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Abstract

In this paper, we propose a new framework for enhancing application performance through execution-guided
optimization. The rePLay Framework uses information gathered at run-time to optimize an application’s
instruction stream. Some of these optimizations persist temporarily for only a single execution, others persist
between runs. The heart of the rePLay Framework is a trace-cache like device called the frame cache, used
to store optimized regions of the original executable. These regions, called frames, are large, single-entry,
single-exit regions spanning many basic blocks in the program’s dynamic instruction stream. Optimizations
are performed on these frames by a flexible optimizer contained within the processor.

A rePLay configuration with a 256-entry frame cache, using realistically-sized frame constructor and
frame sequencer achieves an average frame size of 88 instructions with 68% coverage of the dynamic istream,
an average frame completion rate of 97.81%, and a frame predictor accuracy of 81.26%. These results soundly
demonstrate that the frames upon which the optimizations are performed are large and stable.

Using the most frequently initiated frames from rePLay executions as samples, we also highlight possible
strategies for the rePLay optimization engine. Coupled with the high coverage of frames achieved through the
dynamic frame construction, the success of these optimizations demonstrates the significance of the rePLay
Framework. We believe that the concept of frames, along with the mechanisms and strategies outlined in
this paper, will play an important role in future processor architecture.

1 Introduction

Several underlying trends (transistor counts, wire delay effects, memory latency, implementation complexity)
direct those working on processor microarchitecture to examine new and creative ways of increasing the
performance of general applications on general-purpose computer systems. As a result, future processor
solutions are likely use novel techniques for high-performance.

In this paper, we propose a new framework for enhancing application performance through execution-
guided optimization. The rePLay Framework uses information gathered at run-time to optimize an applica-
tion’s instruction stream. Some of these optimizations persist temporarily for only a single execution, others
persist between runs. The heart of the rePLay Framework is a trace-cache like device called the frame cache,
used to store optimized regions of the original executable. These regions, called frames, are large, single-

entry, single-exit regions spanning many basic blocks in the program’s dynamic instruction stream. Frames



are larger regions than those considered by previous trace cache research. Optimizations are performed on
these frames by a flexible optimizer contained within the processor.

The rePLay Framework consists of four elements : a frame constructor to identify and create atomic
(i.e., single-entry, single-exit) frame regions, an optimization engine to optimize each newly created frame,
a frame cache to store these optimized frames, and a sequencing mechanism to predict when a particular
frame will visited again in the dynamic instruction stream. The integration of these rePLay components

with a processor’s fetch and execution engines is shown in Figure 1
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Figure 1: The rePLay Framework integrated into a generic processor microarchitecture.

The main contribution of this paper is a demonstration of the basic phenomenon that drive rePLay. The
rePLay Framework exploits run-time stability —repeating patterns of control and data to boost program
performance. We demonstrate that large frames, spanning many control-flow instructions, can be created
dynamically with simple hardware mechanisms. It is upon these frames that the rePLay optimizations are
performed. We demonstrate that these frames are frequently executed, and can be effectively cached after
optimization. We present a sequencing mechanism, based on a path-based predictor, that provides control
speculation between frames. Finally, we present a sampling of optimizations which are possible within
the rePLay Framework, many of which are best done knowing run-time behavior rather than the limited

behavioral information available to a compiler.

2 The rePLay Framework

Run-time information is beginning to play a larger role in boosting performance. Mechanisms such as branch
prediction, dynamic scheduling, and hardware memory disambiguation are central to high-performance pro-
cessing today. Techniques such as trace caches, value prediction, and instruction reuse are likely to appear
in tomorrow’s processors. All of these techniques leverage the stable patterns that occur during execution
to reduce a program’s running time.

Run-time information is useful in a way that is different from information available at compile time. A
compiler can very effectively capitalize on stable behavior (e.g., a highly biased branch) apparent from profile
executions of a program. However, if the program behaves differently from the way the compiler expected,
optimizations based on the expected behavior may degrade performance. Furthermore, periodic variations

in behavior during execution (e.g., a conditional branch which is highly biased for first half of the program,



and then highly biased in the other direction for the second half) are difficult for a compiler to capitalize

upon.

2.1 Approach

The rePLay Framework exposes stable run-time behavior to a hardware-based optimizer that performs
lightweight code optimizations on sections of the istream. In a sense, a piece of an optimizing compiler
is embedded within the processor hardware. The optimizer operates on frames that consist of many basic
blocks in the original control flow. These frames are dynamically constructed and maintain a single-entry,
single-exit semantic despite containing many branch instructions. Like traces in a trace cache, frames may
consist of code that is not physically sequential in the static image of a program, but is dynamically converted
into straight-line code. Once optimized, these frames are stored in the frame cache.

The rePLay Framework allows for local optimizations in situations in which compiler actions would have
been difficult or impossible. Old binaries, transformations across dynamic library calls, applications not
amenable to profiling or aggressive compilation are all situations where optimizations at compile-time alone
may be ineffective. Furthermore, rePLay allows for types of optimizations that cannot effectively be done at
compile-time. Such optimizations include ones based on the run-time stability of data values. We provide
several examples in Section 7.

This work builds upon several concepts recently explored in computer architecture research. We leverage
techniques developed for the trace cache and apply them in the context of an execution-guided optimization
system. Central to frame construction is the concept of Branch Promotion originally developed to increase
the size of traces stored in the trace cache. Previous trace cache work also suggests that the latency of trace
construction and optimization does not impact performance because they occur off the critical processing
path. This indicates that latency in the frame constructor and optimizer within the rePLay Framework may

not be a large factor on overall performance.

2.2 Frames

The first concept of rePLay is the concept of the atomic region or frame. Similar in nature to the trace
developed by a trace scheduling [5] compiler or the block within the Block-Structured ISA [15, 9], a frame is
a dynamically-generated group of instructions in which all instructions in the group execute or none of them
do. A frame has a single entry point and a single exit point. This atomic property of frames increases the
level of dynamic optimization that can be performed on them.

