18]. Planar graph layout has many interesting applications in automated circuit

design, for representation of network 
ow problems (e.g. PERT graphs in software

engineering [14]) and arti�cial intelligence.

A upward plane drawing of an directed acyclic graph (DAG) is a straight line

drawing in the Euclidean plane such that all directed arcs point upwards (i.e. from

a lower to a higher y-coordinate). A DAG is upward planar if it has an upward plane

drawing. Kelly [20] and Kelly and Rival [21] have shown that every upward plane

drawing with monotonic edges (each arc is drawn as a curve monotone increasing

in the y-direction) has a similar upward plane straight line drawing, an analogue

1



CHAPTER 1. INTRODUCTION 2

of F�ary's result for general planar graphs. Thus, the straight line condition of the

upward planar de�nition does not restrict the class of upward planar graphs. We

will use this fact to simplify the discussion. The de�nition of upward planar will be

detailed in Chapter 2. In this thesis we will consider only single source DAGs. Ini-

tially we will be concerned with constructing an abstract embedding. This will then

be extended to encompass a physical drawing algorithm. The di�erence between

these terms will be explained in Chapter 2. Our main result is an O(n2) algorithm

to test whether a given graph is upward planar, and if so, to give a representation

of an upward plane drawing for it. This result is based on a graph-theoretic result

of Thomassen [30, Theorem 5.1]:

Theorem 1.1 (Thomassen) Let � be a planar representation of a single source

DAG G. Then there exists an upward plane drawing �0
strongly equivalent to (i.e.

having the same faces as) � if and only if the source � of G is on the outer face of

�, and for every cycle � in �, � has a vertex � which has a directed edge from each

of its two neighbours on �, and which is not the tail of any directed edge inside �.

The terms of this theorem are de�ned more precisely in Chapter 2. Intuitively,

for a graph G with planar embeddedding �, if some cycle � of � has every vertex

which is on a directed edge from each of its two neighbours also having another

edge directed \into" �, then no vertex on � can be the maximal vertex of �, so

no drawing �0 with the same faces as � (i.e. containing � as a cycle) can be an

upward plane drawing of G. So intuitively, Thomassen's condition is necessary.

The interesting part of the theroem is that the condition is also su�cient for � to

be strongly equivalent to an upward planar representation of G.

Thomassen notes that a 3-connected graph has a unique planar embedding (up

to the choice of the outer face) and concludes that his theorem provides a \good



CHAPTER 1. INTRODUCTION 3

characterization" of 3-connected upward planar graphs. Neither a concrete time

bound nor an e�cient algorithm is, however, given, nor is a method for isolating

and joining 3-connected components.

The problem thus decomposes into two main issues. The �rst is to describe

Thomassen's result algorithmically; we do this in Chapter 4 with a linear time

algorithm, at the same time providing an alternative proof of his theorem. The

second is to isolate the triconnected components of the input graph, and determine

how to put the \pieces" back together after the embedding of each is complete.

This more complex issue comprises the remainder of the thesis.

The algorithm for splitting the input into triconnected components and merging

the embeddings of each operates in O(n2) time. Since a triconnected graph is

uniquely embeddable in the plane, up to the choice of the outer face, and the

number of possible external faces of a planar graph is linear by Euler's formula,

the overall time to test a given 3-connected component is also O(n2), so the entire

algorithm is quadratic.

The primary focus of this thesis is to test a single-source DAG for upward

planarity, and to generate an upward planar embedding in the process (whenever

possible). This process can be extended to a drawing algorithm by transforming

the embedding for use by the known algorithm of DiBattista and Tamassia [10] to

draw single-source, single-sink planar DAGs. The main issue in this extension is

the size of the output of the drawing algorithm, which we will address in Chapter

3 and again in Chapter 7. Upward plane drawings can require an exponential sized

coordinate grid (a precise de�nition is given in Chapter 3), so no algorithm can,

in general, output an upward plane drawing in time polynomial in the size of the

graph.
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Chapter 4 discusses an algorithm for determining an upward planar representa-

tion for a 3-connected graph with a prescribed outer face. Chapters 5 and 6 discuss

the isolation of the components of an input graph G, and merging of the (recursively

determined) components into an upward planar embedding. The combined test-

ing/embedding algorithm is given in Chapter 7. The \abstract embedding" output

by the algorithm of Chapter 7 is a representation of a particular member of the set

of possible drawings using the cyclic order of edges around each vertex, and some

additional structural information, to identify the faces; this will be de�ned more

precisely in Chapter 2. Chapter 8 extends the previous result to the construction of

a physical drawing from the abstract embedding of Chapter 7 (i.e. giving Euclidean

coordinates for the vertices).



Chapter 2

Preliminaries

For the most part we use the terminology and notation of Bondy and Murty [3],

supplemented by that of Thomassen [30].

A (combinatorial) graph G consists of a set of vertices or nodes V and a set E

of pairs of vertices called edges connecting these vertices. Late lower case Roman

letters (e.g. u; v; w; x; y) denote vertices unless otherwise stated, and early letters

(e.g. a; b; c; d; e) denote edges. A graph is directed, called a digraph, if each edge

e = (u; v) is directed from the vertex u, called the tail of e, to the vertex v, called the

head of e, also denoted u!v. A walk W = v0e1v1e2v2 : : : ekvk of G is an alternating

sequence of (possibly repeating) incident vertices and edges of G. A path in G is

an alternating sequence of distinct (except possibly for the �rst and last vertex)

incident vertices and edges; a path is hence a walk with no repeating edges or

vertices, other than possibly v0 and vn. A cycle C of a graph G is a exactly such a

closed path (from one node back to itself), denoted u
+
!u. Analogously in a directed

graph, a directed path is also denoted by u
�

!v, (connected through 0 or more edges)

or u
+
!v (connected by 1 or more edges) or u

k
!v (connected by exactly k edges).

5



CHAPTER 2. PRELIMINARIES 6

A directed path u
+
!u is called a directed cycle. When the notation is ambiguous,

we speci�cally state whether a path is directed or undirected. A directed graph is

acyclic if it contains no directed cycles (although the underlying undirected graph

may contain cycles). A subgraph H of a graph G is a subset of the nodes and edges

of G. Subgraph H is proper if it is not equal to G. G[H] is the vertex-induced

subgraph of G | the vertices of H � G, and any edges of G connecting nodes in

H.

A planar representation of a graph G, denoted by an upper case Greek letter

such as � or by G, is an abstract embedding (in terms of a data structure) in

the plane. We will describe such an embedding in terms of a cyclic (counter-

clockwise) ordering of edges/vertices around each vertex in the embedding, and a

speci�cation of which face is the outer face. An upward planar representation is

such an embedding, with an additional speci�cation of the extra edges required to

make it have no sinks other than on the outer face|to resolve the internal sinks.

This allows it to be extended to a single-source, single-sink graph which can be

drawn easily. A plane drawing is a physical realization of a planar embedding;

where each vertex is assigned a coordinate point in the Euclidean plane, and each

edge is an curve or arc between points in the plane; no two arcs intersect except at

incident vertices on their endpoints. G is planar if it can be represented by a plane

drawing �. As mentioned in Chapter 1, if G has an upward plane drawing with

monotonic arcs as edges, it also has some upward plane drawing with straight line

arcs as edges. The latter is the de�nition we use for upward plane, but as a result

of this equivalence we will ignore the straight line issue for the purposes of testing

upward planarity, and address it as required for the upward drawing in Chapter

8. In a planar representation, the representation of a cycle which has no vertices

inside of it is called a face or facial cycle, and the outermost face (having no vertices
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outside of it, and all vertices of G inside or on it) is called the outer facial cycle.

Two representations of a graph G are equivalent if they have identical facial cycles,

and strongly equivalent if they are equivalent and have the same face identi�ed as

the outer face.

We say that a drawing of G is oriented if a direction (in the Euclidian plane)

is imposed upon the directed arcs representing the edges of G. For our purposes,

this means that all directed arcs must be monotonic upward (positive in the y

direction), i.e. upward plane. Unless otherwise stated, all �gures in the thesis are

drawn using this convention, so arrow heads will often be omitted from the graph

edges. A representation � of G is convex if all facial cycles of � are convex polygons.

A digraph G is connected if there exists an undirected path between any two

vertices. Gnv � G[V � fvg] denotes G with v and all edges incident to v in

G removed. G is k-connected if the removal of at least k vertices is required to

disconnect the graph. An equivalent de�nition (by Menger's Theorem [3]) would

be to say G is k-connected if and only if there exist k vertex-disjoint undirected

paths between any two vertices. A set of vertices whose removal disconnects the

graph is a cut-set. A cut vertex and separation pair denote cut-sets of size one and

two respectively. A graph which has no cut vertex is biconnected (2-connected). A

graph with no separation pair is triconnected (3-connected). For G with cut vertex

v, a component of G with respect to v is formed from a connected component H

of Gnv by adding to H the vertex v and all edges between v and H. For G with

separation pair fu; vg, a component of G with respect to fu; vg is formed from a

connected component H of Gnfu; vg � G[V � fu; vg] by adding to H, u; v and all

edges between u; v and vertices ofH. The edge (u; v), if it exists, forms a component

by itself. If S is a cut-set, then the vertices of attachment of a componentH of GnS

are those vertices in H which share an edge with some vertex of S in the graph
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G. An algorithm for �nding tri-connected components1 in linear time is given in

Hopcroft and Tarjan [19]. A related concept is that of graph union. We de�ne

G1 [ G2, for components with \shared" vertices to be the inclusive union of all

vertices and edges. That is, for v in both G1 and G2, the vertex v in G1 [ G2 is

adjacent to edges in each of the subgraphs G1 and G2.

Contracting an edge e = (u; v), denoted G=e, results in a graph G0 with the edge

e removed, and vertices u and v identi�ed (as the same vertex in G0). Inserting

new vertices within edges of G generates a subdivision of G. A directed subdivision

(of a digraph) is a subdivision within directed edges (i.e. (u; v) can be subdivided

into (u;w); (w; v), but not (u;w); (v;w)). G1 and G2 are homeomorphic if both are

subdivisions of some other graph G. G is planar if and only if every subdivision of

G is planar [3].

