
Abstract

An increasingly large portion of scheduler latency is
derived from the monolithic content addressable memory
(CAM) arrays accessed during instruction wakeup. The
performance of the scheduler can be improved by decreas-
ing the number of tag comparisons necessary to schedule
instructions. Using detailed simulation-based analyses,
we find that most instructions enter the window with at
least one of their input operands already available. By
putting these instructions into specialized windows with
fewer tag comparators, load capacitance on the scheduler
critical path can be reduced, with only very small effects
on program throughput. For instructions with multiple
unavailable operands, we introduce a last-tag speculation
mechanism that eliminates all remaining tag comparators
except those for the last arriving input operand. By com-
bining these two tag-reduction schemes, we are able to
construct dynamic schedulers with approximately one
quarter of the tag comparators found in conventional
designs. Conservative circuit-level timing analyses indi-
cate that the optimized designs are 20-45% faster and
require 10-20% less power, depending on instruction win-
dow size.

1. Introduction
In an effort to secure higher levels of system perfor-

mance, microprocessor designs often employ dynamic
scheduling as a technique to extract instruction level paral-
lelism (ILP) from serial instruction streams. Conventional
dynamic scheduler designs house a “window” of candidate
instructions from which ready instructions are sent to
functional units in an out-of-order data flow fashion. The
instruction window is implemented using large monolithic
content addressable memories (CAMs) that track instruc-
tions and their input dependencies.

While more ILP can be extracted with a larger instruc-
tion window (and accordingly larger CAM structure), this
increased parallelism will come at the expense of a slower
scheduler clock speed. Recent circuit-level studies of
dynamic scheduler logic have shown that the scheduler
CAM logic will dominate the latency for the structure
[12], and as such, window sizes cannot be increased with-
out commensurate increases in scheduler operation
latency. More recent studies [1] also suggest that increas-

ing wire latencies due to parasitic capacitance effects may
make these trade-offs even more acute, with future designs
seeing little benefit from smaller technologies. The opti-
mal design is dependent on both the degree to which ILP
can be harvested from the workload and the circuit charac-
teristics of the technology used to implement the sched-
uler.

In addition to performance, power dissipation has
become an increasing concern in the design of high-per-
formance microprocessors. Increasing clock speeds and
diminishing voltage margins have combined to produce
designs that are increasingly difficult to cool. Addition-
ally, embedded processors are more sensitive to energy
usage as these designs are often powered by batteries.
Empirical [9,7] and analytical [2,5] studies have shown
that the scheduler logic consumes a large portion of a
microprocessor’s power and energy budgets, making the
scheduler a prime target for power optimizations. For
example, the scheduler components of the PentiumPro
microarchitcture consume 16% of total chip power. A
similar study for Compaq’s Alpha 21264 microprocessor
found that 18% of total chip power was consumed by the
scheduler. Increasing window sizes and parasitic capaci-
tances will continue to shift more of the power budget
towards the scheduler.

Our techniques draw from the observation that most
scheduler tag comparisons are superfluous to the correct
operation of the instruction scheduler. Analyses reveal
that most instructions placed into the instruction window
do not require two source tag comparators because one or
more operands are ready, or the operation doesn’t require
two register operands.

In this paper, we propose two scheduler tag reduction
techniques that work together to improve the performance
of dynamic scheduling while at the same time reducing
power requirements. First, we propose a reduced-tag
scheduler design that assigns instructions to reservation
stations with two, one, or zero tag comparators, depending
on the number of operands in flight. To reduce tag com-
parison requirements for instructions with multiple oper-
ands in flight, we introduce a last tag speculation
technique. This approach predicts which input operand of
an instruction will arrive last, and then schedules the exe-
cution of that instruction based solely on the arrival of this
operand. Since the earlier arriving tags do not precipitate
execution of the instruction, the scheduler can safely elim-

Efficient Dynamic Scheduling Through Tag Elimination

Dan Ernst and Todd Austin
Advanced Computer Architecture Laboratory

University of Michigan
Ann Arbor, MI 48109

{ernstd,austin}@eecs.umich.edu

Appears in the 29th Annual International Symposium on Computer Architecture (ISCA-2002), May 2002

inate the comparator logic for all but the last arriving oper-
and. A low cost and low latency misprediction recovery
technique is presented.

