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Abstract

Although some instructions hurt performance more than oth-
ers, current processors typically apply scheduling and spec-
ulation as if each instruction was equally costly. Instruction
cost can be naturally expressed through the critical path: if
we could predict it at run-time, egalitarian policies could be
replaced with cost-sensitive strategies that will grow increas-
ingly effective as processors become more parallel.

This paper introduces a hardware predictor of instruction
criticality and uses it to improve performance. The predictor
is both effective and simple in its hardware implementation.
The effectiveness at improving performance stems from us-
ing a dependence-graph model of the microarchitectural criti-
cal path that identifies execution bottlenecks by incorporating
both data and machine-specific dependences. The simplicity
stems from a token-passing algorithm that computes the criti-
cal path without actually building the dependence graph.

By focusing processor policies on critical instructions, our
predictor enables a large class of optimizations. It can (i) give
priority to critical instructions for scarce resources (functional
units, ports, predictor entries); and (ii) suppress speculation on
non-critical instructions, thus reducing “useless” misspecula-
tions. We present two case studies that illustrate the potential
of the two types of optimization, we show that (i) critical-path-
based dynamic instruction scheduling and steering in a clus-
tered architecture improves performance by as much as 21%
(10% on average); and (ii) focusing value prediction only on
critical instructions improves performance by as much as 5%,
due to removing nearly half of the misspeculations.

1 Introduction

Motivation. Even though some instructions are more harm-
ful to performance than others, current processors employ
egalitarian policies: typically, each load instruction, each
cache miss, and each branch misprediction are treated as if
they cost an equal number of cycles. The lack of focus on
bottleneck-causing (i.e., critical) instructions is due to the dif-
ficulty of identifying the effective cost of an instruction. In
particular, the local view of the execution that is inherent in
the processor limits its ability to determine the effects of in-
struction overlap. For example: “Does a ‘bad’ long-latency
instruction actually harm the execution, or is it made harmless
by a chain of ‘good’ instructions that completely overlap with
it?”

A standard way to answer such questions in a parallel sys-

tem is critical-path analysis. By discovering the chain of
dependent events that determined the overall execution time,
critical-path analysis has been used successfully for identify-
ing performance bottlenecks in large-scale parallel systems,
such as communication networks [3, 9].

Out-of-order superscalar processors are fine-grain parallel
systems: their instructions are fetched, re-ordered, executed,
and committed in parallel. We argue that the level of their
parallelism and sophistication has grown enough to justify the
use of critical-path analysis of their microarchitectural execu-
tion. This view is shared by Srinivasan and Lebeck [18], who
computed an indirect measure of the critical path, called la-
tency tolerance, that provided non-trivial insights into the par-
allelism in the memory system, such as that up to 37% of L1
cache hits have enough latency tolerance to be satisfied by a
lower-level cache.

The goal of this paper is to exploit the critical path by
making processor policies sensitive to the actual cost of mi-
croarchitectural events. As was identified by Tune et al. [21],
a single critical-path predictor enables a broad range of opti-
mizations in a modern processor. In this paper, we develop
optimizations that fall into two categories:

• Resource arbitration: Resources can be better utilized by
assigning higher priority to critical instructions. For ex-
ample, critical instructions can be scheduled before non-
critical ones whenever there is contention for functional
units or memory.

• Misspeculation reduction. The risk of misspeculations
can be reduced by restricting speculation to critical in-
structions. For instance, value prediction could be ap-
plied only to critical instructions. Because, by definition,
it is pointless to speed up non-critical instructions, spec-
ulating them brings risk but no benefit.

The Problem. The analytical power of the critical path
is commonly applied in compilers for improving instruction
scheduling [15, 16], but has been used in the microarchitec-
tural community only as an informal way of describing in-
herent program bottlenecks. There are two reasons why the
critical path is difficult to exploit in microprocessors. The first
is the global nature of the critical path: While compilers can
find the critical path through examination of the dependence
graph of the program, processors see only a small window of
instructions at any one time.

The second reason is that the compiler’s view of the crit-
ical path, consisting merely of data dependences, does not
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precisely represent the critical path of a program executing
on a particular processor implementation. A real processor
imposes resource constraints that introduce dependences be-
yond those seen by a compiler. A finite re-order buffer, branch
mispredictions, finite fetch and commit bandwidth are all ex-
amples of resources that affect the critical path.

One method for resolving these two problems is to iden-
tify the critical path using local, but resource-sensitive heuris-
tics such as marking the oldest uncommitted instructions [21].
Our experiments show that for some critical-path-based op-
timizations, these heuristics are an inaccurate indicator of an
instruction’s criticality. Instead, optimizations seem to require
a global and robust approach to critical-path prediction.

Our Solution. In order to develop a robust and efficient
hardware critical-path predictor, we divided the design tasks
into two problems: (1) development of a dependence-graph
model of the critical path; and (2) a predictor that follows this
model when learning the critical path at run-time.

Our dependence-graph model of the critical path is simple,
yet able to capture in a uniform way the critical path through a
given microarchitectural execution of the program. The model
represents each dynamic instruction with three nodes, each
corresponding to an event in the lifetime of the instruction:
the instruction being dispatched into the instruction window,
executed, and committed. Edges (weighted by latencies) rep-
resent various data and resource dependences between these
events during the actual execution. Data dependences connect
execute nodes, as in the compiler’s view of the critical path. A
resource dependence due to a mispredicted branch induces an
edge from the execute node of the branch to the dispatch node
of the correct target of the branch; other resource dependences
are modeled similarly. Our validation of the model indicates
that it closely reflects the critical path in the actual microexe-
cution.

Although we developed the model primarily to drive our
predictor, it can be used for interesting performance analyses.
For example, thanks to its 3-event structure, the critical path
determines not only whether an instruction is critical, but also
why it is critical (i.e., is fetching, executing, or committing of
the dynamic instruction its bottleneck?).

The hardware critical-path predictor performs a global
analysis of the dependence graph. Given the dependence-
graph model, we can compute the critical path simply as the
longest weighted path. A simple graph-theory trick allows us
to examine the graph more efficiently, without actually build-
ing it: When training, our predictor plants a token into a dy-
namic instruction and propagates it forward through certain
dependences; if the token propagates far enough, the seed node
is considered to be critical. The predictor is also adaptable:
an instruction can be re-trained by re-planting the token. We
show how this algorithm can be implemented with a small ar-
ray and simple control logic.