The distinction between a frame and a trace as described by previous trace cache research is subtle, but
important. A frame is a more specific entity than the a trace — it is a trace with a single entry point and
a single exit point. The concept of an atomic trace was not central to previous trace cache research. It is

however central to a frame within rePLay. Either the entire frame executes, or none of it executes.

2.3 Frame construction

The objective of frame construction is to create long frames that span many basic blocks. Such long frames
increase the potential of the dynamic optimizer in finding opportunities for optimization that were missed

at compile time. In order for frames to span multiple basic blocks while maintaining atomicity (i.e., single



entry, single exit), branches in the original instruction stream must be somehow removed when packaged
within a frame. In rePLay, these branches are removed via branch promotion.

With branch promotion [18], branches which behave in a highly regular manner are dynamically con-
verted into non-branching ASSERT instructions that verify that the branching conditions still hold. If an
ASSERT'’s branching conditions do not hold, then the ASSERT fires and control is directed to a recovery
point. Specifically, branches that have gone to the same target for the n consecutive previous occurrences
are targeted for promotion into ASSERTSs. As original blocks from the program finish execution and are
retired, the corresponding control instructions are checked using a hardware structure called a bias table to
determine if they should be promoted.

Within the frame construction logic, promoted control instructions (ASSERTS) cause a pending frame
to keep growing. Regular, non-promoted control instructions terminate a pending frame. Figure 2 shows
how original control flow is reorganized into a frame. For the frame ABCDE, a firing ASSERT  or fault
— causes program control to return to the original block A. In such a case, none of the instructions of the

frame are committed to architectural state.
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Figure 2: This figure demonstrates how a single-entry, single-exit frame is constructed from a control for

spanning several branches.

Like traces, frames may contain taken branches from the original code. In other words, frame construc-
tion dynamically remaps non-sequential control flow into straight-line code.

While the frame constructor’s primary function is to create long frames, it must balance this objective
with two others: high likelihood of frame completion and high degree of frame coverage of the dynamic
instruction stream. Frames with a high likelihood of completion incur less penalty due to false starts; a
firing ASSERT causes the partial execution of a frame to be discarded and diminishes the benefit of creating
the frame in the first place. Higher frame coverage of the instruction stream increases the opportunity of
rePLay Framework for delivering dynamically optimized code to the execution engine. In summary, the

frame constructor can be evaluated using three metrics: the average length of a frame (in instructions,



or basic blocks), how often the average frame is likely to completely execute, and how much of the total
instruction stream is covered by these dynamically constructed frames.
While not examined in this study, the frame construction hardware can potentially access hardware

performance counters to direct frame construction to execution hot spots [16].

2.4 Optimization engine

Once a frame is created, it is dynamically optimized by the optimization engine. The optimization engine
is a flexible optimization datapath that can be software-programmed to tailor optimizations towards an ap-
plication, or towards a section of code. The range of optimization includes classical compiler optimizations,
extended basic block optimizations [10], and also encompasses software-based dynamic optimizations sys-
tems [1]. Furthermore, the coupling of dynamic optimizations, execution rollback mechanisms, and rePLay’s
assertion instruction architecture allows for new classes of optimizations such as ones that speculate on the
value of particular input data. These optimizations assume particular live-in data values are known values
upon entry to a frame and pre-propagate those values throughout the frame. For each assumed value, a
data ASSERT is added to the frame to ensure the live-in value is the expected value. This type of optimiza-
tion draws upon the same phenomenon that drives value prediction and instruction reuse. Other classes of
possible optimization include optimizations that tune the instruction stream to the details of the execution
microarchitecture, such as instruction scheduling and instruction placement for clustered functional units.
In this paper, we discuss rePLay optimizations briefly in Section 7. Due to the complex nature of the
optimization engine, we expect the frame latency through the optimization engine to take many cycles.
However, we use the data gathered from an earlier study [6] as an indication that the negative effects of this

latency on performance are manageable.

2.5 Frame cache

Once a frame has been processed by the optimization engine, it is stored in the frame cache. The frame
cache is similar to the trace cache except that it is capable of delivering very long sequences of instructions
spanning multiple traditional cache lines. A frame cache line may also span several issue-widths wide. For
example, a particular frame might consist of 80 instructions, span 5 cache lines (16 instructions per cache
line), and take 5 cycles to be fetched and issued on a 16-wide fetch /issue processor. This caching mechanism

is described in more detail in Section 6.

2.6 Sequencer

The penalty associated for incorrectly initiating an optimized frame may be quite severe (depending on
the depth of the firing assertion within the frame’s dependency chains.) The rePLay Framework uses a
speculative sequencing mechanism to predict when a frame should be initiated and when it should not. For
example, consider Figure 3. At block Y in the original control flow, there are two choices: block Z and block
A. A conventional branch predictor selects one of the two targets based on information collected about past
program behavior. With rePLay, a third choice is possible: the dynamically-constructed frame ABCDE.
The rePLay sequencing mechanism consists of a conventional branch predictor, which selects between A and

Z, and the frame sequencer, which selects between the fetch of block A or block Z versus an initiation of the



frame ABCDE. In Section 5, we examine this sequencing mechanism in more detail.
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Figure 3: This figure shows two version of control flow originating from the same static branch. Unlike with
a conventional branch predictor, the number of targets selected amongst by the rePLay sequencer varies
dynamically, even for the same static branch. As a frame is created (ABCDE, in this case), it is added as
a potential target from the prior block (Y, in this case). The sequencer decides when ABCDE should be

selected versus, say, simply A.

In order to sustain adequate instruction fetch bandwidth, the rePLay Framework uses an instruction
delivery mechanism consisting of a standard instruction cache or trace cache to supplement the frame cache.
Based on the sequencer mechanism described above, the fetch address is directed to either the conventional
caches or to the frame cache. If it is directed to the frame cache and the frame cache responds with a miss,
the conventional caches are accessed in a subsequent cycle. If the frame cache responds with a hit, for the

few cycles, a frame streams out of the frame cache in fetch-width sized packets.