The remainder of this paper is organized as follows.
Section 2 gives background details into the design of a
conventional high-performance scheduler, including the
critical paths of the design and further motivation as to
why removing comparators could improve its power and
speed characteristics. Section 3 introduces our reduced-
tag scheduler designs. Section 4 details our experimental
evaluation of these new designs. Detailed cycle-accurate
simulations and circuit-level timing and power analyses
are combined to fully explore the benefits and costs of
each approach. Section 5 details related prior work, and
suggests how our approach could be combined with much
of the previous work for further improvements in sched-
uler design. Section 6 gives conclusions and suggests
future directions in the pursuit of high-performance sched-
ulers. Appendix A includes a detailed description of our
scheduler circuit design and analysis.

2. High-Performance Dynamic Scheduling

2.1. Scheduler Pipeline Overview
Figure 1 details the pipeline stages used to implement a

high performance dynamic scheduler. The first stage, the
allocator (ALLOC), is responsible for reserving all
resources necessary to house an instruction in the proces-
sor instruction window. These resources include reserva-
tion stations, re-order buffer entries, and physical
registers. Physical registers and re-order buffer entries
typically use a FIFO allocation strategy in which the
resources are allocated from a circular hardware queue.1
This approach works well because resources are allocated
in program order in ALLOC and held until instruction
commit time, where the resources are released in program
order. Reservation stations, while allocated in program
order, may be released as soon as an instruction has begun
execution (or as soon as an instruction has begun execu-
tion for the last time in a pipeline with replay/re-execution
support). As such, a heap-style allocation strategy will

result in more efficient use of reservation station resources
than can be attained using a FIFO allocation policy.

The scheduler stage (SCHED) houses instructions in
reservation stations until they are ready to execute. Reser-
vation stations track the availability of instruction source
operands. When all input operands are available, a request
is made to the select logic for execution. The selection
logic chooses the next instructions to execute from all
ready instructions, based on the scheduler policy. The
selected instructions receive a grant signal from the selec-
tion logic, at which point they will be sent forward to later
stages in the pipeline.

Once granted execution, an instruction’s source register
tags are used to access the register file in the register read
(REG) stage of the pipeline. In the following stage, oper-
and values read from the register file are forwarded to the
appropriate functional unit in the execute stage (EX/
MEM) of the pipeline. If a dependent operation immedi-
ately follows an instruction, it will read a stale value from
the physical register file. A bypass MUX is provided in
the EX/MEM stage to will select between the incoming
register operand, or a more recent value on the bypass bus.
Dependent instructions that execute in subsequent cycles
must communicate via the bypass bus. All other instruc-
tions communicate by way of the physical register file.

2.2. Reservation Stations
Figure 2 illustrates the datapaths and control logic con-

tained in each reservation station. Each new instruction is
placed into a reservation station by the allocator. If an
instruction’s input operand has already been computed (or
if the operand is not used by the instruction), the ready bit
for that operand is set as valid. If the operand has not yet
been computed, a unique tag for the value is placed into
the corresponding source operand tag field, either src1 or
src2 depending on which instruction operand is being pro-
cessed. Since all input operands are renamed to physical
storage, the physical register index suffices as a unique tag
for each value in flight within the instruction window.
Unlike most textbook descriptions of Tomasulo’s algo-
rithm [14], most modern processors, such as the Alpha
21264 [8] and Pentium 4, use value-less reservation sta-
tions. Instead of storing instruction operand values and

Figure 1: Conventional Dynamic Scheduler Pipeline

1. While it is conceivable that physical registers could delay
allocation until writeback, i.e., when the resource is
needed to store the result, most designs avoid any type of
out-of-order allocation because it introduces many dead-
lock scenarios. A good treatment on out-of-order register
allocation and its potential hazards can be found in [6].

