
rePLay : A Hardware Framework for Dynamic ProgramOptimizationSanjay J. Patel Steven S. LumettaCenter for Reliable and High-Performance ComputingThe University of Illinois at Urbana-Champaignfsjp, steveg@crhc.uiuc.eduCRHC Technical Report #CRHC-99-16December 1999AbstractIn this paper, we propose a new framework for enhancing application performance through execution-guidedoptimization. The rePLay Framework uses information gathered at run-time to optimize an application'sinstruction stream. Some of these optimizations persist temporarily for only a single execution, others persistbetween runs. The heart of the rePLay Framework is a trace-cache like device called the frame cache, usedto store optimized regions of the original executable. These regions, called frames, are large, single-entry,single-exit regions spanning many basic blocks in the program's dynamic instruction stream. Optimizationsare performed on these frames by a exible optimizer contained within the processor.A rePLay con�guration with a 256-entry frame cache, using realistically-sized frame constructor andframe sequencer achieves an average frame size of 88 instructions with 68% coverage of the dynamic istream,an average frame completion rate of 97.81%, and a frame predictor accuracy of 81.26%. These results soundlydemonstrate that the frames upon which the optimizations are performed are large and stable.Using the most frequently initiated frames from rePLay executions as samples, we also highlight possiblestrategies for the rePLay optimization engine. Coupled with the high coverage of frames achieved through thedynamic frame construction, the success of these optimizations demonstrates the signi�cance of the rePLayFramework. We believe that the concept of frames, along with the mechanisms and strategies outlined inthis paper, will play an important role in future processor architecture.1 IntroductionSeveral underlying trends (transistor counts, wire delay e�ects, memory latency, implementation complexity)direct those working on processor microarchitecture to examine new and creative ways of increasing theperformance of general applications on general-purpose computer systems. As a result, future processorsolutions are likely use novel techniques for high-performance.In this paper, we propose a new framework for enhancing application performance through execution-guided optimization. The rePLay Framework uses information gathered at run-time to optimize an applica-tion's instruction stream. Some of these optimizations persist temporarily for only a single execution, otherspersist between runs. The heart of the rePLay Framework is a trace-cache like device called the frame cache,used to store optimized regions of the original executable. These regions, called frames, are large, single-entry, single-exit regions spanning many basic blocks in the program's dynamic instruction stream. Frames

are larger regions than those considered by previous trace cache research. Optimizations are performed onthese frames by a exible optimizer contained within the processor.The rePLay Framework consists of four elements : a frame constructor to identify and create atomic(i.e., single-entry, single-exit) frame regions, an optimization engine to optimize each newly created frame,a frame cache to store these optimized frames, and a sequencing mechanism to predict when a particularframe will visited again in the dynamic instruction stream. The integration of these rePLay componentswith a processor's fetch and execution engines is shown in Figure 1
Cache
Frame

Optimization

Engine

Fetch Engine

Constructor
Frame

Execution Engine

Completing instructions

Sequencer

Figure 1: The rePLay Framework integrated into a generic processor microarchitecture.The main contribution of this paper is a demonstration of the basic phenomenon that drive rePLay. TherePLay Framework exploits run-time stability { repeating patterns of control and data { to boost programperformance. We demonstrate that large frames, spanning many control-ow instructions, can be createddynamically with simple hardware mechanisms. It is upon these frames that the rePLay optimizations areperformed. We demonstrate that these frames are frequently executed, and can be e�ectively cached afteroptimization. We present a sequencing mechanism, based on a path-based predictor, that provides controlspeculation between frames. Finally, we present a sampling of optimizations which are possible withinthe rePLay Framework, many of which are best done knowing run-time behavior rather than the limitedbehavioral information available to a compiler.2 The rePLay FrameworkRun-time information is beginning to play a larger role in boosting performance. Mechanisms such as branchprediction, dynamic scheduling, and hardware memory disambiguation are central to high-performance pro-cessing today. Techniques such as trace caches, value prediction, and instruction reuse are likely to appearin tomorrow's processors. All of these techniques leverage the stable patterns that occur during executionto reduce a program's running time.Run-time information is useful in a way that is di�erent from information available at compile time. Acompiler can very e�ectively capitalize on stable behavior (e.g., a highly biased branch) apparent from pro�leexecutions of a program. However, if the program behaves di�erently from the way the compiler expected,optimizations based on the expected behavior may degrade performance. Furthermore, periodic variationsin behavior during execution (e.g., a conditional branch which is highly biased for �rst half of the program,

and then highly biased in the other direction for the second half) are di�cult for a compiler to capitalizeupon.2.1 ApproachThe rePLay Framework exposes stable run-time behavior to a hardware-based optimizer that performslightweight code optimizations on sections of the istream. In a sense, a piece of an optimizing compileris embedded within the processor hardware. The optimizer operates on frames that consist of many basicblocks in the original control ow. These frames are dynamically constructed and maintain a single-entry,single-exit semantic despite containing many branch instructions. Like traces in a trace cache, frames mayconsist of code that is not physically sequential in the static image of a program, but is dynamically convertedinto straight-line code. Once optimized, these frames are stored in the frame cache.The rePLay Framework allows for local optimizations in situations in which compiler actions would havebeen di�cult or impossible. Old binaries, transformations across dynamic library calls, applications notamenable to pro�ling or aggressive compilation are all situations where optimizations at compile-time alonemay be ine�ective. Furthermore, rePLay allows for types of optimizations that cannot e�ectively be done atcompile-time. Such optimizations include ones based on the run-time stability of data values. We provideseveral examples in Section 7.This work builds upon several concepts recently explored in computer architecture research. We leveragetechniques developed for the trace cache and apply them in the context of an execution-guided optimizationsystem. Central to frame construction is the concept of Branch Promotion originally developed to increasethe size of traces stored in the trace cache. Previous trace cache work also suggests that the latency of traceconstruction and optimization does not impact performance because they occur o� the critical processingpath. This indicates that latency in the frame constructor and optimizer within the rePLay Framework maynot be a large factor on overall performance.2.2 FramesThe �rst concept of rePLay is the concept of the atomic region or frame. Similar in nature to the tracedeveloped by a trace scheduling [5] compiler or the block within the Block-Structured ISA [15, 9], a frame isa dynamically-generated group of instructions in which all instructions in the group execute or none of themdo. A frame has a single entry point and a single exit point. This atomic property of frames increases thelevel of dynamic optimization that can be performed on them.The distinction between a frame and a trace as described by previous trace cache research is subtle, butimportant. A frame is a more speci�c entity than the a trace { it is a trace with a single entry point anda single exit point. The concept of an atomic trace was not central to previous trace cache research. It ishowever central to a frame within rePLay. Either the entire frame executes, or none of it executes.2.3 Frame constructionThe objective of frame construction is to create long frames that span many basic blocks. Such long framesincrease the potential of the dynamic optimizer in �nding opportunities for optimization that were missedat compile time. In order for frames to span multiple basic blocks while maintaining atomicity (i.e., single

entry, single exit), branches in the original instruction stream must be somehow removed when packagedwithin a frame. In rePLay, these branches are removed via branch promotion.With branch promotion [18], branches which behave in a highly regular manner are dynamically con-verted into non-branching ASSERT instructions that verify that the branching conditions still hold. If anASSERT's branching conditions do not hold, then the ASSERT �res and control is directed to a recoverypoint. Speci�cally, branches that have gone to the same target for the n consecutive previous occurrencesare targeted for promotion into ASSERTs. As original blocks from the program �nish execution and areretired, the corresponding control instructions are checked using a hardware structure called a bias table todetermine if they should be promoted.Within the frame construction logic, promoted control instructions (ASSERTs) cause a pending frameto keep growing. Regular, non-promoted control instructions terminate a pending frame. Figure 2 showshow original control ow is reorganized into a frame. For the frame ABCDE, a �ring ASSERT | or fault| causes program control to return to the original block A. In such a case, none of the instructions of theframe are committed to architectural state.
B