3 Related Work

Much of this work builds upon previous trace cache research [20, 21, 19], in particular that of Branch
Promotion [18] and that of dynamic trace optimizations [7, 13], and also that of the Trace Predictor [12].
Similar in nature to this work is the DIF cache [17] which dynamically creates statically scheduled instruction
words.

The concept of dynamic compilation and optimization is an emerging area. The desire to have multi-
ISA compatibility has spawned work in dynamic compilation systems [3], which then have spawned work
in dynamic optimization systems [1, 4, 8]. Almost all of this work has focused on low-overhead software
systems. The rePLay Framework can leverage these software techniques by providing a very low overhead
mechanism for implementing dynamic optimization that monitors dynamic behavior at a microarchitectural

level.



4 Frame Construction

A critical component of the rePLay Framework is the frame construction mechanism. The objective of
frame construction is to create atomic regions consisting of many instructions that are very likely to execute
completely. The resulting single-entry, single-exit semantic allows the run-time optimizer to perform very
aggressive optimizations upon the generated frames.

Frames can span many basic blocks of a program. To prevent branches that terminate these blocks
from also terminating frames, we use the Branch Promotion technique to dynamically convert highly-biased
branches into unconditional branches that generate a hardware fault if they switch direction. A fault causes
the instructions of the frame to be discarded (i.e., not committed to architectural state) and the control flow
to be redirected to the proper recovery point. See Figure 2 for an example. In this manner, Branch Promotion
is used to convert branches internal to a frame into ASSERT instructions. The promotion technique was
originally applied to only conditional branches, but here we apply it also to indirect branches and returns.

With Branch Promotion, the frame construction mechanism is simple: a each completing branch accesses
an entry in the branch bias table. The bias table is a hardware structure that counts the number of times
a branch has had the same outcome consecutively. We improve upon the original promotion technique by
accessing the bias table with path history, in addition to the branch address. Each time a branch (plus
path) has the same outcome as previously, the counter field of the bias table entry is incremented. Once the
counter reaches a threshold, the branch is promoted and is converted into an ASSERT. In other words, the
bias table promotes a branch if it has n (where n is the counter threshold) outcomes in the same direction.
Previous branch prediction research has demonstrated that such a technique is an effective way to identify
highly-biased branches [2]. We increase the accuracy of the mechanism by adding path history. Figure 4 is

a diagram of the Branch Promotion mechanism.
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Figure 4: The bias table mechanism for Branch Promotion with promotion threshold n.

Frames are constructed by extending a basic block across promoted branches. For each arriving promoted
branch, the pending frame grows by the corresponding block. The pending frame terminates when an
unpromoted branch is added. In other words, a frame consists of a sequence of instructions (including

unconditional branches and ASSERTSs) ending at a single unpromoted branch. Even though the original



instructions may have been non-contiguous, they are converted into a contiguous frame.

Larger frames are beneficial for the rePLay Framework. Larger frames spanning more basic blocks present
the rePLay optimizer with a greater opportunity performing effective optimizations. For the measurements
presented in the remainder of the paper, the frame constructor only maintains frames containing 5 or more

dynamic basic blocks or containing 32 or more instructions. Smaller frames are discarded.

4.1 The ideal

In this section, the rePLay frame construction mechanism is evaluated on three bases: frame length, coverage
of the istream, frame completion rate.

Figure 5 demonstrates the potential of this frame construction technique by showing average frame size
in instructions on the 8 SPECint95 benchmarks. All measurements were taken on a trace driven simulator
(based on the SimpleScalar tool set) simulating the Alpha AXP ISA. All benchmarks were compiled using
the Compagq/Digital C Compiler V3.5 using profile-guided code placement to reduce the impact of taken
branches. Also, link-time code placement optimizations using the OM executable editor were performed on
these binaries.

Figure 5 demonstrates the average size of frames in instructions using a branch bias table of unlimited size
(i.e., interference-free). The horizontal axis of the graph represents the number of branch targets incorporated
into the path history. The path history is used to index into the branch bias table to determine whether a
branch should or should not be promoted. The data indicates that a large number of instructions can be
incorporated into a frame. On average, for a history length of 6, a frame consists of about 106 instruction.

Also shown on this graph is the region size if an ideal static predictor were used in place of the dynamic
bias table. Here, the ideal static mechanism classifies a branch as promoted if it has a 95% bias towards a
particular target during the profile run. The mechanism is considered ideal because the measurement data
set is the same as the profile data set. All branches are considered to be promotable, including indirect
jumps and returns. For all schemes, the dynamic mechanism generated longer frames than the ideal static,
sometimes significantly. Although, not shown on the graph, history information can also be factored in at
compile-time using code replication techniques described by Young et al [23]. Longer histories (which are
beneficial) can be difficult to incorporate at compile-time because of the multiplicity of paths that need to
be maintained.

As the trends demonstrate, history is an important ingredient for enlarging frames. History helps the
promotion mechanism refine its classification of branches. Figure 6 isolates the effectiveness of Branch
Promotion (with n = 32) on the benchmark perl. In this graph, each bar represents the total number of
dynamic branches. Each dynamic branch is either classified as a normal (unpromoted branch), or promoted
branch which obeyed its promoted direction, or a promoted branch which faulted (i.e., the ASSERT fired).
In this graph, a bar is generated for each path history length. As the amount of history information is
increased, the number of branches which are classified as promoted increases. Furthermore, the fault rate
of promoted branches is extremely low. With no history, approximately 65% of all dynamic branches are
classified as promoted. With a path history of length 6, 85% are classified as promoted. Fault rate is below
1% of all promoted branches. The net effect is that branch promotion using path history is removing 85%
of the branches (conditional, indirect, returns) from the dynamic instruction stream.

