
UPWARD PLANAR DRAWING OF SINGLE SOURCE ACYCLIC

DIGRAPHS�

MICHAEL D. HUTTONy AND ANNA LUBIWz

Abstract. An upward plane drawing of a directed acyclic graph is a plane drawing of the
digraph in which each directed edge is represented as a curve monotone increasing in the vertical
direction. Thomassen [24] has given a non-algorithmic, graph-theoretic characterization of those
directed graphs with a single source that admit an upward plane drawing. We present an e�cient
algorithm to test whether a given single-source acyclic digraph has an upward plane drawing and, if

so, to �nd a representation of one such drawing. This result is made more signi�cant in light of the
recent proof, by Garg and Tamassia, that the problem is NP-complete for general digraphs [12].

The algorithm decomposes the digraph into biconnected and triconnected components, and de-
�nes conditions for merging the components into an upward plane drawing of the original digraph.
To handle the triconnected components we provide a linear algorithm to test whether a given plane

drawing of a single source digraph admits an upward plane drawing with the same faces and outer
face, which also gives a simpler, algorithmic proof of Thomassen's result. The entire testing algo-

rithm (for general single-source directed acyclic graphs) operates in O(n2) time and O(n) space (n
being the number of vertices in the input digraph) and represents the �rst polynomial time solution

to the problem.

Key words. algorithms,upward planar, graph drawing, graph embedding, graph decomposition,
graph recognition, planar graph, directed graph
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1. Introduction. There are a wide range of results dealing with drawing, rep-

resenting, or testing planarity of graphs. Steinitz and Rademacher [22], F�ary [10],

Stein [21], and Wagner [26] independently showed that every planar graph can be

drawn in the plane using only straight line segments for the edges. Tutte [25] showed

that every 3-connected planar graph admits a convex straight-line drawing, where the

facial cycles other than the unbounded face are all convex polygons. The �rst linear

time algorithm for testing planarity of a graph was given by Hopcroft and Tarjan [14].

Planar graph layout has many interesting applications, and has been widely stud-

ied as a method to visualize structures commonly modeled as graphs. Combinational

boolean circuits, subroutine call-charts, PERT graphs, isa-hierarchies in AI, and many

other objects are naturally described with directed acyclic graphs, and are best under-

stood visually when all edges are drawn in the same direction. Planarity is of obvious

bene�t in graph-drawing, so it is a natural problem to consider upward drawings in

combination with planarity.

An upward plane drawing of a digraph is a plane drawing such that each directed

arc is represented as a curve monotone increasing in the y-direction. In particular the

digraph must be acyclic (a DAG). A digraph is upward planar if it has an upward

plane drawing. Consider the digraphs in Figure 1. By convention, the edges in the

diagrams in this paper are directed upward unless speci�cally stated otherwise, and
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direction arrows are omitted unless necessary. The digraph on the left is upward

planar: an upward plane drawing is given. The digraph on the right is not upward

planar|though it is planar, since placing v inside the face f would eliminate crossings,

at the cost of producing a downward edge. Kelly [17] and Kelly and Rival [18], and

v

f

Upward planar Non-upward-planar

Fig. 1. Upward planar and non-upward planar digraphs.

also Di Battista and Tamassia [7], have shown that for every upward plane drawing

there exists a straight-line upward plane drawing with the same faces and outer face,

in which every edge is represented as a straight line segment. This is an analogue of

the previously mentioned straight-line drawing result for undirected planar graphs.

The general problem of recognizing upward planar digraphs has recently been shown

to be NP-complete [12]. For the case of single-source single-sink digraphs there is

a polynomial time recognition algorithm provided by Platt's result [19] that such a

digraph is upward planar i� the digraph with a source-to-sink edge added is planar. An

algorithm to �nd an upward plane drawing of such a digraph was given by Di Battista

and Tamassia [7]. For the special case of bipartite digraphs, upward planarity is

equivalent to planarity [6].

In this paper we will give an e�cient algorithm to test upward planarity for

single-source digraphs, eliminating the single-sink restriction. For the most part we

will be concerned only with constructing an upward planar representation|enough

combinatorial information to specify an upward plane drawing without giving actual

numerical coordinates for the vertices. This notion will be made precise in Section

3. We will remark on the extension to a drawing algorithm in Section 7. Our main

result is an O(n2) algorithm to test whether a given single-source, n-vertex, digraph is

upward planar, and if so, to give a representation for it which leads to a drawing with

known methods. This result is partly based on a graph-theoretic result of Thomassen

[24, Theorem 5.1]:

Theorem 1.1 (Thomassen). Let � be a plane drawing of a single-source digraph

G. Then there exists an upward plane drawing �0 strongly equivalent to (i.e. having

the same faces and outer face as) � if and only if the source � of G is on the outer

face of �, and for every cycle � in �, � has a vertex � which is not the tail of any

directed edge inside or on �.

The necessity of Thomassen's condition is clear: for a digraph G with upward

plane drawing �0, and for any cycle � of �0, the vertex of � with highest y-coordinate

cannot be the tail of an edge of �, nor the tail of an edge whose head is inside �.

Since a 3-connected graph has a unique planar embedding (up to the choice

of the outer face) by Whitney's theorem (c.f. [2]) Thomassen concludes that his

theorem provides a \good characterization" of 3-connected upward planar digraphs|
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i.e. puts the class of 3-connected upward planar digraphs in NP intersect co-NP. An

e�cient algorithm is not given however (there are potentially an exponential number

of possible cycles to check), nor does Thomassen address the issue of non-3-connected

digraphs (which could have an exponential number of di�erent planar embeddings).

The problem thus decomposes into two main issues. The �rst is to describe

Thomassen's result algorithmically; we do this in Section 4 with a linear time algo-

rithm, which provides an alternative proof of his theorem. The second issue is to

isolate the triconnected components of the input digraph, and determine how to put

the \pieces" back together after the embedding of each is complete. This more com-

plex issue is treated in Section 6, after a discussion of decomposition properties in

Section 5.

The algorithm for splitting the input into triconnected components and merging

the embeddings of each operates in O(n2) time. Since a triconnected graph is uniquely

embeddable in the plane up to the choice of the outer face, and the number of possible

external faces of a planar graph is linear by Euler's formula, the overall time to test

a given triconnected component is also O(n2), so the entire algorithm is quadratic.

2. Preliminaries. In addition to the de�nitions below we will use standard ter-

minology and notation of Bondy and Murty [2].