In a directed graph, the in-degree of a vertex v is the number of edges directed

towards v, denoted deg�v. Analogously the out-degree (deg+v) of v is the number

of edges directed away from v. A vertex of in-degree 0 is a source in G, and a vertex

of out-degree 0 is a sink.

Directed/oriented graphs are often used to represent partially ordered sets (posets);

in particular, a corresponding digraph G of a poset P has an directed path u
+
! v

in G if and only if u < v in P . If G has no transitive edges (i.e. (u; v) 62 G if

9wj(u;w) and (w; v) 2 G), then the drawing of G is called a Hasse diagram. The

problem of drawing plane Hasse diagrams is equivalent to the problem of drawing

general DAGs, since subdividing every edge of a DAG produces a corresponding

graph with no transitive edges.

Adopting some poset notation: two vertices u; v are comparable if there is a

1Note that Hopcroft and Tarjan's \components" include an extra (u; v) edge.
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directed path u
�

! v (u < v) or v
�

! u (v < u), and incomparable otherwise. We

often use u < v to represent the existence of a directed path from u to v. If (u; v)

is an edge in the digraph of P , then u dominates v.

Figure 2.1 shows two drawings of upward planar and non-upward planar graphs.

The �rst is a drawing of an upward planar graph. The second is planar, but non-

upward planar, since placing v inside the face f would eliminate crossing, but

require a downward edge. Recall our convention that edges are directed upward

unless otherwise stated.

v

f

Upward planar Non-upward-planar

Figure 2.1: Upward planar and non-upward planar graphs.



Chapter 3

Related Results

The problem of drawing a graph on a two dimensional surface has many di�erent

applications. The most obvious are in circuit design/layout, and VLSI, especially

in the area of automated tools to realize schematics of an abstract circuit. Other

applications are to software engineering and information analysis (PERT diagrams,

subroutine-call charts, data-
ow diagrams); databases (entity relationship graphs);

and knowledge representation (ISA hierarchies and neural networks).

The (algorithmic) problem of graph drawing was brought into the open after

two papers by Tutte, on convex (and hence straight-line, except possibly for the

edges on the outer face) drawings of graphs [33], and graph drawing in general

[34]. Continuing Tutte's results on convex graphs, Thomassen [31] has presented

inductive criteria for the existence of a convex representation of a graph in the plane.

This was implemented as a linear time algorithm by Chiba et al [5]. These are

signi�cant to the topic at hand because they provide much of the graph-theoretical

background evident in the works which followed.

For general graphs, the problem of a \good" presentation is neither solved nor

10
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even clearly de�ned. Since no obvious set of concrete requirements is known for

drawing a graph to easily portray its meaning to the (human) reader, work thus

far has been in exploring various arbitrary aesthetics: minimum line crossings;

minimumarea on some grid or set of points; preference for polygonal lines, minimum

bends within these, or straight lines; curves which are monotonic in some direction;

and isolation and display of symmetry in automorphisms or near automorphisms.

Many of these aesthetics have either been proven NP-hard to determine or display,

or their complexity remains open. Some aesthetics are con
icting when applied in

tandem.

Of especial interest is the sub-area of drawing planar graphs. For schematics it

is often necessary to have a planar realization of a circuit, as wires cannot cross. For

other applications, it is desirable to present a graph as planar whenever possible.

Thus algorithms for testing planarity, and operating upon planar graphs have been

heavily studied.

For a (continuing) bibliographic survey of the �eld of graph drawing, including

a list of aesthetics (\graphic standards") and complexity results on their represen-

tation, see Tomassia and Eades' \Annotated Bibliography" [29].

3.1 Testing for Planarity of Graphs

3.1.1 The Hopcroft-Tarjan Algorithm

The �rst linear time planarity testing algorithm is due to Hopcroft and Tarjan [18].

This algorithm �rst isolates the biconnected components of the graph, which are

easy to put together after each is separately tested.
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The operation on the biconnected components is a path addition algorithm: A

depth �rst search is performed to order the graph into a tree-like structure with

tree-edges and non-tree-edges or fronds|called a palm tree. A simple k-circuit is

chosen to contain k � 1 tree edges, and one frond. The set of paths generated by

the deletion of the cycle from G are then added to the cycle, one path at a time,

generating G.

The paths have to be added either on the left or right of the tree-edge path of the

k-circuit, so two stacks are used to record the relevant information, and components

are 
ipped back and forth between the two stacks (a non-trivial process) as added

paths require. This process continues until all paths are added or a path cannot be

added.

3.1.2 The Lempel-Even-Cederbaum Algorithm

One competing planarity algorithm is a vertex addition algorithm due to Lempel,

Even and Cederbaum [22]. The original version required O(jV j � jEj) time. This is

exactly O(n2) time, under the observation that a planar graph has no more than a

linear number of edges (Euler's formula, [3]), and the further assumption that the

graph is connected (requiring at least n � 1 edges). The algorithm can, however,

be modi�ed to run in linear time, and is more attractive to our discussion because

it also has application to the drawing of upward planar graphs.

The Lempel, Even and Cederbaum algorithm is divided into two main phases.

The �rst is to compute an st-numbering of the graph, which can be realized in

linear time due to a result of Even and Tarjan [15]. The second phase applies the

st-numbering to the vertex-addition algorithm, using the PQ-tree data structure of

Booth and Lueker [4] to achieve the embedding in linear time.
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De�nition 3.1 An st-numbering is a numbering 1 : : : n of the vertices of a bi-

connected graph G such that two distinguished vertices s and t are numbered 1 and

n respectively, and for any other vertex j, there exist adjacent (to j) vertices, i and

k, such that i < j < k.

Such an ordering can be imposed on any biconnected undirected graph (Lempel,

Even and Cederaum) [22] and can be found in linear time (Even and Tarjan) [15].

We notice that an st-numbering of a graph G identi�es s as the single source of

G, and t as the single sink of G (directing edges from smaller to bigger numbers).

In fact, the following is a more general indication of its usefulness:

Lemma 3.2 [Lempel, Even and Cederbaum] Let 1 � k � n. If edge (s; t) is drawn

on the boundary of the outer face in an embedding G of G, then all the vertices and

edges of G�Gk are drawn in the outer face of the plane subgraph Gk of G, where

Gk is the subgraph induced by the vertices 1 : : : k of the st-numbering of G.

We can use this ordering to e�ect an embedding of G: De�ne virtual edges

as edges between vertices of Gk and vertices of G � Gk, and virtual vertices as

endpoint vertices of virtual edges in G � Gk. The virtual vertices are labelled as

their corresponding points in G � Gk, but kept separate. For example, Figure 3.1

shows a graph G labeled with an st-numbering, the subgraph G4 of G, and a bush

form (to be de�ned shortly) which illustrates the (multiple) virtual vertices for the

actual vertices numbered 5 and 6 in the bush form for G4. Notice that the problem

of �nding a planar embedding of G6 consists of mapping all sets of identically

labeled virtual vertices (sets f5ig and f6ig in the example) of the bush form of G4

to one single point (points 5 and 6 in the example) in the embedding. Thus to �nd

an embedding of G, we �rst �nd a planar embedding of some Gl (l < k). By the
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Lempel-Even-Cederbaum theorem (above), all vertices and edges of Gk � Gl are

in the outer face of the embedding Gl, so the general step reduces to �nding such

a mapping of the corresponding virtual vertices fig to a common actual vertex i.

This is accomplished using a data structure called a PQ-tree.

De�nition 3.3 A PQ-tree is a data structure with three di�erent types of nodes,

P nodes whose children's order can be permuted arbitrarily, Q nodes whose children

can be re
ected only, and leaves.

1

4

s = 1

3

2

(c)(b)(a)

5

t = 6

636261 535251

4

3

1

43

2

2

Figure 3.1: st-numberings of G (a) and G4 (b); bush-form B4 for G4 (c).

The main idea is to build a PQ-tree for the embedding: P nodes represent

cut-vertices of the embedding thus far (components of cut-nodes can be permuted

in any order around the cut-vertex); Q nodes represent 3-connected components

(which can only be re
ected around their separation pairs), and leaves represent

virtual vertices. A bush form is an embedding of such a graph with all the virtual

vertices on the outer face, as shown in Figure 3.1(a). Every planar graph G has

a bush form for each Gk, 1 � k � n [4]. The algorithm of Booth and Lueker

[4] (in addition to de�ning PQ-trees) determines the permutations and re
ections
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required to get all like-labelled vertices adjacent at the leaves of the structure so

that they can be combined into one node without crossing nodes in the embed-

ding. The embedding/testing thus consists of successively constructing bush forms

B1; B2; � � � ; Bn, and performing permutations on each to combine virtual vertices

into single \real" vertices. An example of a bush form and its PQ-tree is given in

Figure 3.2. Note that P-nodes are denoted by circles, Q-nodes by rectangles, and

leaf nodes (virtual vertices) are unmarked.

(a) (b)

Figure 3.2: Bush form (a) and its associated PQ-tree (b).

3.2 Drawing Planar Graphs

A problem with the embeddings given by both the Hopcroft-Tarjan and the Lempel-

Even-Cederbaum algorithms is that they can use possibly exponential area (grid-

size) in the resulting drawing. Many vertices could be recursively embedded within

successive faces of the output representation and a naive drawing algorithm would

give impractical output. For general planar graphs, this is not optimal, however we
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shall see in Section 3.4 that for upward planar graphs, we will (provably) have this

problem with any drawing algorithm.

DeFraysseix, Pach and Pollack [8] have described an O(n log n) algorithm which

takes an upward planar embedding (such as that from either planarity testing al-

gorithm described) as input, and constructs a straight-line physical plane drawing

on the 2n� 4 by n� 2 grid (i.e. vertices are mapped to integer coordinates on the

0 � x � 2n�4, 0 � y � n�2, <2 subplane, and edges are mapped to straight lines

between corresponding vertices, such that no two edges intersect except at their

endpoints). This upper bound on the area of plane graph drawings applies to all

planar graphs. Chrobak [7] (referenced by Tamassia and Eades' bibliography [29])

has improved their algorithm to linear time. Independently, the same result (upper

bound and linear time) was achieved by Schnyder [27], with the added feature that

the co-ordinates are not \�xed", but have a \purely combinatorial meaning". De-

Fraysseix, Pach and Pollack's paper also gives a (slightly) super-linear lower bound

on the size of a grid required to support all planar graphs.