To study the usefulness of our predictor, we selected two
optimizations (one from each of the above categories): cluster
scheduling and value prediction. We found the predictor not
only accurately finds the critical path, but also consistently
improves performance.

In summary, this paper presents the following contributions:

• A validated model that exposes the critical path in a mi-
croarchitectural execution on an out-of-order processor.

The model treats resource and data dependences uni-
formly, enhancing and simplifying performance under-
standing.

• An efficient token-based predictor of the critical path.
Our validation shows that the predictor is very precise:
it predicts criticality correctly for 88% of all dynamic in-
structions, on average.

• We use our criticality predictor to focus the scheduling
policies of a clustered processor on the critical instruc-
tions. Our predictor improves the performance by as
much as 21% (10% on average), delivering nearly an or-
der of magnitude more improvement than critical-path
predictors based on local heuristics.

• As a proof of concept that the critical-path predictor
can optimize speculation, we experimented with focused
value prediction. Despite the low misprediction rate of
our baseline value predictor, focusing delivered speedups
of up to 5%, due to nearly halving the amount of value
mispredictions.

The next section describes and validates our model of the
critical path. Section 3 presents the design, implementation,
and evaluation of the predictor built upon the model. Section 4
uses the predictor to focus instruction scheduling in cluster ar-
chitectures and value prediction. Finally, Section 5 relates this
paper to existing work and Section 6 outlines future directions.

2 The Model of the Critical Path

This section defines a dynamic dependence graph that serves
as a model of the microexecution. We will use the model to
profile (in a simulator) the critical path through a trace of dy-
namic instructions. In Section 3, we will use the model to pre-
dict the critical path, without actually building a dependence
graph.

In compilers, the run-time ordering of instructions is mod-
eled using a program’s inherent data dependences: each in-
struction is abstracted as a single node; the flow of values is
represented with directed edges. Such a machine-independent
modeling misses important machine-specific resource depen-
dences. For example, a finite re-order buffer can fill up,
stalling the fetch unit. As we show later in this section, such
dependences can turn critical data dependences into critical re-
source dependences.

We present a model with sufficient detail to perform
critical-path-based optimizations in a typical out-of-order pro-
cessor (see Table 5). Our critical-path model accounts for the
effects of branch mispredictions, in-order fetch, in-order com-
mit, and a finite re-order buffer. If a processor implementa-
tion imposes significantly different constraints, such as out-
of-order fetch [19, 14], new dependences can be added to our
model, after which our techniques for computing and predict-
ing the critical path can be applied without change.

Our model abstracts the microexecution using a dynamic
dependence graph. Each dynamic instruction i is represented
by three nodes: the dispatch node Di, the execute node Ei, and
the commit node Ci. These three nodes denote events within
the machine pertaining to the instruction: the instruction be-
ing dispatched into the instruction window, the instruction be-
coming ready to be executed, and the instruction committing.
Directed edges connect dependent nodes. We explicitly model
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name constraint modeled edge
DD In-order dispatch Di−1 → Di

CD Finite re-order buffer Ci−w → Di w = size of the re-order buffer
ED Control dependence Ei−1 → Di inserted if i − 1 is a mispredicted branch
DE Execution follows dispatch Di → Ei

EE Data dependences Ej → Ei inserted if instruction j produces an operand of i
EC Commit follows execution Ei → Ci

CC In-order commit Ci−1 → Ci

Table 1: Dependences captured by the critical-path model, grouped by the target of the dependence.

I0: r5=0
I1: r3=ld[r2]

L1: I2: r1=r3*6
I3: r6=ld[r1]
I4: r3=r3+1
I5: r5 = r6 + r5
I6: cmp R6,0
I7: br L1
I8: r5 = r5+100
I9: r0 = r5 / 3
I10: Ret r0
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Figure 1: An instance of the critical-path model from Table 1. The dependence graph represents a sequence of dynamic instruc-
tions. Nodes are events in the lifetime of an instruction (the instruction being dispatched, executed, or committed); the edges are
dependences between the occurrences of two events. A weight on an edge is the latency to resolve the corresponding dependence.
The critical path is highlighted in bold.

seven dependences, listed in Table 1 and illustrated in Figure 1.
We will describe each edge type in turn.

Data dependence, EE, edges are inserted between E nodes.
An EE edge from instruction j to instruction i introduces a
constraint that instruction i may not execute until the value
produced by j is ready. Both register dependences and depen-
dences through memory (between stores and loads) are mod-
eled by these edges. The EE edges are the only dependences
typically modeled by a compiler.

Modeling the critical path with microarchitectural preci-
sion is enabled by adding D-nodes (instruction being dis-
patched) and C-nodes (instruction being committed). The
intra-instruction dependences DE and EC enforce the con-
straint that an instruction cannot be executed before it is dis-
patched, and that it cannot be committed before it finishes its
execution. In our out-of-order processor model, instructions
are dispatched in-order. Thus, a dependence exists between
every instruction’s D node and the immediately following—
in program order—instruction’s D node. This dependence is
represented by DD edges. Similarly, the in-order commit con-
straint is modeled with CC edges.

So far we have discussed the constraints of data depen-
dences, in-order dispatch, and in-order commit. Now we will
describe how we model two other significant constraints in
out-of-order processors: branch mispredictions and the finite
re-order buffer. A branch misprediction introduces a con-
straint that the correct branch-target instruction cannot be dis-
patched until after the mispredicted branch is resolved (i.e.,
executed). This constraint is represented by an ED edge from
the E node of the mispredicted branch to the D node of the
first instruction of the correct control-flow path. An example

of a mispredicted-branch edge can be seen between instruc-
tions I7 and I8 of Figure 1. Note that it is not appropriate
to insert ED edges for correctly predicted branches because
a correct prediction effectively breaks the ED constraint, by
permitting the correct-path instructions to be fetched and dis-
patched (D-node) before the branch is resolved (E-node). Also
note that we do not explicitly model wrong-path instructions.
We believe these instructions have only secondary effects on
the critical path (e.g., they could cause data cache prefetch-
ing). Our validation, below, shows that our model provides
sufficient detail without modeling such effects.