All digraphs in this paper are acyclic unless otherwise stated, and n always denotes

the number of vertices in the current digraph. We will use the term cycle and the

various notions of connectivity with respect to the underlying undirected graph, so a

digraph G is connected if there exists an undirected path between any two vertices in

G. For S a set of vertices, GnS denotes G with the vertices in S and all edges incident

to vertices in S removed. If S contains a single vertex v we will use the notation Gnv
rather than Gnfvg. G is k-connected if it has at least k + 1 vertices and the removal

of at least k vertices is required to disconnect the graph. By Menger's Theorem [2]

G is k-connected if and only if there exist k vertex-disjoint undirected paths between

any two vertices. A set of vertices whose removal disconnects the graph is a cut-

set. The terms cut vertex and separation pair apply to cut-sets of size one and two

respectively. A graph which has no cut vertex is biconnected (2-connected). A graph

with no separation pair is triconnected (3-connected). For G with cut vertex v, a

component of G with respect to v is formed from a connected component H of Gnv by
adding to H the vertex v and all edges between v and H. For G with separation pair

fu; vg, a component of G with respect to fu; vg is formed from a connected component

H of Gnfu; vg by adding to H the vertices u; v and all edges between u; v and vertices

of H. The edge (u; v), if it exists, forms a component by itself. An algorithm for

�nding triconnected components1 in linear time is given in Hopcroft and Tarjan [13].

A related concept is that of graph/digraph union: we de�ne G1 [G2, for components

with \shared" vertices to be the inclusive union of all vertices and edges. That is,

for v in both G1 and G2, the vertex v in G1 [G2 is adjacent to edges in each of the

subgraphs G1 and G2.

Contracting an edge e = (u; v) in a graph G results in a graph, denoted G=e, with

the edge e removed, and vertices u and v identi�ed. Inserting new vertices within

edges of G generates a subdivision of G. A directed subdivision of a digraph G results

from repeatedly adding a new vertex w to divide an edge (u; v) into (u;w) and (w; v).

(Directed) graphs G1 and G2 are homeomorphic if both are (directed) subdivisions

of some other (directed) graph. G is planar if and only if every subdivision of G is

1 Note that Hopcroft and Tarjan's \components" include an extra (u; v) edge.
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planar [2].

In a directed graph, the in-degree of a vertex v is the number of edges directed

towards v, denoted deg
�
v. Analogously the out-degree (deg+v) of v is the number of

edges directed away from v. A vertex of in-degree 0 is a source in G, and a vertex of

out-degree 0 is a sink.

Adopting some poset notation: we will write u � v is there is a directed path

u
�

!v of length 0 or more, and u < v (u
+
!v) to emphasize that u and v are distinct.

Vertices u and v are comparable if u � v or v � u, and incomparable otherwise. If

(u; v) is an edge of a digraph then u dominates v, u is incident to v, and v is incident

from u.

3. A Combinatorial View of Upward Planarity. As discussed by Edmonds

and others (see [11]) a connected graph G is planar i� it has a planar representation:

a cyclic ordering of edges around each vertex such that the resulting set of faces F

satis�es 2 = jF j� jEj+ jV j (Euler's formula). A face is a cyclically ordered sequence

of edges and vertices v0; e0; v1; e1; : : : ; vk�1; ek�1, where k � 3, such that for any

i = 0; : : : ; k� 1 the edges ei�1 (subscript addition modulo k) and ei are incident with

the vertex vi and consecutive in the cyclic edge ordering for vi.

We will say that two plane drawings are equivalent if they have the same

representation|i.e. the same set of faces. Two plane drawings are strongly equiv-

alent if they have the same representation and the same outer face.

One method of combinatorially specifying an upward planar drawing is provided

by the following result of (independently) Di Battista and Tamassia [7], and Kelly

[17]. They use the concept of a planar s-t digraph, de�ned to be a planar DAG which

has a single source s, a single sink t and contains the edge (s; t)|exactly the upward

planarity condition of Platt [19] for single-source single-sink digraphs.

Theorem 3.1 (Di Battista and Tamassia, Kelly). Let G be a directed

acyclic graph. If G is upward planar then edges can be added to it to obtain a planar

s-t digraph (i.e. G is a (spanning) subgraph of a planar s-t digraph). Conversely, if

edges can be added to G to obtain a planar s-t digraph G
0
, then G is upward planar.

Furthermore, for any planar embedding � of G
0
with (s; t) on the outer face, there is

an upward plane drawing of G strongly equivalent to � with the extra edges removed.

The �nal statement was not explicitly given, however to prove their result, Di Bat-

tista and Tamassia give an algorithm which takes a planar s-t digraph, �nds an arbi-

trary planar representation of it and outputs an upward plane drawing which respects

this embedding, so the statement follows. Their algorithm, which we will require

later in the paper, runs in O(n) arithmetic2 steps (O(n logn) arithmetic steps for a

straight-line drawing).

The disadvantage of this NP characterization in terms of planar s-t digraphs is

the di�culty of testing it. Thomassen's co-NP condition on single-source digraphs

su�ers from the same problem. For the case of single-source digraphs, we will give a

testable (algorithmic) characterization in the next section.

To provide some motivation for this algorithm, we give another characterization

of single-source upward planar digraphs, equivalent to Thomassen's:

First we de�ne P (v), the predecessor set of v to be the set fu : u � v in Gg.
Notice the set P (v) includes v. De�ne Gv to be induced subgraph of G on P (v). For

2 It is important to specify the time in arithmetic steps, because the algorithm is necessarily
output sensitive: coordinates can require 
(n) bits each [8].
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a planar representation � of G, de�ne �v to be the planar representation induced by

� on Gv.

Proposition 3.2. Given a single source DAG G, and a planar representation

� of G with a speci�ed outer face and source s on the outer face, G has an upward

plane drawing strongly equivalent to � i� the following condition holds:

Condition 3.3. For each vertex v 2 V , v is a sink on the outer face

of the planar embedding �v induced by P (v).

We will often refer to a planar representation � satisfying Condition 3.3 as an

upward planar representation of G.

Since a strongly equivalent upward plane drawing provides the same planar rep-

resentation � and predecessors of v have smaller y-coordinates in the drawing, v must

be on the outer face of �0v. Thus the necessity holds. We will complete the proof of

this in Section 5; it is not necessary for the algorithm in the next section.

4. Strongly-Equivalent Upward Planarity. Consider the following question:

Given a single-source acyclic digraph G and a planar representation � for G, with s

on the outer face of �, does G admit an upward planar drawing strongly equivalent

to �?

De�ne a violating cycle of G with respect to � to be a cycle � such that every

vertex of � is the tail of an edge inside or on �. This is the condition arising from

Thomassen's Theorem (1.1). As observed in the introduction, a violating cycle in �

precludes the existence of an strongly equivalent upward drawing.

We present a linear time algorithm to test whether G has an upward planar

embedding strongly equivalent to � with a designated outer face. The algorithm

will return the edges necessary to augment G so that sinks occur only on the outer

face in the positive case, or a violating cycle in the negative case. Since any planar

representation of a single-source DAG with the source and all sinks on the outer face

is a subgraph of a planar s-t digraph|simply designate one sink as t, and add an

edge from the source and all other sinks to it|the algorithm provides a new proof of

Thomassen's theorem.

The algorithm is recursive, and the proof that it works is by induction. If there is

a sink v on the outer face of �, then recursively (trivial if G has one node) determine

a violating cycle for Gnv (in which case we are done) or a set of edges X required to

augment �nv (Gnv) to a planar representation �0 with all sinks on the outer face. Now

add v and edges incident to v to the outer face of �0. To determine the additional

required edges to resolve the internal sinks in the new faces, consider all vertices

w which are sinks on the outer face of �0, but are not sinks on the outer face of �.