C

D

E

A

Original Control Flow

A

B

C

D

E

rePLay Frame

NT T

A

ASSERT taken

Figure 2: This �gure demonstrates how a single-entry, single-exit frame is constructed from a control forspanning several branches.Like traces, frames may contain taken branches from the original code. In other words, frame construc-tion dynamically remaps non-sequential control ow into straight-line code.While the frame constructor's primary function is to create long frames, it must balance this objectivewith two others: high likelihood of frame completion and high degree of frame coverage of the dynamicinstruction stream. Frames with a high likelihood of completion incur less penalty due to false starts; a�ring ASSERT causes the partial execution of a frame to be discarded and diminishes the bene�t of creatingthe frame in the �rst place. Higher frame coverage of the instruction stream increases the opportunity ofrePLay Framework for delivering dynamically optimized code to the execution engine. In summary, theframe constructor can be evaluated using three metrics: the average length of a frame (in instructions,

or basic blocks), how often the average frame is likely to completely execute, and how much of the totalinstruction stream is covered by these dynamically constructed frames.While not examined in this study, the frame construction hardware can potentially access hardwareperformance counters to direct frame construction to execution hot spots [16].2.4 Optimization engineOnce a frame is created, it is dynamically optimized by the optimization engine. The optimization engineis a exible optimization datapath that can be software-programmed to tailor optimizations towards an ap-plication, or towards a section of code. The range of optimization includes classical compiler optimizations,extended basic block optimizations [10], and also encompasses software-based dynamic optimizations sys-tems [1]. Furthermore, the coupling of dynamic optimizations, execution rollback mechanisms, and rePLay'sassertion instruction architecture allows for new classes of optimizations such as ones that speculate on thevalue of particular input data. These optimizations assume particular live-in data values are known valuesupon entry to a frame and pre-propagate those values throughout the frame. For each assumed value, adata ASSERT is added to the frame to ensure the live-in value is the expected value. This type of optimiza-tion draws upon the same phenomenon that drives value prediction and instruction reuse. Other classes ofpossible optimization include optimizations that tune the instruction stream to the details of the executionmicroarchitecture, such as instruction scheduling and instruction placement for clustered functional units.In this paper, we discuss rePLay optimizations briey in Section 7. Due to the complex nature of theoptimization engine, we expect the frame latency through the optimization engine to take many cycles.However, we use the data gathered from an earlier study [6] as an indication that the negative e�ects of thislatency on performance are manageable.2.5 Frame cacheOnce a frame has been processed by the optimization engine, it is stored in the frame cache. The framecache is similar to the trace cache except that it is capable of delivering very long sequences of instructionsspanning multiple traditional cache lines. A frame cache line may also span several issue-widths wide. Forexample, a particular frame might consist of 80 instructions, span 5 cache lines (16 instructions per cacheline), and take 5 cycles to be fetched and issued on a 16-wide fetch/issue processor. This caching mechanismis described in more detail in Section 6.2.6 SequencerThe penalty associated for incorrectly initiating an optimized frame may be quite severe (depending onthe depth of the �ring assertion within the frame's dependency chains.) The rePLay Framework uses aspeculative sequencing mechanism to predict when a frame should be initiated and when it should not. Forexample, consider Figure 3. At block Y in the original control ow, there are two choices: block Z and blockA. A conventional branch predictor selects one of the two targets based on information collected about pastprogram behavior. With rePLay, a third choice is possible: the dynamically-constructed frame ABCDE.The rePLay sequencing mechanism consists of a conventional branch predictor, which selects between A andZ, and the frame sequencer, which selects between the fetch of block A or block Z versus an initiation of the

frame ABCDE. In Section 5, we examine this sequencing mechanism in more detail.
Y

Z A

Y

Z A A

B

C

D

E

Conventional Branch Prediction with rePLay

added dynamically

Figure 3: This �gure shows two version of control ow originating from the same static branch. Unlike witha conventional branch predictor, the number of targets selected amongst by the rePLay sequencer variesdynamically, even for the same static branch. As a frame is created (ABCDE, in this case), it is added asa potential target from the prior block (Y, in this case). The sequencer decides when ABCDE should beselected versus, say, simply A.In order to sustain adequate instruction fetch bandwidth, the rePLay Framework uses an instructiondelivery mechanism consisting of a standard instruction cache or trace cache to supplement the frame cache.Based on the sequencer mechanism described above, the fetch address is directed to either the conventionalcaches or to the frame cache. If it is directed to the frame cache and the frame cache responds with a miss,the conventional caches are accessed in a subsequent cycle. If the frame cache responds with a hit, for thefew cycles, a frame streams out of the frame cache in fetch-width sized packets.3 Related WorkMuch of this work builds upon previous trace cache research [20, 21, 19], in particular that of BranchPromotion [18] and that of dynamic trace optimizations [7, 13], and also that of the Trace Predictor [12].Similar in nature to this work is the DIF cache [17] which dynamically creates statically scheduled instructionwords.The concept of dynamic compilation and optimization is an emerging area. The desire to have multi-ISA compatibility has spawned work in dynamic compilation systems [3], which then have spawned workin dynamic optimization systems [1, 4, 8]. Almost all of this work has focused on low-overhead softwaresystems. The rePLay Framework can leverage these software techniques by providing a very low overheadmechanism for implementing dynamic optimization that monitors dynamic behavior at a microarchitecturallevel.

4 Frame ConstructionA critical component of the rePLay Framework is the frame construction mechanism. The objective offrame construction is to create atomic regions consisting of many instructions that are very likely to executecompletely. The resulting single-entry, single-exit semantic allows the run-time optimizer to perform veryaggressive optimizations upon the generated frames.Frames can span many basic blocks of a program. To prevent branches that terminate these blocksfrom also terminating frames, we use the Branch Promotion technique to dynamically convert highly-biasedbranches into unconditional branches that generate a hardware fault if they switch direction. A fault causesthe instructions of the frame to be discarded (i.e., not committed to architectural state) and the control owto be redirected to the proper recovery point. See Figure 2 for an example. In this manner, Branch Promotionis used to convert branches internal to a frame into ASSERT instructions. The promotion technique wasoriginally applied to only conditional branches, but here we apply it also to indirect branches and returns.With Branch Promotion, the frame construction mechanism is simple: a each completing branch accessesan entry in the branch bias table. The bias table is a hardware structure that counts the number of timesa branch has had the same outcome consecutively. We improve upon the original promotion technique byaccessing the bias table with path history, in addition to the branch address. Each time a branch (pluspath) has the same outcome as previously, the counter �eld of the bias table entry is incremented. Once thecounter reaches a threshold, the branch is promoted and is converted into an ASSERT. In other words, thebias table promotes a branch if it has n (where n is the counter threshold) outcomes in the same direction.Previous branch prediction research has demonstrated that such a technique is an e�ective way to identifyhighly-biased branches [2]. We increase the accuracy of the mechanism by adding path history. Figure 4 isa diagram of the Branch Promotion mechanism.
Path History