The re-order buffer (ROB) is a FIFO queue that holds in-
structions from the time they are dispatched until they have
committed. When the ROB fills up, it prevents new instruc-
tions from being dispatched into the ROB. To impose the con-
straint that the oldest instruction in the ROB must be commit-
ted before another instruction can be dispatched, we use CD
edges. In a machine with a four-instruction ROB, CD edges
span four dynamic instructions (see Figure 1).

The edge weights reflect the actual microexecution. Each
weight equals the time it took to resolve the particular dynamic
instance of the dependence. For instance, the weight of an EE
edge equals the execution latency plus the wait time for the
functional unit. Thus, the weight may be a combination of
multiple sources of latency. Note that while these dynamic
latencies are part of the model, we do not need to measure
their actual values. Instead, one of the contributions of this
paper is to show how to compute the critical path by merely
observing the order in which the dependences are resolved (see
Section 3.1).

Given a weighted graph of all the dynamic instructions in a
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(a) Validation of the critical-path model. (b) Breakdown of the dynamic instruction count.

Figure 2: Validation of the model and instruction count breakdown. (a) Comparison of the performance improvement from
reducing critical latencies vs. non-critical latencies. The performance improvement from reducing critical latencies is much higher
than from non-critical latencies, demonstrating the ability of our model to differentiate critical and non-critical instructions. (b) The
breakdown of instruction criticality. Only 26–80% of instructions are critical for any reason (fetch, execute, or commit) and only
2–13% are critical because they are executed too slowly.

program, the critical path is simply the longest weighted path
from the D node of the first instruction to the C node of the last
instruction. The critical path is highlighted in bold in Figure 1.

Let us note an important property of the dependence-graph
model: No critical-path edge can span more instructions than
the ROB size (ROB size). The only edges that could, by their
definition, are EE edges. An EE edge of such a length implies
the producer and the consumer instructions are not in the ROB
at the same time. Thus, by the time the consumer instruction
is dispatched into the ROB, the value from the producer would
be available, rendering the dependence non-critical. This is an
important observation that we will exploit to bound the storage
required for the predictor’s training array without any loss of
precision.

Validating the Model. Next, we validate that our model
successfully identifies critical instructions. This validation is
needed because the hardware predictor design described in the
next section is based on the model, and we want to ensure the
predictor is built upon a solid foundation.

Our approach to validation measures the effect of decreas-
ing, separately, the execution latencies of critical and non-
critical instructions. If the model is accurate, decreasing crit-
ical instruction latencies should have a big impact on perfor-
mance: we are directly reducing the length of the critical path.
In contrast, decreasing noncritical instruction latencies should
not affect performance at all since we have not changed the
critical path.

Since some instructions have an execution latency of one
cycle, and our simulator does not support execution latencies
of zero cycles, we established a baseline by running a sim-
ulation where all the latencies were increased by one cycle
(compared to what is assumed in the simulator configuration
of Section 4, Table 5). The critical path from this baseline sim-
ulation was written to disk. We then ran two simulations that
each read the baseline critical path and decreased all critical
(non-critical) latencies by one cycle, respectively. The result-
ing speedups are plotted in Figure 2(a) as cycles of execution
time reduction per cycle of latency decreased.

The most important point in this figure is that the perfor-
mance improvement from decreasing critical path latencies is
much larger than from decreasing non-critical latencies. This
indicates that our model, indeed, identifies instructions critical

to performance.
Note that even though we are directly reducing critical path

latencies, not every cycle of latency reduction turns into a re-
duction of a cycle of execution time. This is because reducing
critical latencies can cause a near-critical path to emerge as
the new critical path. Thus, the magnitude of performance im-
provement is an indication of the degree of dominance of the
critical path. From the figure, we see that the dominance of the
critical path varies across the different benchmarks. To get the
most leverage from optimizations, it may be desirable to op-
timize this new critical path as well. Our predictor, described
in the next section, enables such an adaptive optimization by
predicting critical as well as near-critical instructions.

Finally, there is a very small performance improvement
from decreasing non-critical latencies. The reason is that
our model (intentionally) does not capture all machine depen-
dences. As a result, a dynamic instruction marked as non-
critical may in fact be critical. For instance, reducing the la-
tency of a load that was marked non-critical by the model may
speed up the prefetch of a cache line needed later by a (cor-
rectly marked) critical load, which reduces the critical path.
Because the cache-line-sharing dependence between the loads
was not modeled, some other instruction was blamed for the
criticality of the second load. Although we could include more
dependences to model such constraints, the precision observed
here is sufficient for the optimizations we present. It should be
noted that the more complex the model, the more expensive
our critical-path predictor.

Breakdown of criticality. A unique characteristic of our
model is the ability to detect not only whether an instruc-
tion is critical, but also why it is critical, i.e., whether fetch-
ing, executing, or committing the instruction is on the critical
path. This information can be easily detected from the model.
For instance, if the critical path includes the dispatch node
of an instruction, the instruction is fetch-critical (the three-
node model effectively collapses fetching and dispatching into
the D-node). Analogous rules apply for execute and commit
nodes.

To estimate potential for critical-path optimizations, a
breakdown of instruction criticality is shown in Figure 2(b).
We can distinguish two reasons why an instruction may be
non-critical: (a) it is execute-non-critical if it is overlapped by
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the execution latency of a critical instruction (i.e., it is skipped
over by a critical EE edge); or (b) it is commit-non-critical if it
“sits” in the ROB during a critical ROB stall (i.e., it is skipped
over by a critical CD edge). Note that if parallel equal-length
chains exist as part of the critical path, only one of the chains
was included in the breakdown.

The figure reveals that many instructions are non-critical
(20–74% of the dynamic instructions). This indicates a lot
of opportunity for exploiting the critical path: we can focus
processor policies on the 26–80% of dynamic instructions that
are critical. The data is even more striking if you consider why
the instructions are critical: only 2–13% of all instructions are
critical for being executed too slowly. This observation has
profound consequences for some optimizations. Value predic-
tion, for instance, will not help performance unless some of
this small subset of instructions are correctly predicted (a cor-
rect prediction of a critical instruction may, of course, expose
some execute-noncritical instructions as critical).

3 Predicting the Critical Path in Hardware

This section presents an algorithm for efficiently comput-
ing the critical path in hardware. A naive algorithm would
(1) build the dependence graph for the entire execution, (2) la-
bel the edges with observed latencies, and then (3) find the
longest path through the graph. Clearly, this approach is unac-
ceptable for an efficient hardware implementation.

