ECE552 Computer Architecture Fall 2017

Lab 0: SimpleScalar Simulator

1 Purpose and Overview

The purpose of Lab 0 is to familiarize students with the SimpleScalar simulation suite. SimpleScalar
is one of the simulation tools you will use throughout the semester. Other tools will be introduced
in the lab as appropriate. Students will learn how to compile the simulator, simulate a precompiled
benchmark, compile a sample test code, and modify the simulator to extract simple statistics from
a dynamic instruction stream.

Although students do not need to hand in this pre-assignment, everyone is expected to go
through this document and run through all the examples. You will receive 1 lab mark for attending
the first lab, finding a lab partner and being assigned a time-slot. You are encouraged to stay in
lab to work through this handout and have your questions answered by the TA. Understanding the
walk-through example in Section [6] will be an excellent practice for Lab 1. Investing a little bit of
time now will save time when doing the marked assignments.

2 Reading

Please read the document called The SimpleScalar Toolset, Version 2.0 which is available in PDF
format in the Labs section on Blackboard. Although the document describes version 2.0, we will be
using Version 3.0 (revision d) of the SimpleScalar toolset. You may skip Section 2 of the document
regarding installing and running the simulator, as we have already installed SimpleScalar on the ug
machines (e.g., ugl50.eecg) and we will cover running SimpleScalar in this laHﬂ Also, note that the
version 2.0 document refers to the file ss.def which has been renamed to machine.def in version
3.0.
You should have also read the lab policy handout available on Blackboard.

3 Introduction

There are three basic components in an architectural simulation suite: 1) the simulator, 2) the
compiler, and 3) the executable or source of instructions.

1. Our architectural simulator is SimpleScalar and a gzipped tar file that contains the Sim-
pleScalar simulator is located at /cad2/ece552f/simplesim-3.0d-ece552f-assignl.tgz.
The simulator is configured to simulate the PISA architecture. The PISA architecture and
instruction set were created by SimpleScalar designers to be similar to MIPS.

2. Our compiler, provided with SimpleScalar, is a version of gcc that has been modified to
generate program files using the PISA instruction set.The compiler is located at
/cad2/eceb52f/compiler/bin/ssbig-na-sstrix-gcc.

3. As a source of instructions, we can use any C code that can be compiled by the gcc compiler.
We have some pre-compiled binaries of popular benchmark programs located in the directory
/cad2/eceb52f /benchmarks. The binaries have the ending .pisa-big to indicate they were

You are free to do development on your own computer but you must ensure that your code compiles and runs
correctly on the ug machines as these will be used for marking. Furthermore, the TAs are unable to provide support
for issues related to environment and setup on non-ug machines.

1of

ECE552 Computer Architecture Fall 2017

compiled for the big-endian format of the PISA architecture. The same directory also contains
EIO traces.

4 SimpleScalar Suite

As the document The SimpleScalar Toolset, Version 2.0 describes, there are a several different ver-
sions of the SimpleScalar simulator, each with a different purpose. All the SimpleScalar simulators
are erecution-driven in that they actually simulate the execution of each instruction. This is in
contrast to trace-driven simulators that use a trace of a previous execution to retrace the path
followed by the program.

SimpleScalar includes both functional simulators and a performance simulator. A functional
simulator runs a program just like a microprocessor supporting the same instruction set would,
by taking program inputs and converting them to program outputs. However, because it does not
simulate each individual processor cycle, we cannot precisely predict the speed of the processor.
Functional simulators are useful when developing a new instruction set architecture as they are fast.
Also, we can use functional simulators to learn about various instruction streams. For example, we
may like to find out how often branch instructions occur, or how often dependencies exist between
instructions. In addition to being a useful tool for computer architects, the speed of functional
simulators allows compiler writers and application developers to test their work without actually
first building a microprocessor.

A performance (or timing) simulator measures the performance of a microprocessor design by
keeping track of individual clock cycles. Thus we can use performance simulation to find instructions
per cycle (IPC), or its inverse (CPI). The drawback of maintaining such detailed timing information
is much slower execution time compared to a functional simulator. In the SimpleScalar suite,
the fastest functional simulator can simulate instructions 25 times faster than the performance
simulator.