3.3 Testing for Upward Planarity

The problem of testing for upward planarity is not as well known, or as developed, as

that of general planarity. Obviously, a given digraph can only be upward planar if it

contains no directed cycles. DiBattista and Tomassia have proven than any upward

planar graph is a subgraph of an (upward) planar st-graph [10]. An st-graph is a

graph labeled with an st-numbering (de�ned in the previous section) consistant with

its underlying partial order; i.e. u < v if and only if st-number(u)< st-number(v).

Platt [24] has shown that a single-source single-sink directed graph is upward planar

if and only if the graph generated by adding a single edge from the source to the
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sink is planar; this also follows from the Lempel-Even-Cederbaum theorem of the

previous section. Thus it can be tested in linear time whether an st-graph has

an upward plane drawing. However, the problem of determining whether a given

digraph is a subgraph of a st-graph is open (ie. not known to be polynomial or

NP-hard) [29], so the characterization is not a strong one.

The current work considers the case of only one source, but any number of sinks.

If all sinks but one could be removed, then the problem would degenerate into the

known case|this is exactly what our algorithm achieves. We �nd the problem

to be more di�cult than just modifying the Even-Tarjan algorithm, because more

freedom is available for movement in the drawing when multiple sinks are allowed,

and depth �rst search is not directly applicable in the directed case. Thomassen's

theorem (1.1) is our starting point. A reasonable amount of work will have to be

done before it can be applied.

A similar result to ours is to test planarity of a \hierarchical" graph, in which

the vertices of G are partitioned into k (a constant, usually given as part of the

input) subsets, with no two vertices in any subset being connected by an edge in G

(as in a subroutine call chart where all subroutines are assigned a \level", and any

subroutine can call others at only a strictly lower level), and the drawing must put

all vertices at a lower level below all vertices of a higer level. A linear algorithm for

this problem is given by DiBattista and Nardelli [11].

A very recent result of DiBattista, Liu and Rival is that any bipartite graph is

upward-planar if and only if it is planar [9]. A graph G = (V;E) is bipartite if V

can be partitioned into two disjoint subsets V1 and V2 such that every edge (u; v)

of E connects u in V1 (V2) to v in (V1) (i.e. no two vertices of V1 are joined by an

edge, and no two vertices of V2 are joined by an edge).
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3.4 Drawing Upward Planar Graphs

All known algorithms for drawing upward planar graphs make assumptions about

the form of the graph. DiBattista and Tomassia give an O(n log n) algorithm for

determining a straight line drawing of a single-source single-sink graph; i.e. an

st-graph. A monotonic grid drawing, where all edges are represented by polygonal

lines with positively growing y-coordinate, can be constructed in linear time. The

straight line drawing can have exponential grid-size, but the polygonal grid drawing

guarantees no more than O(n) bends in the polygonal edges and a linear size grid.

The same result is achieved by Chiba and Nishizeki [6, 23] as a linear extension

of Booth and Lueker's PQ-tree algorithm. The algorithm assumes an st-numbering

which also realizes the partial order implied by the digraph G, and modi�es the

PQ-tree algorithm to retain direction while embedding the graph.

No polynomial algorithms are known for embedding a general directed upward-

planar graph, or for determining if such an embedding exists [29].

A hierarchical graph (mentioned brie
y in the previous section) can be drawn

in linear time (Eades, Lin and Tamassia) [13].

An interesting result, also due to DiBattista, Tomassia, and Tollis [12] is the

following, which shows that upward plane graphs do not have the same lower bounds

on drawing area as undirected plane graphs:

Theorem 3.4 [DiBattista, Tomassia, and Tollis] There exists a class of planar

digraphs that require exponential area in any straight-line upward grid drawing.

We can claim the same result for single source DAGs, using the above, and the

fact that every upward planar graph is a subgraph of a planar st-graph (the proof
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of which [10] adds no more than O(n) vertices or edges in its construction). The

same paper treats the issue of displaying symmetries and isomorphic subgraphs in

upward planar drawings.

3.5 Graphs and Partially Ordered Sets

Platt's Theorem [24] states that any single-source single-sink digraph admits an

upward planar drawing if and only if the underlying undirected graph with an edge

added from the source to the sink is planar [24].

A lattice is a partially ordered set in which every two elements have a unique

least upper bound or join, and greatest lower bound or meet. It is known that

any planar poset with a least and greatest element is a lattice [21]. The theory

of lattices is more developed than that of arbitrary posets (see [2]), which may be

cause for algorithms for upward planarity testing of lattices to be \easier" than the

more general case.

Although any directed graph corresponds to some partially ordered set P , the

minimal graph which captures the ordering of P is called the Hasse diagram or order

graph of P . A Hasse diagram has no transitive edges; ie. (u; v) 62 G if 9wj(u;w)

and (w; v) 2 G.

We note that the problem of testing a Hasse Diagram for planarity is identi-

cal to that of testing an arbitrary digraph, since a Hasse Diagram is a digraph

and, conversely, subdividing each edge of a digraph with a new vertex yields a

graph with no transitive edges. Equivalence does not however hold for a drawing

algorithm, since an upward plane straight-line drawing of a subdivided Hasse di-

agram would generate a monotonic grid drawing of the Hasse diagram itself (not



CHAPTER 3. RELATED RESULTS 20

necessarily a straight-line drawing); however, this does immediately imply that the

lattice-drawing algorithm of DiBattista and Tomassia [10] can �nd a monotonic grid

drawing of an arbitrary st-graph in linear time, such that the resulting drawing will

have no more than n bends [10].

For a given partial order P , one can always determine a linear extension Q of

P , i.e. any total order which includes (is consistent with) P . There always exists

such a linear extension, and the intersection of all linear extensions of P is P itself

[32]. A minimal set R of linear extensions of P whose intersection is P is called a

realizer of P and the dimension of P is the minimum cardinality of any realizer of

P .

Various work has been done on determining a characterization of upward pla-

narity through poset theory rather than graph theory; a survey of the work has

been done by Trotter [32]. Some of the more interesting results are the following:

Kelly and Rival [21] have shown that there exist planar posets of arbitrary

dimension. This is signi�cant, because it was originally thought that the dimension

of a poset could be related to the minimum genus of a surface upon which its Hasse

diagram could be embedded. The same line of research led Trotter [32] to determine

that embedding Hasse diagrams on the sphere is \di�erent" from embedding them

in the plane. These results show that upward planarity has a more complicated

structure than planarity.

Work on speci�c issues in the drawing of lattices, such as minimizing the set of

edge slopes required for a plane embedding, is discussed in Tamassia and Eades'

Bibliography [29].

A spherical order is an order with a unique top and bottom element whose Hasse

diagram can be embedded on the sphere with no crossing arcs. This class di�ers



CHAPTER 3. RELATED RESULTS 21

from the class of planar orders, as mentioned above and in the requirement for a

least and greatest element. Note that every planar lattice is a spherical order (Kelly

and Rival) [21]. A truncated spherical order is a spherical order with its bottom and

top elements removed. Foldes, Rival and Urrutia [17] show that an ordered set is

spherical if and only if it has a bottom and a top element and its Hasse diagram is

planar; that an ordered set is truncated spherical if and only if it has a light source

representation, and that there is a linear algorithm to determine if an ordered set

has a light source representation. A light source representation is a \blocking"

relation generated by a point light source, and a set of objects embedded in the

plane. These properties of \light source order" and \sphericity" are hence said to

be invariant for lattice diagrams. Rival [26] discusses possible invariant properties

for order diagrams (no non-trivial invariant is known).



Chapter 4

Strongly-Equivalent Upward

Planarity

We wish to consider the following sub-question: Given an acyclic digraph G with a

single source s and a planar representation G of G, does G admit an upward planar

representation � strongly equivalent to the given embedding G ? That is, can we

contort G slightly to make it a representation of an upward plane drawing without

changing any of the facial cycles or the outer face?

Thomassen's Theorem (1.1) provides the requirements for checking this, but no

e�cient algorithm immediately follows. Here we provide an alternative statement

of Thomassen's result in the form of an optimal (linear) algorithm to test G for

upward planarity strongly equivalent to some given embedding G .

Recall that an upward planar embedding is, in e�ect, a planar embedding with

additional dummy edges which \resolve" those sinks not on the outer face|which

connect them to another vertex, so that the graph is still upward planar, but the

sink vertex is no longer a sink. We claim that given such a representation, it is

22
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easy to draw an upward planar graph. How to do so will be addressed in Chapter

8. The algorithm of this chapter will output an upward planar embedding of G

strongly equivalent to G , if one exists, by adding edges to G .

We de�ne a violating cycle of G as a cycle C which has no vertex v which is

dominated by both its neighbours in C and which is not the tail of any inward edge

from a vertex on C with respect to the embedding G . The algorithm �nds either a

strongly equivalent upward plane representation or a violating cycle and it is clear

that we cannot have both so the proof of correctness for algorithm also provides a

proof of the theorem.

The idea of the algorithm is the following: we �nd a sink v on the outer face

of G , delete it, recursively �nd an upward planar embedding of Gnv strongly

equivalent (with respect to the orginal edges of G only) to Gnv, and then return v

to the outer face of this upward planar embedding.

The input is a single-source digraph G and a planar embedding G of G with the

source on the outer face. The algorithm returns either an upward planar embedding

� of G such that � is strongly equivalent (with respect to the original edges only)

to G or a violating cycle C.

De�ne an outer-facial walk of a connected planar graph G, with respect to some

planar representation G , as a cyclic walk induced by the outer face of G . The

outer facial walk W of a single source DAG G with its source s on the outer face

is assumed to travel from s to s, so, given G (which speci�es the cyclic order of

vertices around s), the outer facial walk we are concerned with is unique. Within

the sequence of vertices and edges which specify the outer facial walk, there exist

one or more cycles|consisting of a subsequence of the walk starting at one vertex,

called the attachment of the cycle, and returning to the same vertex, with no other
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vertices or edges repeated. In the simple case, the outer facial walk is itself a cycle

from s to s.