Section 3.1 presents a simple observation that eliminates
the need for explicit measurement of edge latencies (step 2)
and Section 3.2 then shows how to use this observation to de-
sign an efficient predictor that can find the critical path without
actually building the graph (steps 1 and 3).

3.1 The Last-Arriving Rules

Our efficient predictor is based on the observation that a criti-
cal path can be computed solely by observing the arrival order
of instruction operands; no knowledge of actual dynamic la-
tencies is necessary. The observation says that if a dependence
edge n → m is on the critical path, then, in the real execu-
tion, the value produced by n must be the last-arriving value
amongst all operands of m; if it was not the last one, then it
could be delayed without any performance harm, which would
contradict its criticality. (Note that if multiple operands arrive
simultaneously, there are multiple last-arriving edges, poten-
tially leading to parallel critical paths.) Two useful rules can
be derived from this observation: (1) each edge on the critical
path is a last-arriving edge; (2) if an edge is not a last-arriving
edge, then it is not critical.

The last-arriving rule described above applies to the data
flow (EE) edges. Crucial for the computation of the critical
path is whether we can also define the last-arriving rules for
the micro-architectural dependences.1 It turns out that all we
need is to observe simple hardware events: for example, a dis-
patch (DE) dependence is considered to arrive last if the data
operands are ready when the instruction is dispatched. The
remaining last-arriving rules are detailed in Table 2.

The last-arriving rules greatly simplify the construction of
the critical path. The critical path can be determined by start-
ing at the commit node of the last instruction and traversing

1The arrival order of operands is used only for the E nodes. For D and C
nodes, we conveniently overload the term last-arriving and use it to mean the
order of completion of other microarchitectural events.

OOO Core

Last-arriving edges

Source node Target node

CP
Predictor

CP Prediction (E-criticality)

Training Path

Instruction’s PC

Prediction Path

Figure 3: The interface between the processor and the
critical-path predictor. On the training path, the core pro-
vides, for each committed instruction, the last-arriving edges
into each of the instruction’s three nodes (D, E, C). On the pre-
diction path, the predictor answers whether a given static in-
struction is E-critical (optimizations in this paper exploit only
E-criticality).

the graph backward along last-arriving edges until the first in-
struction’s dispatch node is encountered (see Figure 4). Note
the efficiency of the algorithm: no edge latencies need to be
tracked, and only the last-arriving subset of the graph edges
must be built. This is how we precisely profile the critical
path in a simulator. The predictor, because it computes only
an approximation of the critical path, does not even build the
last-arriving subgraph. Instead, it receives from the execution
core a stream of last-arriving edges and uses them for training,
without storing any of the edges (see Figure 3).

Before we describe the predictor, let us note that we expect
that the last-arriving rules can be implemented in hardware
very efficiently by “reading” control signals that already exist
in the control logic (such as an indication that a branch mis-
prediction has occurred) or observing the arrival order of data
operands (information that can be easily monitored in most
out-of-order processor implementations).

3.2 The Token-Passing CP Predictor

Although the algorithm described above can be used to find
the critical path efficiently in a simulator, it is not suitable for
a hardware implementation. The primary problem is that the
backward traversal can be expensive to implement: any solu-
tion seems to require buffering the graph of the entire execu-
tion before we could begin the traversal.

Instead of constructing the entire graph, our predictor
works on the intuitive notion that since the critical path is a
chain of last-arriving edges through the entire graph, then a
long last-arriving chain is likely to be part of the critical path.
Thus, we predict that an instruction is critical if it belongs to a
sufficiently long last-arriving chain. The important advantage
of our approach is that long last-arriving chains can be found
through forward propagation of tokens, rather than through a
backwards traversal of the graph.

The heart of the predictor is a token-based “trainer.” The
training algorithm (see Figure 5) works through frequent sam-
pling of the criticality of individual nodes of instructions. To
take a criticality sample of node n, a token is planted into n
(step 1) and propagated forward along all last-arriving edges
(step 2). If there is more than one outgoing last-arriving edge
the token is replicated. At some nodes, there may be no outgo-
ing last-arriving edges for the token to propagate further. If all
copies of the token reach such nodes, the token dies, indicating
that node n must not be on the critical path, as there is defi-
nitely no chain of last-arriving edges from the beginning of the
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target node edge last-arriving condition
Ei−1 → Di if i is the first committed instruction since a mispredicted branch.

D Ci−w → Di if the re-order buffer was stalled the previous cycle.
Di−1 → Di if neither ED nor CD arrived last.
Di−1 → Ei if all the operands for instruction i are ready by the time i is dispatched.

E Ej → Ei if the value produced by instruction j is the last-arriving operand of i
and the operand arrives after instruction i has been dispatched.

Ei → Ci if instruction i delays the in-order commit pointer (e.g., the instruction
is at the head of the re-order buffer but has not completed execution and,

C hence, cannot commit).
Ci−1 → Ci if edge EC does not arrive last (i.e., instruction i was ready to commit

before in-order commit pointer permitted it to commit).

Table 2: Determining last-arriving edges. Edges are grouped by their target node. Every node must have at least one incoming
last-arriving edge. However, some nodes may not have an outgoing last-arriving edge. Such nodes are non-critical.
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Figure 4: The dependence graph of our running example with last-arriving edges highlighted. The critical path is a chain of
last-arriving edges from start to end. Note that some nodes have multiple last-arriving nodes due to simultaneous arrivals.

1. Plant token at node n.

2. Propagate token forward along last-arriving edges.

If a node does not have an outgoing last-arriving edge,

the token is not propagated (i.e., it dies.)

3. After allowing token to propagate for some time,

check if the token is still alive.

4. If token is alive, train node n as critical;

otherwise, train n as non-critical.

Figure 5: The token-passing training algorithm.

program to the end that contains node n. On the other hand,
if a token remains alive and continues to propagate, it is in-
creasingly likely that node n is on the critical path. After the
processor has committed some threshold number of instruc-
tions (called the token-propagation-distance), we check if the
token is still alive (step 3). If it is, we assume that node n was
critical; otherwise, we know that node n was non-critical. The
result of the token propagation is used to train the predictor
(step 4). Clearly, the larger the token-propagation-distance,
the more likely the sample will be accurate.