We usually prefer to use a functional simulator to make a measurement or perform an exper-
iment. Sometimes, we can use a clever method or accept some inaccuracy in our measurements
to avoid the use of a performance simulator while still making useful measurements. We try to
leave the performance simulator as a last resort, since simulation time is long. Of course, in some
cases, we have no choice but to use a performance simulator. Choosing between a functional and
performance simulator and instrumenting them to extract results is part of the art of architectural
simulation and design.

In this course we will primarily modify functional simulators to perform experiments and extract
measurements.

The basic simulators included with SimpleScalar are:

1. sim-safe: A functional simulator with safety checks and a simple built-in debugger.
We will be using sim-safe in Labs 1 and 3.

2. sim-fast: The same as sim-safe but with no safety checks and no debugger, intended to
be as fast as possible.

3. sim-cache: A functional simulator used for simulating the effects of the cache configuration.
We will be using sim-cache in Lab 5.

4. sim-profile: A functional simulator that generates profiling statistics about the instruction
stream.

5. sim-outorder: A performance simulator that simulates an out-of-order architecture.

2of

ECE552 Computer Architecture Fall 2017

5 SimpleScalar Basics

In this section, students will learn how to compile the SimpleScalar simulator, run a pre-compiled
benchmark and an EIO trace, and compile a sample microbenchmark program.

5.1 Compiling Simplescalar

To compile SimpleScalar execute the following commands in your ug machine account.

cd ~

mkdir ecebb2

chmod go-rwx eceb52

cd ecebb2

mkdir preassignment

cd preassignment

cp /cad2/ecebb2f/simplesim-3.0d-ece552f-assignl.tgz .
tar -zxf simplesim-3.0d-ecebb52f-assignl.tgz

cd simplesim-3.0d-ecebb2f-assignl

make sim-safe

1ls -1 sim-safe

Assuming the above completed with no errors, you should now have the sim-safe executable
in the current directory. Now we will run a pre-compiled benchmark and compare the simulator
output to the expected output.

5.2 Simulating the go benchmark

Simulate the go benchmark by executing the following:

cd ~/ecebb2/preassignment/simplesim-3.0d-ece552f-assignl
cp /cad2/ecebb2f/benchmarks/go.pisa-big .
cp /cad2/ecebb52f/benchmarks/2stone9.in .

sim-safe go.pisa-big 50 9 2stone9.in > go.out

This will simulate the program go.pisa-big (compiled for big-endian PISA) using sim-safe
and will redirect the output from the program go.pisa-big to the file go.out (by using the >’

3 of!!

ECE552 Computer Architecture Fall 2017

character). Running this simulation will take up to several minutes depending on the load of your
ug machine (use the uptime command to see the load; man uptime will give you the manual for the
command). When the simulation completes, you will see some information about the simulation
printed to the screen, like the number of instructions, the number of loads and stores, etc. We
can redirect the simulator output to a file by using the -redir:sim flag of sim-safe. We can also
eliminate the > (redirect) from the command line by using the -redir:prog flag of sim-safe.
We use these flags and re-run the simulation. (Note that for formatting purposes, the sim-safe
command below is broken into two lines, but should be entered as a single line. For the rest of this
document, we use the convention that indenting the second line of a command indicates that there
should be no line break when typing it.)

cd ~“/ecebb2/preassignment/simplesim-3.0d-ece552f-assignl

sim-safe -redir:sim go.simout -redir:prog go.progout
go.pisa-big 50 9 2stone9.in

The flags and parameters for sim-safe are passed before the executable (go.pisa-big) and the
executable’s arguments. In general, we invoke sim-safe with: sim-safe [arguments] executable
[executable-arguments]. On this run, the simulator output was written to the file go.simout
and the program output of go.pisa-big was written to the file go.progout. Although, go.out
(from the previous run) and go.progout should be the same, you may notice that in these files
the value for sim num_insn (the number of simulated instructions) is different! Small variations
between different runs of the same program are possible with SimpleScalar. These variations are
limited to a few thousand instructions at most and can be made negligible by simulating at least a
hundred thousand instructions. The sources of variation are listed in the SimpleScalar FAQ file and
copied here in italics:

e Redirecting output will cause subtle changes in printf() execution
e Calls to time() and getrusage() will produce different results

o The size of your environment, which is imported into the simulated virtual memory space,
affects the starting location of a program’s stack pointer

e Small variations in floating point across platforms can affect execution

We can verify that the go.pisa-big executable has simulated successfully by comparing the
program output in the file go.progout to the expected output which is available in the file
/cad2/eceb52f /benchmarks/go.out. Verify that these file are identical by running the commands:

cd “/ecebb2/preassignment/simplesim-3.0d-eceb52f-assignl

diff go.progout /cad2/eceb52f/benchmarks/go.out

The Unix diff command should produce no output if the files are identical.