. . .

RS heap

RS

. . .

select

RF

src1

src2

val1

val2

Allocator

ALLOC SCHED REG EX/MEM

D-$

cache miss

inst

Figure 2: Reservation Station Datapaths and Control.
Critical path shown with dashed line.

Req

src1 src2v r1 r2 dst

= =

result tag bus

clk

Select Logic
Grant

delay

opcodes in the CAM structure and making longer tag bus-
ses, these designs keep this data in the REG stage where it
can be accessed on the way to execution.

When instructions are nearing the completion of their
execution, they broadcast their result tag onto the result
tag bus. Reservation stations snoop the result tag bus,
waiting for a tag to appear that matches either of their
source operand tags. If a match is found, the ready bit of
the matching operand tag is set. When a valid reservation
station has both operands marked ready, a request for exe-
cution is sent to the selection logic. The selection logic
grants the execution request if the appropriate functional
unit is available and the requesting instruction has the
highest priority among instructions that are ready to exe-
cute. Policies for determining the highest priority instruc-
tion vary. Some proposed approaches include random
[12], oldest-first [12], and highest-latency first [18]. How-
ever, more capable schedulers require more complex logic
and thus run more slowly.

The selection logic sends an instruction to execution by
driving its grant signal. The input operand tags are driven
onto an output bus where they are latched for use by the
REG stage in the following cycle. In addition, the grant
signal is latched at the reservation station. In the follow-
ing cycle, the instruction will drive its result tag on to the
result tag bus. If the execution pipeline supports multi-
cycle operations, the result tag broadcast must be delayed
until the instruction result is produced. This can be imple-
mented by inserting a small delay element into the grant
latch, such as a small counter. If the execution time for an
instruction is non-deterministic, such as for a memory
operation, the scheduler can optimistically predict that the
latency will be the most common case; e.g., it predicts that
all loads will hit in the data cache. If an instruction’s
latency is mispredicted, dependent instructions were
scheduled too soon and must be rescheduled to execute
after the operation completes. This rescheduling is some-
times called a scheduler replay [20].

The reservation station wakeup and select logic forms
the control critical path in the dynamically scheduled pipe-
line [12]. This logic forms a critical speed path in most
aggressive designs because it limits the rate at which
instructions can begin execution. As shown by the dashed
lines in Figure 2, the scheduler critical path includes the
result tag driver, the result tag bus interconnect, the reser-
vation station comparators, the selection logic, and the
grant signal interconnect. It is possible that the operand
tag output busses (src1 and src2) are on the critical path of
the control loop, however, in aggressive designs this out-
put can be pipelined or wave-pipelined [11] into subse-
quent scheduler cycles because the output bus value is not
required to initiate the next scheduler loop iteration. As
noted by Palacharla et al [12], the CAM structure formed
by the result tag drivers, result tag bus, and comparators
constitute the major portion of the control circuit latency,
especially for large windows with many reservation sta-
tions.

3. Reduced-Tag Scheduler Designs
In this section, we present two reduced-tag scheduler

designs. The first optimization, called window specializa-
tion, leverages the observation that many instruction input

operands are available or unneeded when instructions are
placed into a reservation station. As a result, these instruc-
tions can be scheduled with reservation stations containing
fewer tag comparators. The second optimization uses a
last-tag predictor to identify the operand of an instruction
that will arrive last (and thus allow the instruction to com-
mence execution). A design that can effectively make this
prediction can eliminate the tag comparators of all other
operands without impacting the dynamic instruction
schedule.