Curr Branch Addr

log(n)

Previous Outcome

:

Promote

Consequtive Occurrences

log(n)-bit saturating counterdir

Figure 4: The bias table mechanism for Branch Promotion with promotion threshold n.Frames are constructed by extending a basic block across promoted branches. For each arriving promotedbranch, the pending frame grows by the corresponding block. The pending frame terminates when anunpromoted branch is added. In other words, a frame consists of a sequence of instructions (includingunconditional branches and ASSERTs) ending at a single unpromoted branch. Even though the original

instructions may have been non-contiguous, they are converted into a contiguous frame.Larger frames are bene�cial for the rePLay Framework. Larger frames spanning more basic blocks presentthe rePLay optimizer with a greater opportunity performing e�ective optimizations. For the measurementspresented in the remainder of the paper, the frame constructor only maintains frames containing 5 or moredynamic basic blocks or containing 32 or more instructions. Smaller frames are discarded.4.1 The idealIn this section, the rePLay frame construction mechanism is evaluated on three bases: frame length, coverageof the istream, frame completion rate.Figure 5 demonstrates the potential of this frame construction technique by showing average frame sizein instructions on the 8 SPECint95 benchmarks. All measurements were taken on a trace driven simulator(based on the SimpleScalar tool set) simulating the Alpha AXP ISA. All benchmarks were compiled usingthe Compaq/Digital C Compiler V3.5 using pro�le-guided code placement to reduce the impact of takenbranches. Also, link-time code placement optimizations using the OM executable editor were performed onthese binaries.Figure 5 demonstrates the average size of frames in instructions using a branch bias table of unlimited size(i.e., interference-free). The horizontal axis of the graph represents the number of branch targets incorporatedinto the path history. The path history is used to index into the branch bias table to determine whether abranch should or should not be promoted. The data indicates that a large number of instructions can beincorporated into a frame. On average, for a history length of 6, a frame consists of about 106 instruction.Also shown on this graph is the region size if an ideal static predictor were used in place of the dynamicbias table. Here, the ideal static mechanism classi�es a branch as promoted if it has a 95% bias towards aparticular target during the pro�le run. The mechanism is considered ideal because the measurement dataset is the same as the pro�le data set. All branches are considered to be promotable, including indirectjumps and returns. For all schemes, the dynamic mechanism generated longer frames than the ideal static,sometimes signi�cantly. Although, not shown on the graph, history information can also be factored in atcompile-time using code replication techniques described by Young et al [23]. Longer histories (which arebene�cial) can be di�cult to incorporate at compile-time because of the multiplicity of paths that need tobe maintained.As the trends demonstrate, history is an important ingredient for enlarging frames. History helps thepromotion mechanism re�ne its classi�cation of branches. Figure 6 isolates the e�ectiveness of BranchPromotion (with n = 32) on the benchmark perl. In this graph, each bar represents the total number ofdynamic branches. Each dynamic branch is either classi�ed as a normal (unpromoted branch), or promotedbranch which obeyed its promoted direction, or a promoted branch which faulted (i.e., the ASSERT �red).In this graph, a bar is generated for each path history length. As the amount of history information isincreased, the number of branches which are classi�ed as promoted increases. Furthermore, the fault rateof promoted branches is extremely low. With no history, approximately 65% of all dynamic branches areclassi�ed as promoted. With a path history of length 6, 85% are classi�ed as promoted. Fault rate is below1% of all promoted branches. The net e�ect is that branch promotion using path history is removing 85%of the branches (conditional, indirect, returns) from the dynamic instruction stream.The next experiment measures the coverage of the dynamic instruction stream using the described frame

0 2 4 6 8 10

Path History Length

0

9

18

27

36

45

54

63

72

81

90
A

ve
 #

 I
ns

tr
uc

ti
on

 p
er

 F
ra

m
e

n = 16
n = 32
n = 64

compress

Ideal Static = 43

0 2 4 6 8 10

Path History Length

0

8

16

24

32

40

48

56

64

72

80

A
ve

 #
 I

ns
tr

uc
ti

on
 p

er
 F

ra
m

e

n = 16
n = 32
n = 64

gcc

Ideal Static = 39

0 2 4 6 8 10

Path History Length

0

7

14

21

28

35

42

49

56

63

70

A
ve

 #
 I

ns
tr

uc
ti

on
 p

er
 F

ra
m

e

n = 16
n = 32
n = 64

go

Ideal Static = 45

0 2 4 6 8 10

Path History Length

0

38

76

114

152

190

228

266

304

342

380

A
ve

 #
 I

ns
tr

uc
ti

on
 p

er
 F

ra
m

e

n = 16
n = 32
n = 64

ijpeg

Ideal Static = 167

0 2 4 6 8 10

Path History Length

0

9

18

27

36

45

54

63

72

81

90

A
ve

 #
 I

ns
tr

uc
ti

on
 p

er
 F

ra
m

e

n = 16
n = 32
n = 64

li

Ideal Static = 38

0 2 4 6 8 10

Path History Length

0

16

32

48

64

80

96

112

128

144

160

A
ve

 #
 I

ns
tr

uc
ti

on
 p

er
 F

ra
m

e

n = 16
n = 32
n = 64

m88ksim

Ideal Static = 79

0 2 4 6 8 10

Path History Length

0

11

22

33

44

55

66

77

88

99

110

A
ve

 #
 I

ns
tr

uc
ti

on
 p

er
 F

ra
m

e

n = 16
n = 32
n = 64

perl

Ideal Static = 46

0 2 4 6 8 10

Path History Length

0

15

30

45

60

75

90

105

120

135

150

A
ve

 #
 I

ns
tr

uc
ti

on
 p

er
 F

ra
m

e

n = 16
n = 32
n = 64

vortex

Ideal Static = 66

Figure 5: The average size of a frame gathered using an interference-free bias table indexed with a givenpath history length. Path history length indicates the number of branch targets which appear in the history.For each benchmark, an ideal static number is provided to show static frame length obtained by best-casecompiler analysis.

0 1 2 3 4 5 6 7 8 9 10

Path History Length

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 D

yn
am

ic
 B

ra
nc

he
s

faults
promoted
regular

Figure 6: Promotion e�ectiveness as history length is increased.construction technique. In essence, this experiment measures the fraction of the instruction stream deliveredby a perfect frame cache that is capable of caching every constructed frame. Whenever a new frame iscreated, the perfect cache is checked. If the frame exists, then the corresponding instructions are tallied ascovered. If the frame doesn't exist, then those instructions are not covered. With the caching e�ects factoredout, the e�ects of the frame construction algorithm can be more closely examined. For example, if the frameconstructor is creating very small frames (say, if branches are rarely promotable) that rarely exceed the 5basic block/32 instruction minimum size threshold, then a small fraction of the istream would be covered.Figure 7 shows the fraction of the dynamic instruction stream covered by frames created using thistechnique. The coverage attainable by the ideal static mechanism is also provided. Again, the interference-free dynamic mechanism is able to capture a larger fraction of the istream than the ideal static mechanism.With the dynamic mechanism, at history length 10, almost 90% of the dynamic istream on average is coveredby frames. With the ideal static mechanism, average frame coverage is around 54%.