In some cases, we may not want to wait for the whole program to simulate. This is especially
true when we are in the process of modifying the simulator and testing our new code. We can use
the -max:inst flag of sim-safe to specify the maximum number of instructions to simulate. We
simulate the first 107 instructions of go.pisa-big by running:

4of

ECE552 Computer Architecture Fall 2017

cd ~/ecebb2/preassignment/simplesim-3.0d-ece552f-assignl

sim-safe -max:inst 10000000 -redir:sim go.simout -redir:prog go.progout
go.pisa-big 50 9 2stone9.in

We can verify that sim-safe is actually accepting the parameters that we pass by using the
—-dumpconfig flag, which causes sim-safe to write out the configuration to a file:

cd ~“/ecebb2/preassignment/simplesim-3.0d-ece552f-assignl

sim-safe -dumpconfig config.txt -max:inst 10000000
-redir:sim go.simout -redir:prog go.progout
go.pisa-big 50 9 2stone9.in

You can look at the file config.txt to verify that the parameters were passed correctly.

5.3 Simulating an EIO trace

To simplify benchmark execution, we use EIO traces. These are previously generated traces which
we feed to the sim-safe simulator. The following command executes an EIO trace from the gcc
benchmark.

sim-safe /cad2/eceb52f/benchmarks/gcc.eio

Running the simulator with an EIO trace eliminates the need for a binary or configuration
parameters, and makes execution 100% reproducible. For your information, the benchmark can
also be run as follows:

cp /cad2/eceb52f/benchmarks/1stmt.i .
sim-safe /cad2/eceb52f/benchmarks/ccl.pisa-big -0 1stmt.i

The aforementioned commands first copy the input data file to the working directory and then
run the simulator. You can also copy the EIO trace to your working directory and use that path
when running the benchmark.

The gce benchmark runs for about 3 x 10% instructions and takes about 5 minutes to complete
on an unloaded ug machine. Recall that the -max:inst flag of sim-safe limits the number of
simulated instructions and is useful for early testing purposes. You can verify the output of the
benchmark executable by checking with the Unix diff command the output (assembly code) file
1stmt.s against the expected output /cad2/ece552f /benchmarks/1stmt.s.ref:

diff 1stmt.s /cad2/eceb52f/benchmarks/1stmt.s.ref

5.4 Compiling a microbenchmark executable

In this section, we will compile a microbenchmark program and simulate it using sim-safe. The
C code for the microbenchmark program is listed in Figure 1 below. The program takes a number
as its argument and returns the sum of 1424 up to the argument (e.g., pass it the number 5 and
it will return the sum 15). We have a copy of this code available to save typing.

50f

ECE552 Computer Architecture Fall 2017

#include <stdio.h>

int main (int argc, char *argv[])
{

int 1i;

int sum = 0;

if (arge '= 2){

printf ("Usage: %s <count>\n", argv([0]);
exit(5);

for (i = 1; i <= atoi(argv[1]); i++){
sum += i;

printf ("Sum = %d\n", sum);

return O;

Figure 1: Microbenchmark program C source code

To compile this program for simulating in sim-safe, first copy the program to your working
directory:

cd "/ecebb2/preassignment/simplesim-3.0d-eceb52f-assignl

cp /cad2/ecebb52f/testcode/testexec.c .