3.1. Specialized Windows
When an instruction enters the instruction window, its

input operand tag fields are loaded with the index of the
physical register that will eventually hold the operand
value. It may be the case that some of the operands will be
ready at that time, either because the operand was com-
puted in an earlier cycle or the operand is not required by
the operation (e.g., one of the operands is an immediate
value). Since these input operands are already available,
their reservation station entries do not require tag compar-
ators.

To quantify the degree to which tag comparators are not
required by reservation stations, a typical 4-wide supersca-
lar processor was simulated using the SimpleScalar toolset
[3] with instruction window sizes of 16, 64, and 256 and
an load/store queue size that was half the size of the
instruction window. When instructions entered the sched-
uler, the number of ready input operands was counted.
The results in Figure 3 show the dynamic distribution of
the number of ready operands for all instructions. Results
are shown for eight of the SPEC2000 benchmarks [17].
(More details on our experimental framework and baseline
microarchitecture model can be found in Section 4.1.)

Clearly, a significant portion of all operands are marked
ready when they enter reservation stations, for all instruc-
tion window sizes. Only about 10-20% of all dynamic
instructions require a reservation station with two tag com-
parators, while the remaining instructions require either
one or zero comparators. Much of this effect comes from
the fact that very few instructions (20-35%) actually have
two architectural operands (many are loads/stores or use
immediates). As expected, larger window sizes result in
fewer ready operands, because larger windows permit the
front-end to get further ahead of instruction execution.
Nonetheless, a window size of 256 instructions has a sig-
nificant portion of instructions that do not require more
than one tag comparator. In general, programs with poor

Figure 3: Runtime Distribution of Ready Input
Operands for Varying Window Sizes

0%

20%

40%

60%

80%

100%

16 64 25
6 16 64 25
6 16 64 25
6 16 64 25
6 16 64 25
6 16 64 25
6 16 64 25
6 16 64 25
6

crafty00 equake00 gcc00 gzip00 mesa00 parser00 swim00 vortex00

0 ready

1 ready

2 ready

branch prediction such as GCC and Vortex were less
affected by the larger windows sizes, because branch
mispredictions limit the degree to which the front-end can
get ahead of instruction execution. In contrast, SWIM has
nearly perfect branch predictor accuracy, which results in
more slip between fetch and execute for large window
sizes. Still, even in this extreme example, more than half
of the instructions in a 256-entry instruction window
require less than two tag comparators. Similar observa-
tions were made by Folegnani and Gonzalez [5]; they used
this property to design low-power tag comparators.

It is possible to take advantage of ready input operands
if the scheduler contains reservation stations with fewer
than two tag comparators. Figure 4 illustrates a reserva-
tion station design that contains entries with two, one, and
zero tag comparators. The design on the left side of the
figure is a conventional scheduler configuration, where
each reservation station contains two tag comparators.
The optimized design, shown on the right side of the fig-
ure, eliminates tag comparators from some of the reserva-
tions stations. We label the configurations “x/y/z”, where
x, y, and z indicate the number of two, one and zero tag
stations, respectively.

When the allocator encounters an instruction with one
or more unavailable operands, the allocator will assign the
instruction to a reservation station with a matching number
of tag comparators. If both operands are ready, we can
place the instruction into a reservation station without tag
comparators that immediately requests execution. If there
isn’t an available reservation station with the same number
of tag comparators, the allocator will assign the instruction
to a reservation station with more tag comparators. For
example, instructions waiting for one operand can be
assigned to reservation stations with one or two tag com-
parators. Finally, if a reservation station with a sufficient
number of tag comparators is not available, the allocator
will stall the front-end pipeline until one is available.

This reduced-tag scheduler design has two primary
advantages over a conventional design. First, the destina-
tion tag bus, which drives a physical register destination
tag to all source tag comparators, need only run to the res-
ervation stations with tag comparators. Since result tag
drive latency is on the critical path of the control scheduler

loop, the latency of this critical path will be reduced in
proportion to the number of zero-tag reservation stations.
The second advantage is that comparator circuits can be
eliminated from the instruction window. With fewer com-
parators, load capacitance on the result tag bus is reduced,
resulting in faster tag drive and lower power requirements.
The downside of the reduced tag design is that additional
allocator stalls may be introduced when there are insuffi-
cient reservation stations of a required class, potentially
reducing extracted ILP and program performance.