0 2 4 6 8 10

Path History Length

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 C

ov
er

ed
 I

ns
ns

n = 16
n = 32
n = 64

compress

Ideal Static = 55%

0 2 4 6 8 10

Path History Length

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 C

ov
er

ed
 I

ns
ns

n = 16
n = 32
n = 64

gcc

Ideal Static = 39%

0 2 4 6 8 10

Path History Length

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 C

ov
er

ed
 I

ns
ns

n = 16
n = 32
n = 64

go

Ideal Static = 20%

0 2 4 6 8 10

Path History Length

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 C

ov
er

ed
 I

ns
ns

n = 16
n = 32
n = 64

ijpeg

Ideal Static = 71%

0 2 4 6 8 10

Path History Length

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 C

ov
er

ed
 I

ns
ns

n = 16
n = 32
n = 64

li

Ideal Static = 37%

0 2 4 6 8 10

Path History Length

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 C

ov
er

ed
 I

ns
ns

n = 16
n = 32
n = 64

m88ksim

Ideal Static = 83%

0 2 4 6 8 10

Path History Length

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 C

ov
er

ed
 I

ns
ns

n = 16
n = 32
n = 64

perl

Ideal Static = 45%

0 2 4 6 8 10

Path History Length

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 C

ov
er

ed
 I

ns
ns

n = 16
n = 32
n = 64

vortex

Ideal Static = 81%

Figure 7: The percentage of dynamic instructions which occur within a frame identi�ed by this technique.

Table 1 shows the percentage of occurrences that a frame executes completely, i.e., no ASSERT withinthat frame triggered. When an ASSERT instruction triggers, the corresponding frame is ushed and thefetch redirected to the recovery point. Essentially, any progress made in executing instruction within theframe is lost. For this reason, assertions can be costly and therefore high frame completion rates are desirable.Table 1 lists the ratio of frame completion versus frame initiation. In other words, the table lists how oftena frame is completely executed once it has been started. The data is presented for all three promotionthresholds, with the path history length at 6.Benchmark n = 16 n = 32 n = 64compress 94.95 98.35 99.44gcc 93.82 96.88 98.43go 94.12 97.17 98.43ijpeg 98.56 99.19 99.54li 93.00 96.27 97.79m88ksim 94.55 98.65 99.70perl 97.50 98.55 99.59vortex 97.46 98.22 98.31Average 95.50 97.91 98.90Table 1: The average frame completion rate at path history length = 6.4.2 Finite hardwareWe now demonstrate that a straightforward �nite-storage implementation of the promotion mechanism canalso achieve very good results. Figure 8 shows the average frame length and Figure 9 shows the percent cov-erage of the dynamic istream using a 64KB branch bias table. The degradation from the ideal is substantialin some cases, minor in others. An interesting note: as path history is increased for gcc and go, coveragebegins to decline. This is due to the shear number of control paths followed by these benchmarks. Increasinghistory results in a steep increase in the number of paths needed to be maintained within the bias table. Forthis reason, we pick a history length of 6 as our base for further evaluation. This path history length strikesa good balance between the positive and negative e�ects of longer path history.We also use a 12KB bias table for promoting returns and indirect branches. The main di�erence betweenthe conditional branch bias table and the indirect branch table is that each entry contains a target alongwith the bias counter. The promotion signal is given only if the same target is used a threshold number oftimes. ASSERTs for indirect branches require that the promoted target be encoded along with ASSERT.The assertion is made that the target taken by the control ow is the one assumed by the ASSERT.For both bias tables, the path history, along with the address of the current branch is hashed in orderto form an index into the corresponding tables. We use a path history hashing technique similar to thatdescribed by Stark et al [22]. The technique maintains path history by rotating the old history prior toXORing in a new target. This way, the history pattern encapsulates the ordering of targets within thehistory, while allowing for a larger number of bits of the target address to be expressed in the history.Figure 10 demonstrates how this mechanism works conceptually. In this �gure n targets are hashed togetherto form an m bit path history. Note that this diagram is a conceptual diagram; the actual implementation

0 2 4 6 8 10

Path History Length

0

9

18

27

36

45

54

63

72

81

90

A
ve

 #
 I

ns
tr

uc
ti

on
 p

er
 F

ra
m

e

n = 16
n = 32
n = 64

compress

0 2 4 6 8 10

Path History Length

0

6

12

18

24

30

36

42

48

54

60

A
ve

 #
 I

ns
tr

uc
ti

on
 p

er
 F

ra
m

e

n = 16
n = 32
n = 64

gcc

0 2 4 6 8 10

Path History Length

0

5

10

15

20

25

30

35

40

45

50

A
ve

 #
 I

ns
tr

uc
ti

on
 p

er
 F

ra
m

e

n = 16
n = 32
n = 64

go

0 2 4 6 8 10

Path History Length

0

25

50

75

100

125

150

175

200

225

250

A
ve

 #
 I

ns
tr

uc
ti

on
 p

er
 F

ra
m

e

n = 16
n = 32
n = 64

ijpeg

0 2 4 6 8 10

Path History Length

0

9

18

27

36

45

54

63

72

81

90

A
ve

 #
 I

ns
tr

uc
ti

on
 p

er
 F

ra
m

e

n = 16
n = 32
n = 64

li

0 2 4 6 8 10

Path History Length

0

15

30

45

60

75

90

105

120

135

150

A
ve

 #
 I

ns
tr

uc
ti

on
 p

er
 F

ra
m

e

n = 16
n = 32
n = 64

m88ksim

0 2 4 6 8 10

Path History Length

0

10

20

30

40

50

60

70

80

90

100

A
ve

 #
 I

ns
tr

uc
ti

on
 p

er
 F

ra
m

e

n = 16
n = 32
n = 64

perl

0 2 4 6 8 10

Path History Length

0

13

26

39

52

65

78

91

104

117

130

A
ve

 #
 I

ns
tr

uc
ti

on
 p

er
 F

ra
m

e

n = 16
n = 32
n = 64

vortex

Figure 8: The average frame size using a 64KB bias table.

0 2 4 6 8 10

Path History Length

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 C

ov
er

ed
 I

ns
ns

n = 16
n = 32
n = 64

compress

0 2 4 6 8 10

Path History Length

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 C

ov
er

ed
 I

ns
ns n = 16

n = 32
n = 64

gcc

0 2 4 6 8 10

Path History Length

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 C

ov
er

ed
 I

ns
ns n = 16

n = 32
n = 64

go

0 2 4 6 8 10

Path History Length

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 C

ov
er

ed
 I

ns
ns

n = 16
n = 32
n = 64

ijpeg

0 2 4 6 8 10

Path History Length

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 C

ov
er

ed
 I

ns
ns

n = 16
n = 32
n = 64

li

0 2 4 6 8 10

Path History Length

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 C

ov
er

ed
 I

ns
ns

n = 16
n = 32
n = 64

m88ksim

0 2 4 6 8 10

Path History Length

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 C

ov
er

ed
 I

ns
ns

n = 16
n = 32
n = 64

perl

0 2 4 6 8 10

Path History Length

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 C

ov
er

ed
 I

ns
ns

n = 16
n = 32
n = 64

vortex

Figure 9: The percentage of dynamic instructions which are covered by frames identi�ed using a 64KB biastable.