Algorithm: If there is no sink on the outer facial walk W of G , then return a

violating cycle C as follows: If W is itself a cycle, then it is the (only) violating

cycle, as it contains no sink (and hence no vertex can satisfy the conditions for

\v"). If W is not a cycle, consider the cycles existing within W as discussed above.

If any one of these cycles C within W contains s as its attachment to W , then it

is violating, as all vertices on C, other than s, are non-sinks, and s is not a sink.

Otherwise, choose some cycle C within W which does not contain s, and let u be

its attachment to W . Then u is a source in C; if not, the component H of Gnu

with C as its outer face would have to contain a source other than u, and s is not

in H, so G has more than one source|a contradiction. This same issue is treated

more rigorously in the proof of Lemma 5.1 on page 28.

Otherwise (there is a sink on W ), let v be the �rst sink on W . Recursively test

whether Gnv has an upward planar embedding strongly equivalent to Gnv. If not,

return the violating cycle of Gnv which is also a violating cycle contained in G . If

an upward planar embedding �v is returned then add v into the outer face of �v

to form � by connecting it with a directed edge from all adjacent (in G) vertices

and all sinks on W between the �rst and last such adjacent vertex (this is the

resolving of the internal (no longer on the outer face) sinks mentioned in Chapter

2). The latter edges (from sinks) are marked as \dummy" edges as they are not

part of the original G. Since G has v on its outer face, and Gnv has a strongly

equivalent upward plane embedding �v, all vertices of attachment of v and all these

sinks are on the outer face of �v, so v, and all edges between v and Gnv can added

to the outer face of �v without destroying planarity. Since all internal sinks have

been \resolved" with dummy edges, the result � is an upward planar embedding
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strongly equivalent to G.

Note that when we are refering to equivalence and strong equivalence of embed-

dings the extra dummyedges are not counted; they obviously change the faces of the

graph, but do not a�ect the properties we are interested in (which are determined

by the (unchanged) outer face, once an upward planar embedding is found).

Since s
+
! v for all vertices in V (G) (i.e. s is the single source of G), and s

is never deleted while there is any other vertex on W , the subproblems retain the

single source property. Since v can never have an edge pointing downward in the

cycle, G remains acyclic, even with the extra edges.

To prove that the algorithm is correct it remains to note that if at some stage,

say for the induced graph G� S, no sink is found on the outer face of G� S then

since none of the vertices inside this outer face have yet been deleted the outer face

forms a violating walk, and contains a violating cycle as discussed above.

Since the operations necessary to implement this algorithm in linear time may

not be obvious, the following section gives a more detailed discussion of the data

structures and operations involved and a proof of the time bound.

4.1 Implementation Details

Since we can use the Hopcroft Tarjan algorithm to compute a planar embedding

in linear time, we will assume that the input is a collection of nodes, with vertices

adjacent to a given node in circular (counter-clockwise) order that occur in the

embedding around that node, and a speci�cation of the outer face.

We implement W (of the previous section) as a doubly linked list, chained

through the graph G , which is a collection of nodes and (doubly linked) pointers
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to adjacent nodes. We assume that the input comes in this form, with the list of

adjacent vertices to a given node in circular order around that node's embedding in

the plane. De�ne an additional list D, called the candidate list, which contains a

list of all sinks in W . This list is also doubly linked, and shares nodes with G and

W . We thus have a single copy of each node, and a linear number of pointers in

total, so the space is O(n). Assume that the incoming and outgoing degree of each

node is stored with the node, and updated as edges are deleted, so that a node can

be determined to be a sink or source in constant time.

Algorithm S-E-UP-PLANAR:

I. Choose the �rst vertex v from D.

(i) If D is empty, G is not upward planar, so return a violating cycle within W

as described in the previous section. If v = s, then G is trivially upward planar, so

just return an embedding of the single node.

(ii) If deg�v = 1 (edge (u; v)), then simply delete v from G, W , and D, and also

delete the extra copy of u in W . If u is a sink in Gnv, then add u to D as well,

yielding G0, W 0 and D0.

(iii) Otherwise deg�v > 1. For each edge (u; v), starting with the one preceding

v in W , add all new vertices in the face containing v to W and any sinks that are

discovered to D. Delete v from G, W , and D, yielding G0, W 0 and D0.

II. Recursively determine an upward plane embedding or violating cycle of Gnv,

using G0, W 0 and D0.

III. Replace v in cyclic order around its vertices of attachment in G0, giving G. The

order does not change from the original embedding. At the same time, traverse the

vertices of W covered by v|those which are on W 0 but not on W , and add an edge

from any sink covered by v, as mentioned in the previous section.
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Each node in G can be added toW at most once, by planarity. Since adjacent nodes

are sorted in circular order, no searching need be done, so the total time is linearly

proportional to the number of nodes in G, namely O(n). The two interesting cases

((ii) and (iii) above) are illustrated in Figure 4.1(a): v1 is case (ii), and v2 is (iii).

Figure 4.1(b) shows the addition step on v after the sub-embedding is returned.

(a) W
v1

v2

(b)

v

Figure 4.1: Cases for v in Algorithm S-E-UP-PLANAR.

The standard abstract planar embedding of a graph is to have each node in G

contain a list of the vertices appearing in circular order around it. Our algorithm

determines if such an embedding extends to an upward embedding with the same

facial structure, but with (possibly) some number of new edges from internal sinks

to vertices which �rst cover them. Thus, the output from this algorithm is either

failure (and a violating cycle) or the modi�ed abstract upward embedding.

This result is exactly that of Theorem 1.1, but the proof is algorithmic, and the

algorithm is provably linear time.



Chapter 5

Separation into Bi-Connected

Components

Lemma 5.1 A DAG G with a single source vertex s and a cut vertex v admits

an upward plane drawing i� each of the k components Hi of G (with respect to v)

admits an upward plane drawing.

Proof: The necessity is obvious; any subgraph of G must have an upward plane

drawing if G does. For the converse, we have 2 cases, s = v and s 6= v.

Suppose s = v, and all Hi have upward plane drawings Hi. Since v is the single

source of G, it is also the single source of each Hi, and is the lowest point on the

outer face in any upward plane drawing. We complete the embedding of G by

dividing the half-plane above v into k \pie shaped" segments, each containing one

component, with v identi�ed at the same point in G. The construction is illustrated

in Figure 5.1(a).

If s 6= v, then identify the component of G with respect to v containing s as

H1. All other components (i > 2) must have v as a single source, otherwise G

28
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: : :

v

HkH1

H1

HkH2

(b)(a)

: : :

v

f

Figure 5.1: Construction of G from its bi-connected components

has more than one source. If some component other than H1 had a vertex x < v,

then either that component contains a second source in G or G contains a cycle as

s
+
!v

+
!x

+
!v. Suppose there is an upward plane drawing H1 of H1. Consider some

face f of H1 containing some portion of the half-plane above v. Then all other

components can be embedded into the k segments of this face as they were added

to the open face in the �rst case. This is illustrated in Figure 5.1(b). As before,

any upward drawing must have its single source as the lowest point on the outer

face.

Note that the operation of inserting the components Hi within faces of H1, or

into the regions of the plane around the half-plane above v in an embedding of H1,

will require scaling of the inserted sub-embeddings. Any scaling will preserve both

upward planarity and the outer face of the \inserted" graphs, but the problem of

\bunched up" vertices or precise real arithmetic is not addressed.

Tarjan's well known algorithm [28] �nds the cut-vertices and biconnected com-

ponents of a graph in linear time, and can be used as a subroutine for our algorithm.



Chapter 6

Separation into Tri-Connected

Components

The algorithm of Chapter 3 tests for upward planarity of G by examining a strongly-

equivalent planar embedding G . In principle, we could apply this test to all planar

embeddings of G, but this would take exponential time. In order to maintain a

tractable number of embeddings, we will �rst isolate the triconnected components

of the input graph, each of which has a unique planar embedding under equivalence,

and only a linear number of planar embeddings under strong equivalence [3]. Since

we will perform the splitting and merging of triconnected components in quadratic

time, the total time will then be quadratic.

This step is similar in spirit to the previous operation of splitting biconnected

components and merging the recursively calculated drawings. However, the degree

of complication is much greater, because the cut-set vertices impose restrictive

structure on the merged graph. In the previous section describing splitting into

biconnected components, it was su�cient to simply test each component separately,

30
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since biconnected components did not interact in the combined drawing; this is not

the case for triconnected components, as illustrated by the two examples in Figure

6.1. In (a), the union of the graphs is upward planar, but adding the edge (u; v)

to each makes the second component non-upward-planar. In (b), the graph is non-

upward-planar, but each of the components is upward planar with (u; v) added. The

problem of specifying necessary and su�cient conditions for the split and merge is

nontrivial. Recall our convention that direction arrow-heads are assumed to be

\upward" unless otherwise speci�ed.

u

v

u

vv

uu

v

(b)(a)

Figure 6.1: Added complication of 2-vertex cut-sets.

We will �nd it convenient, particularly for the case where the source s is in a

separation pair, to split the graph into exactly two pieces at separation pairs.

There are two main issues. Firstly, we must identify which component will be

the \outer" component, because this imposes restrictions on the other (\inner"

component) to adapt to its facial structure (in order to be injected within a face).

It will always be true that the inner component will have more restrictions upon

its embedding, because it must �t within the prescribed face. Speci�cally, a list of

vertices will be required to be on the outer face of any embedding to retain planarity

in the merge. Secondly, we must be able to properly represent the facial structures

of the two components to ensure that the recursively calculated embeddings can be

merged without destroying upward planarity.