Adding the edges (w; v) (where they do not already exist in G) to X retains planarity,

single-sourcedness and acyclicity in G[X and does not change the outer face.

It remains to deal with the case when the outer face of � has no sink. We claim

that in this case G has a violating cycle: If the outer face of � is a cycle then it is a

violating cycle. If the outer face is a walk, then follow it starting at s, and let v be

the �rst vertex which repeats. Vertex v must be a cut vertex. Consider the segment

of the walk from v to v. If this segment contains only one other vertex, say u, then u

is a sink, contradiction. Otherwise we obtain a cycle C from v to v. The two edges

incident with v must be directed away from v and no other vertex is a sink on C, so

C must be a violating cycle.

The above algorithm can be implemented in linear time (so that each vertex is

involved in no more than a constant number of operations), using data structures no

more complicated than a linked list. We then have
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Theorem 4.1. Given an n-vertex single-source acyclic digraph G and a plane

representation �, the above algorithm tests, in linear time, whether G admits an

upward planar drawing strongly equivalent to �.

5. Decomposition properties of Upward Planar Graphs. This section

completes the discussion of upward planar representations and introduces various

decomposition-properties of upward planar digraphs. The purpose is twofold: �rstly,

the properties are necessary for the proofs in the next section; secondly, they provide

an intuitive look at the structure of upward planar digraphs, and hence motivate the

decomposition approach we take in the recognition algorithm.

We begin by completing the proof of Proposition 3.2 from Section 3:

Proof. (Su�ciency) We need that for any planar representation � of G satisfying

Condition 3.3, G admits an upward plane drawing strongly equivalent to �; equiva-

lently, that the existence of a violating cycle precludes Condition 3.3 from holding for

some vertex v.

Suppose a violating cycle � exists in G with respect to �. Let G� be the subgraph

of G formed by edges and vertices inside or on �.

Without loss of generality, G� has one source s�, which must lie on �: If G�
had two sources s1 and s2, then both would be on �. Since G has a single source s,

there exist directed paths P1 form s to s1 and P2 from s to s2. The last edge of each

path is not in G�. If either path has a vertex other than its terminal vertex on �,

then adding to � the portion of the path from the last such vertex to the terminal

produces another violating cycle enclosing a larger subgraph with one fewer sources.

Otherwise, P1 and P2 contain a last common vertex, and adding the portions of the

paths from that vertex to the terminals s1 and s2 produces another violating cycle

enclosing a larger subgraph with one fewer sources. Thus we can assume that G� has

a single source s�. The remainder of the proof references Figure 2.

1P
y

Σ

z

P

...

sΣ

P
3

2

G

x

Fig. 2. Violating cycle precludes Condition 3.1.

Starting from s�, walk counter-clockwise around �. Let x be the �rst encountered

vertex with both edges of � directed towards x. Let y be the �rst encountered vertex

after x with both edges of � directed away from y. Note that both exist, though y

may be s�. Let P1 be the directed path from s� to x, counter-clockwise on �, and

let P2 be the directed path from y to x clockwise on �.

Since s� is the single source of G�, there is a directed path P3 in G� from s� to

y. (If y = s� then P3 is this single vertex.) P3 cannot contain a vertex of P2 other

than y; otherwise we would get a directed cycle using portions of P2 and P3. Let u

be the last vertex of P1 on P3. Let � be the simple undirected cycle consisting of the

portion of P3 from u to y, the portion of P2 from y to x, and the portion of P1 from
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u to x. Let G� be the subgraph of G formed by edges and vertices inside or on �.

Since � is a violating cycle, x is not a sink in G�, so there is an edge (x; z) inside

�, and thus inside �. We will show that vertex z violates condition 3.1. Vertex z

cannot be on � otherwise a directed cycle is formed. Thus z is strictly inside �. But

all the vertices of � are predecessors of z. Thus z violates condition 3.1.

Note that the results of the preceding two sections, combined with the char-

acterization of Di Battista and Tamassia, and the single-source characterization of

Thomassen give:

Theorem 5.1. The following conditions are equivalent for a single-source DAG

G with planar representation � having a designated outer face and single source s

which is on the outer face:

(i) G has an upward plane drawing strongly equivalent to �.

(ii) G is a (spanning) subgraph of some planar s-t digraph which has an upward

plane drawing strongly equivalent to � (after removal of the extra edges)

(iii) for all v 2 G, v is a sink on the outer face of �v.

(iv) � does not contain a violating cycle.

We note that condition (iii) is the only one which can obviously be tested in

polynomial time.

In the remainder of this section we give some operations which preserve upward

planarity. The �rst operation contracts an edge connected to a vertex of in- (out-)

degree 1. The second attaches one upward planar digraph to another at a single

vertex. The third attaches an upward planar digraph in place of an edge of another

upward planar digraph. The last splits a vertex into two vertices.

First we will prove a useful preliminary result:

Proposition 5.2. Let G be a connected upward planar digraph. Then G is a

subgraph of some single-source upward planar G
�
such that all non-source v 2 V (G)

have the same in-degree in G as in G
�
.

Proof. We illustrate how to add the edges required to \resolve the extra sources"

without a�ecting the in-degree of non-source vertices.

Let � be a drawing of G in the plane bounded by xmin, xmax, ymin and ymax, with

height h, width w and centred at (0; 0). Without loss of generality, we assume � is a

straight line drawing. Add new vertices s, t, l and r at (0;�2h); (0; 2h); (�2w; 0) and
(2w; 0) respectively. Add lines (edges) (s; l); (s; r); (r; t) and (l; t). Add further edges

(s; w) for all vertices w drawn with y-coordinate of ymin and (w; t) for all vertices w

drawn with y-coordinate of ymax.

The construction so far has merely added a speci�ed outer face on the drawing,

with a unique maximum sink and minimum source, so clearly the resulting drawing

��� (digraph G
��) is an upward plane drawing (upward planar digraph). We now

wish, for each source x, to \resolve" the source by adding a new edge incident to it;

the resulting digraph will prove our proposition. Let � be an upward plane drawing of

G, and perform the following operation for each source x, except the one just added

in the outer face: extend a line L vertically downwards from x to the �rst line or

vertex in the drawing. If L �rst intersects a vertex w, add the (w; x) edge to both G

and the drawing �|the result is clearly upward planar. If L �rst intersects an edge,

rotate it along the edge until L hits some vertex w of � and add the edge (w; x) as

before; for one of the two directions, a vertex will be found before the line becomes

horizontal. Neither operation added in-degree to a non source vertex, so the claim is

satis�ed.

Note that the above is of no particular algorithmic signi�cance, since the drawing
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of G (or existence thereof) is the goal rather than the input. However, it allows us to

prove the following lemmas in the more general context of upward planar digraphs,

i.e. without the single-source assumption.

Lemma 5.3. Let G be a DAG and v, dominated by u, be a vertex of G with

in-degree 1. Then, G=(u; v) is upward planar if G is upward planar. (See Figure

3(a).)

