
ECE552 Computer Architecture Fall 2017

Lab Assignment 4: Data Caches

1 Objective

The objective of this assignment is to investigate the impact of data prefetchers on cache perfor-
mance. All work on this assignment is to be done in groups of two. This assignment involves a
competition aspect; you are encouraged to start early!

The rest of the handout is organized as follows: Section 2 outlines the questions that students
should answer in this assignment. Section 3 describes how to get the simulator, how to compile it,
and how to run the benchmarks. Section 4 describes the prefetchers that students are required to
implement. Section 5 provides some hints to help with coding in the sim-cache simulator. Finally,
Sections 6 to 7 describe the prelab and in-lab deliverables, and a high-level overview of the marking
scheme.

2 Problem Statement

In this assignment, you will use the SimpleScalar cache simulator (sim-cache) to investigate the
performance of three data cache prefetchers: (a) the next-line prefetcher, (b) the stride prefetcher,
and (c) an open-ended prefetcher of your own design. Details about all three prefetchers are
provided in Section 4.

In your report, you have to compare the performance of these prefetchers, when applied to a L1
data cache, with a baseline system with no prefetching. You are required to implement the three
prefetchers inside sim-cache, run several benchmarks and answer the questions below:

Question 1: Provide a micro-benchmark and a configuration file that you use to verify that
your implementation of the next line prefetcher is correct. Explain your choice.

Question 2: Provide a micro-benchmark and a configuration file that you use to verify that
your implementation of the stride prefetcher is correct. Explain your choice.

Question 3: Using the configuration files provided with the simulator and statistics collected
from the simulator, estimate the average memory access time for data accesses for benchmark
compress for the configurations with no prefetcher, L1 data next line prefetcher and L1 stride
prefetcher. In your calculations, assume the following hit times: Taccess−L1Data = 1, Taccess−L2 = 10,
Thit−Memory = 100. Include a table with the following heading:

Config L1 Miss Rate L2 Miss Rate Average access time

The table above will have three rows, each row for a different value of the column Config (i.e.,
baseline, next-line, stride). Fill in the rows with the values you collect with sim-cache and the
configuration files provided with the simulator. For each configuration, compute the value in the
last column using the formula for average memory access time.

Question 4: For benchmark compress, study the performance of the stride prefetcher when
varying the number of entries in the RPT. Use the configuration files provided, changing only the
number of entries in the RPT. Provide a graph that plots on the x axis the number of entries in the
RPT and on the y axis a metric of your choice that measures the performance of the prefetcher.

1 of 9



ECE552 Computer Architecture Fall 2017

Explain your graph and your conclusions.

Question 5: If you were asked to include more statistics in the sim-cache simulator to study
the performance of prefetchers in general, which statistics you would consider adding? (No imple-
mentation necessary, only an explanation is sufficient.)

Question 6: Provide a micro-benchmark and a configuration file that you use to demonstrate
the performance of your open-ended prefetcher. Explain your choice.

3 Preparation

In this section, we briefly describe how to install and compile the sim-cache simulator, and how
to run the benchmarks.

a) You can obtain the simulator source code and set it up in your ug account using the following
Unix commands (assumming you have a working directory called ece552).This sequence of com-
mands extracts the simulator files into your working directory. Do not leave the Unix permissions
to your code open.

cd ~/ece552 # or some other working directory

cp /cad2/ece552f/simplesim-3.0d-assig4.tgz ./

tar -zxf simplesim-3.0d-assig4.tgz

cd simplesim-3.0d-assig4

b) You can build the sim-cache simulator using the provided Makefile by typing:

make sim-cache

You may safely ignore any warning messages you see during compilation.

c) You can run the benchmarks as follows (all two rows in one line):