3.2. Last Tag Speculation
While many instructions enter the instruction window

with multiple unavailable operands, it is still possible to
eliminate all but one of the tag comparators for these
instructions. Since the arrival of the all but the last input
operand tags will not initiate an execution request, these
tag comparators can be safely removed. When the last
input operand tag arrives, this sole event can be used to
initiate instruction execution. We employ a last-tag pre-
dictor to predict the last arriving operand. As long as the
last tag predictor is correct, the schedule will proceed as in
the non-speculative case. A modified reservation station
with one tag comparator monitors the arrival of the pre-
dicted last input operand.

We experimented with a number of last-tag predictors,
including a predictor that predicts the last operand to
arrive will be the same as in the previous execution, a
bimodal-type last-tag predictor (similar to the grandparent
predictor employed by Stark et al [19]), and a GSHARE-
style last-tag predictor. The accuracy of these predictors
was nearly identical to similarly configured branch predic-
tors. For the sake of brevity we only present the
GSHARE-style last-tag predictor as it consistently per-
formed the best with only marginal additional cost over
simpler predictors.

Figure 5 illustrates the GSHARE-style last-tag predic-
tor. The predictor is indexed with the PC of an instruction
(with multiple unavailable operands) hashed with global
control history [10]. The control history is XOR’ed onto
the least significant bits of the instruction PC and that
result is used as an index into a table of two-bit saturating
counters. The value of the upper counter bit indicates the
prediction: one indicates the left operand will arrive last,
zero indicates the right operand will arrive last. The pre-
dictors are updated when last tag predictions are validated.
Figure 6 shows the prediction accuracy (for instructions
with two operands in flight) for various sizes of the
GSHARE-style last-tag predictors with 8 bits of control
history and an instruction window size of 64. Most pro-
grams have good predictor performance for sizes larger
than 1024 entries. We also implemented a confidence esti-
mation technique for the predictor. The approach forced

Figure 4: Conventional and Reduced-Tag Reservation
Stations. The circles represent tag comparators. The bold
tag entries include a comparator, the shaded tag entries are
not necessary and so do not include comparators. One-tag
entries are denoted with a “1”.

8/0/0 Scheduler

dst tag bus

src1 src2

R
S request signals

dst tag bus

2/4/2 Scheduler

R
S

 r
eq

ue
st

 s
ig

na
ls==

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=1 1

1 1

Figure 5: GSHARE-Style Last Tag Predictor

PC: add r1,r2 -> r3

pattern history table

xor

global control history

Left/Right
last tag prediction

updates from prediction
validation mechanism

PCs of insts with multiple
unavailable operands

hard to predict instructions to use two-tag entries, how-
ever, the results showed few gains.

As shown in the pipeline of Figure 7, the allocator
accesses the last-tag predictor for instructions with multi-
ple unavailable operands and inserts the instruction into a
reservation station with a single tag comparator. The pre-
dictor will indicate whether the left or right operand for the
instruction will complete last. If the last tag prediction is
correct, the instruction will wake up at the exact same time
it would have in a window without speculation. In the
event that the prediction is incorrect, the instruction will
wake up before all of its input operands are ready, and a
mispeculation recovery sequence will have to be initiated.

Figure 8 illustrates the datapaths and control logic for a
reservation station supporting last-tag speculation. The
input operand tags are loaded into the reservation station
with the tag predicted to arrive last placed under the com-
parator (srcL). The other input operand tag (srcF) and the
result tag are also loaded into the reservation station. The
reservation station operates in a manner similar to a con-
ventional design. Instructions request execution once the
predicted-last tag is matched on the result tag bus. When
an instruction is granted permission to execute, the source
operand register tags are driven out to the register stage of
the pipeline. This drive operation requires a pair of muxes
to sort the source operands into the original (left, right)
instruction order, which is the format used by the register
file and later functional units. In addition, the tag pre-
dicted to arrive first is forwarded to the register read stage
(REG), where it is used to check the correctness of the
last-tag prediction.