Implementation. The hardware implementation consists of
two parts: the critical-path table and the trainer. The critical-
path table is a conventional array indexed by the PC of the
instruction. The predictions are retrieved from the table early

in the pipeline, in parallel with instruction fetch. Since the
applications explored in this paper only require predictions of
E nodes, only E nodes are sampled and predicted. It should be
noted that D and C nodes are still required during training to
accurately model the resource constraints of the critical path.
We used a 16K entry array with 6-bit hysteresis, with a total
size of 12 kilobytes.

The trainer is implemented as a small token array (Fig-
ure 6). The array stores information about the segment of the
dependence graph for the ROB size most recent instructions
committed. One bit is stored for each node of these instruc-
tions, indicating whether the token was propagated into that
node. Note that the array does not encode any dependence
edges; their effect is implemented by the propagation step (see
step 2 below). Finally, note that the reason why the token array
does not need more than ROB size entries is the observation
that no critical-path dependence can span more than ROB size
instructions (see Section 2).

As each instruction commits, it is allocated an entry in the
array, replacing the oldest instruction in a FIFO fashion. A
token is planted into a node of the instruction by setting a bit
in the newly allocated entry (step 1 of Figure 5).

To perform the token propagation (step 2), the processor
core provides, for each committing instruction, identification
of the source nodes of the last-arriving edges targeting the
three nodes of the committing instruction. For each source
node, its entry in the token array is read (using its identifica-
tion as the index) and then written into the target node in the
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Figure 6: Training path of the critical-path predictor.
Training the token-passing predictor involves reading and
writing a small (1.5 kilobyte) array. The implementation
shown permits the simultaneous propagation of 8 tokens.

committing instruction. This simple operation achieves the de-
sired propagation effect.

Checking if the token is still alive (step 3) can be eas-
ily implemented without a scan of the array, by monitoring
whether any instruction committed in the recent past has writ-
ten (and therefore propagated) the token. If the token has not
been propagated in the last ROB size committed instructions,
it can be deduced that none of the nodes in the token array
holds the token, and, hence, the token is not alive. Finally,
based on the result of the liveness check, the instruction where
the token was planted is trained (step 4) by writing into the
critical-path prediction table, using the hysteresis-based train-
ing rules in Table 3.

After the liveness check, the token is freed and can be re-
planted (step 1) and propagated again. The token planting
strategy is a design parameter that should be tuned to avoid
repeatedly sampling some nodes while rarely sampling others.
In our design, we chose to randomly re-plant the token in one
of the next 10 instructions after it is freed.

There are many design parameters for the predictor, but,
due to space considerations, we do not present a detailed study
of the design space. The design parameters chosen for the
experiments in this paper are shown in Table 3.
Discussion. Clearly, there is a tradeoff between the prop-
agation distance and the frequency with which nodes can be
sampled to check their criticality. If a token is propagating, it
is in use and cannot be planted at a new node. If the propaga-

Critical path 12 kilobytes
prediction table (16K entries * 6 bit hysteresis)
Token propagation 1012 dynamic instructions
Distance (500 + ROB size)
Maximum number 8
of Tokens in flight
simultaneously
Hysteresis Saturate at 63, increment by 8 when

training critical, decrement by
one when training non-critical.
Instruction is predicted critical
if hysteresis is above 8.

Planting Tokens A Token is planted randomly in the
next 10 instructions after it
becomes available.

Table 3: Configuration of token-passing predictor.

tion distance is too large, the adaptability of the predictor may
be compromised. Nonetheless, a large propagation distance
is desired for robust performance independent of the charac-
teristics of particular workloads. We can compensate for this
effect by adding hardware for multiple simultaneous in-flight
tokens. These additional tokens are relatively inexpensive as
all the tokens can be read and written together during prop-
agation. For the propagation distance we chose (500 + ROB
size = 1012 dynamic instructions), eight simultaneous in-flight
tokens was sufficient. For this configuration, the token array
size is 1.5 kilobytes (reorder buffer size × nodes × tokens =
512 × 3 × 8 bits).

Although the number of ports of the token array is pro-
portional to the maximum commit bandwidth (as well as to
the number of simultaneous last-arriving edges), due to its
small size, the array may be feasible to implement using multi-
ported cells and replication. Alternatively, it may be designed
for the average bandwidth. Bursty periods could be handled
by buffering or dropping the tokens.

Notice in Table 3 that the hysteresis we used is biased
to avoid rapid transition from a critical prediction to a non-
critical prediction. The goal is to maintain the prediction for
a critical instruction even after an optimization causes the in-
struction to become non-critical, so that the optimization con-
tinues to be applied. Together with retraining, the effect of
this hysteresis is that near-critical instructions are predicted
as critical after the critical instructions have been optimized.

Evaluation. Our token-passing predictor is designed using
a global view of the critical path. An alternative is to use lo-
cal heuristics that observe the machine and train an instruction
as critical if it exhibits a potentially harmful behavior (e.g.,
when it stalls the reorder buffer). A potential advantage of a
heuristic-based predictor is that its implementation could be
trivially simple.

Our evaluation suggest that heuristics are much less effec-
tive than a model-based predictor. We compare our predictor
to two heuristic predictor designs of the style used in Tune, et
al. [21]. The first predictor marks in each cycle the oldest un-
committed instruction as critical. The second predictor marks
in each cycle the oldest unissued instruction if it is not ready to
issue. We used the hysteresis strategy presented in their paper.
Although our simulator parameters differ from theirs (see Sec-
tion 4), a comparison to these heuristics will give an indication
of the relative capabilities of the two predictor design styles.

We first compare the three predictors to the trace of the
critical path computed by the simulator using our model from
Section 2. The results, shown in Figure 7(a), show that we
predict more than 80% of dynamic instructions correctly (both
critical and non-critical) in all benchmarks (88% on average).
Our predictor does a better job of correctly predicting critical
instructions than either of the two heuristics-based predictors.
Note that the oldest-unissued predictor has a relatively low
misprediction rate, but tends to miss many critical instructions,
which could significantly affect its optimization potential.