Our general subproblem instance consists of a biconnected graph G, and a set
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of vertices X = fxig � V (G) which will be required to be on the outer face of any

planar embedding of G. G is broken up into two components at a cut-set fu; vg,

and recursive calls made. We will give conditions based on the type of cut-set

involved as to whether upward plane drawings of the two components can be put

back together into an upward plane drawing of the whole. These conditions are

broken into three cases: where u and v are incomparable, u and v are comparable

with u 6= s (i.e. s < u < v), and where u; v are comparable with u = s.

The conditions prescribed will be in the form of markers added to each com-

ponent to represent the shape of the other component in the decomposition. If

the graph were undirected, it would be su�cient to add a single edge between the

cut vertices in each component, because the only requirement would be that the

vertices share a face. We would also not need to require any vertices to be on the

outer face, because any face can be made the outer face. This is not true for upward

planarity. The type of markers needed will depend on the particular graph.

6.1 Some Basic Results

The following are some preliminary results and de�nitions useful throughout this

section. Recall our convention that connected, biconnected and triconnected are

de�ned in terms of the underlying undirected graph, and that [ refers to the the

inclusive union of graphs.

6.1.1 Facial Structure of Upward Planar Graphs

We would �rst of all like to get an intuitive idea of what the faces of upward plane

drawings must really look like; See Figure 6.2. The outer face of any upward plane
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diagram must have a \similar" shape to the upward facing hand shown in Figure

6.2(a), because there is only one source s, which must be at the bottom of the

outer face and there can be any number of sinks. An inner face must have a shape

\similar" to the downward facing hand in Figure 6.2(b): if there were more than

one vertex like w on the upper side of the face, then there would have to be an

extra source between them. Note that both cases degenerate to the shape of Figure

6.2(c).

w

s

face
outer inner

face

w

s

(c)(b)(a)

Figure 6.2: Facial structure in an upward plane drawing.

De�nition 6.1 Let G be a biconnected DAG with a single source s and separation

pair fu; vg, where u; v 6= s. Then, the connected component of G with respect to

fu; vg containing s is called the source component of G with respect to fu; vg.

6.1.2 Properties of Cut Sets in Digraphs

We can now make the following two observations.

Proposition 6.2 If G is a single source connected DAG with a cut-set fu; vg,

where u and v are incomparable, then u and v have in-degree 0 (i.e. are sources)

in all components of G with respect to fu; vg except the source component.
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Proof: Note that G is connected, otherwise it would have more than one source.

Also, if any vertex x is incomparable with the source, then G would have more than

one source. This implies that neither u nor v is a source in the source component.

Consider any component H of G with respect to fu; vg, not containing the

source s. In G, any vertex x of H is connected by a directed path from s (only)

through either u or v, as fu; vg separates s from H. Thus, u < x or v < x, for all

vertices x 2 H. Without loss of generality, suppose that v has an incoming edge

(x; v); then, either u < v or H (and hence G) contains a cycle v
+
!x!v, which are

both contradictions.

Proposition 6.3 If G is a connected DAG with exactly two sources u and v, then

there exists some wt such that two vertex disjoint (except at wt) directed paths

u
+
!wt and v

+
!wt exist in G.

Proof: Let G be such a DAG and let P be an undirected path from u to v. Note

that every x in P is comparable with either u or v, otherwise G has more than

two sources. Follow P from u to the �rst node x (following y on P ) incomparable

with u (in G). Then, x is comparable with v and (x; y) is an edge in G (otherwise

u < x), so y is also comparable with v. Taking the �rst common vertex in the paths

u
+
!y and v

+
!y gives wt.

We are now in the position to discuss the structure of components arising from

2-vertex cuts. Speci�cally, the following results show the existence of lower bounds

and upper bounds (in the partial order corresponding to G) under certain condi-

tions. This allows us to prove the necessity conditions of the next section, because

the existence of such structures indicate that certain subgraphs must exist as sub-

graphs within G. It is these subgraph properties which will be used to show that

the component-markers are appropriately chosen.
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Lemma 6.4 If G is a biconnected DAG with a single source s, and u and v are

incomparable vertices in G, then there exists some ws such that two vertex disjoint

(except at ws) directed paths ws

+
! u and ws

+
! v exist in G. If fu; vg is a cut-set

in G, then there also exists some wt such that two vertex disjoint (except at wt)

directed paths u
+
!wt and v

+
!wt exist in G.

Proof: Since G is a single source digraph, there exist directed paths from s to u

and s to v in G, so if these paths are vertex disjoint then ws = s and we are done.

Otherwise, there is some maximal element (in the orders imposed by the two chains

on the elements within them) which is shared by both paths, and this su�ces for

ws.

For the existence of wt, let u and v be an incomparable separation pair of

G. Since fu; vg cuts G into at least two connected components, any non-source

component H has u and v as its (exactly) two sources, and the result follows from

Proposition 6.3.

Lemma 6.5 If G is a biconnected DAG with a single source s and cut-set fu; vg,

where u < v in G, then in any non-source component H of G with respect to

fu; vg, where deg+v > 0, there exists some wt such that u
+
! wt and v

+
! wt are

vertex disjoint directed paths in H.

Proof: No vertex other than u and v can be a source in H, otherwise G has more

than one source. u is always a source in H, otherwise G contains a directed cycle.

If v is also a source, then we are done by Proposition 6.3.

If v is not a source, let w 2 H be a vertex dominated by v. G is biconnected,

so there are two vertex disjoint u
+
! w undirected paths in G. But u and v are

cut-vertices in G, so at least one of the paths P lies completely within H and does
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not contain v (as w is in H and the only exit points from H are u and v). Every x

on P is comparable with either u or v, or else G has more than one source. Find

the last vertex y on P which has a u
+
!y path (in G) without v. If y = w, then we

are done. Otherwise, the vertex x following y on P has any u
+
!x path necessarily

going through v. Then there exist directed paths v
+
!x, u

+
!x with the latter not

containing v so the last common vertex on these paths provides a wt.

6.1.3 Topological Properties of Upward Planar Graphs

We now prove that certain contractions and transformations on a digraph preserve

the property of upward planarity. The �rst result is used to simplify the structure

of graphs in the decomposition/merging phases; the remaining results are necessary

for proofs in the next section.

De�nition 6.6 A subdivision vertex of G is any vertex v which satis�es

deg+v = deg�v = 1. A directed subdivision is a subdivision of G which pre-

serves edge-transitivity (i.e. inserting w into (u; v) can only yield (u;w); (w; v), so

the property u < v is maintained).

Note that subdivision vertices add no information or structure to the problem

of testing for upward planarity as proven by Thomassen [30].

Lemma 6.7 G admits an upward plane drawing if and only if any directed subdi-

vision of G admits an upward plane drawing.

As a result, we can preprocess G to contract long paths of a directed subdivision

into single edges in the following way: For any path P = v0v1 : : : vk of G with k � 2
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and deg+vi = deg�vi = 1 (i = 1 � � � k � 1), replace P by the single edge v0vk.

The identi�cation of such nodes can be done with a single depth-�rst search of the

graph, collapsing edges as the search proceeds, and thus takes linear time.

Using this contraction process before process of isolating triconnected compo-

nents will allow us to assume that any non-source, non-sink nodes have degree at

least three (or they would have been contracted).

Another result is the following, which also implies Lemma 6.7:

Lemma 6.8 Let G be a DAG and v, dominated by u, be a vertex of G with in-degree

1. Then, G=(u; v) is upward planar if G is upward planar.

Proof: Suppose G is some upward planar embedding of G. Then, there is

an "�region or \corridor" around the edge (u; v) down which v and its monotonic

upward-directed edges can be contracted without destroying planarity. The partial

order through v is preserved since v has no other incoming edges, so there are no

vertices between u and v in the partial order. See Figure 6.3(a).

Corollary 6.9 The same result holds for G and edge (u; v) with deg+u = 1 by

symmetry.

We can now extend Lemma 6.7 to cover arbitrary digraphs rather than single

vertices.

Lemma 6.10 Let G be a connected DAG with an edge (u; v) and H be a connected

DAG with a single source u0 and a sink v0. Let G0
be G with the edge (u; v) subdivided

by u0 and v0 (i.e. (Gn(u; v) [ (u; u0) [ (u0; v0) [ (v0; v)), and containing H attached

at u0 and v0. Then, G0
is upward planar if and only if G is upward planar and H

is upward planar with u0 and v0 on the outer face.
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Figure 6.3: Transformations preserving upward planarity.

Proof: Since u0 and v0 are forced to be on the outer face of an upward planar

embedding of H, and u0 is the (only) source of H, and v0 is a sink, an upward plane

embedding H can be inserted beside the edge (u; v) along an "-corridor without

destroying upward planarity. For the other direction, G is upward planar because

it is homeomorphic to a subgraph of G0. H is upward planar as it is a subgraph

of G0 and the source u and all sinks share the outer face, so the edge (u; v) can be

added without destroying planarity|the source can always \see" any sink on the

outer face in an upward planar embedding. See Figure 6.3(b).

A similar result to subdividing an edge as just discussed, is to extend the digraph

beyond (above) a sink node; where there is no edge (i.e. by adding an edge or graph

with a connection to a the sink):

Lemma 6.11 Let G be an upward planar digraph containing a sink u. Then for

some new vertex v, G[(u; v) is also upward planar. Similarly for an upward planar

digraph H with single source v, G [H [ (u; v) is upward planar.

Proof: Since u is a sink in G, in any drawing G of G, there is an epsilon ball in

the half-plane above u containing no other vertices or edges. Inserting v into this

area, and adding the edge (u; v) retains upward planarity. By repeated applications
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of this operation of inserting edges, and and the previous topological results such

as subdivisions, any single source upward planar graph can be inserted (\grown")

above u in G.

Note that this does not address the problem of arithmetic precision or scaling;

only the issue of upward planarity.

Lemma 6.12 Let G be a DAG and v be a vertex of G with deg+v = deg�v = 2. Let

G be an upward plane embedding of G with ul and ur the left and right dominating

vertices of v respectively, and wl; wr the left and right vertices dominated by v

respectively. Then Gnv [ f(ul; wl); (ur; wr)g is upward planar as well.