Next we need to add SimpleScalar’s gcc compiler to the Unix path. The compiler has been
configured to generate big-endian code using the PISA instruction set. Run the following command
to add the compiler to your path:

set path = ($path /cad2/eceb52f/compiler/bin)

To execute this command automatically every time you open a new shell, you may want to
add the command to the appropriate place in the .cshrc file in your home directory. Now, we are
ready to compile our microbenchmark program. We will compile two versions with different levels
of optimization:

cd ~/ecebb2/preassignment/simplesim-3.0d-ece552f-assignl
ssbig-na-sstrix-gcc testexec.c -00 -o testexecO

ssbig-na-sstrix-gcc testexec.c -02 -o testexec2

We can now simulate our microbenchmark programs by running:

60f

ECE552 Computer Architecture Fall 2017

cd ~/ecebb2/preassignment/simplesim-3.0d-ece552f-assignl
./sim-safe testexecO 1000

./sim-safe testexec2 1000

Look at the dynamic instruction count (sim num_insn) reported by sim-safe. Does it vary
between the testexecO executable and the testexec2 executable? Why? Try passing different
arguments to the executables. Does the dynamic instruction count vary as you expect?

6 Modifying sim-safe

In this section, we will modify sim-safe to count the number of load instructions and the number
of data-hazards due to loads in a dynamic instruction stream. But first, we will familiarize ourselves
with the simulator. So go ahead and open the file sim-safe.c in your favourite text editor.

6.1 Understanding sim-safe’s main loop

In sim-safe the core of instruction execution occurs in the function sim main(). Find the function
sim_main(), which is at the end of the file. After a few statements in sim main() you will find an
infinite loop starting with the while (TRUE) statement. Each iteration of this loop corresponds to
the execution of one instruction. The basic operation of the simulator is to read the instruction at
address regs PC, and execute it. In the case of functional simulation (i.e., sim-safe), this means
immediately updating the registers and/or memory locations referenced by the current instruction
with the appropriate values before fetching the next instruction to execute. The loop continues
until either the instruction stream ends or the maximum instruction count is reached.

The first statement in the loop is (ignore all code that is within the #ifdef TARGET_ALPHA ...
#endif)

regs.regs_R[MD_REF_ZER0] = 0;

This statement sets register $0 to the value 0. In the PISA (and MIPS) instruction set ar-
chitecture, register $0 always has the value 0. The array regs.regs_R[] implements the general
purpose register file. Look in regs.h and regs.c if you wish to learn more. (Feel free to avoid
looking at regs.h and regs.c until you feel it is necessary. Using and modifying existing, complex
and lengthy code is a common task for both hardware and software engineers. It is good practice
to abstract away parts of unfamiliar code that are not of immediate interest.)

The next statement reads an instruction from memory:

MD_FETCH_INST(inst, mem, regs.regs_PC);

This macro is defined in machine.h, which contains many PISA-specific macros. Recall that
in C, macros are expanded by the preprocessor and then passed to the compiler. The variable
mem implements main memory. Again, you may look in memory.c if you care for details, or, for
now, think of mem as simply a very large array (it is almost that, as it is implemented via an
array of pointers pointing to 4K chunks of simulated memory. This approach is similar to page
tables, as we will learn later in the course). The above statement reads an instruction (which is
of size sizeof (md_inst_t) from the address regs.regs_PC, which is an integer that simulates the
program counter.

7of

ECE552 Computer Architecture Fall 2017

Next is a statement that keeps a tally of executed instructions along with some bookkeeping
statements. The next macro extracts the opcode field (op) from the raw instruction (inst):

MD_SET_OPCODE (op, inst);

The opcode field specifies the actions of the instruction (e.g., add, multiply, load, store, etc.).
MD_SET_OPCODE() is defined in machine.h.

Instruction execution takes places in the switch/case statement that follows. This switch state-
ment uses the extracted opcode (switch (op)) to determine what needs to be done. The code
within the switch statement probably looks weird because it is created by a series of macro expan-
sions. Don’t panic! Just keep on reading and soon it will make sense. The basic idea is that the
switch statement contains one case statement for each instruction opcode. Inside each of the case
statements are statements that simulate the instruction execution.