Second, to perform a comparison that is independent of
our critical-path model, we study the effectiveness of the var-
ious predictors in an optimization. To this end, we performed
the same experiment that we used for validating the critical-
path model—extending all latencies by one cycle and then
decreasing critical and non-critical latencies (see Figure 2(a)
in Section 2). For an informative comparison, we plot the
difference of the performance improvement from decreasing
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Figure 7: The token-passing predictor, based on the explicit model of the critical path, is very successful at identifying
critical instructions. (a) Comparison of the token-passing and two heuristics-based predictors to the “ideal” trace of the critical
path, computed according to the model from Section 2. The token-passing predictor is over 80% (88% on average) accurate across
all benchmarks and typically better than the heuristics, especially at correctly predicting nearly all critical instructions. (b) Plot
of the difference of the performance improvement from decreasing critical latencies minus the improvement from decreasing non-
critical latencies. Except for galgel, the token-passing predictor is clearly more effective.

critical latencies minus the improvement obtained when de-
creasing non-critical latencies. This yields a metric of how
good the predictor is at identifying performance-critical in-
structions. The larger the difference, the better the predic-
tions. The results are shown in Figure 7(b). The token-passing
predictor typically outperforms either of the heuristics, often
by a wide margin. Also, notice that the heuristics-based pre-
dictors are ineffective on some benchmarks, such as oldest-
uncommitted on gcc and mesa and both oldest-uncommitted
and oldest-unissued on vortex. While a heuristic could be de-
vised to work well for one benchmark or even a set of bench-
marks, explicitly modeling the critical path has the significant
advantage of robust performance over a variety of workloads.
Section 4 evaluates all three predictors in real applications. We
will show that even the optimization being applied can render a
heuristics-based predictor less effective, eliminating the small
advantage oldest-unissued has for galgel.

4 Applications of the Critical Path

Our evaluation uses a next-generation dynamically-scheduled
superscalar processor whose configuration is detailed in Ta-
ble 5. Our simulator is built upon the SimpleScalar tool set [4].
Our benchmarks consist of eight SPEC2000 integer and four
SPEC2000 floating point benchmarks; all are optimized Al-
pha binaries using reference inputs. Initialization phases were
skipped, 100 million instructions were used to warm up the
caches, and detailed simulation ran until 100 million instruc-
tions were committed. Baseline IPC and skip distances are
shown in Table 4.

4.1 Focused cluster instruction scheduling and steering

Focused instruction scheduling and steering are optimizations
that use the critical path to arbitrate access to contended re-
sources (scheduling) and mitigate the effect of long latency
inter-cluster communication (steering). Our experiments show
that the two optimizations improve the performance of a next-
generation clustered processor architecture by up to 21% (10%

Benchmark Base IPC Insts Skipped (billions)
crafty (int) 3.75 4
eon (int) 3.50 2
gcc (int) 2.67 4
gzip (int) 3.03 4

parser (int) 1.63 2
perl (int) 2.61 4

twolf (int) 1.60 4
vortex (int) 4.65 8
ammp (fp) 3.14 8

art (fp) 2.10 8
galgel (fp) 4.19 4
mesa (fp) 5.04 8

Table 4: Baseline IPCs and Skip Distances.

on average), with focused instruction scheduling providing the
bulk of the benefit.

The Problem. The complexity of implementing a large in-
struction window with a wide issue width has led to proposals
of designs where the instruction window and functional units
are partitioned, or clustered [2, 6, 10, 12, 13]. Clustering has
already been used to partition the integer functional units of
the Alpha 21264 [8]. Considering the trends of growing is-
sue width and instruction windows, future high-performance
processors will likely cluster both the instruction window and
functional units.

Clustering introduces two primary performance chal-
lenges. The first is the latency to bypass a result from the
output of a functional unit in one cluster to the input of a func-
tional unit in a different cluster. This latency is likely to be
increasingly significant as wire delays worsen [12]. If this la-
tency occurs for an instruction on the critical path, it will add
directly to execution time.

The second potential for performance loss is due to in-
creased functional unit contention. Since each cluster has a
smaller issue width, imperfect instruction load balancing can
cause instructions to wait for a functional unit longer than in
an unclustered design. If the instruction forced to wait is on
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Dynamically 256-entry instruction window, 512-entry re-order buffer
Scheduled Core 8-way issue, perfect memory disambiguation,

fetch stops at second taken branch in a cycle.
Branch Prediction Combined bimodal (8k entry)/gshare (8k entry) predictor with an 8k meta predictor,

2K entry 2-way associative BTB, 64-entry return address stack.
Memory System 64KB 2-way associative L1 instruction (1 cycle latency) and data (2 cycle latency) caches,

shared 1 MB 4-way associative 10 cycle latency L2 cache, 100 cycle memory latency,
128-entry DTLB; 64-entry ITLB, 30 cycle TLB miss handling latency.

Functional Units 8 Integer ALUs (1), 4 Integer MULT/DIV (3/20), 4 Floating ALU (2),
(latency) 4 Floating MULT/DIV (4/12), 4 LD/ST ports (2).
2 cluster Each cluster has a 4-way issue 128-entry scheduling window, 4 Integer ALUs, 2 Integer MULT/DIV,
organization 2 Floating ALU, 2 Floating MULT/DIV, 2 LD/ST ports. 2 cycle inter-cluster latency.
4 cluster Each cluster has a 2-way issue 64-entry scheduling window, 2 Integer ALUs, 1 Integer MULT/DIV,
organization 1 Floating ALU, 1 Floating MULT/DIV, 1 LD/ST port. 2 cycle inter-cluster latency.

Table 5: Configuration of the simulated processor.

the critical path, the contention will translate directly to an in-
crease in execution time. Furthermore, steering policies have
conflicting goals in that a scheme that provides good load bal-
ance may do a poor job at minimizing the effect of inter-cluster
bypass latency.

The critical path can mitigate both of these performance
problems. First, to reduce the effect of inter-cluster bypass la-
tency, we perform focused instruction steering. The goal is to
incur the inter-cluster bypass latency for non-critical instruc-
tions where performance is less likely to be impacted. The
baseline instruction steering algorithm for our experiments is
the register-dependence heuristic. This heuristic assigns an
incoming instruction to the cluster that will produce one of its
operands. If more than one cluster will produce an operand
for the instruction (a tie), the producing cluster with the fewest
instructions is chosen. If all producer instructions have fin-
ished execution, a load balancing policy is used where the in-
coming instruction is assigned to the cluster with the fewest
instructions. This policy is similar to the scheme used by
Palacharla et al. [12], but more effective than the dependence-
based scheme studied by Baniasadi and Moshovos [2]. In the
latter work, consumers are steered to the cluster of their pro-
ducer until the producer has committed, even if it has finished
execution. Thus, load balancing will be applied less often. Our
focused instruction steering optimization modifies our base-
line heuristic in how it handles ties: if a tied instruction is
critical, it is placed into the cluster of its critical predecessor.
This optimization was performed by Tune et al. [21].