./sim-cache -config cache-config/cache-lru-stride.cfg

/cad2/ece552f/benchmarks/compress.eio

./sim-cache -config cache-config/cache-lru-stride.cfg

/cad2/ece552f/benchmarks/gcc.eio

./sim-cache -config cache-config/cache-lru-stride.cfg

/cad2/ece552f/benchmarks/go.eio

In the commands above, the simulator is run with a configuration file that specifies the param-
eters for the simulation. In the cache-config directory, you can find the following configuration
files:

• cache-lru-nextline.cfg - configuration to be used for the runs with a next-line prefetcher
at the L1 data cache level

2 of 9



ECE552 Computer Architecture Fall 2017

• cache-lru-stride.cfg - configuration to be used for the runs with a stride-prefetcher at the
L1 data cache level

• cache-lru-open.cfg - configuration to be used for the runs with the open-ended prefetcher
that you design

These configuration files specify the geometry of the caches, the replacement policies and the
prefetcher configuration. All these configuration files specify a two-level hierarchy with a separate
L1 instruction and L1 data cache and a unified L2 cache. The size and the geometry of the caches
are the same for all configuration files; the prefetcher configurations vary for the L1 data cache. Do
not change the geometry or size of the caches when reporting results for the benchmarks. You are
free to use other configurations for your microbenchmarks.

d) CAUTION! When you are redirecting the output of the simulator, use the -redir:sim flag of
sim-cache. Do NOT redirect the output using the pipe character | or the redirect character > as
this may cause variation in the simulated instruction count. To redirect the output of the simulated
program, use the -redir:prog flag.

e) Please refer to the handout from Lab Assignment 1, if you need further instructions about
how to create a microbenchmark.

3.1 Configuration Files

The cache-config directory contains the configuration files used for this assignment. The con-
figuration files specify a cache hierarchy with a 16KB L1 instruction cache, 16KB L1 data cache
and a 256KB unified (data and instructions) L2 cache. Note that the configuration files specify a
maximum number of instructions to be simulated. It is important to use these configuration files
when you report your statistics since different configurations produce different results.

The cache config parameter has the following format:

<name>:<nsets>:<bsize>:<assoc>:<repl>:<pref>

<name> - name of the cache being defined

<nsets> - number of sets in the cache

<bsize> - block size of the cache

<assoc> - associativity of the cache

<repl> - block replacement strategy, ’l’-LRU, ’f’-FIFO, ’r’-random

<pref> - prefetcher type, 0 - no prefetcher, 1 - next line prefetcher, 2 -

open-ended prefetcher, any other number num - stride prefetcher with

num entries in the RPT

4 Data Cache Prefetchers

Hardware prefetchers predict memory accesses based on past history and bring the corresponding
data/instructions into the caches before the processor demands it.

In this assignment, you will implement three different data prefetchers: 1) a next line prefetcher,
2) a stride prefetcher and 3) an open-ended prefetcher. The next sections explain how the first two
prefetchers work.

3 of 9



ECE552 Computer Architecture Fall 2017

4.1 Next Line Prefetcher

Next line prefetching (NLP) tries to take advantage of the spatial locality in applications. NLP is
one of the simplest forms of prefetching: upon a memory access to address ADDR, a prefetch request
to memory address ADDR + cache line size is generated if the cache line is not already present.
This will bring into the cache the block subsequent in memory to the cache line currently being
accessed, hence the name of the prefetcher. For this assignment, you are required to implement
a next line prefetcher for the L1 data cache. Thus, any L1 data cache access is a candidate for
generating a prefetch.

4.2 Stride Prefetcher

The stride prefetcher described in this section is a simplified version of the basic stride prefetcher
described in “Effective Hardware-Based Data Prefetching for High-Performance Processors” by
Chen and Baer [1]. Several commercial processors (e.g., IBM Power 4) implement some version of
this prefetcher. If you are interested in reading more, the paper is posted on Blackboard.

Stride prefetchers try to predict future references based on the past history for the same memory
instructions (i.e., loads/stores) that exhibit a constant stride in their memory addresses.

The core hardware structure employed by a stride prefetcher is a reference prediction table

(RPT) that keeps track of data access patterns in the form of effective address and stride for memory
operations (i.e., loads and stores).