The next experiment measures the coverage of the dynamic instruction stream using the described frame
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Figure 5: The average size of a frame gathered using an interference-free bias table indexed with a given
path history length. Path history length indicates the number of branch targets which appear in the history.
For each benchmark, an ideal static number is provided to show static frame length obtained by best-case

compiler analysis.
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Figure 6: Promotion effectiveness as history length is increased.

construction technique. In essence, this experiment measures the fraction of the instruction stream delivered
by a perfect frame cache that is capable of caching every constructed frame. Whenever a new frame is
created, the perfect cache is checked. If the frame exists, then the corresponding instructions are tallied as
covered. If the frame doesn’t exist, then those instructions are not covered. With the caching effects factored
out, the effects of the frame construction algorithm can be more closely examined. For example, if the frame
constructor is creating very small frames (say, if branches are rarely promotable) that rarely exceed the 5
basic block/32 instruction minimum size threshold, then a small fraction of the istream would be covered.
Figure 7 shows the fraction of the dynamic instruction stream covered by frames created using this
technique. The coverage attainable by the ideal static mechanism is also provided. Again, the interference-
free dynamic mechanism is able to capture a larger fraction of the istream than the ideal static mechanism.
With the dynamic mechanism, at history length 10, almost 90% of the dynamic istream on average is covered

by frames. With the ideal static mechanism, average frame coverage is around 54%.



Per centage of Covered Insns

Per centage of Covered Insns

Per centage of Covered Insns

Per centage of Covered Insns

100 4 compress
807-‘/_/——'—/"—‘—‘—‘>S
w1m
20
——n=16
——n=32
20 —s—n=64
0 T T T T 1
0 2 4 6 8 10
Path History Length
100 20
80
60
20 Ideal Static = 20% —a-n=64
0 T T T T 1
0 2 4 6 8 10
Path History Length
100 li
80
60
40 Ideal Static = 37%
——n=16
——n=32
204 —8—nN=64
0 T T T T 1
0 2 4 6 8 10
Path History Length
1004 perl
80
60
Ideal Static = 45%
20
——n=16
—e—n=32
20 —=—n=64
0 T T T T 1
0 2 4 6 8 10

Path History Length

Per centage of Covered Insns

Per centage of Covered Insns

Per centage of Covered Insns

Per centage of Covered Insns

100 gce
80
60
40 Ideal Static = 39%
——n=16
—e—n=32
204 —8—nN=64
0 T T T 1
0 2 4 6 10
Path History Length
100 ijpeg
m’fr‘
b Ideal Static = 71%
60
404
——n=16
—e—n=232
20 —s—n=64
0 T T T 1
0 2 4 6 10
Path History Length
1004 m88ksim
f Ideal Static = 83%
80
60
404
——n=16
—e—n=32
204 —8—nN=64
0 T T T 1
0 2 4 6 10
Path History Length
100 4 vortex
——F —g—— 1
508 Ideal Static = 81%
60
404
——n=16
—e—n=232
20 —s—n=64
0 T T T 1

Path History Length

10

Figure 7: The percentage of dynamic instructions which occur within a frame identified by this technique.



Table 1 shows the percentage of occurrences that a frame executes completely, i.e., no ASSERT within
that frame triggered. When an ASSERT instruction triggers, the corresponding frame is flushed and the
fetch redirected to the recovery point. Essentially, any progress made in executing instruction within the
frame is lost. For this reason, assertions can be costly and therefore high frame completion rates are desirable.
Table 1 lists the ratio of frame completion versus frame initiation. In other words, the table lists how often
a frame is completely executed once it has been started. The data is presented for all three promotion
thresholds, with the path history length at 6.

Benchmark || n =16 | n =32 | n = 64

compress 94.95 98.35 99.44
gee 93.82 96.88 98.43
go 94.12 97.17 98.43
ijpeg 98.56 99.19 99.54
li 93.00 96.27 97.79
m88ksim 94.55 98.65 99.70
perl 97.50 98.55 99.59
vortex 97.46 98.22 98.31
Average 95.50 97.91 98.90

Table 1: The average frame completion rate at path history length = 6.

4.2 Finite hardware

We now demonstrate that a straightforward finite-storage implementation of the promotion mechanism can
also achieve very good results. Figure 8 shows the average frame length and Figure 9 shows the percent cov-
erage of the dynamic istream using a 64KB branch bias table. The degradation from the ideal is substantial
in some cases, minor in others. An interesting note: as path history is increased for gcc and go, coverage
begins to decline. This is due to the shear number of control paths followed by these benchmarks. Increasing
history results in a steep increase in the number of paths needed to be maintained within the bias table. For
this reason, we pick a history length of 6 as our base for further evaluation. This path history length strikes
a good balance between the positive and negative effects of longer path history.

We also use a 12KB bias table for promoting returns and indirect branches. The main difference between
the conditional branch bias table and the indirect branch table is that each entry contains a target along
with the bias counter. The promotion signal is given only if the same target is used a threshold number of
times. ASSERTSs for indirect branches require that the promoted target be encoded along with ASSERT.
The assertion is made that the target taken by the control flow is the one assumed by the ASSERT.

For both bias tables, the path history, along with the address of the current branch is hashed in order
to form an index into the corresponding tables. We use a path history hashing technique similar to that
described by Stark et al [22]. The technique maintains path history by rotating the old history prior to
XORing in a new target. This way, the history pattern encapsulates the ordering of targets within the
history, while allowing for a larger number of bits of the target address to be expressed in the history.
Figure 10 demonstrates how this mechanism works conceptually. In this figure n targets are hashed together

to form an m bit path history. Note that this diagram is a conceptual diagram; the actual implementation
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Figure 8: The average frame size using a 64KB bias table.
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Figure 9: The percentage of dynamic instructions which are covered by frames identified using a 64KB bias

table.



of this hashing scheme can be pipelined over several cycles. A pipelined version is provided by Stark et al.
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Figure 10: A conceptual diagram of the path history generation scheme.

Finally, the frame completion rates using this 64KB bias table (accessed using a path history of 6 branch
targets) are shown in Table 2. The real completion rates are about the same as those attainable by idealized
hardware. To summarize some of the data: with the 64KB+12KB finite bias table, at a history length of
6, and a promotion threshold of 32, we attain an average frame size of 96 instructions, with a coverage of
82%, and a completion rate of 98%. Recall that the frame construction mechanism is only saving frames

that span at least 5 basic blocks or are at least 32 instructions long.