of this hashing scheme can be pipelined over several cycles. A pipelined version is provided by Stark et al.
Prior target

rotate
1-bit

2nd prior target

2-bit
rotate

XOR

n-1th prior target

rotate
(n-1)-bit

��
��
��
��

��
��
��
��

��
��
��
��

Current target

New Path History

m bits within full target address

m

m

m

m

Figure 10: A conceptual diagram of the path history generation scheme.Finally, the frame completion rates using this 64KB bias table (accessed using a path history of 6 branchtargets) are shown in Table 2. The real completion rates are about the same as those attainable by idealizedhardware. To summarize some of the data: with the 64KB+12KB �nite bias table, at a history length of6, and a promotion threshold of 32, we attain an average frame size of 96 instructions, with a coverage of82%, and a completion rate of 98%. Recall that the frame construction mechanism is only saving framesthat span at least 5 basic blocks or are at least 32 instructions long.Benchmark n = 16 n = 32 n = 64compress 94.88 98.35 99.43gcc 94.99 97.57 98.85go 95.82 98.06 98.98ijpeg 98.58 99.15 99.45li 92.37 95.60 97.10m88ksim 94.12 98.67 99.70perl 97.55 98.62 99.61vortex 96.93 98.00 98.27Average 95.65 98.00 98.92Table 2: The average frame completion rate at path history length = 6, using a bias table of 64KB.Three things need to be noted here. First, this Branch Promotion mechanism does not exist in the frontend of the processor, therefore single-cycle access of the bias tables is not essential. The bias tables exist inthe frame constructor, where latency is likely not a major factor to performance. However, the promotionmechanism does require supporting the average branch execution bandwidth of the processor, i.e., if theexecution engine completes three branches each cycle on average, then the promotion hardware needs tosupport three lookups per cycle. Second, since the promotion information is maintained on the completed

branch stream, checkpointing of the associated structures is not required. Third, many techniques developedto reduce the interference within dynamic branch predictors can be applied here to increase the e�ectivenessof the bias table mechanism towards that of the interference-free case. We have only explored a simple biastable scheme to demonstrate that large frames can be formed e�ectively using dynamic information.5 Sequencing ModelWe only want to initiate frames at the right time. The frame execution percentages of Tables 1 and 2 indicatethat once a frame is correctly initiated, it has a very high chance of fully executing. However, there are alsopenalties associated with incorrectly initiating a frame in the �rst place (similar to the penalties of a regularbranch misprediction). To help avoid these penalties, we use a sequencing technique that predicts when aframe should be entered versus when a conventional fetch should be performed.As mentioned in Section 2, the frame sequencing happens alongside a conventional branch predictorwhich sequences through the original control ow of the program (or sequences amongst traces if a tracecache is used). Whenever the conditions for sequencing to a frame are present, the frame sequencer overridesthe prediction generated by the conventional branch predictor.The sequencer datapath is shown in Figure 11. A selection mechanism selects between the conventionalmechanism and the frame predictor. The selector mechanism can be history-based mechanism similar to theselector used for a hybrid branch predictor [14], or can be a con�dence-based mechanism [11].The frame predictor works similarly to the trace predictor described by Jacobson et al [12]. Each entryin the table contains a frame starting address. Entries are accessed using a hashed path history containingthe current fetch target. Whenever a frame is added to the frame cache, the frame predictor is updatedby adding the frame's address at the entry corresponding to its path history (i.e., the path history used todetermine whether or not to promote the �rst branch in the frame). For example, say frame ABCDE is justcreated and optimized by the rePLay pipeline. This frame also has an associated path history: if the streamof retiring target addresses was WXYZABCDE, then a hash of the addresses WXYZ forms the path historyof the frame ABCDE. The frame predictor is updated at the entry corresponding to the hash of WXYZ.This way, whenever the current fetch target is Z and the path history is ...WXY, then, in theory, the fetchsequencer outputs the address for frame ABCDE.
Curr Target

Path History

Next Target

Predictor

Frame
Branch Pred

w/ BTB
Selector

Frame/Conventional?

Conventional

Figure 11: The Frame Sequencer for the rePLay Framework.

For our initial evaluation, we present the e�ectiveness of a hardware implementation of the frame predic-tor assuming the selector mechanism operates ideally. We measure frame predictor accuracy by comparingthe predicted frame with the next region of instructions encountered in the dynamic instruction stream. Ifthe next region is a frame, the frame addresses are compared. If they match then the frame predictor istallied a correct prediction. Otherwise, an incorrect prediction is assessed. If the next region of the istreamis not a frame, then the frame prediction is dropped.The results in Table 3 show the e�ectiveness of a frame predictor of 16K entries using 4, 6, or 8previous path targets (one of which is the current fetch address) hashed together into a 14 bit index. For allruns, branch bias tables of 64KB+12KB (as described in Section 4.2) are used for frame construction withpromotion threshold of 32.Benchmark hist length = 4 hist length = 6 hist length = 8compress 85.46 86.61 86.17gcc 84.64 84.28 85.58go 84.80 87.28 87.69ijpeg 85.57 90.25 86.41li 74.42 79.42 76.98m88ksim 83.38 86.52 86.82perl 66.50 73.91 74.29vortex 61.94 61.77 63.99Average 78.34 81.26 80.99Table 3: Accuracy of a 16K entry frame predictor.One thing must be noted here. The low rates of frame prediction reect the e�ectiveness of the frameconstruction algorithm. With the frame constructor, a large fraction of the regularly-behaving branches havebeen collected into frames. The frame predictor's job (and the branch predictor's as well) is to now predictthe most di�cult branches within the program. This di�culty is reected in the rather low prediction ratesshown in Table 3. However, because a signi�cant fraction of branches have been removed from the dynamicinstruction stream and converted into ASSERTs, the actual number of predictions required by the framepredictor and branch predictor is signi�cantly reduced to 25% of the original dynamic branch count.6 The Frame CacheWe have now demonstrated that frames span many instructions, and, if perfectly cached, can cover a largefraction of the dynamic instruction stream. In this section, we establish the caching e�ectiveness of frameswith �nite sized caches.A frame cache is essentially a trace cache with the added ability of frames to span multiple cache lines.For instance, if the frame cache had a line size of 16 instructions, then a frame containing 80 instructionswould span �ve cache lines. These �ve cache lines would be read from the cache one line at a time, in �veconsecutive cycles. To enable this, all lines associated with a particular frame would be tagged with thesame address { the starting address of the frame. Also, each entry contains a continuation �eld to hold theframe cache index of the next line of the frame. If the current line is the last line of the frame, then terminalbit is set to indicate that the output of the sequencer is used to initiate the next fetch. Finally, in order

to make replacement easier, a frame is stored within the same set of a set-associative cache. Doing this,however, requires a high degree of frame cache set-associativity in order to avoid a substantial increase incache misses due to set conicts. Using this scheme, both long frames and short traces can be cached in thesame structure (i.e., the frame cache and the trace cache can be the same structure.) Better schemes forcaching frames are under development.To measure the e�ectiveness of the frame cache, we use the two metrics used in Section 4: frame lengthand frame coverage. Frame length is simply a measure of the average number of instructions contained inframes fetched from the frame cache. Frame coverage is the percentage of the dynamic instruction streamcovered by frames fetched from the frame cache. Here, a miss in the frame cache results in no frame fetch.Figure 12 displays the average frame length for various cache sizes. Here, the frame cache is measuredin the number of frames it can hold. Since frames can be of di�erent sizes, this is not a direct measurementof the cache size, but a general indicator of the e�ectiveness of caching. Our objective here is to show thatframes do exhibit locality and can indeed be cached e�ectively. Figure 13 shows the frame coverage usingvarious sized frame caches. For all these measurements, a 64KB bias table (with 12KB bias table for indirectbranches) is used for frame construction, accessed using a path history of length 6. The promotion thresholdis set to 32. These graphs demonstrate that even with �xed hardware, we get a substantial coverage of theistream with large frames.