Figure 1: (a) Reference prediction table (RPT). (b) RPT state transition

4.2.1 Reference Predictor Table (RPT)

Figure 1(a) shows the design of the RPT.
The RPT keeps track of previous addresses and associated strides for memory instructions.

Prefetches are generated based on how stable the observed stride pattern is for a particular memory

4 of 9



ECE552 Computer Architecture Fall 2017

instruction. The RPT is organized as a direct-mapped cache structure. The RPT entry, indexed by
the instruction address (i.e., PC), includes the address of the last data access, the stride information,
and the regularity status for the instruction (i.e., an indication of how stable the stride pattern is).
Each entry has the following format (see Figure 1(a))

• tag – the tag corresponding to the address of the memory instruction (i.e., PC)

• prev-addr – the last address referenced by the corresponding instruction

• stride – the difference between the last two addresses that were generated by the corre-
sponding PC (can be negative)

• state – a two-bit encoding (four states) of the past history

The four states and the transitions between them are depicted in Figure 1(b). The four states
are:

1. initial: set at first entry in the RPT or after the entry experienced a different stride from
the steady state one.

2. transient: corresponds to the case when the system is not sure whether the current stride
is stable

3. steady: indicates that the prediction should be stable for a while.

4. no-prediction: disables the prefetching for this entry for the time being.

4.2.2 The RPT Mechanism

RPT records the address of the memory instruction, computes the stride for that access, and sets
a state controlling the prefetching by comparing the previously recorded stride with the one just
computed. The stride information is obtained by taking the difference between the addresses of
the two most recent accesses for the same instruction.

When a load/store instruction is encountered for the first time, the instruction is entered in
the RPT in the initial state. When the stride is obtained for the first time, i.e., at the second
access, the state is set to transient since it is not known yet whether the pattern will be regular or
irregular. When a further stride is computed and, if it is equal to the one previously recorded, i.e.,
if the same stride has occurred twice in a row, then the entry will be set to the steady state. It
will remain in the steady state until a different stride is detected. At that point, the state is reset
to initial.

If a different stride is computed while in the transient state, the entry is set to the no-prediction
state since the pattern is not regular and erroneous prefetching should be prevented. In the presence
of irregular patterns, the state of the entry will either stay in the no-prediction state or oscillate
between the transient and no-prediction states until a regular stride is detected.

The RPT is updated for an instruction that accesses a memory location at address addr as
follows:

Scenario 1. There is no corresponding entry in the RPT. The instruction is entered in the
RPT, the prev-addr field is set to addr, the stride to 0, and the state to initial. This may
involve replacing an existing entry (with a different tag) that maps to the same RPT entry.

Scenario 2. There is a corresponding entry. The new stride is computed as addr - prev-addr.
Depending on the current state of the entry and whether the new stride is equal to the stride in

5 of 9



ECE552 Computer Architecture Fall 2017

the RPT the transitions depicted in Figure 1b) are performed. The following table further explains
what happens in each transition. In the table, by stride condition “false” we mean the new stride is
different than the stride recorded in the RPT, and by “true” we mean the same stride is observed.
Once the transition to the new state is performed, the prev-addr is set to addr.

STATE STRIDE CONDITION NEW STATE NEW STRIDE

initial true steady no change

initial false transient update

transient true steady no change

transient false no-prediction update

steady true steady no change

steady false initial no change

no-prediction true transient no change

no-prediction false no-prediction update

Following the update, a prefetch is generated depending on the state of the entry. If the entry is
in one of the states init, transient or steady, a prefetch for the next address in the stride pattern
is generated, provided the cache line/block is not already present in the cache (i.e., a prefetch for
address addr + stride).

NOTE: Assume that on initialization, all tags in the RPT are zero to indicate that the entries in
the RPT are empty. The executable to be simulated starts at higher addresses, so this assumption
is safe. When indexing in the RPT, make sure you discard the lower bits in the PC that are always
zero.