Below is a simplified version of the switch (op) statement with safety checking code removed,
but with all important functional code retained:

switch (op) {
#define DEFINST(OP,MSK,NAME,OPFORM,RES,FLAGS,01,02,11,12,13) \

case 0OP: \
SYMCAT (0P, _IMPL); \
break;
#include "machine.def"
default:

panic("attempted to execute a bogus opcode");

We see that first the preprocessor macro called DEFINST() is defined over several lines. The
"\" character tells the C preprocessor that the macro definition continues on the next line. The
DEFINST() macro is defined as: “case 0OP; SYMCAT(OP,_IMPL); break;”. Notice that only the
parameter OP is used from DEFINST () and the parameters MSK, NAME, OPFORM, RES, FLAGS, 01,
02, I1, I2, and I3 are unused. This is because DEFINST() is defined very generally for use in
many different versions of the simulator. For the purpose of sim-safe, only the OP parameter is
needed. In fact, we will be using some of the other parameters (01, 02, I1, I2, and I3) in our
modifications.

SYMCAT (0P, _IMPL) is a special macro that expands into OP_IMPL where OP is the first argument
passed into DEFINST (). For example, the statement SYMCAT (ADD, _IMPL) expands into ADD_IMPL().
In turn, ADD_IMPL () is treated as macro and expanded as per the definition in the file machine.def.
At this point, we have seen the definition of DEFINST () but we still have not seen the macro actually
used.

To see the DEFINST () macro actually used, look in the file machine.def, which is #include’d
at the end of the code listing above. The file machine.def contains a macro definition and a macro
call per instruction opcode. The macro definition is of the form X_IMPL where X is an opcode such
as ADD or SUB. The macro call is a call of DEFINST(X, ...).

Returning to sim main() and the switch statement, we can now see what happens when this
code passes through the preprocessor. Whenever DEFINST () is called it expands into a case element
of the switch statement. Thus, each call to DEFINST() in the machine.def expands into a case
statement that implements an opcode.

In summary, every call to DEFINST() in machine.def expands into the following code:

80f

ECE552 Computer Architecture Fall 2017

case 0OP: EXPR; break;

Then the preprocessor replaces EXPR, with the appropriate statements as defined in the file
machine.def. As a result, after preprocessing, the switch (op) statement expands into a huge
switch statement with a case element for every possible opcode. Each case element includes
the code for the appropriate instruction (from machine.def). For example, the JUMP instruction
expands to the case element (the formatting is quite ugly because of the macro preprocessing):

case JUMP :
{ (void)O0;
(regs.regs_NPC = (((regs.regs_PC) & 036000000000) |
((inst.b & Ox3ffffff) << 2)));
};

break;

You can see the full version of the expanded code by telling gcc to stop after the prepro-
cessing stage with the command: gcc -E sim-safe.c -o sim-safe.pcc. This produces the file
sim-safe.pcc. Using a text editor, search for simmain() in sim-safe.pcc and then look care-
fully at the expanded switch statement. You should be able to find the case element for the JUMP
instruction that is listed above.

The EXPR macros utilize other macros to access machine state, including the register file and
memory. These macros that access state are part of the simulator. The file sim-safe. ¢ includes ap-
propriate definitions for our purposes. For example, to read a register, EXPR uses the GPR (x) macro,
while it uses the SET_GPR(x) to write to a register. GPR(x) is defined simply as regs.regs_R[x] in
sim-safe.c. That is, to read register x, we just access the x element of the array regs.regs R[],
which implements the register file. There are other macros that deal with floating point registers
and memory, which you can find in sim-safe.c.

A more detailed description of how to use the DEFINST() macro is given at the beginning of
the file machine.def. For our purposes, it suffices to know that for the current instruction 01 and
02 are the target register numbers, while I1, I2 and I3 are the source register numbers. There
are up to 2 target registers and 3 source registers per instruction. In the PISA instruction set,
an instruction may write up to 2 registers (e.g., load double, multiply) and read up to 3 registers
(e.g., store double). The macro DNA is used to indicate that the current instruction does not use
the corresponding register (i.e., if a specific instruction writes only 1 target register then 02 will
have the value DNA). DNA stands for Does Not Access.

After the switch statement, we encounter a couple of if statements that detect faults and
report statistics. There is also one that checks whether the instruction was a load or a store
(if (MD_OP_FLAGS(op) & F_MEM)). This is also used for keeping statistics and has nothing to do
with execution. Throughout the simulator, you may notice calls to functions named dlite_....
SimpleScalar implements a simple debugger called DLite. Simply ignore these for the time being.
After all these statements, there are two statements that update the PC and a statement that checks
whether the maximum count of instructions has been reached.