Note that the same result holds for G and edge (u; v) with deg
+
u = 1 by sym-

metry. Lemma 5.3 is a generalization of a previously known fact|that G is upward

planar i� any directed subdivision of G is (c.f. [24]).

Proof. Let � be an upward plane drawing of G. Applying proposition 5.2, there

is a single-source digraph G
� containing G as a subgraph in which the in-degree of v

is still 1. Clearly if the result holds for G�
=(u; v) it holds for any subgraph, namely

G=(u; v), so we it will be su�cient to assume G is a single-source digraph for the

remainder of the proof, and show Condition 3.3 holds.

Let � be a planar representation for G, with a designated outer face, satisfying

Condition 3.3. Let �w for w 2 V be as de�ned for Condition 3.3. Then �0, formed by

contracting (u; v) in �, is a planar representation for G0 = G=(u; v) with a designated

outer face. Clearly if some w 6= v is on the outer face of �w, it is on the other face

of �w=(u; v). This, with the fact that G is acyclic, implying Gw=(u; v) = G
0

w for all

w 2 V � fvg (i.e. P(w) doesn't change as a result of contracting (u; v)), gives that w
is a sink on the outer face of �0w|Condition 3.3.

Topologically this construction can be viewed as \pulling" v and all edges incident

from v down a corridor of width � around (u; v) until u and v meet.

v

0
44

0 5

1 1
32

5

2 3 eee

v’ v"

eeeeee

e e e

u

v’

u’u

v

u

v

u

v’

u’

f

(d)

(b)(a)

(c)

Fig. 3. Properties of Upward Planar Representation.

Lemma 5.4. Let G be an upward planar digraph with a vertex u, and let H be

an upward planar digraph with a single source u
0
. Let G

0
be the digraph formed by

identifying u and u
0
in G [H. Then G

0
is upward planar. (See Figure 3(b).)

Proof. As above, there is an upward planar single-source digraph G
� containing

G by proposition 5.2, and G
0 is a subgraph of G� [H with u and u

0 identi�ed, so it

is su�cient to prove the result for a single-source upward planar G.

Suppose �G and �H are the given planar representations, with designated outer

faces, both satisfying Condition 3.3. Let �Gv and �Hv be as de�ned for Condition 3.3

for G and H respectively. We show how to construct a planar representation �0 for
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G [H (identifying u and u
0), with a given outer face, which satis�es Condition 3.3.

If u is on the outer face of �G, then place �H in the outer face, identifying u and

u
0. Otherwise, there are (possibly) k + 1 faces of �G corresponding to the outer face

of �Gu (for k the out-degree of u); insert �H in any one of these faces. It is easy to

show that under this construction w is a sink on the outer face of �0w if it was a sink

on the outer face of �Gw (respectively �Hw ) previously.

This construction can be viewed as \inserting" the drawing for H into some face

\above" u in the drawing of G.

Lemma 5.5. Let G be an upward planar digraph with an edge (u; v), and H be an

upward planar digraph with a single source u
0
and a sink v

0
both on the outer face. Let

G
0
be the digraph formed by removing the (u; v) edge of G and adding H, identifying

vertex u with u
0
and vertex v with v

0
. Then G

0
is upward planar.

Proof. This has the same avour as the previous proof, so we can be more brief.

Again, by Proposition 5.2 it is su�cient to assume that G has a single source. Let �G

and �H be planar representations, with designated outer faces, satisfying Condition

3.3.

Form a planar representation �0 of G0, by replacing (u; v) by �H in �G. The

result is planar, and has a well-de�ned outer face. We need that �0 satis�es Condition

3.3. As in the previous proof, it is easy to show that w is a sink on the outer face of

�0w whenever it is a sink on the outer face of �Gw (respectively �Hw ).

This construction can be viewed as replacing a directed edge in an upward plane

drawing of G with another upward plane drawing of H which is, in some sense,

\topologically equivalent" to an edge within the drawing of G.

Lemma 5.6. Let G be a DAG which has an upward planar representation where

the cyclic edge order about vertex v is e0; : : : ; ek�1 (vertices v0; : : : vk�1). Let G
0
be

the DAG formed by splitting v into two vertices: v
0
incident with edges ei; : : : ; ej, and

v
00
incident with edges ej+1; : : : ; ei�1 (i 6= j, arithmetic mod k). Then G

0
is upward

planar. If G had a single source, and i and j are such that each of v
0
and v

00
retain

at least one incoming edge, then the resulting G
0
is also a single-source digraph. (See

Figure 3(d).)

Proof. The last statement is clearly true; no new sources can be added by the

construction if each new vertex has an incoming edge. Again it is su�cient to show

the �rst part for single-source G, since the resulting digraph is otherwise a subgraph of

the construction applied to G� (of Proposition 5.2). Let � be a planar representation

for G satisfying Condition 3.3.

Without loss of generality, assume that the construction does not make v0 a source

unless v was, itself, a source. We prove the result for G00 = G
0 + (v0; v00)|it is easy

to augment �0 (the planar representation formed by separating v into v0 and v00 in �)

to �00 with the edge (v0; v00) as v0 and v
00 share a face. The construction of �00 from �

preserves planarity and cannot introduce a dicycle; it remains to show Condition 3.3

holds for G00 and �00. The set of faces in �00 is is identical to that of �, save for the

two new faces sharing (v0; v00), so Condition 3.3 is satis�ed for all w not incident from

either v0 or v00. Any vi incident from v
0 or v00 (via edge ei) is clearly on the outer

face of �00vi whenever it is on the outer face of �vi , since the construction can only add

vertices to an outer face, never remove them.

6. Separation into Tri-Connected Components. The algorithm of Section

4 tests for upward planarity of a single-source DAG G starting from a given planar

representation and outer face of G. In principle, we could apply this test to all planar

representations of G, but this would take exponential time. In order to avoid this, we
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will decompose the digraph into biconnected and then into triconnected components.

Each triconnected component has a unique planar representation (see [2]), and only

a linear number of possible outer faces. We can thus test upward planarity of the

triconnected components in quadratic time using the algorithm of Section 4. Since

we will perform the splitting and merging of triconnected components in quadratic

time, the total time will then be quadratic.

To decompose G into biconnected components we use:

Lemma 6.1. A DAG G with a single source s and a cut vertex v is upward planar

i� each of the k components Hi of G (with respect to v) is upward planar.

Proof. If G is upward planar then so are its subgraphs the Hi's. For the converse,

note that if v 6= s then v is the unique source in all but one of the Hi's; and if v = s

then v is the unique source in each Hi. Apply Lemma 5.4.

DividingG into triconnected components is more complicated, because the cut-set

vertices impose restrictive structure on the merged digraph. In the biconnected case,

it is su�cient to simply test each component separately, since biconnected components

do not interact in the combined drawing. The analogous approach for triconnected

components would be to add a new edge between the vertices of the cutset in each com-

ponent, then perform the test recursively. This, however, does not su�ce for upward

planarity, as illustrated by the two examples in Figure 4. (Recall our convention that

direction arrow-heads are assumed to be \upward" unless otherwise speci�ed.) In (a),

the union of the digraphs is upward planar, but adding the edge (u; v) to each makes

the second component non-upward-planar. In (b), the digraph is non-upward-planar,

but each of the components is upward planar with (u; v) added.

u u

v

u
(a) (b)

v v

u

v

Fig. 4. Added complication of 2-vertex cut-sets.