16 32 64 128 256 512 1024

Cache size (in frames cached)

0

23

46

69

92

115

138

161

184

207

230

A
ve

 #
 I

ns
tr

uc
ti

on
 p

er
 T

ra
ce

compress
gcc
go
ijpeg
li
m88ksim
perl
vortex

Figure 12: The average size of a cached frame with varying cache size.Finally, in order for the rePLay Framework to be e�ective, frames must have a high completion rate.Table 4 shows the frame completion rates, i.e., the probability of completing a frame once it has beenstarted, given various sized frame caches. The rates are high, considering that an average frame contains sixconditional branches. The completion rates using �xed size caches are marginally smaller than with perfectcaches (See Table 1).For a con�guration consisting of a frame cache capable of caching 256 frames, a 64KB conditional branchbias table, 12KB indirect branch bias table, 16K entry frame predictor, all using a path history length of 6,we achieve the following results: average frame size of 88 instructions, with these frames covering an averageof 68% of the dynamic istream, an average frame completion rate of 97.81%, and a frame predictor accuracyof 81.26%.

16 32 64 128 256 512 1024

Cache size (in frames cached)

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 C

ap
tu

re
d

In
sn

s

compress
gcc
go
ijpeg
li
m88ksim
perl
vortex

Figure 13: The coverage of the istream using a �xed size frame cache.Cache Size (in Frames)Benchmark 128 256 512compress 98.34 98.34 98.34gcc 96.93 97.27 97.41go 97.00 97.20 97.57ijpeg 99.17 99.17 99.17li 95.54 95.57 95.58m88ksim 98.57 98.65 98.66perl 98.34 98.52 98.59vortex 97.46 97.78 97.92Average 97.67 97.81 97.91Table 4: The average frame completion rate at path history length = 6, using a bias table of 64KB, usingvarious sized frame caches.7 Sample Frame OptimizationsAs apparent from the preceding sections, dynamic frame construction is a powerful tool for partitioning theinstruction stream into more predictable pieces. In this section, we consider two typical frames generated byexecutions of SPEC95 benchmarks on rePLay and discuss potential optimizations for these frames. As therePLay optimization engine is still under construction, we select frames that o�er fairly obvious opportunitiesrelated to interprocedural optimization and dynamic loop unrolling. The optimization engine will analyzeframes more carefully and systematically and will uncover opportunities less obvious to the untrained eye.By varying the aggressiveness of the optimizations between the two sample frames, this section providesqualitative insight on the potential value of frames in improving control-related performance.7.1 Memory Allocation ExampleFigure 14 details the �rst frame, a segment of memory allocation code from gcc, in unoptimized and optimizedforms. This frame was the one most frequently initiated during an execution of gcc on the rePLay Framework(256 entry frame cache, 64KB+12KB bias table, 16K entry frame predictor). During one execution of gcc,rePLay initiated the frame 17,942 times and completed it 17,900 times, a completion rate of 99.77%. The

; malloc has found the appropriate hash bucket (s3).01,02 t11 BucketArray ; uses gp03 s1 t11 + s3 * 804 t7 (s3 & 0xFF) � 805 ra [s1]06 if (ra = 0) branch to BucketEmpty; The bucket is rarely empty.07 t5 [ra]08 v0 ra + 809 [s1] t510 t6 [ra]11 t6 t6 & �0xFFFF12 t6 t6 + t713 t6 t6 + MALLOC MAGIC14 [ra] t615 s0 [sp + 8]16 ra [sp]17 s1 [sp + 16]18 s3 [sp + 32]19 s2 [sp + 24]20 sp sp + 4821 return; Return from malloc to xmalloc.22 t1 v023 if (v0 = 0) branch to MallocReturnedNull; Success is the common case.; In fact, it's guaranteed from this return site.24 ra [sp]25 v0 t126 sp sp + 1627 return; Return from xmalloc to alloca.28 s1 sp + 4029 s3 [s2]30 t0 v0 + 1631 [v0 + 8] s132 [s2] v033 [v0] s334 v0 t035 s0 [sp + 8]36 ra [sp]37 s1 [sp + 16]38 s3 [sp + 32]39 s2 [sp + 24]40 sp sp + 4841 return

01,02 t11 BucketArray ; uses gp03 s1 t11 + s3 * 804 t7 (s3 & 0xFF) � 805 ra [s1]06' assert (ra 6= 0)07 t5 [ra]08 v0 ra + 809 [s1] t510 t6 [ra]11 t6 t6 & �0xFFFF12 t6 t6 + t713 t6 t6 + MALLOC MAGIC14 [ra] t6; (unused register restore)16 ra [sp]; (unused register restore); (unused register restore)19 s2 [sp + 24]; (merged with 40)21' assert (ra = xmalloc call site)22 t1 v0 ; possibly live out23' assert (v0 6= 0)24s ra [sp + 48]; (unnecessary); (merged with 40)27' assert (ra = alloca call site)28s s1 sp + 10429 s3 [s2]30 t0 v0 + 1631 [v0 + 8] s132 [s2] v033 [v0] s334 v0 t035s s0 [sp + 72]36s ra [sp + 64]37s s1 [sp + 80]38s s3 [sp + 96]39s s2 [sp + 88]40' sp sp + 11241 returnFigure 14: A sample frame based on memory allocation code from the SPEC95 gcc benchmark. The leftcolumn is the unoptimized frame. In the right column, some instructions have been eliminated, modi�ed orreplaced (primed), or adjusted to reect the reassociation of stack pointer manipulations (marked with \s").