/* GO TO THE NEXT INSTRUCTION */

regs.regs_PC = regs.regs_NPC;
regs.regs_NPC += sizeof (md_inst_t);

90f

ECE552 Computer Architecture Fall 2017

6.2 Counting Load Instructions

Now that we have a high-level understanding of how the simulator works, we will modify it to
count the number of load instructions in a dynamic instruction stream. Specifically, we will be
adding some code to the main loop that increments a counter if the current instruction is a load.
All necessary modifications are listed below.

1. We add a counter called sim_num_loads to the simulator. After the #include statements at
the top of sim-safe.c add the following line:

static counter_t sim_num_loads = O;

You may want to remind yourself of the purpose of the static keyword in C.

2. SimpleScalar provides an elaborate package for collecting statistics. It keeps an internal
database of counters and other statistics-related data structures. It also prints out this
database at the end of the simulation. We need to register our counter with this database so
that it is printed by sim-safe at the end of the simulation. To register our counter, go to
the sim_reg_stats() function and add the following statements to the end of the function:

stat_reg_counter(sdb, "sim_num_loads",
"total number of load instructions",
&sim_num_loads, sim_num_loads, NULL);

stat_reg_formula(sdb, "sim_load_ratio",
"load instruction fraction",
"sim_num_loads / sim_num_insn", NULL);

The first statement registers our counter with the SimpleScalar statistics database. The
second statement creates a new statistic, sim_load_ratio, and provides an equation that
SimpleScalar executes to create it. The sim num_insn counter is pre-defined in SimpleScalar,
so we are free to use it when we create our own statistics.

3. Finally, we add the code that will increment the counter every time a load instruction is
detected in the dynamic instruction stream. Go the the function sim main() and add the
following code after the switch statement (but before the end of the while (TRUE) loop):

if ((MD_OP_FLAGS(op) & F_MEM) && (MD_OP_FLAGS(op) & F_LOAD)) {
sim_num_loads++;

}

MD_OP_FLAGS () is a macro defined in machine.h that works on the current instruction’s op-
code, op, and allows us to compare to predefined constants like F_-MEM and F_LOAD (which are
also defined in machine.h) to determine the instruction type.

Save the modified version of sim-safe.c and compile it with the command make sim-safe. It
should compile with no errors.

Now that you have modified sim-safe to report the number of load instructions in the dynamic
instruction stream, re-run the go simulation and the testexec simulation from Sections

10 of

ECE552 Computer Architecture Fall 2017

Check to see that the number of loads is less than the total number of instructions. Also,
sim-safe by default reports the total number of loads and stores as sim num refs. Make sure
that sim_num loads is less than sim num refs.

Since it is easy to make a coding or a conceptual error when modifying a simulator, we should
verify that we are performing the right measurements. To do so, we create a simple contrived
example program (microbenchmark) where we can predict the results of our simulation.

6.3 Counting Load-To-Use Hazards

Now we will modify sim-safe to count the number of data hazards due to loads in a dynamic
instruction stream. For simplicity, we will call these load-to-use hazards for the rest of this
assignment. We assume a pipeline with full forwarding and bypassing.

First, we start with an overview of how we will measure the number of load-to-use hazards in
sim-safe. Every time an instruction is executed, we check whether one of its inputs is the target
of an immediately preceding load. If it is, we increment a counter of load-to-use hazards. To do
this, we will modify sim-safe to collect the source register numbers for each instruction and to
identify load instructions and their target registers. We present a step-by-step description of how
this is done:

1. We want to measure how often the target register of a load is used by the next instruction.
Here is how we are going to measure this. We will keep a record per register indicating when
was the last time the register was the target of a load. Although we will call it time, we
know that functional simulators count instructions, not cycles, so this time is really just an
instruction count. For example, if register $1 is set by a load instruction at time 1000, then
we mark that this value will be ready at time 1002 (recall we need to stall for one cycle
for the load value to be available in the pipeline we have studied in class with appropriate
forwarding circuitry). A subsequent instruction then checks whether any of its inputs are
not yet available by inspecting the corresponding record. In our example, if a subsequent
instruction at time 1001 required register $1 as an input, then we will increment a global
counter of load-to-use hazards.