We will �nd it convenient to split the digraph G into exactly two pieces at a

separation pair fu; vg, where one of these pieces, E, is a component with respect to

the separation pair, and the other piece, F , is the union of the remaining components.

This forces each piece to �t into one face of the embedding of the other piece:

Lemma 6.2. For G, E;F as above, let � be a plane embedding of G, and let �E
and �F be the embeddings induced on E and F , respectively. Then in �, all of E lies

in a single face of �F , and all of F lies in a single face of �E . Furthermore, at least

one of E, F , must lie in the outer face of �F ;�E, respectively.

Proof. Any distinct vertices x and y in E, neither being u or v, must share a

path in E which avoids both u and v (lies entirely within E). Hence, for � a plane

embedding of G and �E and �F the respective sub-embeddings of E and F , if vertices

x and y of E are in di�erent faces of �F they could not share a path which avoids

both u and v without violating planarity. Clearly, also, one of E, F must have two

vertices on the outer face of the total drawing � (which has at least 3 vertices) and

hence must lie entirely in the outer face of the other sub-drawing.

We will test upward planarity of a biconnected digraph G by breaking it at a

cut-set into pieces E and F as above, and looking for upward planar embeddings �E
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and �F that �t together as in Lemma 6.2.

We need a face in �E that contains u and v and is the right \shape" to accom-

modate the \shape" of �F ; and we need a face in �F that contains u and v and is the

right \shape" to accommodate the \shape" of �E . (Figure 4(b) showed an example

where these conditions fail.) These conditions will be enforced by adding a \marker"

connecting u and v to E (F , respectively) that captures the \shape" of �F (�E , re-

spectively), and forces u and v to lie in a common face. For example, the simplest

case is when u is the source and v is the sink of F ; then the marker representing �F
in E is a single (u; v) edge.

Besides playing the primary role described above, the markers will also be used to

make the two components 3-connected, and single-source, thus allowing us to recurse

on smaller subproblems. The markers we are interested in are shown in Figure 5.

tw
v

vtwvu

uvtuvts MM M M

vuws uu

Fig. 5. Marker Graphs.

We need one other main idea. The last statement of Lemma 6.2 is that one of

E, F , must lie in the outer face of �F , �E , respectively. For undirected digraphs this

causes no problem, since any face can be made the outer one. However, for upward

planarity, this condition complicates things. The situation is simpli�ed when s 6= u; v.

In this case we will take E to be the fu; vg component containing s, and so �E must

lie in the outer face of �F . When s 2 fu; vg we must do extra work to decide the

\outer" component.

Having determined or decided that �E must lie in the outer face of �F , we know

that u and v must be on the outer face of �F . Thus our algorithm will solve the more

general problem of testing upward planarity under the condition that some speci�ed

set X of vertices, called the \outer" set, must lie on the outer face.

To summarize, given a biconnected digraph G and an \outer" set of vertices X,

we break G at a cut set fu; vg into one component E containing s, and the union of

the remaining components F . We add appropriate markers to E and F , specify their

\outer" sets, and recurse. We must prove that G has an upward planar embedding

with its \outer" set on the outer face i� the smaller digraphs do.

The details and proofs of this plan make up the remainder of this section. We

will consider three cases separately: when u and v are incomparable; when u and v

are comparable with s < u < v; and when u and v are comparable with u = s.

An important note to make at this time is that the markers, except for Muv, are

subgraphs attached at only two vertices, which means that fu; vg will still constitute
a cut-set. For the purposes of determining cut-sets, and making recursive calls, the

markers should be treated as distinguished edges|a single edge labelled to indicate

its role. As long as the type of marker is identi�ed, the algorithm can continue to treat

the vertices of attachment as source, sink or neither, as appropriate for the particular

operation.

6.1. Cut-set fu; vg; u and v are incomparable. Here we consider vertex cut-

sets fu; vg which are incomparable (then neither is s). We divide the digraph G
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at fu; vg into two subgraphs|the source component E (the one component which

contains the source s), and the union of the remaining components F .

First we need some preliminary results:

Proposition 6.3. If G is a connected DAG with exactly two sources u and v,

then there exists some wt such that two vertex disjoint (except at wt) directed paths

u
+
!wt and v

+
!wt exist in G.

Proof. Let G be such a DAG and let P be an undirected path from u to v. Note

that every x in P is comparable with either u or v, otherwise G has more than two

sources. Follow P from u to the �rst node x (following y on P ) incomparable with u

(in G). Then x is comparable with v and (x; y) is an edge in G (otherwise u < x), so

y is also comparable with v. Taking the �rst common vertex in the paths u
+
!y and

v
+
!y gives wt.

The following result shows the existence of lower bounds and upper bounds (in

the partial order corresponding to G) under certain conditions. This allows us to

prove the necessity conditions in Theorem 6.5 (to come).

Lemma 6.4. If G is a biconnected DAG with a single source s, and u and v are

incomparable vertices in G, then there exists some ws such that two vertex disjoint

(except at ws) directed paths ws
+
!u and ws

+
!v exist in G. If fu; vg is a cut-set in

G, then there also exists some wt such that two vertex disjoint (except at wt) directed

paths u
+
!wt and v

+
!wt exist in G.

Proof. Since G is a single source digraph, there exist directed paths from s to u

and s to v in G. Taking the last common vertex in these paths gives ws.

For the existence of wt, let u and v be an incomparable separation pair ofG. Since

fu; vg cuts G into at least two connected components, any non-source component H

has u and v as its (exactly) two sources, and the result follows from Proposition 6.3.

We are now ready to proceed with the statement of the �rst main result of the

decomposition.

Theorem 6.5. Let G be a biconnected directed acyclic digraph with a single

source s and let X = fxig � V (G) be a set of vertices. Let fu; vg be a separation pair

of G, with u and v incomparable. Let E be the connected component of G with respect

to fu; vg containing s, and F be the union of all other components. Then, G admits

an upward plane drawing with all vertices of X on the outer face if and only if

(i) E
0 = E [Mt admits an upward plane drawing with all vertices of X in E on

the outer face, and wt on the outer face if some x 2 X is contained in F .

(ii) F
0 = F [Ms admits an upward plane drawing with all vertices of X in F on

the outer face.

Here, as in the remaining cases, the proof will have the same basic avour. The

necessity of the marker-conditions will follow from the existence of the corresponding

marker `within' (i.e. homeomorphic to a subgraph of) the companion component. The

su�ciency will be shown by applying the properties of an upward planar representa-

tion from Section 4 to combine upward planar representations for the two subproblems

into a single upward planar representation.

Proof. (Necessity): Suppose G admits an upward planar drawing (representation)

� with all xi 2 X on the outer face. Follow Figure 6.