Proof: For some su�ciently small ", the "�ball around v contains four regions,

de�ned by the four edges incident upon v. The leftmost (rightmost) two can be

joined into a single monotonic edge to the left (right) of v, and v deleted to give an

upward plane embedding of Gnv [ f(ul; wl); (ur; wr)g. See Figure 6.3(c).

6.2 Marker Components

In order to e�ectively decompose our input graph for testing purposes, we will �nd it

necessary to reduce the biconnected components to their simplest relevant structure.

An elementary step in this operation consists of splitting the input graph into

exactly two components, replacing each component by a marker component in its

companion, and recursively testing the two for upward planarity. The crucial point

is to choose the appropriate marker, so as to su�ciently represent the structure

of the companion. The markers are necessary for three reasons: Firstly, to ensure

that the original graph is upward planar if and only if the two components (with
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markers) are upward planar; secondly, to maintain biconnectedness; and thirdly, to

maintain the single source property. The markers we will be interested in are shown

in Figure 6.4. An important point to make at this time is that the markers, except

(d) Muvt(c) Muv(b) Mt(a) Ms

wt

v

u

v

u

wt

vu

vu

ws

Figure 6.4: Marker Graphs.

for Muv, are attached to the graph at only two vertices, which means that fu; vg

still constitutes a cut-set. For the purposes of determining cut-sets and making

recursive calls, each marker should be treated as a distinguished edge|a single

edge labelled to indicate its role. As long as the type of marker is identi�ed, the

algorithm can continue to treat the vertices of attachment as source, sink or neither

as appropriate for the particular operation.

The following three subsections describe the markers to use for di�erent types

of cut-sets fu; vg.

6.3 The cut-set fu; vg, where u and v are incom-

parable

Theorem 6.13 Let G be a biconnected directed acyclic graph with a single source

s and let X = fxig � V (G) be a set of vertices. Let fu; vg be a separation pair

of G, with u and v incomparable, where S is the connected component of G with

respect to fu; vg containing s, and H is the union of all other components. Then,
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G admits an upward plane drawing with all vertices of X on the outer face if and

only if

(i) S0 = S [Mt admits an upward plane drawing all any vertices of X in S

on the outer face, and wt on the outer face if some x 2 X is contained in H.

(ii) H 0 = H [Ms admits an upward plane drawing with all vertices of X in H

on the outer face.

Proof: (Necessity) Suppose G admits an upward plane drawing with all xi 2 X

on the outer face. By Lemma 6.4 there exist vertex disjoint paths Pu = u
+
!wt and

Pv = v
+
! wt in H, for some wt. If G is upward planar, then any subgraph of G

is, so S [ Pu [ Pv is upward planar. But this is a directed subdivision of S0, so S0

is also upward planar by Theorem 6.7. Similarly, there is some ws in S such that

H 0 = H [ f(ws; u); (ws; v)g is homeomorphic to a subgraph of G and is upward

planar.

Since all xi 2 X are on the outer face of G, they are certainly on the outer face

of the sub-embeddings S0 and H 0 of the upward embedding G. If some xi 2 H is

on the outer face of G, then the sub-embedding of the H portion of G is within the

outer face of the sub-embedding of S, so an embedding of S [Mt will have wt on

the outer face.

(Su�ciency) Suppose S 0 and H 0 admit upward plane drawings S0 and H 0 with

all xi 2 X on their respective outer faces and wt on the outer face of S0 if some

xi 2 X is contained in H. Since u and v have in-degree 0 in H (Lemma 6.2), and

H has no other sources, all of H lies in some region above u and v in any plane

embedding (since the added source ws dominates both u and v and forces them to

be on the outer face, and the lower portion of that face). Rename u and v in H as

u0 and v0 respectively and consider S0[H 0[ (ws; wt). Since deg
+wt = 0 (in S0), this
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combined graph is upward planar (Lemma 6.11). Applying Lemma 6.8 to contract

(ws; wt) into a single vertex w and splitting w (which has in-degree and out-degree

two) into two edges (u; u0) and (v; v0), by Lemma 6.12, gives an upward planar

graph S [H [ f(u; u0); (v; v0)g. But deg�u0 = 1 and deg�v0 = 1, so by Lemma 6.8

applied twice, G = S [ H is upward planar. See Figure 6.5(a), and Figure 6.3(c)

on page 38.

wt

u v

ws

H

S

u
v

(b) xi's in H.

f

x1
x2

xk

x3S

(a) No xi's in H.

u
v

wt

x1 x2

xk

ws

u
v

H

Figure 6.5: Merging of S and H when cut-set fu; vg is incomparable.

If no xi 2 H, then this is su�cient for the embedding. Otherwise, consider the

operations carried out above. The joining S0[H 0 obviously preserves the outer face

of H 0 and all vertices on the outer face of H 0 are also on the outer face of S0 [H 0

as w is on the outer face of H 0 by (ii). Other than for the vertex w, which is not

in G, this face is also preserved by the splitting of w and the contraction of (u; u0)

and (v; v0). Thus, if all xi 2 H 0 are on the outer face of some H 0, they are also on

the outer face of G generated by these steps. This is illustrated in Figure 6.5(b).



CHAPTER 6. SEPARATION INTO TRI-CONNECTED COMPONENTS 43

6.4 The cut-set fu; vg, where u < v, u 6= s

Here we consider any other vertex cut-sets not involving the source s. We divide

the graph at a vertex cut fu; vg into two subgraphs|the source component S, and

the remaining subgraph H. Note that v can be a source in S, as long as there

is a u; v path in H. Again we point out that the markers are required for three

purposes|to enforce structural restrictions on the sub-embeddings; to maintain

bi-connectivity of the subproblems; and to maintain the single-source property.

Theorem 6.14 Let G be a biconnected directed acyclic graph with a single source

s, and let X = fxig � V (G) be a set of vertices. Let fu; vg be a separation pair of

G with u < v in G and u 6= s, where S is the source component of G with respect

to fu; vg and H is the union of all other components. Then, G admits an upward

plane drawing G with all vertices of X on the outer face if and only if

(i) S0 = (S [H-marker) admits an upward plane drawing S0 with all vertices

of X in S on the outer face and wt (if it exists, otherwise the edge (u; v)) on

the outer face if some x 2 X is contained in H.

(ii) H 0 = (H [ S-marker) admits an upward plane drawing H 0 with wt (if it

exists, otherwise the edge (u; v)) and all vertices of X in H on the outer face.

where

H-marker =

8
>>>>><
>>>>>:

Mt if v is a source in H

Muv if v is a sink in H

Muvt otherwise.

and

S-marker =

8><
>:
Mt if v is a source in S

Muv otherwise.
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Proof: (Necessity) Suppose G admits an upward plane drawing with all xi 2 X

on the outer face.

(Necessity of condition (i)): If v is a source in H, then there exists some wt in

H and vertex disjoint paths u
+
!wt and v

+
!wt by Proposition 6.3; so S0 = S [Mt

is homeomorphic to a subgraph of G and is upward planar. If v is a sink in H,

then u is the single source of H, as only u and v are possible sources. Thus, in H,

there is a path u
+
!v, so S0 = S [Muv is homeomorphic to a subgraph of G and is

upward planar. If v is neither a source nor a sink in H then, by Lemma 6.5, there

is also some wt > v and disjoint directed paths u
+
!wt and v

+
!wt in G. Since v is a

non-source in H, there is also a u
+
!v path in H. This path crosses the u

+
!wt path

at some latest vertex z on that path, so S [ (u
�

!z)[ (z
+
!v)[ (z

+
!wt)[ (v

+
!wt) is

a subgraph of G and hence upward planar. Note that these four paths are disjoint.

Since z has in-degree one we can contract the u
�

! z path to u without destroying

upward planarity, by Lemma 6.8, so S [ f(u; v); (u;wt); (v;wt)g has an upward

planar subdivision and is upward planar itself. No other vertices of this graph can

lie inside the u; v; wt triangle, as s < u (and hence below/outside the triangle)

and there are no other (u; v) components in S0 (as we chose S to be the single

source component), so the extra edges and vertex for Muvt can be added without

destroying planarity1.

(Necessity of condition (ii)): If v is a source in S, then, by Proposition 6.3, there

are vertex disjoint paths s
+
!wt and v

+
!wt in S. There must be an s

+
!u path in

S, otherwise there is either a second source (u is a source in H, so it cannot also

be a source in S) or a cycle in G (u < v in G, so there can be no v
+
! u directed

path in S). Let z be the last vertex common to paths s
+
! u and s

+
!wt. Then,

H [ f(z; u); (z;wt); (v;wt)g is homeomorphic to a subgraph of G and is upward

1The point of adding these edges is to �x the face in S for the su�ciency conditions.
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planar. Since deg�u = 1 (in this graph), the edge (z; u) can be contracted without

destroying upward planarity, by Lemma 6.8, and H 0 = H [Mt is upward planar.

Otherwise (v a non-source), if u < v in S, then H 0 = H [Muv is homeomorphic

to a subgraph of G and, hence, is upward planar. If u and v are incomparable in S,

then they share a greatest lower bound ws, by Lemma 6.4, and H[f(ws; u); (ws; v)g

is upward planar. Again, deg�u = 1 in H, so the (ws; u) edge can be contracted to

give H 0 = H [Muv.

The necessity of the outer facial conditions on the xi's is similar to the proof of

Theorem 6.13.

(Su�ciency) Suppose S 0 and H 0 admit upward plane drawings S0 and H 0 with

all xi's of X on the respective outer faces, v on the outer face of H 0, and wt on the

outer face of S0 if some xi in X is contained in H. Consider �rst the case when no

xi's are contained in H.

Case 1: v is a source in H: If v is a source in H it cannot at the same time

be a source in S as u < v in either S or H. Since H 0 is upward planar with a

single source u, and (u; v) on an outer face, H 00 = H 0 [ f(ws; u); (ws; v)g is upward

planar by Lemma 6.11. H 00 can be added above sink wt, so S
0 [H 00 with ws and wt

identi�ed as the same vertex w is upward planar. Since w is of in-degree two and

out-degree two, it can be split into left and right edges and these can be contracted,

by Lemma 6.8, to give an upward planar graph which contains G as a subgraph, so

G is upward planar; see Figure 6.6(a).