By modifying the functional simulator sim-safe to include some timing information, we get
both the speed of a functional simulator and the detail of a performance (timing) simulator.

2. First, we declare an array that will hold the ready time for each register. Go to the beginning
of sim-safe.c, just after the initial #include statements, and add the following lines (where
MD_TOTAL_REGS is predefined in machine.h as the max. number of registers that are available;
this includes the general purpose registers, the floating point registers, hi, lo and others).

/* ECE552 Pre-Assignment - BEGIN CODEx/
static counter_t reg_ready[MD_TOTAL_REGS];
/* ECE552 Pre-Assignment - END CODE*/

We identify all changes to the file sim-safe. c with the comments /* ECE552 Pre-Assignment
- BEGIN CODE#*/ and /* ECE552 Pre-Assignment - END CODE#/. Students should follow
this convention for all modifications made to sim-safe.c. This convention will simplify
debugging your code and help TAs identify your modifications.

3. After the above statement, declare and initialize to zero a variable that will hold the count
of load-to-use hazards:

11 of

ECE552 Computer Architecture Fall 2017

/* ECE552 Pre-Assignment - BEGIN CODE*/
static counter_t sim_num_lduh = O;
/* ECE552 Pre-Assignment - END CODE*/

4. As mentioned earlier, SimpleScalar provides an elaborate package for collecting statistics. It
keeps an internal database of counters and other statistics-related data structures. It also
prints out this database at the end of the simulation. We need to register our counter with
this database so that it is printed out at the end. To do so, go to the sim_reg_stats()
function and add the following statements to the end of the function:

/* ECE552 Pre-Assignment - BEGIN CODE*/
stat_reg_counter(sdb, "sim_num_1lduh",
"total number of load use hazards",
&sim_num_lduh, sim_num_lduh, NULL);

stat_reg_formula(sdb, "sim_load_use_ratio",

"load use fraction",

"sim_num_lduh / sim_num_insn", NULL);
/* ECE552 Pre-Assignment - END CODEx*/

The second statement registers a formula that reports the load-to-use hazard count as a
fraction of all instructions executed in the dynamic instruction stream. The statistics database
is implemented in the file stats.c.

5. Now, go to the beginning of sim main() and declare the following local variables:

/* ECE552 Pre-Assignment - BEGIN CODE*/
int r_out[2], r_in[3];
/* ECE552 Pre-Assignment - END CODEx*/

Recall the DEFINST() macro’s arguments include 01, 02, which hold the target register
numbers, and I1, I2, and I3, which hold the source register numbers. The file machine.def
defines these appropriately for every possible opcode. We will use our newly defined local
variables r_out[] and r_in[] to copy these register numbers and use them for our purposes.
Other statistics that you need may be collected in a similar way.

6. Modify the DEFINST () macro to extract the source register and target register numbers. If you
browse through the file decode.def you will see definitions for a number of D. . . (N) macros.
These macros map architectural register numbers (e.g., $0, $r0, $£0) to numbers, which we
will use to index an array. This mapping is necessary, since inside the instruction code, the
number 1 may be used to refer to both an integer register and floating point register depending
on which instruction uses it. For example, an integer ADD instruction uses the number 1 to
refer to the general purpose register 1. Whereas a floating point ADD (FADD) instruction
uses the number 1 to refer to the floating point register 1. Hence the number 1 is used by
different instructions to refer to different registers. With the macros defined in decode.def,
SimpleScalar maps all these register/type combinations into a continuous series of numbers
starting with 0. For example, the macro DGPR(N) maps the general purpose registers, while
DFPR(N) maps the double precision floating point registers. As you can see, the GPRs are

12 of

ECE552 Computer Architecture Fall 2017

mapped to 0...31 while FPRs are mapped to 32...63. There are other special-purpose macros
for the other registers such as HI, LO, PC, and FCC (floating point condition codes). These
D...(N) macros are called from the DEFINST() macros in the file machine.def to set the
parameters 01, 02, I1, I2, and I3. Not every flavour of simulator needs these mapping
functions; however, for our purposes it is convenient to use them.