Since u and v are incomparable, there exists a ws and vertex-disjoint directed

paths ws
+
! u and ws

+
! v in G by Lemma 6.4; speci�cally, these must be in E if G

has a single source. Then F
0 = F [ f(ws; u); (ws; v)g is homeomorphic to a subgraph
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of G and hence upward planar itself. F
0 can be obtained from G by deleting and

contracting E to its marker|this will not decrease the set of vertices on the outer

face. Thus, since � has all the xi's of F on its outer face, F 0 has an upward planar

drawing with all vertices of X in F on the outer face. We have (ii).

Similarly, there exists some wt in F such that E [f(u;wt); (v; wt)g is homeomor-

phic to a subgraph of G, so E
0 is upward planar. As above, any xi in E and also on

the outer face of � will be on the outer face of the subdrawing formed by �E and the

u
+
!wt; v

+
!wt paths. By Lemma 6.2, �F must lie entirely within one face of �E , so

if some xi in F is on the outer face of the drawing �, then the portion of the drawing

formed by the u
+
!wt and v

+
!wt paths (hence wt itself) must be in the outer face of

the sub-drawing �E , giving (i).

s
x2

xkkkkx

u
v

wt

E

x1

u v

w

F

xx kkk

F

sw

vu

x2
1x

kx

tw

v
u

E

3

(a) No xi's in F (b) xi's in F

Fig. 6. Merging E and F ; cut-set fu; vg incomparable.

(Su�ciency): Suppose E0 and F
0 admit upward planar representations satisfying

(i) and (ii). Identifying the single source ws of F
0 and wt in E

0 (call the new vertex w)

as per Lemma5.4, the result G0 is upward planar. Splitting w into wl with the leftmost

two vertices and wr with the rightmost two vertices (Lemma 5.6), and contracting the

(wl; u) and (wl; v) edges (Lemma 5.3) gives exactly G, which is hence upward planar.

The construction is illustrated in Figure 7.

Lemma
5.4

Lemma Lemma
5.15.2

w
w

w

s

t

Fig. 7. Merge construction; fu; vg incomparable.

For the su�ciency of the xi conditions, we notice that all non-marker vertices of

X on the outer face of the E0 drawing are also on the outer face of the constructed

drawing. If F contains no xi this is su�cient; otherwise wt being on the outer face of

E
0 guarantees that the non-marker vertices of X in F

0 are also on the outer face of

the result.

6.2. Cut-set fu; vg, where u < v, u 6= s. Here we consider any other vertex

cut-sets not involving the source s. We again divide G into the source component E

and the union of the remaining components F . Note that v can be a source in E, as

long as there is a u to v path in F .
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An additional preliminary result will be useful.

Lemma 6.6. If G is a biconnected DAG with a single source s and cut-set fu; vg,
where u < v in G and u 6= s, then in any non-source component H of G with respect

to fu; vg, where deg
+
v > 0, there exists some wt such that u

+
!wt and v

+
!wt are

vertex disjoint directed paths in H.

Proof. No vertex other than u and v can be a source in H, otherwise G has more

than one source; and u is always a source in H. If v is also a source, then we are done

by Proposition 6.3.

If v is not a source, let w 2 H be a vertex dominated by v. G is biconnected,

so there are two vertex disjoint u
+
!w undirected paths in G. But u and v are cut-

vertices in G, so at least one of the paths P lies completely within H and does not

contain v (as w is in H and the only exit points from H are u and v). Every x on

P is comparable with either u or v, or else G has more than one source. Find the

last vertex y on P which has a u
+
! y path (in G) without v. If y = w, then we are

done. Otherwise, the vertex x following y on P has any u
+
!x path necessarily going

through v. Then there exist directed paths v
+
!x, u

+
!x with the latter not containing

v so the �rst common vertex on these paths provides a wt.

We can now continue with the second main result of the decomposition.

Theorem 6.7. Let G be a biconnected directed acyclic digraph with a single

source s, and let X = fxig � V (G) be a set of vertices. Let fu; vg be a separation

pair of G with u < v in G and u 6= s. Let E be the source component of G with respect

to fu; vg and F be the union of all other components. Then, G admits an upward

plane drawing with all vertices of X on the outer face if and only if

(i) E
0 = (E [F -marker) admits an upward plane drawing with all vertices of X

in E on the outer face and wt (if it exists, otherwise the edge (u; v)) on the

outer face if some x 2 X is contained in F .

(ii) F
0 = (F [ E-marker) admits an upward plane drawing with wt (if it exists,

otherwise the edge (u; v)) and all vertices of X in F on the outer face.

where

F -marker =

8<
:

Mt if v is a source in F

Muv if v is a sink in F

Muvt otherwise.

and

E-marker =

�
Mt if v is a source in E

Muv otherwise.

Proof. (Necessity) Suppose G admits an upward plane drawing with all xi 2 X

on the outer face. Follow Figure 8.

(Necessity of condition (i)): If v is a source in F , then there exists some wt in F

and vertex disjoint paths u
+
!wt and v

+
!wt by Proposition 6.3; so E

0 = E [Mt is

homeomorphic to a subgraph of G and is upward planar. If v is a sink in F , then u

is the single source of F , as only u and v are possible sources. Thus, in F , there is

a path u
+
!v, so E

0 = E [Muv is homeomorphic to a subgraph of G and is upward

planar. If v is neither a source nor a sink in F then, by Lemma 6.6, there is also some

wt > v and disjoint directed paths u
+
!wt and v

+
!wt in G. Since v is a non-source
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in F , there is also a u
+
! v path in F . This path crosses the u

+
!wt path at some

latest vertex z on that path, so E [ (u
�

! z) [ (z
+
! v) [ (z

+
! wt) [ (v

+
! wt) is a

subgraph of G and hence upward planar. Note that these four paths are disjoint.

Since z has in-degree one we can contract the u
�

! z path to u without destroying

upward planarity, by Lemma 5.3, so E[f(u; v); (u;wt); (v; wt)g has an upward planar

subdivision and is upward planar itself. By Lemma 6.2 F lies in a single face of �E ,

so no other vertices lie inside the u; v; wt triangle, and the extra edges and vertex for

Muvt can be added without destroying planarity3. If some xi is in F then, by the

same argument as Theorem 6.5, all of F must be in the outer face of �E . The marker,

hence wt or the (u; v) edge as appropriate, is therefore in the outer face of the drawing

induced by E on �.

(Necessity of condition (ii)): If v is a source in E, then, by Proposition 6.3,

there are vertex disjoint paths s
+
! wt and v

+
! wt in E. There must be an s

+
! u

path in E, otherwise there is either a second source (u is a source in F , so it cannot

also be a source in E) or a cycle in G (u < v in G, so there can be no v
+
! u

directed path in E). Let z be the last vertex common to paths s
+
! u and s

+
! wt.

Then, F [f(z; u); (z; wt); (v; wt)g is homeomorphic to a subgraph of G and is upward

planar. Since deg�u = 1 (in this digraph), the edge (z; u) can be contracted without

destroying upward planarity, by Lemma 5.3, and F
0 = F [Mt is upward planar.