Benchmark [ n =16 | n =32 [ n = 64

compress 94.88 98.35 99.43
gee 94.99 97.57 98.85
go 95.82 98.06 98.98
ijpeg 98.58 99.15 99.45
li 92.37 95.60 97.10
m88ksim 94.12 98.67 99.70
perl 97.55 98.62 99.61
vortex 96.93 98.00 98.27
Average 95.65 98.00 98.92

Table 2: The average frame completion rate at path history length = 6, using a bias table of 64KB.

Three things need to be noted here. First, this Branch Promotion mechanism does not exist in the front
end of the processor, therefore single-cycle access of the bias tables is not essential. The bias tables exist in
the frame constructor, where latency is likely not a major factor to performance. However, the promotion
mechanism does require supporting the average branch execution bandwidth of the processor, i.e., if the
execution engine completes three branches each cycle on average, then the promotion hardware needs to

support three lookups per cycle. Second, since the promotion information is maintained on the completed



branch stream, checkpointing of the associated structures is not required. Third, many techniques developed
to reduce the interference within dynamic branch predictors can be applied here to increase the effectiveness
of the bias table mechanism towards that of the interference-free case. We have only explored a simple bias

table scheme to demonstrate that large frames can be formed effectively using dynamic information.

5 Sequencing Model

We only want to initiate frames at the right time. The frame execution percentages of Tables 1 and 2 indicate
that once a frame is correctly initiated, it has a very high chance of fully executing. However, there are also
penalties associated with incorrectly initiating a frame in the first place (similar to the penalties of a regular
branch misprediction). To help avoid these penalties, we use a sequencing technique that predicts when a
frame should be entered versus when a conventional fetch should be performed.

As mentioned in Section 2, the frame sequencing happens alongside a conventional branch predictor
which sequences through the original control flow of the program (or sequences amongst traces if a trace
cache is used). Whenever the conditions for sequencing to a frame are present, the frame sequencer overrides
the prediction generated by the conventional branch predictor.

The sequencer datapath is shown in Figure 11. A selection mechanism selects between the conventional
mechanism and the frame predictor. The selector mechanism can be history-based mechanism similar to the
selector used for a hybrid branch predictor [14], or can be a confidence-based mechanism [11].

The frame predictor works similarly to the trace predictor described by Jacobson et al [12]. Each entry
in the table contains a frame starting address. Entries are accessed using a hashed path history containing
the current fetch target. Whenever a frame is added to the frame cache, the frame predictor is updated
by adding the frame’s address at the entry corresponding to its path history (i.e., the path history used to
determine whether or not to promote the first branch in the frame). For example, say frame ABCDE is just
created and optimized by the rePLay pipeline. This frame also has an associated path history: if the stream
of retiring target addresses was WXYZABCDE, then a hash of the addresses WXYZ forms the path history
of the frame ABCDE. The frame predictor is updated at the entry corresponding to the hash of WXYZ.
This way, whenever the current fetch target is Z and the path history is ... WXY, then, in theory, the fetch
sequencer outputs the address for frame ABCDE.

Curr Target Frame Conventional
< . Branch Pred Selector
, ) Predictor
Path History w/ BTB

A

Next Target Frame/Conventional?

Figure 11: The Frame Sequencer for the rePLay Framework.



For our initial evaluation, we present the effectiveness of a hardware implementation of the frame predic-
tor assuming the selector mechanism operates ideally. We measure frame predictor accuracy by comparing
the predicted frame with the next region of instructions encountered in the dynamic instruction stream. If
the next region is a frame, the frame addresses are compared. If they match then the frame predictor is
tallied a correct prediction. Otherwise, an incorrect prediction is assessed. If the next region of the istream
is not a frame, then the frame prediction is dropped.

The results in Table 3 show the effectiveness of a frame predictor of 16K entries using 4, 6, or 8
previous path targets (one of which is the current fetch address) hashed together into a 14 bit index. For all
runs, branch bias tables of 64KB+12KB (as described in Section 4.2) are used for frame construction with

promotion threshold of 32.

Benchmark || hist length = 4 | hist length = 6 | hist length = 8 |

compress 85.46 86.61 86.17
gee 84.64 84.28 85.58
go 84.80 87.28 87.69
ijpeg 85.57 90.25 86.41
li 74.42 79.42 76.98
m88ksim 83.38 86.52 86.82
perl 66.50 73.91 74.29
vortex 61.94 61.77 63.99
Average 78.34 81.26 80.99

Table 3: Accuracy of a 16K entry frame predictor.

One thing must be noted here. The low rates of frame prediction reflect the effectiveness of the frame
construction algorithm. With the frame constructor, a large fraction of the regularly-behaving branches have
been collected into frames. The frame predictor’s job (and the branch predictor’s as well) is to now predict
the most difficult branches within the program. This difficulty is reflected in the rather low prediction rates
shown in Table 3. However, because a significant fraction of branches have been removed from the dynamic
instruction stream and converted into ASSERTSs, the actual number of predictions required by the frame

predictor and branch predictor is significantly reduced to 25% of the original dynamic branch count.

6 The Frame Cache

We have now demonstrated that frames span many instructions, and, if perfectly cached, can cover a large
fraction of the dynamic instruction stream. In this section, we establish the caching effectiveness of frames
with finite sized caches.

A frame cache is essentially a trace cache with the added ability of frames to span multiple cache lines.
For instance, if the frame cache had a line size of 16 instructions, then a frame containing 80 instructions
would span five cache lines. These five cache lines would be read from the cache one line at a time, in five
consecutive cycles. To enable this, all lines associated with a particular frame would be tagged with the
same address — the starting address of the frame. Also, each entry contains a continuation field to hold the
frame cache index of the next line of the frame. If the current line is the last line of the frame, then terminal

bit is set to indicate that the output of the sequencer is used to initiate the next fetch. Finally, in order



to make replacement easier, a frame is stored within the same set of a set-associative cache. Doing this,
however, requires a high degree of frame cache set-associativity in order to avoid a substantial increase in
cache misses due to set conflicts. Using this scheme, both long frames and short traces can be cached in the
same structure (i.e., the frame cache and the trace cache can be the same structure.) Better schemes for
caching frames are under development.