4.3 Open-Ended Prefetcher

In addition to the next-line and stride-prefetchers, you need to implement a prefetcher of your
own design (the design can be taken from research or can be your own creation). Significant
research exists in the area of data prefetchers and can be used to get you started. You can search
for “data prefetcher” using scholar.google.com for relevant articles. In addition to considering
prefetch schemes, you are also free to consider modifications to the replacement policy. There are
no constraints on the hardware overhead used to implement your prefetcher. However, you should
justify the feasibility of your design in your report. To receive marks on the open-ended prefetcher,
your prefetcher must achieve an average L1 data cache miss rate less than 2.1% across the three
provided benchmarks. In addition, up to two bonus points will be available for students with the
top ranking prefetchers.

5 Coding Hints

In this assignment, you will use the sim-cache simulator. sim-cache is a functional simulator for
the cache hierarchy and data/instruction TLBs. For the purpose of this assignment, we do not
simulate the TLBs (the configuration files used declare the data and instruction TLBs as “none”),
so no need to worry about it.

The files that you are most likely to work with are sim-cache.c, cache.c, cache.h. Please note
that the code in the cache.[ch] files is also used in the timing simulator part of the SimpleScalar
infrastructure. Since this assignment involves only the functional cache simulator, you can safely
ignore any timing/latency parameters in these files.

6 of 9



ECE552 Computer Architecture Fall 2017

sim-cache works similarly to the way sim-safe works in that it executes the program instruc-
tion by instruction. The main difference between the two is that sim-cache models the behavior
of the cache hierarchy as the program executes. This is done by modeling cache accesses when
instructions are fetched for execution and when executing memory instructions (e.g., load, stores).
To achieve this, a cache access is simulated in the main loop of the simulator (in sim main) starting
at the L1 instruction cache. In addition, all macros used for accessing memory (such as READ BYTE

or READ WORD) involve cache accesses as well.
The sim check options function parses the configuration parameters and creates the data

structures corresponding to the specified memory hierarchy. To understand how caches work in the
simulator, you may want to take a look at the data structures in the cache.h file and understand
the code in the cache create function. The same code is used to create the different levels in the
cache hierarchy. Note that, as part of the initialization, a function pointer is passed as argument
to the cache create function. This function is used whenever an access to the lower cache level is
needed (e.g., upon a cache miss or a write back).

Once you understand the data structures used for simulating the caches, you may want to read
the code inside the cache access function. This is the core function of the cache simulation. For
implementing the data prefetchers, the skeleton of the code is provided. You need to fill in the two
prefetch methods to actually generate the prefetch address and perform the prefetch operation. A
prefetch can be simulated by a call to the cache access function with the prefetch address and
the corresponding cache structure.

You shouldn’t need to modify the sim-cache.c file for this assignment. The simulator already
has code to account for cache hits/misses, miss rates and prefetch statistics. Your code should
be implemented only in the cache.c and cache.h files. You need to run the simulator with the
benchmarks and configuration files provided and report on your findings.

6 Prelab

The prelab is worth 1/6th of the overall lab mark. Please complete the following steps before
coming to the lab:

• Read all necessary background on data prefetching (textbook, lecture slides).

• Answer the following questions:

1. Would a next line-prefetcher work well for an instruction cache? When would it issue
useless prefetches?

2. Can data prefetching be harmful for the performance of a system? Provide an example.

3. How could you address the issue of harmful prefetches, assuming you cannot turn off
your data prefetcher?

• Write most of your code, along with some microbenchmarks, before coming to the lab.

• Finally, be prepared to answer any high-level questions about the simulator, your code, and
the lab material.

7 Lab Deliverables

At the end of this assignment you should submit the following files using the submitece552f

command:

7 of 9



ECE552 Computer Architecture Fall 2017

1. cache.h and cache.c: In cache.c and cache.h, identify all modifications with the comments

/* ECE552 Assignment 4 - BEGIN CODE*/

... your code in here...