Otherwise (v a non-source), if u < v in E, then F
0 = F [Muv is homeomorphic

to a subgraph of G and, hence, is upward planar. If u and v are incomparable in E,

then they share a greatest lower bound ws, by Lemma 6.4, and F [ f(ws; u); (ws; v)g
is upward planar. Again, deg�u = 1 in F , so the (ws; u) edge can be contracted to

give F 0 = F [Muv.

The requirement for the E-marker to be on the outer face of � induced by F

follows as before: �E lies entirely within one face of �F , and this is necessarily the

outer face since E contains the source s.

(Su�ciency) Suppose E
0 and F

0 admit upward plane drawings meeting the re-

quirements (i) and (ii).

Case 1: v is a source in F : (See Figure 8(a).) If v is a source in F it cannot at the

same time be a source in E, as u < v in either E or F . Thus F 0 = F [ (u; v) is upward
planar with single source u. Using Lemma 5.4, add F

0 (with u and v renamed as u0

and v0) to E0, identifying u0 with wt. We can do this so that edges (v; wt) and (wt; v
0)

are consecutive in the cyclic order about wt. Using Lemma 5.6, split wt by making

these two edges incident with a new vertex u1 and the remaining edges incident with

a new vertex u2. Now v
0 and u1 have in-degree 1, so use Lemma 5.3 to contract their

in-edges, thus identifying v and v0. Vertex u2 has in-degree 1 so contract (u; u2). The

result is the digraph G, and thus G is upward planar.

Case 2: v is a sink in F : (The two possibilities are illustrated in Figure 8 (b)

and (c).) If v is a non-source in E, then F
0 = F [ (u; v) is upward planar with u and

v on the outer face by assumption. If v is a source in E, then F
0 = F [Mt is upward

planar with wt on the outer face. In either case F is upward planar with single source

u and sink v on the outer face. By Lemma 5.5 we can add F to E
0 in place of the

(u; v) edge in E
0, and the result, G, is upward planar.

Case 3: v is a non-source/sink in F : (See Figure 8(d).) Suppose v is a source in

E. Then F
0 = F [Mt is upward planar with the sink wt on the outer face. Using

Lemma 5.5, add F 0 (renaming u and v to u0 and v
0 respectively) to E0 in place of the

3 The point of adding these edges is to �x the face in E for the su�ciency conditions.
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u

F’ E’
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v
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v

(a) v a source in F (b) v a sink in F , non-source in E

F’
E’

u

v
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v
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E’

t
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v

(c) v a sink in F , source in E (d) v a non-source/sink in F , source in E

v tttt

uuu

w

v

F’ E’

(e) v a non-source/sink in F , non-source in E

Fig. 8. Merging E and F ; cut-set fu; vg and u < v.

edge (u; v), identifying u0 with u and wt with v. Throw away the edge (u;wt) and the

remaining marker edges of E0. Vertex v now has in-degree 1 so the edge (v0; v) can be

contracted by Lemma 5.3, and the result, G, is upward planar. Note that the Muvt

marker attached to E0 is stronger than we actually require here (Muv would do), but

it necessarily does exist (as previously proven) and is needed for the next part of this

case.

Suppose then that v is a non-source in E. Consider the upward planar represen-

tation of E0 and throw away the marker edges, save for (u;wt); (v; wt); (u; v), which

then form a face. F 0 = F [ (u; v) is upward planar with u and v on the outer face. Let
z be some sink on the outer face, and add the edge (v; z) to obtain F 00, upward planar

with u; v; z on the outer face. Using Lemma 5.5, add F
00 (with u and v renamed to

u
0 and v

0) to E0 in place of the edge (u;wt), identifying u
0 with u and z with wt. Do

this so that v0 and v share the face of edges (u; v0); (v0; z); (u; v); (v; z). Clearly we can
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now identify the vertices v and v
0. We obtain an upward planar digraph containing

G as a subgraph. See Figure 8(e).

As in the proof of Theorem 6.5 we notice that all vertices on the outer face of E0

are necessarily on the outer face of the combined drawing, and if some xi exists in

F , then it is on the outer face of F 0, and is forced to the outer face of the combined

drawing by the second part of condition (i).

6.3. Cut-set fs; vg. As mentioned in the introduction to Section 6 (see also

Lemma 6.2), it is important to be able to distinguish the \inner" and \outer" compo-

nents. The inner component will be embedded in a face of the outer one, and thus the

inner component will have to have the marker on its outer face since this marker is

a proxy for the outer component. If we have to check each component as a potential

inner component, we must recursively solve two subproblems for each component, and

an exponential time blowup results.

Until now, the outer component has been uniquely identi�ed as the source compo-

nent, since that component cannot lie within an internal face of any other component.

If we have a cut-set of the form fs; vg where s is the source, then we lose this restric-

tion, so we handle it instead by requiring one of the components, E, to be 3-connected

so that deciding if it can be the inner face does not require recursive calls. To decide

if E can be the inner face we need to test if it satis�es the role of E in the previ-

ous theorem|i.e. has an upward planar representation with the marker on its outer

face. This can be done in linear time using the algorithm of Section 4. If G has only

cut-sets of the form fs; vg, then, for at least one such cut-set, one of the components

will be triconnected. Given the list of cut-sets we can �nd such a cut-set and such a

component in linear time using depth-�rst search.

We capture these ideas in terms of two theorems. One is applicable if the tri-

connected component, E, can be the inner component, and one if it cannot. E \can

be" the inner component if and only if it satis�es the same conditions that the inner

component F satis�ed in the previous Theorem 6.7. The similarity of both of these

theorems to Theorem 6.7 should be clear. Note that in the statement of these the-

orems, we continue to use u (redundant since u = s) for consistency with previous

usage.

Theorem 6.8. Let G be a biconnected DAG with a single source s, and let

X = fxig � V (G) be a set of vertices. Let fu; vg be a separation pair of G where

u = s, E be a 3-connected component of G with respect to fu; vg, and F be the union

of all other components of G with respect to fu; vg. If
E
0 = (E [ F -marker) admits an upward plane drawing with wt (if it exists,

otherwise the edge (u; v)) and all vertices of X in E on the outer face,

then G admits an upward plane drawing with all vertices of X on the outer face if

and only if

(i) F
0 = (F [E-marker) admits an upward plane drawing with all vertices of X

in F on the outer face, and wt (if it exists, otherwise the edge (u; v)) also on

the outer face if some x 2 X contained in E.

where

E-marker =

8<
:

Mt if v is a source in E

Muv if v is a sink in E

Muvt otherwise.

and
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F -marker =

�
Mt if v is a source in F

Muv otherwise.

Proof. The proof is similar to the necessity of Theorem 6.7 with some (simplifying)

modi�cations. We will be more brief except where di�erences exist. Note that F

corresponds to S and E corresponds to H of the previous notation. The new notation

is to emphasize that neither is the unique source-component.