Second, to reduce the effect of functional unit contention,
we evaluated focused instruction scheduling, where critical in-
structions are scheduled for execution before non-critical in-
structions. The goal is to add contention only to non-critical
instructions, since they are less likely to degrade performance.
The oldest-first scheduling policy is used to prioritize among
critical instructions, but our experiments found this policy
does not have much impact due to the small number of criti-
cal instructions. The baseline instruction scheduling algorithm
gives priority to long latency instructions. Our experiments
found this heuristic performed slightly better than the oldest-
first scheduling policy.

Experiments. The improvements due to focused instruction
scheduling and focused instruction steering are shown in Fig-
ure 8(a) for three organizations of an 8-way issue machine:
unclustered, two clusters, and four clusters (see Table 5). The
execution time is normalized to the baseline machine (unclus-

tered without any focused optimizations). We find that:

• On an unclustered organization, the critical path pro-
duces a speedup of as much as 7% (3.5% on average).

• On a 2-cluster organization, the critical path turns an av-
erage slowdown of 7% to a small speedup of 1% over the
baseline. This is a speedup of up to 17% (7% on average)
over register-dependence steering alone.

• On a 4-cluster organization, the critical path reduces per-
formance degradation from 19% to a much more tolera-
ble 6% degradation. Measured as speed up over register-
dependence steering, we improve performance by up to
21% (10% on average).

From these results, we see that the token-passing pre-
dictor is increasingly effective as the number of clusters in-
creases. This is an important result considering that techno-
logical trends may necessitate an aggressive next-generation
microprocessor, such as the one we model, to be heavily par-
titioned in order to meet clock cycle goals [1].

From Figure 8(a) we also see that focused instruction
scheduling provides most of the benefit. We believe this is
because focused instruction steering uses the critical path only
to break ties, which occur in the register-dependence steering
heuristic infrequently. Nonetheless, a few benchmarks do gain
significantly from the enhanced steering, e.g., gzip gains 3%
and galgel gains 14%.

An alternative to focused instruction scheduling is to use
a steering policy that prevents imbalance that might lead to
excessive functional unit contention. We implemented sev-
eral such policies, including the best performing non-adaptive
heuristic (MOD3) studied by Baniasadi and Moshovos [2].
MOD3 allocates instructions to clusters in a round-robin
fashion, three instructions at a time. While these schemes
sometimes performed better than register-dependence steer-
ing, register-dependence performed better on average in our
experiments. Most importantly, register-dependence steering
with focused instruction scheduling always performed better
(typically much better) than MOD3.

In Figure 8(b), we compare the token-passing predictor to
the two heuristics-based predictors described in Section 3.2
(oldest-uncommitted and oldest-unissued) performing both fo-
cused instruction scheduling and focused instruction steering
on a 4-cluster organization. Clearly, neither heuristics-based
predictor is consistently effective, and they even degrade per-
formance for some benchmarks (e.g., for vortex, perl, and
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(a) Scheduling in clustered architectures. (b) Comparison to heuristics-based predictors.

Figure 8: Critical path scheduling decreases the penalty of clustering. (a) The token-passing predictor improves instruction
scheduling in clustered architectures (8-way unclustered; two 4-way clusters; and four 2-way clusters are shown). As the number
of clusters increases, critical-path scheduling becomes more effective. (b) Results for four 2-way clusters using both focused
instruction scheduling and steering shows that the heuristic-based predictors are less effective than the token-passing predictor.

crafty). Our conjecture is that instruction scheduling optimiza-
tions require higher precision than heuristics can offer.

Note that even for galgel, where the oldest-unissued
scheme compared favorably to the token-passing predictor in
Section 3.2, Figure 7(b), the token-passing predictor produces
a larger speedup. Upon further examination, we found that the
oldest-unissued predictor’s accuracy degrades significantly af-
ter focused instruction scheduling is applied. This may be due
to the oldest-unissued predictor’s inherent reliance on the or-
der of instructions in the instruction window. Since scheduling
critical instructions first changes the order of issue such that
critical instructions are unlikely to be the oldest, the predic-
tor’s performance may degrade as the optimization is applied.
In general, a predictor based on an explicit model of the crit-
ical path, rather than on an artifact of the microexecution, is
less likely to experience this sort of interference with a partic-
ular optimization.

In summary, it is worth noting that the significant improve-
ments seen for scheduling execution resources speak well for
applying criticality to scheduling other scarce resources, such
as ports on predictor structures or bus bandwidth. In general,
the critical path can be used for intelligent resource arbitra-
tion whenever a resource is contended by multiple instruc-
tions. The multipurpose nature of a critical-path predictor can
enable a large performance gain from the aggregate benefit of
many such simple optimizations.

4.2 Focused value prediction

Focused value prediction is an optimization that uses the criti-
cal path for reducing the frequency of (costly) misspeculations
while maintaining the benefits of useful predictions. By pre-
dicting only critical instructions, we improved performance by
as much as 5%, due to removing nearly half of all value mis-
speculations.

The Problem. Value prediction is a technique for breaking
data-flow dependences and thus also shortening the critical
path of a program [11]. In fact, the optimization is only effec-
tive when the dependences are on the critical path. Any value
prediction made for non-critical dependences will not improve
performance; even worse, if such a prediction is incorrect, it

may severely degrade performance. In focused value predic-
tion, we only make predictions for critical path instructions,
thus reducing the risk of misspeculation while maintaining the
benefits of useful predictions.

We could also use the critical path to make better use of
prediction table entries and ports. However, because present-
ing all results of our value prediction study is beyond the scope
of this paper, we restrict ourselves to the effects of reducing
unnecessary value misspeculations. Our experiments should
be viewed as a proof of the general concept that critical-path-
based speculation control may improve any processor tech-
nique in which the cost of misspeculation may impair or out-
weigh the benefits of speculation, e.g., issuing loads prior to
unresolved stores.

Table Sizes Context: 1st-level table: 64K entries, 2nd-level
table: 64K entries, Stride: 64K entries. The tables
form a hybrid predictor similar to the one in [22]

Confidence 4-bits, saturating: Increase by one if correct
prediction, decrease by 7 if incorrect, perform
speculation only if equal to 15 (This is similar
to the mechanism used in [5]).