frame represents a little more than 0.4% of all dynamic instructions in the execution.The left column of the �gure lists a sequence of 41 instructions corresponding to the tail end of a callto alloca. The frame begins in malloc once an appropriate hash bucket has been chosen for an allocation.Such buckets must be re�lled periodically, but are typically non-empty. The function unlinks a chunk ofmemory from the bucket and �lls in a private header, then returns to its caller, xmalloc. xmalloc checksthe return value, which is always acceptable, as the return (instruction 21) never returns NULL. xmallocnext returns to alloca, which �lls in a private header and returns an adjusted pointer, ending the frame.A simple scan of the frame reveals that only three registers are live into the frame: gp, the global datapointer; sp, the stack pointer; and s3, the index of the memory allocation hash bucket to be used. Manyother registers1 are overwritten without use. The return value (v0) and stack pointer (sp) are live out of theframe, as are s0, s1, s2, and s3. Considering only the instructions in the frame, registers ra, t0, t1, t5, t6,t7, and t11 must also be treated as live out of the frame, although they are not preserved across C functionboundaries. In total, the frame reads three registers and writes thirteen.The right column in the �gure illustrates a few straightforward optimizations: superuous register restoreinstructions and motion are eliminated, branches and returns are changed to assertions, and stack pointerarithmetic is condensed into a single operation. Optimizations related to register naming and schedulingwere not performed, although some are obvious: renaming register ra to s0 in instructions 06-10 eliminatesfalse dependencies with later instructions; and rewriting instruction 13 to add to t7 after 04 reduces thedependency height of the frame, although another scratch register (or a recalculation) must be used to avoidchanging t7's value out of the frame. Finally, instruction 23 can be removed, as a value of 0 generates anexception in instruction 07.7.2 Data Copying ExampleFigure 15 shows unoptimized and aggressively optimized versions of a second sample frame, a piece ofmemory copy code from compress. Of frames exhibiting character akin to loop unrolling (i.e., with arepeated component), this frame was the one most frequently initiated during an execution of compress onthe rePLay Framework described in Section 7.1. During one execution of compress, rePLay initiated andcompleted the frame 25,671 times, a success rate of 100%. The frame represents more than 2.9% of alldynamic instructions in the execution.The frame corresponds to part of a basic block in the output function in which decompressed dataare copied to an output bu�er. The left column of the �gure lists the unoptimized instructions, a total of136 instructions including an 8-instruction pre-loop component and an iteration of 16 instructions executedeight times. The number of bytes copied by the loop depends on the current code length, but is always nineor more, thus the frame never faults.An analysis of this frame is both more complex and more rewarding. The live input registers are againthree: gp, the global data pointer; v0, the number of bytes to copy; and t5, the bu�er from which bytesare to be copied. The frame overwrites a1-a5, t3, t6, and t7 without reading them and changes v0 in theloop iteration. Register inputs to the loop include a4, a pointer to the storage location for the pointerto the destination bu�er; t3, the number of uncopied bytes; and t6, a pointer to the current source byte.Potentially live output registers include all those that the frame overwrites or changes (a1-a5, t3, t6, t7, and1Registers s0, s1, s2, t0, t1, t5, t6, t7, t11, and v0 are all overwritten.

; Perform pre-loop work and initialization.01 a2 &BytesOut ; uses gp02 t3 v003 a1 [a2]04 a4 &OutputBuffer ; uses gp05 t6 t5; nop needed to align CopyLoop below.06 nop07 v0 v0 + a108 [a2] v0; Copy t3 bytes from t5 to OutputBuffer.CopyLoop:09 a3 [a4]10 t3 t3 - 111 t7 [t6 & �7]12 t5 [a3 & �7]; Alpha byte-manipulation instructions follow.13 t7 (t7 � ((t6 & 7) * 8)) & 0xFF14 t6 t6 + 115 t5 t5 & �(0xFF � ((a3 & 7) * 8))16 a1 (t7 & 0xFF) � ((a3 & 7) * 8)17 a5 a5 + a118 [a3] a5; Possible aliasing with 18 forces reload.19 v0 [a4]20 t7 &MaximumCodeValue ; uses gp21 a2 &FreeCodeEntry ; uses gp22 v0 v0 + 123 [a4] v024 if (t3 != 0) branch to CopyLoop25: : :136 (seven more loop iterations)

; Perform the pre-loop work.01 a2 &BytesOut ; uses gp02 a1 [a2]03 a1 a1 + v004 [a2] a1; Set up three live-out registers.05 a4 &OutputBuffer ; uses gp06 t3 v0 - 807 v0 [a4]; Check the frame's correctness.08 assert (t3 � 0)09 a3 v0 - t510 assert (a3 � 8) ; unsigned comparison11 a5 t5 - a412 a5 a5 + 713 assert (a5 � 15) ; unsigned comparison14 t6 v0 - a415 t6 t6 + 716 assert (t6 � 15) ; unsigned comparison; Store the final value of OutputBuffer.17 a5 v0 + 818 [a4] a5; Read the eight bytes, an unaligned quad word.19 a1 [t5 & �7]20 a1 a1 � ((t5 & 7) * 8)21 a3 [(t5 + 7) & �7]22 a3 a3 � (((8 - t5) & 7) * 8)23 a1 a1 j a3; Write the eight bytes, again unaligned.24 a2 [v0 & �7]25 a2 a2 & �(-1LL � ((v0 & 7) * 8))26 t7 a1 � ((v0 & 7) * 8)27 a2 a2 + t728 [v0 & �7] a229 a2 [(v0 + 8) & �7]30 a2 a2 & (-1LL � ((v0 & 7) * 8))31 t7 a1 � ((8 - (v0 & 7)) * 8)32 a2 a2 + t733 [(v0 + 8) & �7] a2; Set up the six remaining live-out registers.34 v0 v0 + 835 a3 v0 - 136 a2 &FreeCodeEntry ; uses gp37 t6 t5 + 838 t7 &MaximumCodeValue ; uses gp39 a5 [a3 & �7]40 a1 (a5 � ((a3 & 7) * 8)) & 0xFF41 a1 (a1 & 0xFF) � ((a3 & 7) * 8)Figure 15: A sample frame based on code byte copying from the SPEC95 compress benchmark. Theloop body appears eight times in the frame. With an aggressive optimization engine and pointer aliasingassertions, the frame can be reduced from 136 to 41 instructions, as shown on the right.

v0). Overall, the frame reads three registers and writes nine.Pointer analysis is one of the more di�cult aspects of optimization, and it remains a stumbling blockfor frame optimization. However, we can augment optimized frames with assertions to support likely butunprovable pointer aliasing relationships. For example, in addition to the control assertion that the framerequires at least eight bytes to copy (instruction 08), we assert the following: the destination does notoverlap forward to the source (instructions 09-10), the source bytes do not overlap with the storage for thedestination bu�er pointer (instructions 11-13), and neither do the destination bytes (instructions 14-16).Leveraging these assertions, the optimization engine can rewrite the Alpha byte manipulation instruc-tions as unaligned quad-word manipulations, reducing eight iterations to a single load-store combination(instructions 19-33). The e�ect of this optimization is to reduce the number of instructions required for theframe from 136 to 41, a factor of more than three. Although the magnitude of this bene�t is enhanced bythe fortuitous length of the sample frame (we selected it based solely on frequency and its loop-unrollingnature), the optimization is not limited to frames with exactly eight iterations. More or fewer iterations canbe grouped into multiple or smaller (e.g., 32-bit word) load-store combinations, generally with a signi�cantsavings in dynamic instruction count. The optimized form shown in the �gure also makes no attempt tooptimize register allocation or instruction scheduling, but rather breaks the instructions into conceptualblocks to improve readability. For the execution discussed here, optimization of one frame reduces the totaldynamic instruction count by 2.1%.7.3 SummaryUsing the most frequently initiated frames from rePLay executions as samples, this section highlightedpossible strategies for the rePLay optimization engine. Many traces contain interprocedural linkage code thatcan easily be stripped away to reduce dynamic instruction count. Loop unrolling and reoptimization basedon dynamic iteration counts also seems promising. Finally, the use of assertions about infrequent pointeraliasing can signi�cantly improve the level of frame optimization by eliminating potential data dependencies;if the rare aliasing conditions ever occur, the frame faults and normal instruction execution resumes. Coupledwith the high coverage of frames achieved through rePLay's frame construction approaches, the success ofthese optimizations indicates the potential value of the rePLay Framework.8 ConclusionWe have described a new framework for enhancing the performance of an application using execution-guidedoptimizations. The rePLay Framework centers on the concept of a frame, a single-entry, single-exit, linearizedsequence of instruction drawn dynamically from an executing program. These frames are typically muchlarger than the traces considered by previous work on trace caches, but are constructed in large part throughtechnology developed for trace caches. Branch Promotion, in particular, plays a key role in the rePLayframe construction strategy. Once rePLay has constructed a potentially useful frame, the frame undergoesonline optimization and is stored in a frame cache. Branches, returns, and indirect calls are transformed intoinstructions that assert the prediction implied by the linear instruction sequence in the frame. The rePLaysequencer then fetches and initiates the frame when the branch path history indicates a high likelihood ofcompletion.