(Necessity): Suppose G has an upward planar representation � with all xi's on the

outer face, and that some upward planar representation �E0 satis�es the precondition

for E0. We need to show that the condition (i) holds:

If v is a source in E then there exist vertex disjoint paths u
+
!wt and v

+
!wt in E

by Proposition 6.3, so F
0 = F [Mt is homeomorphic to a subgraph of G and hence

upward planar. If v is a sink in E, then u is the only source so u
+
! v exists in E

and F
0 = F [Muv is upward planar. Otherwise, v is neither and there exist vertex

disjoint u
+
!v, v

+
!wt and u

+
!wt paths in E by Lemma 6.6 and the fact that u = s

is the single source in E, so F 0 = F [ f(u; v); (u;wt); (v; wt)g is upward planar. Since

these three edges are a face in the representation of this digraph, the required extra

edges and vertices can be added and the result is upward planar. The necessity of the

xi conditions follows as before, as, if some vertex of E is required on the outer face,

then all of E is.

(Su�ciency): The su�ciency proof is exactly that of Theorem 6.7 (with F � S

and E � H). This is as the various constructions are not dependent on u di�ering

from s.

Theorem 6.9. Let G be a biconnected DAG with a single source s and let X =

fxig � V (G) be a set of vertices. Let fu; vg be a separation pair of G where u = s,

E be a 3-connected component of G with respect to fu; vg, and F be the union of all

other components of G with respect to fu; vg. If it is not true that

E
� = (E [F �

-marker) admits an upward plane drawing with wt (if it exists,

otherwise the edge (u; v)) and all vertices of X in E on the outer face,

where

F
�
-marker =

�
Mt if v is a source in F

Muv otherwise.

then G admits an upward plane drawing with all vertices of X on the outer face if

and only if

(i) There is no x 2 X contained in F .

(ii) F
0 = (F [ E-marker) admits an upward plane drawing with wt (if it exists,

otherwise the edge (u; v)) on the outer face.

(iii) E
0 = (E [F -marker) admits an upward plane drawing with all x 2 X on the

outer face,

where

E-marker =

�
Mt if v is a source in E

Muv otherwise.

and

F -marker =

8<
:

Mt if v is a source in F

Muv if v is a sink in F

Muvt otherwise.
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Proof. (outline) Since E has no upward plane drawing with u and v both appro-

priately on the outer face, by Lemma 6.2 the only way G could be upward planar is if

F can be embedded within an internal (hence the new condition (i)) face of E. Thus,

the outer face of G is �xed as being some face of the drawing of E0 not containing v.

It remains to ensure that there is some embedding of F which will �t the structural

constraints of the shape of a face shared by s and v in the drawing of E. These are

exactly the conditions previously required by E for embedding within the drawing of

F . The remainder of the proof does not rely on the triconnectedness of either compo-

nent, and is similar to the proof of Theorem 6.8 with the roles of E and F reversed.

6.4. The Algorithm. Here we briey summarize our algorithm and discuss its

complexity.

Given DAG G, we �rst isolate biconnected components using the algorithm dis-

cussed in [23]. By Lemma 6.1 these can be tested independently. This step requires

�(n) time, plus the time to test each piece independently.

For a biconnected DAG G, we use the triconnected components algorithm of [13]

to �nd a list of separation pairs which breaks G into triconnected components (�(n)

time). This list can be rearranged in linear time so that separation pairs involving

the source appear last.

For each cut-set fu; vg where u 6= s, isolate the source component using depth-

�rst search (�(n) time), apply the appropriate theorem (6.5 or 6.7) to add markers

and partition X, then recurse. The required time is given by

T (n) = T (k) + T (n� k) +O(n) (k � 1);

which is O(n2), assuming we can do the base-case on the smaller triconnected digraphs

in O(n2) time.

Given a biconnected G with cut-set fs; vg, isolate a triconnected component

(again with DFS) as E, and test, using the Algorithm of Section 4, to see if has an

upward plane embedding as speci�ed in Theorem 6.8; this requires only O(n) time,

since a triconnected digraph has at most 2 embeddings with two speci�ed vertices on

the outer face. If E passes, continue with testing F as per Theorem 6.8. Otherwise

the operation is absorbed into the O(n) term in the recurrence above, and we apply

Theorem 6.9, forcing F to have u and v on the outer face. The previous recurrence

and bound apply to this step.

Given a triconnected G, simply apply the algorithm of Section 4 to all possible

outer faces, and test for upward planarity in O(n2) time.

If we wish to output our G embedded into a planar s-t digraph (for drawing), we

must �nd the necessary set of augmenting edges. This can be done by simply running

the �nal upward planar representation through the algorithm of Section 4.

The entire algorithm operates in O(n2) time, and correctness follows from the

cited results. We have

Theorem 6.10. Testing a single-source acyclic digraph for upward planarity,

and outputting an upward planar representation when it exists, can be done in O(n2)

time.

7. Conclusions and Further Work. We have given a linear time algorithm

to test whether a given single-source digraph has an upward plane drawing strongly

equivalent to a given plane drawing, and give a representation for this drawing if it
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exists. This provides, in combination with the decomposition results of Sections 5 and

6, an e�cient O(n2) algorithm to test upward planarity of an arbitrary single-source

digraph. We have also given a combinatorial characterization of single-source upward

planar digraphs which provides new insights into their structure.

A lower bound for the single-source upward planarity problem is not known,

although we believe that it may be possible to perform the entire test in sub-quadratic

(perhaps linear) time. An obvious extension of this work would be to �nd such an

algorithm or prove a lower bound.

This paper has concentrated on the issues of e�ciently testing for an upward plane

drawing. However, with the planar representation which results, we can augment

the digraph to a planar s-t digraph with our algorithm of Section 4, then apply

the algorithm of Di Battista and Tamassia to generate an actual drawing in O(n)

arithmetic steps, or O(n logn) arithmetic steps for a straight-line drawing [7]. Since an

actual drawing must specify physical coordinates for the vertices, it becomes relevant

to ask how big the integer grid must be or, equivalently, how much real precision

is required. If bends are allowed an O(n) by O(n) grid su�ces [7], similar to the

case of undirected planar graphs [4, 20]. There is no upper bound known on the

worst case size requirement for straight-line upward plane drawings, but Di Battista,

Tamassia and Tollis [8] have exhibited a class of upward planar digraphs requiring

an 
(2n) sized integer grid. Thus, any straight-line drawing algorithm is output

sensitive|individual coordinates could require 
(n) bits causing the output size to

dominate the arithmetic time. Without an upper bound on the required area, it is

not known if the drawing algorithm remains polynomial time|any digraph requiring

doubly-exponential coordinate size would then need exponential time. It would be

interesting to characterize some classes of digraphs which permit straight-line upward

plane drawings on a polynomially sized grid. Guaranteeing minimumarea in all cases

is, however, NP-hard [9].

The more general problem, testing upward planarity of an arbitrary acyclic di-

graph, has recently been shown to be NP-complete [12]. Another recent development

by Bertolazzi and Di Battista [1] shows how to e�ciently test a triconnected (multi-

source, multi-sink) DAG for upward planarity, a more general analogue of the result

in Section 4.
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