Mis- When an instruction is misspeculated, squash
speculation all instructions before it in the pipeline
Recovery and re-fetch (like branch mispredictions.)

Table 6: Value prediction configuration.

Experiments. We used a hybrid context/stride predictor
similar to the predictor of Wang and Franklin [22]. The value
predictor configuration, detailed in Table 6, deserves two com-
ments: In order to isolate the effect of value misspeculations
from the effects of value-predictor aliasing, we used rather
large value prediction tables. Second, while a more aggressive
recovery mechanism than our squash-and-refetch policy might
reduce the cost of misspeculations, it would also significantly
increase the implementation cost. We performed experiments
with focused value prediction on the seven benchmarks that
our baseline value predictor could improve. We evaluate our
token-passing predictor and the two heuristics predictors.

Figure 9(a) shows the number of misspeculations obtained
with and without filtering predictions using the critical path.
While the oldest-unissued heuristic eliminated the most mis-
speculations, it is clear from Figure 9(b) that it also eliminated
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(a) Value misspeculations. (b) Speedup of focused value prediction.

Figure 9: Focusing value-prediction by removing misspeculations on non-critical instructions. (a) A critical-path predictor can
significantly reduce misspeculations. (b) For most benchmarks, the token-passing critical-path predictor delivers at least 3-times
more improvement than either of the heuristics-based predictors.

many beneficial correct speculations. The more precise token-
passing predictor consistently improves performance over the
baseline value predictor and typically delivers more than 3-
times more improvement than either heuristic. The absolute
performance gain is modest because the powerful confidence
mechanism in the baseline value predictor already filters out
most of the misspeculations. Nonetheless, the potential for
using the critical path to improve speculation techniques via
misspeculation reduction is illustrated by 5 times more effec-
tive value prediction for perl and 7–20% more effectiveness
for the rest of the benchmarks.

5 Related Work

Srinivasan and Lebeck [18] defined an alternative measure
of the critical path, called latency tolerance, that provided
non-trivial insights into the performance characteristics of the
memory system. Their methodology illustrated how difficult
it is to measure criticality even in a simulator wherein a com-
plete execution trace is available. Their latency tolerance anal-
ysis involves rolling back the execution, artificially increas-
ing the latency of a suspected non-critical load instruction, re-
executing the program, and observing the impact of the in-
creased latency. While their methodology yields a powerful
analysis of memory accesses, their analysis cannot (easily)
identify criticality of a broad class of microarchitectural re-
sources, something that our model can achieve.

Concurrently with our work, Srinivasan, et al. [17] pro-
posed a heuristics-based predictor of load criticality inspired
by the above mentioned analysis. Their techniques consider
a load as critical if (a) it feeds a mispredicted branch or an-
other load that cache misses or (b) the number of independent
instructions issued soon following the load is below a thresh-
old. The authors perform experiments with critical-load vic-
tim caches and prefetching mechanisms, as well as measure-
ments of the critical data working set. Their results suggest
criticality-based techniques should not be used if they vio-
late data locality. As the authors admit, there may be other
ways for criticality to co-exist with locality. For example the
critical-path could be used to schedule memory accesses.

Fisk and Bahar [7] explore a hardware approximation of
the latency-tolerance analysis based on monitoring perfor-
mance degradation on cache misses. If performance degrades

below a threshold, the load is considered critical. They also
look at heuristics based on the number of dependencies on a
cache-missed load’s dependence graph. While these heuristics
provide some indication of criticality, our predictor is based
on an explicit model of the critical path and hence is not
optimization-specific: it works for all types of instructions, not
just loads.

Tune et al. [21] identified the benefits of a critical path
predictor and provided the first exploration of heuristics-based
critical path predictors. We have thoroughly evaluated the
most successful of their predictors in this paper. The evalu-
ation led to a conjecture that critical-path-based optimizations
require precision that heuristics cannot provide.

Calder et al. [5] guide value prediction by identifying the
longest dependence chain in the instruction window, as an ap-
proximation of the critical path, without proposing a hardware
implementation. We contribute a more precise model and an
efficient predictor.

Tullsen and Calder [20] proposed a method for software-
based profiling of the program’s critical path. They identified
the importance of microarchitectural characteristics for a more
accurate computation of the true critical path and expressed
some of them (such as branch mispredictions and instruction
window stalls) in a dependence-graph model. We extend their
model by separating different events in the instruction’s life-
time, thus exposing more details of the microarchitectural crit-
ical path. Also, our model is well suited for an efficient hard-
ware implementation.

6 Conclusions and Future Work

We have presented a dependence-graph-based model of the
critical path of a microexecution. We have also described a
critical-path predictor that makes use of the analytical power
of the model. The predictor “analyzes” the dependence graph
without building it, yielding an efficient hardware implemen-
tation. We have shown that the predictor supports fine-grain
optimizations that require an accurate prediction of the criti-
cal path, and provides robust performance improvements over
a variety of benchmarks. For instance, our critical-path pre-
dictor consistently improves cluster instruction scheduling and
steering, by up to 21% (10% on average).

Future work includes refining the model and tuning the
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predictor. While the precision of our current model is suffi-
cient to achieve significant performance improvement, we be-
lieve higher precision would yield corresponding increases in
benefit. For instance, in focused value prediction, if some truly
critical instruction is not identified by the model, it will never
be value predicted, even though the performance gain might
be great. In a related vein, a more detailed study of the adapt-
ability of the token-passing predictor during the course of op-
timizations might lead to a better design. It may be, for in-
stance, that a different token planting strategy would be more
effective for some optimizations. Maybe the predictor would
adapt quicker if tokens were planted in the vicinity of a correct
value prediction.

Another direction for future work is developing other
critical-path-based optimizations. For instance, focused re-
source arbitration could be applied to scheduling memory ac-
cesses, bus transactions, or limited ports on a value predictor.
Focused misspeculation reduction could be used to enhance
other speculative mechanisms, such as load-store reordering
or hit-miss speculation [23]. To conclude, the greatest practi-
cal advantage of the critical-path predictor is its multipurpose
nature—the ability to enable a potentially large performance
gain from the aggregate benefit of many simple optimizations,
all driven by a single predictor.
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