Make the following modifications to the DEFINST () macro to copy the source register numbers
and target register numbers to our local variables for use outside the switch statement. Go to
simmain() and find where DEFINST() is defined within the switch (op) statement. Change
the definition of DEFINST() to the following:

/* ECE552 Pre-Assignment - BEGIN CODE*/

#define DEFINST(OP,MSK,NAME,OPFORM,RES,FLAGS,01,02,I1,I2,I3) \

case 0P: \
r_out[0] = (01); r_out[1]
r_in[0] = (I1); r_in[1] =
SYMCAT (0P, _IMPL); \
break;

/* ECE552 Pre-Assignment - END CODE*/

= (02); \
(I2); r_in[2] = (I3); \

Make sure that there are no spaces after the ‘\’ character on every line. The ‘\’ is used to split
the macro definition across multiple lines. A space breaks the definition and will cause errors
that are difficult to track down. For extra safety, using parentheses around macro arguments
(like 01) is a very good practice.

We are getting close! Now we add the code for collecting our statistic. Go after the switch
statement, but stay within the while (TRUE) loop. Now include the following code:

/* ECE552 Pre-Assignment - BEGIN CODE*/

{
int i;
for (i = 0; i < 3; i++) {
if (r_in[i] !'= DNA && reg_ready [r_in [i]l] > sim_num_insn) {
if ((1 == 0) && (MD_OP_FLAGS(op) & F_MEM) &&
(MD_OP_FLAGS(op) & F_STORE)) {
continue;
}
sim_num_lduh++;
break;
}
}
}

/* ECE552 Pre-Assignment - END CODEx*/

This loop scans through all input registers and checks whether they are currently available.
The DNA constant indicates that the corresponding source register is not really used by the
instruction. We break out of the for loop as soon as we find an unavailable register since we
only want to count a single load-to-use hazard per instruction, even if more than one register
is unavailable.

13 of

ECE552 Computer Architecture Fall 2017

Corner Cases:

There are two corner cases in the aforementioned code: First, if the dependent instruction is
a store, and the only dependency is in the register that holds the store value, then no stalls
occur. The reason is that the store value is needed at the beginning of the memory stage,
instead of the beginning of the execute stage, and thus can be forwarded on time. Note that
it is the first source register (I1) which holds the store value.

The second corner case involves any instruction with a double register (e.g., DGPR_D(N))
such as the dlw (i.e., double load word instruction). Although dlw has two destination
registers, only one, the (O1), is “captured”. The second destination register (O2) is implicitly
computed as (O1 + 1), but appears as empty (DNA) in the instruction DEFINST, as shown
below. You can ignore this corner case, and continue to rely on O1, O2, I1, I2 and I3 to
identify dependences.

#define DLW_IMPL \
{ \
word_t _result_hi, _result_lo; \
SET_GPR(RT, _result_hi); \
SET_GPR((RT) + 1, _result_lo); \
}
DEFINST (DLW, 0x29,
"dlu", "t,0(b)",
RdPort, F_MEM|F_LOAD|F_DISP,
DGPR_D(RT), DNA, DNA, DGPR(BS), DNA)

7. We are almost there. The last thing we need to do is update the reg_ready[] array on loads.
Go after the code we added in the previous step and add the following:

/* ECE552 Pre-Assignment - BEGIN CODE*/
if ((MD_OP_FLAGS(op) & F_MEM) && (MD_OP_FLAGS(op) & F_LOAD)) {
if (r_out[0] !'= DNA)
reg_ready[r_out [0]]
if (r_out[1] '= DNA)
reg_ready[r_out[1]]

sim_num_insn + 2;

sim_num_insn + 2;

}
/* ECE552 Pre-Assignment - END CODEx*/

This code flags target registers for load instructions indicating that they will not be available
for the next instruction to see.

8. The modifications are now complete. Compile the modified version of sim-safe.c using the
make command. It is probably a good idea to go over the above descriptions several times to
make sure that you understand them.

7 Questions

Please post clarification questions on the discussion board. Also, bring your questions to the next
tutorial session.

14 of

	Purpose and Overview
	Reading
	Introduction
	SimpleScalar Suite
	SimpleScalar Basics
	Compiling Simplescalar
	Simulating the go benchmark
	Simulating an EIO trace
	Compiling a microbenchmark executable

	Modifying sim-safe
	Understanding sim-safe's main loop
	Counting Load Instructions
	Counting Load-To-Use Hazards

	Questions