Case 2: v is a sink in H: If v is a non-source in S, then H 0 = H [ (u; v) is upward

planar with u and v on the outer face by assumption. Then, in S0, there exists an

"�ball around some point on the embedded edge (u; v) into which H 0 (with u and v

renamed as u0 and v0) can be embedded (Lemma 6.10), and (u0; v0) removed. Since
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(b) v a sink in H, non-source in S
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Figure 6.6: Merging of S and H with cut-set fu; vg and u < v.
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u0 and v0 have in-degree and out-degree one respectively, the extra edges (u; u0) and

(v; v0) can be contracted, by Lemma 6.8, and the result G is upward planar. If v is

a source in S, deg+v = 1 in H 0 = H [Mt so we �rst apply Lemma 6.8 to contract

the edge (v;wt) and the the result G is upward planar. These two possibilities are

illustrated in Figure 6.6 (b) and (c).

Case 3: v is a non-source/sink in H: Suppose v is a source in S. Then wt is a sink

on the outer face of some embedding H 0 of H 0 by condition (ii) of the theorem. S0

with H 0 inserted into the marker edge (u; v) (with u; v in H 0 renamed to u0; v0), and

attached at u0 and wt is upward planar by Lemma 6.10. The subgraph with all but

(u; v) of the H-marker is thus upward planar. Now u and v0 have in-degree one,

so the edges (u; u0) and (v; v0) can be contracted, by Lemma 6.8. Similarly wt now

has in-degree one1, so (v0; wt) can also be contracted and G is upward planar; see

Figure 6.6(d).

Suppose then that v is a non-source in S. The reasoning above applies except

for that we cannot immediately contract the (v0; v) edge (since v0 no longer has

in-degree one). Now, the edge (u0; v0) lies between u and v and the the fact that u

is the single source of H 0 ensure that H 0 can be scaled to some small area in the

left half-plane beside v0 so that it requires some part of the upper half-plane above

v. Some such region must exist in the face f of S0 containing the marker, since

S0 is upward planar with the dummy edge above v. Thus with H appropriately

scaled before the inserting it into the (u; v) edge, the edge (v; v0) can be contracted

without destroying upward planarity.

Again, the conditions on the xi's follow in a similar manner to those in the

previous section, as they simply involve the choice of the outer face of H [ S.
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6.5 The cut-set fs; vg

As mentioned in the introduction to this chapter, it is important to be able to

identify the component which is going to be the \outer" one|that will contain the

other component. The \inner" component will have to have its marker on the outer

face since this is the structure it will be a proxy for. If this property is not known,

we have to check the subproblems subject to both cases, and an exponential time

blowup results.

Until now, this component has been uniquely identi�ed as the source component,

since that component cannot lie within an internal face of any other component.

This provided the needed structural restrictions for the embedding|in that H can

lie inside S, but S can never lie inside H. If the cut-set we wish to use contains

s as one of the cut-set vertices, we lose this restriction, so we handle it instead

by choosing a 3-connected component as an \identi�ed" component, to avoid the

exponential blowup that results from searching for the \outside" component. The

reason that this works is because a triconnected component can be checked for up-

ward planarity without any further recursive calls to �nd triconnected components,

and can be checked in linear time by algorithm S-E-UP-PLANAR of Chapter 3|

since the restriction for s and v on the outer face will �x the outer face, only one

possible embedding that needs to be checked exists. If G has only cut-sets of the

form fs; vg, then, for at least one such cut-set, a triconnected component exists. In

linear time, given the list of cut-sets, this component can be found by depth-�rst

search.

We state this result in terms of two theorems. One is applicable if the tricon-

nected component can be embedded within the other component, and one when it

cannot.



CHAPTER 6. SEPARATION INTO TRI-CONNECTED COMPONENTS 49

Theorem 6.15 Let G be a biconnected DAG with a single source s, and let X =

fxig � V (G) be a set of vertices. Let fs; vg be a separation pair of G, E be a

3-connected component of G with respect to fs; vg, and F be the union of all other

components of G with respect to fs; vg. If E admits an upward plane drawing with

s and v on the outer face, then G admits an upward plane drawing with all vertices

of X on the outer face if and only if

(i) F 0 = (F [ E-marker) admits an upward plane drawing F 0 with all vertices

of X in F on the outer face, and wt (if it exists, otherwise the edge (u; v))

also on the outer face if some x 2 X contained in E.

(ii) E0 = (E [ F -marker) admits an upward plane drawing E0 with wt (if it

exists, otherwise the edge (u; v)) and all vertices of X in E on the outer face,

where

E-marker =

8>>>>><
>>>>>:

Mt if v is a source in E

Muv if v is a sink in E

Muvt otherwise.

and

F -marker =

8><
>:
Mt if v is a source in F

Muv otherwise.

Proof: The similarity of this theorem to Theorem 6.14 of the previous section

should be evident; the only major di�erence is the way in which the outer compo-

nent is isolated; as such, we will be more terse in its proof. For compatibility with

previous notation, we will continue to use u and v as the cut-vertices, even though

u = s.

(Necessity) Assume that G has an upward plane embedding G with all vertices

of X on the outer face, and furthermore that E admits an upward plane embedding

E with v on the outer face.
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(Necessity of condition (i)): If v is a source in E, then there exist vertex disjoint

directed paths u
+
!wt and v

+
!wt for somewt in E (Proposition 6.3) and F 0 = F[Mt

is upward planar. If v is a sink in E, then there is a directed path u
+
!v in E and

F 0 = F [ Muv is upward planar. Otherwise, deg+v � 1 and there exists some

vertices wt and z in E such that u
�

!z, z
+
!v, v

+
!wt and z

+
!wt are vertex disjoint

directed paths in E (Lemma 6.5) and F [ f(u; v); (v;wt); (u;wt)g is homeomorphic

to a subgraph of an upward planar graph, G, and is upward planar. Within this

triangle in any upward plane embedding, we can add the additional \dummy"

vertex and F 0 = F [Muvt is also upward planar. If some x 2 X is on the outer

face of G, it is certainly on the outer face of the sub-embedding F 0.

(Necessity of condition (ii)): If v is a source in F , then there exist vertex

disjoint directed paths u
+
!wt and v

+
!wt for some wt in F (Proposition 6.3) and

E0 = E [Mt is upward planar. Otherwise, we note that u < v in G, since u = s is

the single source of G, so E0 = E [Muv is homeomorphic to a subgraph of G and

is upward planar.

Note that the necessity of the outer facial conditions again follows from Theorem

6.5.

(Su�ciency) Suppose G, E and F are as de�ned, and conditions (i) and (ii) of

the theorem are met.

Consider �rst when no x 2 X is contained in E.

Case 1: v is a source in E: If v is a source in E it cannot at the same time be

a source in F as u < v in either E or F . Since E0 is upward planar with a single

source u, and (u; v) on an outer face, E 00 = E0 [f(ws; u); (ws; v)g is upward planar.

By Lemma 6.11, E00 can be added above sink wt in F
0, so F 0 [ E00 with ws and wt

identi�ed as the same vertex w is upward planar. By application of Lemmas 6.12
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and 6.8, w can be split, and the resulting edges contracted, resulting in an upward

planar graph which contains G as a subgraph, so G is upward planar.

Case 2: v is a sink in E: If v is a non-source in F , then E0 = E [ (u; v) is upward

planar with (u; v) on the outer face by condition (ii) of the theorem. By Lemmas

6.10 and 6.8 an embedding of E0 (with u; v renamed to u0; v0) can be inserted into

the edge (u; v) of F (attached at u0 and v0) the edge (u0; v0) removed, the other

extra edges contracted, and the result G is upward planar. If v is a source in F ,

deg+v = 1 in E0 = E[Mt, so we �rst apply Lemma 6.8 to contract the edge (v;wt),

and the result follows.

Case 3: v is a non-source/sink in E: Suppose v is a source in F . Then wt is a

sink on the outer face of some embedding E0 of E0 by condition (ii) of the theorem.

F 0 with E0 inserted into the marker edge (u; v) (with u and v in E 0 renamed to u0

and v0) and attached at u0 and wt is upward planar by Lemma 6.10. The subgraph

with all but (u; v) of the E-marker is thus upward planar. Now u and v0 have

in-degree one, so the edges (u; u0) and (v; v0) can then be contracted by Lemma

6.8. Similarly wt now has in-degree one, so (v0; wt) can also be contracted, and G

is upward planar.

Suppose then that v is a non-source in F . The reasoning above applies except

for the ability to immediately contract the (v0; v) edge (since v0 no longer has in-

degree one). Now, the edge (u0; v0) between u and v and the the fact that u is

the single source of E 0 ensures that E 0 can be scaled to some small area in the

left half-plane beside v0 and requires some part of the upper half-plane above v.

Some such region must exist in the face f of F 0 containing the marker, since F 0 is

upward planar with the \dummy" edge above v. Thus with E appropriately scaled

before its insertion into the (u; v) edge, the edge (v; v0) can be contracted without

destroying upward planarity.



CHAPTER 6. SEPARATION INTO TRI-CONNECTED COMPONENTS 52

Theorem 6.16 Let G be a biconnected DAG with a single source s and let X =

fxig � V (G) be a set of vertices. Let fs; vg be a separation pair of G, E be a

3-connected component of G with respect to fs; vg, and F be the union of all other

components of G with respect to fs; vg. If E does not admit an upward plane

drawing with s and v on the outer face, then G admits an upward plane drawing

with all vertices of X on the outer face if and only if

(i) There is no x 2 X contained in F .

(ii) F 0 = (F [ E-marker) admits an upward plane drawing F 0 with wt (if it

exists, otherwise the edge (u; v)) also on the outer face if some x 2 X is

contained in E.

(iii) E0 = (E [F -marker) admits an upward plane drawing E0 with all x 2 X

on the outer face,

where

E-marker =

8>>>>><
>>>>>:

Mt if v is a source in E

Muv if v is a sink in E

Muv otherwise.

and

F -marker =

8>>>>><
>>>>>:

Mt if v is a source in F

Muv if v is a sink in F

Muvt otherwise.