A rePLay con�guration with a 256-entry frame cache, a 64KB+12KB bias table, 16K entry framepredictor, and a path history length of 6, achieves an average frame size of 88 instructions with 68% coverageof the dynamic istream, an average frame completion rate of 97.81%, and a frame predictor accuracy of81.26%. These results soundly demonstrate that the frames upon which the optimizations are performed arelarge and stable.Using the most frequently initiated frames from rePLay executions as samples, this section highlightedpossible strategies for the rePLay optimization engine. Many traces contain interprocedural linkage thatcan easily be stripped away to reduce dynamic instruction count. Loop unrolling and reoptimization basedon dynamic iteration counts also seems promising. Finally, the use of assertions about infrequent pointeraliasing can signi�cantly improve the level of frame aliasing conditions ever occur, the frame faults andnormal instruction execution resumes. Coupled with the high coverage of frames achieved through thedynamic construction approaches outlined in earlier sections, the success of these optimizations demonstratesthe signi�cance of the rePLay Framework.We have deliberately left the execution architecture slightly vague in this paper, as we do not wish to con-strain the idea of constructing and dynamically optimizing frames to a particular implementation. However,given the very low register input and output counts on the sample traces (three inputs and nine or thirteenoutputs for 41 and 136 instructions, respectively), an approach similar to that taken by processor architec-tures which speculate at the thread level might provide interesting opportunities to speculatively executeframes and to reduce the synchronization implied by the relatively low frame prediction rates. Regardless ofthe speci�c implementation, however, we believe that the concept of frames, along with the mechanisms andstrategies that we outlined in this paper, will play an important role in processor architectures of the future.References[1] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Transparent dynamic optimization: Thedesign and implementation of dynamo. Technical Report HPL-1999-78, Hewlett-Packard Laboratories,June 1999.[2] Po-Yung Chang, Marius Evers, and Yale N. Patt. Improving branch prediction accuracy by reduc-ing pattern history table interference. In Proceedings of the 1996 ACM/IEEE Conference on ParallelArchitectures and Compilation Techniques, 1996.[3] Anton Cherno�, M. Herdeg, R. Hookway, C. Reeve, N. Rubin, T. Tye, B. Yadavalli, and J. Yates. Fx!32:a pro�le-directed binary translator. IEEE Micro, 18(2), March 1998.[4] C. Consel and F. No�el. A general approach for run-time specialization and its application to c. InProceedings of the 23rd Annual ACM Symposium on Principles of Programming Languages, pages 145{ 156, 1996.[5] Joseph A. Fisher. Trace scheduling: A technique for global microcode compaction. IEEE Transactionson Computers, C-30(7):478{490, July 1981.[6] Daniel H. Friendly, Sanjay J. Patel, and Yale N. Patt. Alternative fetch and issue techniques from thetrace cache fetch mechanism. In Proceedings of the 30th Annual ACM/IEEE International Symposiumon Microarchitecture, 1997.

[7] Daniel H. Friendly, Sanjay J. Patel, and Yale N. Patt. Putting the �ll unit to work: Dynamic opti-mizations for trace cache microprocessors. In Proceedings of the 31th Annual ACM/IEEE InternationalSymposium on Microarchitecture, 1998.[8] Brian Grant, Marcus Mock, Matthai Phillipose, Craig Chambers, and Susan J. Eggers. Dyc: Anexpressive annotation-directed dynamic compiler for c. Technical Report UW-CSE-97-03-03, Universityof Washington, May 1999.[9] Eric Hao, Po-Yung Chang, Marius Evers, and Yale N. Patt. Increasing the instruction fetch ratevia block-structured instruction set architectures. International Journal of Parallel Programming,26(4):449{478, August 1998.[10] W. W. Hwu, Scott A. Mahlke, William Y. Chen, Pohua P. Chang, Nancy J. Warter, Roger A. Bring-mann, Roland G. Ouellette, Richard E. Hank, Tokuzo Kiyohara, Grant E. Haab, John G. Holm, andDaniel M. Lavery. The superblock: An e�ective technique for VLIW and superscalar compilation.Journal of Supercomputing, 7(9-50), 1993.[11] Erik Jacobsen, Eric Rotenberg, and J. E. Smith. Assigning con�dence to conditional branch predictions.In Proceedings of the 29th Annual ACM/IEEE International Symposium on Microarchitecture, pages142{152, 1996.[12] Quinn Jacobson, Eric Rotenberg, and James E. Smith. Path-based next trace prediction. In Proceedingsof the 30th Annual ACM/IEEE International Symposium on Microarchitecture, 1997.[13] Quinn Jacobson and James E. Smith. Instruction pre-processing in trace processors. In Proceedings ofthe Fifth IEEE International Symposium on High Performance Computer Architecture, 1999.[14] Scott McFarling. Combining branch predictors. Technical Report TN-36, Digital Western ResearchLaboratory, June 1993.[15] Stephen Melvin and Yale Patt. Enhancing instruction scheduling with a block-structured ISA. Inter-national Journal of Parallel Programming, 23(3):221{243, June 1995.[16] M. Merten, A. Trick, C. George, J. Gyllenhaal, and Wen mei Hwu. A hardware-driven pro�ling schemefor identifying program hot spots to support runtime optimization. In Proceedings of the 26th AnnualInternational Symposium on Computer Architecture, pages 136{149, 1999.[17] Ravi Nair and Martin E. Hopkins. Exploiting instruction level parallelism in processors by cachingscheduled groups. In Proceedings of the 24th Annual International Symposium on Computer Architec-ture, pages 13{25, 1997.[18] Sanjay J. Patel, Marius Evers, and Yale N. Patt. Improving trace cache e�ectiveness with branchpromotion and trace packing. In Proceedings of the 25th Annual International Symposium on ComputerArchitecture, 1998.[19] Sanjay J. Patel, Daniel H. Friendly, and Yale N. Patt. Evaluation of design options for the trace cachefetch mechanism. IEEE Transactions on Computers, 48(2):435{446, February 1999.

[20] Alexander Peleg and Uri Weiser. Dynamic ow instruction cache memory organized around tracesegments independant of virtual address line. U.S. Patent Number 5,381,533, 1994.[21] Eric Rotenberg, Steve Bennett, and James E. Smith. Trace cache: a low latency approach to highbandwidth instruction fetching. In Proceedings of the 29th Annual ACM/IEEE International Symposiumon Microarchitecture, 1996.[22] J. Stark, M. Evers, and Y. N. Patt. Variable length path branch predcition. In Proceedings of the 8thInternational Conference on Architectural Support for Programming Languages and Operating Systems,pages 170 { 179, 1998.[23] Cli� Young and Michael D. Smith. Improving the accuracy of static branch prediction using branch cor-relation. In Proceedings of the 6th International Conference on Architectural Support for ProgrammingLanguages and Operating Systems, pages 232{241, 1994.