To measure the effectiveness of the frame cache, we use the two metrics used in Section 4: frame length
and frame coverage. Frame length is simply a measure of the average number of instructions contained in
frames fetched from the frame cache. Frame coverage is the percentage of the dynamic instruction stream
covered by frames fetched from the frame cache. Here, a miss in the frame cache results in no frame fetch.

Figure 12 displays the average frame length for various cache sizes. Here, the frame cache is measured
in the number of frames it can hold. Since frames can be of different sizes, this is not a direct measurement
of the cache size, but a general indicator of the effectiveness of caching. Our objective here is to show that
frames do exhibit locality and can indeed be cached effectively. Figure 13 shows the frame coverage using
various sized frame caches. For all these measurements, a 64KB bias table (with 12KB bias table for indirect
branches) is used for frame construction, accessed using a path history of length 6. The promotion threshold
is set to 32. These graphs demonstrate that even with fixed hardware, we get a substantial coverage of the

istream with large frames.
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Figure 12: The average size of a cached frame with varying cache size.

Finally, in order for the rePLay Framework to be effective, frames must have a high completion rate.
Table 4 shows the frame completion rates, i.e., the probability of completing a frame once it has been
started, given various sized frame caches. The rates are high, considering that an average frame contains six
conditional branches. The completion rates using fixed size caches are marginally smaller than with perfect
caches (See Table 1).

For a configuration consisting of a frame cache capable of caching 256 frames, a 64KB conditional branch
bias table, 12KB indirect branch bias table, 16K entry frame predictor, all using a path history length of 6,
we achieve the following results: average frame size of 88 instructions, with these frames covering an average
of 68% of the dynamic istream, an average frame completion rate of 97.81%, and a frame predictor accuracy
of 81.26%.
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Figure 13: The coverage of the istream using a fixed size frame cache.

Cache Size (in Frames)
Benchmark || 128 | 256 | 512
compress 98.34 | 98.34 | 98.34
gec 96.93 | 97.27 | 9741
go 97.00 | 97.20 | 97.57
ijpeg 99.17 | 99.17 | 99.17
li 95.54 | 95.57 | 95.58
m88ksim 98.57 | 98.65 | 98.66
perl 98.34 | 98.52 | 98.59
vortex 97.46 | 97.78 | 97.92
Average 97.67 | 97.81 | 97.91

Table 4: The average frame completion rate at path history length = 6, using a bias table of 64KB, using
various sized frame caches.

7 Sample Frame Optimizations

As apparent from the preceding sections, dynamic frame construction is a powerful tool for partitioning the
instruction stream into more predictable pieces. In this section, we consider two typical frames generated by
executions of SPEC95 benchmarks on rePLay and discuss potential optimizations for these frames. As the
rePLay optimization engine is still under construction, we select frames that offer fairly obvious opportunities
related to interprocedural optimization and dynamic loop unrolling. The optimization engine will analyze
frames more carefully and systematically and will uncover opportunities less obvious to the untrained eye.
By varying the aggressiveness of the optimizations between the two sample frames, this section provides

qualitative insight on the potential value of frames in improving control-related performance.

7.1 Memory Allocation Example

Figure 14 details the first frame, a segment of memory allocation code from gcc, in unoptimized and optimized
forms. This frame was the one most frequently initiated during an execution of gcc on the rePLay Framework
(256 entry frame cache, 64KB+12KB bias table, 16K entry frame predictor). During one execution of gcc,
rePLay initiated the frame 17,942 times and completed it 17,900 times, a completion rate of 99.77%. The



; malloc has found the appropriate hash bucket (s3).

01,02 t11 < BUCKETARRAY ; uses gp 01,02 t11 <« BUCKETARRAY ; uses gp
03 s1 « t11 4 s3 * 8 03 s1 « t11 4 s3 * 8

04 t7 + (s3 & O0xFF) <« 8 04 t7 + (s3 & 0xFF) <« 8

05 ra « [s1] 05 ra « [s1]

06 if (ra = 0) branch to BucketEmpty 06’ assert (ra # 0)

;. The bucket is rarely empty.

o7 t5 « [ra] o7 t5 « [ra]

08 v0 « ra + 8 08 v0 « ra + 8

09 [s1] « t5 09 [s1] « t5

10 t6 « [ra] 10 t6 « [ra]

11 t6 +— t6 & ~O0xFFFF 11 t6 +— t6 & ~0xFFFF

12 t6 «— t6 4 t7 12 t6 «— t6 + t7

13 t6 «+ t6 + MALLOC_MAGIC 13 t6 «+ t6 + MALLOC_MAGIC
14 [ra] « t6 14 [ra] « t6

15 s0 « [sp + 8] i (unused register restore)

16 ra « [sp] 16 ra « [sp]

17 sl « [sp + 16] i (unused register restore)

18 s3 « [sp + 32] i (unused register restore)

19 s2 « [sp + 24] 19 s2 « [sp + 24]

20 sp « sp + 48 i (merged with 40)

21 return 217 assert (ra = xmalloc call site)

; Return from malloc to xmalloc.

22 t1l «— vO0 22 t1 + v0 ; possibly live out
23 if (vO = 0) branch to MallocReturnedNull 23 assert (v0 # 0)

; Success is the common case.

; In fact, it's guaranteed from this return site.

24 ra « [sp] 24s ra « [sp + 48]

25 v0 « t1 ; (unnecessary)

26 sp « sp + 16 i (merged with 40)

27 return 27° assert (ra = alloca call site)

; Return from xmalloc to alloca.