Proof: If E has no upward plane drawing with u and v both on the outer face,

then the only way G could be upward planar is if F can be embedded within a face

of E. Thus, the outer face of G is �xed as being some face of E 0 not containing

v or any vertices of F , or some face which can be partitioned into vertices from

the outer face of F and the outer face of G. It remains to ensure that there is
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some embedding of F which will �t the structural constraints of the shape of a face

shared by u and v in E. These are exactly the conditions previously required by E

for embedding within F . The proof is identical to Theorem 6.15 up to the naming

of E and F . The di�erences in the statement of the theorems a�ect only the time

bound. The result is identical, as it does not depend upon triconnectedness of

either component.



Chapter 7

An Algorithm for Upward Planar

Embedding

The algorithm works as follows: A directed acyclic graph G with a single source s

is given to BI-MERGE, which splits G into biconnected components, calls CON-

TRACT which contracts subdivision edges, identi�es the triconnected components

in the result, and calls TRI-MERGE to split the result into triconnected compo-

nents. TRI-MERGE calls itself recursively to isolate triconnected components, then

calls TRI-EMBED to test all of the embeddings of a triconnected component for

upward planarity with MOD-S-E-UP-PLANAR (modi�ed slightly from S-E-UP-

PLANAR of Chapter 4 to take account of markers), returning an embedding. As

the embeddings are returned to the calling routines, CONTRACT un-contracts

the edges and TRI-MERGE merges the embeddings of the recursively de�ned sub-

graphs, as does BI-MERGE. If any violations of upward planarity are found, the

algorithm rejects.

Algorithm BI-MERGE: Find the set of cut-vertices, \CutList", and the set
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of biconnected components, \ComponentList", of the input graph G. Find an

upward planar embedding (if one exists) of each component in ComponentList

with the CONTRACT algorithm. Then, for each cut vertex v, remove the source

component S and remaining v-components fHig from ComponentList. Determine

a face above v in S and embed the Hi's in the prescribed face f . If f is not the

outer face, add dummy edges from the sinks of each embedding Hi to the covering

vertex of v, to resolve the internal sinks generated by the Hi's (analagous to the

more detailed description of Chapter 4). Add the result to ComponentList, and

continue until CutList is exhausted.

Finding biconnected components can be done in linear time, and since the merge

step considers each cut-vertex at most once and need not search the remainder of

the graph, this step requires linear time plus the time taken by CONTRACT on

each sub-problem (subgraph).

Algorithm CONTRACT:

Perform a depth �rst search of the input graph G and contract edges around

any vertices of in-degree one and out-degree one, (following Lemma 6.7) storing

the required information within the contracted edges. Use the tri-connected com-

ponents algorithm [19] to �nd the list of separation pairs of G. Call TRI-MERGE

with the contracted graph to �nd an upward plane embedding, then subdivide the

edges of the embedding with the previously contracted vertices.

Depth �rst search takes linear time, so this step is also linear time plus the time

taken by TRI-MERGE on the initial subproblem.

Algorithm TRI-MERGE:

The input is a graph G, a list of separation pairs L in G and a list X of vertices

X required on the outer face of G. Pick a cut-set fu,vg of G from the list of cut-sets
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L, (choosing all cut-sets not containing s before those containing s) and determine

whether u and v are comparable in G. If they are, ensure that u < v in the labeling.

If no such cut-set exists, call TRI-EMBED to �nd an upward planar representation

of G with the xi's on the outer face, and return the result.

If u 6= s, isolate the source component S with a depth-�rst search, form the

union H of the remaining components (following Theorems 6.13 and 6.14) and add

the required marker edges to each component. At the same time, determine the

new sets XS and XH , and LS and LH , from X and L respectively, and recursively

call TRI-MERGE with each sub-problem. XS and XH are a partition of X into

the set of vertices of X which are also in S and the set of vertices of X which

are also in H, plus the additional required vertices which must be on the outer

face of the sub-problems, and possible additions for new marker edges. LH and LS

are a partition of L into the set of cut-sets of G contained in H and S respectvely.

With the results of each sub-problem, apply the algorithm implicit in the su�ciency

proof of Theorems 6.13 or 6.14 (as appropriate) to combine the two embeddings

with contraction operations. As in BI-MERGE, if one component is added within

an internal face of another, add an edge from each of its sinks to the vertex covering

u in the outer component to resolve the inner sinks. Return the result.

If u = s, isolate a component E of G with respect to some fs; vg which is

triconnected, and let F be the union of all other fs; vg-components. This is possible

because we choose 3-connected components to avoid s when non-source cut-sets

exist, and if all cut sets involve one vertex s, then at least one has a triconnected

component. Add the marker edges and determineXE andXF as above per Theorem

6.15. Call TRI-MERGE with the (E0; ;;XE [ fu; vg) sub-problem, to test whether

E has an upward embedding satisfying the previous conditions and also having u

and v on the outer face. The cut-set list is empty as E is triconnected.



CHAPTER 7. AN ALGORITHM FOR UPWARD PLANAR EMBEDDING 57

If TRI-MERGE passes, then E can be embedded in a face of F (possibly the

outer face), so compute the subproblem (F 0; LF ;XF ), merge results according to

the proof of Theorem 6.15, and resolve the sinks of E which are internal in the

result. Reject if the subproblem fails.

If TRI-MERGE fails, then F cannot have any xi's (by Theorem 6.16); the

embedding of F must lie strictly within an internal face of the embedding of E

(i.e. it is not even possible for E and F to \together" form the outer face; the

outer face must consist entirely of vertices of E), so reject if XF is not empty.

Call TRI-MERGE with the subproblems (F 0; LF ; fu; vg) and (E0; ;;XE), merge the

results with the contraction operations of the algorithm implicit in the su�ciency

conditions of Theorem 6.16, and resolve the sinks of F which are internal in the

result. Again, reject if either subproblem fails.

Depth �rst search is a linear time operation that can determine all the required

information, such as whether u and v are comparable and the partitions of X and

L. The �rst call to TRI-EMBED in the s = u case is with a tri-connected graph

and thus requires only linear time (time for of S-E-UP-PLANAR). Subsequently,

the outer face is chosen, so a constant number of disjoint calls are made to TRI-

MERGE (i.e. no backtracking is required to �nd the outer face). In total, we

execute a linear time operation for each cut-set, of which there are no more than n,

followed by an O(n2) time operation (TRI-EMBED) on some number of subgraphs

of G. The total time is thus quadratic.

Algorithm TRI-EMBED:

Compute the faces of the tri-connected input graph G and a planar embedding

of G using a linear time algorithm [18, 4].

For each face f adjacent to the source, transform the abstract embedding G
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of G to have outer face f and test for strongly equivalent upward planarity with

AlgorithmMOD-S-E-UP-PLANAR (below). The transformation is simply a matter

of choosing a di�erent outer face in the speci�cation of the abstract embedding. If

the list of faces is exhausted, abort, otherwise return the �rst valid embedding.

Note that if we have more than just the source (i.e. another vertex or an edge)

speci�ed to be on the outer face, then there are no more than a constant number

of faces to check.

This step requires a linear number of calls to MOD-S-E-UP-PLANAR, since a

planar triconnected graph has a linear number of possible outer faces [3]. Speci�-

cally, it requires deg+s calls if no other vertices are speci�ed on the outer face and

at most two calls otherwise.

Algorithm MOD-S-E-UP-PLANAR:

Perform the algorithm of S-E-UP-PLANAR, with the following modi�cation:

Whenever a distinguished edge is uncovered, expand it into markers

and edges with all Mt markers outside of all Muvt markers, all Muvt

markers outside all Muv markers, and all Muv markers outside all real

edges (u; v) of G which are in turn outside allMs markers, then continue

as before.

This step requires only local changes and the time is still proportional to the

number of marker components hidden in the given edge, which is linear over the

total time of the algorithm. Thus MOD-S-E-UP-PLANAR runs in linear time.



Chapter 8

Drawing Upward Planar Graphs

Here we wish to address the issue of constructing a physical drawing from the

abstract representation constructed thus far. This is straightforward, since the

output of the algorithm of Chapter 7 is an upward planar embedding G of G (with

all internal sinks resolved by extra edges). All sinks are on the outer face, so a

new vertex t can be added to the outer face and connected to each sink of G and

to s (also on the outer face if G is to be upward planar). The result is then a

representation of a planar st-graph, and we can then apply the known algorithms

of either Chiba and Nishizeki [6] or DiBattista and Tomassia [10] to give a drawing

(in linear time for a monotonic drawing or \O(n log n)" time for a straight-line

drawing), and then remove the dummy edges.

Recall that the straight-line algorithm is output sensitive, and with time mea-

sured on this basis, can take possibly exponential time, as discussed in Section 3.4.

This is, however, optimal for the output sensitive case.
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Chapter 9

Conclusions

We have given a linear time algorithm that tests whether a given single source

acyclic digraph is upward planar strongly equivalent to a given planar embedding,

and gives representation of this drawing if it exists. We have used this result to give

an e�cient O(n2) algorithm to test for upward planarity of a single source acyclic

digraph.

A lower bound for the single-source upward planarity problem is not known,

although we believe that it may be possible to perform the entire test in sub-

quadratic (perhaps linear) time. An obvious extension of this work would be to

�nd such an algorithm or prove a lower bound.

This thesis has concentrated on the issues of e�ciently testing for an upward

planar embedding and outputting an abstract representation of such an embedding.

However, by illustrating how the input graph can be embedded within a planar st-

graph, we have also shown how to take advantage of known methods for constructing

a physical upward plane drawing of the graph.

Although it is not possible to achieve sub-exponential area in drawing an arbi-
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trary upward planar graph, it would be an interesting problem to guarantee sub-

exponential area where possible and to characterize the class of upward planar

graphs requiring exponential grid-size. Guaranteeing minimum area in all cases is,

however, NP-hard [29].

The more general problem of testing for an upward planar drawing of an arbi-

trary acyclic digraph is open. The only known characterization is that any such

graph is a subgraph of an upward planar graph with a single source and sink [10].
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