/* ECE552 Assignment 4 - END CODE*/

2. report.pdf : a maximum 4-pages report (single-spaced with 12-point font size). Make sure
your report can be viewed on the ug machines through xpdf or acroread. Non-readable
reports will not be marked.

• Provide succinct answers to all questions from Section 2. Make sure to include brief
explanations for the mathematical derivations used to arrive at the answers.

• Describe your open-ended date prefetcher implementation. Reason about how realistic
your data prefetcher is in terms of area overhead and access time. Feel free to use CACTI
from Lab assignment 2, to get real area and access time numbers.

• Include a brief statement of work completed by each partner.

3. mbq1.c, mbq2.c, and mbq6.c: the microbenchmark files for Questions 1, 2 and 6. All
microbenchmarks must include comments that explain how they verify your implementations.
Failure to include appropriate explanation in the micro-benchmarks and in the report will
result in a grade of 0 for the micro-benchmark portion of the assignment.

4. q1.cfg, q2.cfg, and q6.cfg: the configuration files for Questions 1, 2 and 6.

The submit command should be similar to the following:

submitece552f 4 cache.c cache.h report.pdf mbq1.c mbq2.c mbq6.c q1.cfg q2.cfg q6.cfg

You can view the files that you have submitted via the command:

submitece552f -l 4

Do not leave the Unix permissions open to your code, micro-benchmarks or configuration files.
You can submit your code early to determine how your open-ended prefetcher ranks compared to
your classmates.

8 Due Date and Marking Scheme

This assignment is due on Monday November 27, 2017 at 5:00pm. It is worth 6% of the total
course mark. The pre-lab will constitute 1/6th of the overall mark.

To receive marks on the open-ended prefetcher, your prefetcher must achieve an average L1
data cache miss rate less than 2.1% across the three provided benchmarks. Marks will be based on
creativity, performance and the feasibility of your proposed implementation. Simple modifications
to the size and algorithm of the stride prefetcher will not be viewed as creative. Up to 2 bonus
points will be awarded to the top performing open-ended prefetchers. During the week prior to the
due date, you can submit your code each day; each night the TA will run the open-ended prefetcher

8 of 9



ECE552 Computer Architecture Fall 2017

and post a ranking of the results. You can continue to update and resubmit your code until the
deadline. Please plan ahead and start early!

An automarker will be used to compile and run your implementation and verify the statistics
generated. Therefore, your implementation is required to follow some strict rules. To begin with,
use the simulator package specifically provided for this assignment as described in Section 3.

Things to watch for:

• run the benchmarks as specified in the handout with the configuration files provided

• initialize properly all the data structures as specified in the handout (e.g., fields in the RPT)

• pay attention to the generation of prefetches; a prefetch is generated if and only if the calcu-
lated prefetch address is not already in the local cache

• for the stride prefetcher, the stride can be negative

• do not change the existing stats; you can add more stats, if you are interested in studying
something in particular, but do not modify the existing ones

• the only files to modify are cache.c and cache.h

• do not add additional files, they will not be taken into account; your simulator should compile
with the provided Makefile by typing make sim-cache

• same automatic comparison of your submissions will be done to check for copied code; chang-
ing variable names and formatting will not defeat the checker.

9 Questions

Please post clarification questions on Piazza. Do not post solution code or microbenchmark code.
This constitutes cheating and will not be tolerated.

References

[1] Jean-Loup Baer and Tien-Fu Chen. 1995. Effective Hardware-Based Data Prefetching for High-
Performance Processors. IEEE Trans. Comput. 44, 5 (May 1995), 609-623.

9 of 9


	Objective
	Problem Statement
	Preparation
	Configuration Files

	Data Cache Prefetchers
	Next Line Prefetcher
	Stride Prefetcher
	Reference Predictor Table (RPT)
	The RPT Mechanism

	Open-Ended Prefetcher

	Coding Hints
	Prelab
	Lab Deliverables
	Due Date and Marking Scheme
	Questions