28 s1 « sp + 40 28s s1 « sp + 104
29 s3 « [s2] 29 s3 « [s2]

30 t0 «+— v0 4 16 30 t0 «+— v0 4 16
31 [vO + 8] « s1 31 [v0 + 8] « sl
32 [s2] « vO 32 [s2] « vO

33 [vO] « s3 33 [vO] « s3

34 v0 « t0 34 v0 « t0

35 s0 « [sp + 8] 358 s0 « [sp 4 72]
36 ra « [sp] 36s ra + [sp + 64]
a7 sl « [sp + 16] 37s s1 « [sp + 80]
38 s3 « [sp + 32] 38s s3 « [sp + 96]
39 s2 « [sp + 24] 39s s2 « [sp + 88]
10 sp « sp + 48 40’ sp « sp + 112
41 return 41 return

Figure 14: A sample frame based on memory allocation code from the SPEC95 gcc benchmark. The left
column is the unoptimized frame. In the right column, some instructions have been eliminated, modified or

replaced (primed), or adjusted to reflect the reassociation of stack pointer manipulations (marked with “s”).



frame represents a little more than 0.4% of all dynamic instructions in the execution.

The left column of the figure lists a sequence of 41 instructions corresponding to the tail end of a call
to alloca. The frame begins in malloc once an appropriate hash bucket has been chosen for an allocation.
Such buckets must be refilled periodically, but are typically non-empty. The function unlinks a chunk of
memory from the bucket and fills in a private header, then returns to its caller, xmalloc. xmalloc checks
the return value, which is always acceptable, as the return (instruction 21) never returns NULL. xmalloc
next returns to alloca, which fills in a private header and returns an adjusted pointer, ending the frame.

A simple scan of the frame reveals that only three registers are live into the frame: gp, the global data
pointer; sp, the stack pointer; and s3, the index of the memory allocation hash bucket to be used. Many
other registers! are overwritten without use. The return value (v0) and stack pointer (sp) are live out of the
frame, as are s0, s1, s2, and s3. Considering only the instructions in the frame, registers ra, t0, t1, t5, t6,
t7, and t11 must also be treated as live out of the frame, although they are not preserved across C function
boundaries. In total, the frame reads three registers and writes thirteen.

The right column in the figure illustrates a few straightforward optimizations: superfluous register restore
instructions and motion are eliminated, branches and returns are changed to assertions, and stack pointer
arithmetic is condensed into a single operation. Optimizations related to register naming and scheduling
were not performed, although some are obvious: renaming register ra to s0 in instructions 06-10 eliminates
false dependencies with later instructions; and rewriting instruction 13 to add to t7 after 04 reduces the
dependency height of the frame, although another scratch register (or a recalculation) must be used to avoid
changing t7’s value out of the frame. Finally, instruction 23 can be removed, as a value of 0 generates an

exception in instruction 07.

7.2 Data Copying Example

Figure 15 shows unoptimized and aggressively optimized versions of a second sample frame, a piece of
memory copy code from compress. Of frames exhibiting character akin to loop unrolling (i.e., with a
repeated component), this frame was the one most frequently initiated during an execution of compress on
the rePLay Framework described in Section 7.1. During one execution of compress, rePLay initiated and
completed the frame 25,671 times, a success rate of 100%. The frame represents more than 2.9% of all
dynamic instructions in the execution.

The frame corresponds to part of a basic block in the output function in which decompressed data
are copied to an output buffer. The left column of the figure lists the unoptimized instructions, a total of
136 instructions including an 8-instruction pre-loop component and an iteration of 16 instructions executed
eight times. The number of bytes copied by the loop depends on the current code length, but is always nine
or more, thus the frame never faults.

An analysis of this frame is both more complex and more rewarding. The live input registers are again
three: gp, the global data pointer; v0, the number of bytes to copy; and t5, the buffer from which bytes
are to be copied. The frame overwrites al-a5, t3, t6, and t7 without reading them and changes v0 in the
loop iteration. Register inputs to the loop include a4, a pointer to the storage location for the pointer
to the destination buffer; t3, the number of uncopied bytes; and t6, a pointer to the current source byte.

Potentially live output registers include all those that the frame overwrites or changes (al-a5, t3, t6, t7, and

IRegisters s0, s1, s2, t0, t1, t5, t6, t7, t11, and v0 are all overwritten.



; Perform pre-loop work and initialization. ; Perform the pre-loop work.

01 a2 + &BYTESOUT ; uses gp 01 a2 « &BvyTESOUT ; uses gp

02 t3 «— vO0 02 al « [a2]

03 al « [a2] 03 al « al + vO

04 a4 + &OurPUTBUFFER ; uses gp 04 [a2] « al

05 t6 «— t5 ; Set up three live-out registers.

; nop needed to align CopyLoop below. 05 a4 « &OUTPUTBUFFER ; uses gp

06 nop 06 t3 « vO0 -8

o7 v0 + vO + al 07 vO « [ad]

08 [a2] « vO i Check the frame’s correctness.

; Copy t3 bytes from t5 to OurPUTBUFFER. 08 assert (t3 > 0)

CopyLoop: 09 a3 « vO0 - t5

09 a3 « [a4] 10 assert (a3 > 8) ; unsigned comparison
10 t3 «— t3 -1 11 ab « t5 - a4

11 t7 — [t6 & ~7T] 12 a5 « a5 + 7

12 t5 « [a3 & ~7T] 13 assert (a5 > 15) ; unsigned comparison
; Alpha byte-manipulation instructions follow. 14 6 « vO - ad

13 t7 « (t7 > ((t6 & 7) * 8)) & OxFF 15 t6 « t6 4+ 7

14 t6 «— t6 + 1 16 assert (t6 > 15) ; unsigned comparison
15 t5 « t5 & ~(0xFF K ((a3 & 7) * 8)) ; Store the final value of OutputBuffer.

16 al « (t7 & OxFF) < ((a3 & 7) * 8) 17 ab « v0 + 8

17 a5 < a5 + al 18 [ad] « ab

18 [a3] « a5 ; Read the eight bytes, an unaligned quad word.
; Possible aliasing with 18 forces reload. 19 al « [t5 & ~T]

19 v0 « [a4] 20 al + al > ((t5 & 7) * 8)

20 t7 + &MaxiMmuMCODEVALUE ; uses gp 21 a3 « [(tb + 7)) & ~7]

21 a2 + &FreeCopeENTRY ; uses gp 22 a3 « a3 K (((8 - t5) & 7) * 8)

22 v0 <« v0O + 1 23 al + al | a3

23 [a4] « vO . Write the eight bytes, again unaligned.

24 if (t3 != 0) branch to CopyLoop 24 a2 « [v0 & ~7]

25...136 (seven more loop iterations) 25 a2 + a2 & ~(-1LL < ((v0 & 7) * 8))

26 t7 « al < ((vO & 7) * 8)
27 a2 « a2 4 t7

28 [v0 & ~7] « a2

29 a2 « [(v0 4+ 8) & ~7]

30 a2 « a2 & (-1LL K ((v0 & 7) * 8))

31 t7 « al > ((8 - (vO & 7)) * 8)

32 a2 « a2 4 t7

33 [(vO + B) & ~T] + a2

; Set up the six remaining live-out registers.
34 v0 «— v0 + 8

35 a3 « v0 -1

36 a2 <« &FREECODEENTRY ; uses gp

37 t6 «+ t5 + 8

38 t7 + &MaximuMCODEVALUE ; uses gp

39 ab « [a3 & ~T]

20 al « (a5 > ((aB & 7) * 8)) & OxFF

41 al « (al & 0xFF) < ((a3 & 7) * 8)

Figure 15: A sample frame based on code byte copying from the SPEC95 compress benchmark. The
loop body appears eight times in the frame. With an aggressive optimization engine and pointer aliasing

assertions, the frame can be reduced from 136 to 41 instructions, as shown on the right.



v0). Overall, the frame reads three registers and writes nine.

Pointer analysis is one of the more difficult aspects of optimization, and it remains a stumbling block
for frame optimization. However, we can augment optimized frames with assertions to support likely but
unprovable pointer aliasing relationships. For example, in addition to the control assertion that the frame
requires at least eight bytes to copy (instruction 08), we assert the following: the destination does not
overlap forward to the source (instructions 09-10), the source bytes do not overlap with the storage for the
destination buffer pointer (instructions 11-13), and neither do the destination bytes (instructions 14-16).

Leveraging these assertions, the optimization engine can rewrite the Alpha byte manipulation instruc-
tions as unaligned quad-word manipulations, reducing eight iterations to a single load-store combination
(instructions 19-33). The effect of this optimization is to reduce the number of instructions required for the
frame from 136 to 41, a factor of more than three. Although the magnitude of this benefit is enhanced by
the fortuitous length of the sample frame (we selected it based solely on frequency and its loop-unrolling
nature), the optimization is not limited to frames with exactly eight iterations. More or fewer iterations can
be grouped into multiple or smaller (e.g., 32-bit word) load-store combinations, generally with a significant
savings in dynamic instruction count. The optimized form shown in the figure also makes no attempt to
optimize register allocation or instruction scheduling, but rather breaks the instructions into conceptual
blocks to improve readability. For the execution discussed here, optimization of one frame reduces the total

dynamic instruction count by 2.1%.

7.3 Summary

Using the most frequently initiated frames from rePLay executions as samples, this section highlighted
possible strategies for the rePLay optimization engine. Many traces contain interprocedural linkage code that
can easily be stripped away to reduce dynamic instruction count. Loop unrolling and reoptimization based
on dynamic iteration counts also seems promising. Finally, the use of assertions about infrequent pointer
aliasing can significantly improve the level of frame optimization by eliminating potential data dependencies;
if the rare aliasing conditions ever occur, the frame faults and normal instruction execution resumes. Coupled
with the high coverage of frames achieved through rePLay’s frame construction approaches, the success of

these optimizations indicates the potential value of the rePLay Framework.

8 Conclusion

We have described a new framework for enhancing the performance of an application using execution-guided
optimizations. The rePLay Framework centers on the concept of a frame, a single-entry, single-exit, linearized
sequence of instruction drawn dynamically from an executing program. These frames are typically much
larger than the traces considered by previous work on trace caches, but are constructed in large part through
technology developed for trace caches. Branch Promotion, in particular, plays a key role in the rePLay
frame construction strategy. Once rePLay has constructed a potentially useful frame, the frame undergoes
online optimization and is stored in a frame cache. Branches, returns, and indirect calls are transformed into
instructions that assert the prediction implied by the linear instruction sequence in the frame. The rePLay
sequencer then fetches and initiates the frame when the branch path history indicates a high likelihood of

completion.



A rePLay configuration with a 256-entry frame cache, a 64KB+12KB bias table, 16K entry frame
predictor, and a path history length of 6, achieves an average frame size of 88 instructions with 68% coverage
of the dynamic istream, an average frame completion rate of 97.81%, and a frame predictor accuracy of
81.26%. These results soundly demonstrate that the frames upon which the optimizations are performed are
large and stable.

Using the most frequently initiated frames from rePLay executions as samples, this section highlighted
possible strategies for the rePLay optimization engine. Many traces contain interprocedural linkage that
can easily be stripped away to reduce dynamic instruction count. Loop unrolling and reoptimization based
on dynamic iteration counts also seems promising. Finally, the use of assertions about infrequent pointer
aliasing can significantly improve the level of frame aliasing conditions ever occur, the frame faults and
normal instruction execution resumes. Coupled with the high coverage of frames achieved through the
dynamic construction approaches outlined in earlier sections, the success of these optimizations demonstrates
the significance of the rePLay Framework.

We have deliberately left the execution architecture slightly vague in this paper, as we do not wish to con-
strain the idea of constructing and dynamically optimizing frames to a particular implementation. However,
given the very low register input and output counts on the sample traces (three inputs and nine or thirteen
outputs for 41 and 136 instructions, respectively), an approach similar to that taken by processor architec-
tures which speculate at the thread level might provide interesting opportunities to speculatively execute
frames and to reduce the synchronization implied by the relatively low frame prediction rates. Regardless of
the specific implementation, however, we believe that the concept of frames, along with the mechanisms and

strategies that we outlined in this paper, will play an important role in processor architectures of the future.
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