The last-tag prediction must be validated to ensure that
the instruction does not commence execution before all of
its operands are available. The prediction is valid if the
operand predicted to arrive first (srcF) is available when
the instruction enters the register read stage (REG) of the
pipeline. In parallel with the register file access, the srcF
tag is used to probe a small register scoreboard (RDY).
The scoreboard contains one bit per physical register; bits
are set if the register value is valid in the physical register
file. This scoreboard is already available in the ALLOC
stage of the pipeline, where it is used to determine if the
valid bit should be set when operand tags are written into
reservation stations. A number of ports equal to the issue
width added to this scoreboard will suffice for validating
last-tag predictions. Alternatively, an additional score-
board could be maintained specifically for last-tag predic-
tion validation.

If the prediction is found to be correct, instructions may
continue through the scheduler pipeline as the scheduler
has made the correct scheduling decision. If the prediction
is incorrect, the scheduler pipeline must be flushed and
restarted, in a fashion identical to latency mispredictions.
Unlike latency mispredictions, which are detected in
MEM with a three cycle penalty, last-tag misspeculations
can be detected before EX, and thus only cause a one cycle
bubble in the scheduler pipeline.

The primary advantage of the last tag scheduler is that
more than half of the comparator load on the result tag bus
is eliminated, which can result in reduced scheduling
latency and significant power reductions for large instruc-
tion windows. The drawback of this approach is, of
course, the performance impacts that result when a last-tag
prediction is incorrect. Fortunately, the accuracy of the
last tag predictor, combined with the small penalty for
mispredicting should make this approach an effective
technique for improving scheduler speed and energy con-
sumption.

4. Experimental Evaluation

4.1. Methodology
The architectural simulators used in this study are

derived from the SimpleScalar/Alpha version 3.0 tool set
[3], a suite of functional and timing simulation tools for
the Alpha AXP ISA. The timing simulator executes only
user-level instructions, performing a detailed timing simu-
lation of an aggressive 4-way dynamically scheduled
microprocessor with two levels of instruction and data

Figure 6: Accuracy of GSHARE-Style Last Tag
Predictor for Various Predictor Sizes

50

55

60

65

70

75

80

85

90

95

100

crafty00 equake00 gcc00 gzip00 mesa00 parser00 swim00 vortex00

L
A

S
T

 P
re

d
ic

to
r

A
cc

u
ra

cy 64

256

1024

4096

8192

16384

Figure 7: Scheduler Pipeline with Last Tag Speculation

Figure 8: Reduced-Tag Reservation Station with Last
Tag Speculation

. . .

RS heap

inst

RS/2

. . .

select

RF
src1

src2

val1

val2

Allocator

ALLOC SCHED REG EX/MEM

D-$

cache miss

srcF
RDY

tag miss
Last tag
Predictor

predictor update

srcF

Req

srcLv r1

=

result tag bus

clk

Select Logic
Grant

dstpred

src1 src2 srcF

delay
muxes

cache memory. Simulation is execution-driven, including
execution down any speculative path until the detection of
a fault, TLB miss, or branch misprediction.

To perform our evaluation, we collected results from
eight of the SPEC2000 benchmarks [17]. There are five
integer programs and three floating point programs. All
SPEC programs were compiled for a Compaq Alpha AXP-
21264 processor using the Compaq C and Fortran compil-
ers under the OSF/1 V4.0 operating system using full
compiler optimization (-O4). The simulations were run
for at least 250 million instructions using the SPEC refer-
ence inputs and all simulations were fast-forwarded
through the first 100 million instructions to warm up the
caches and predictors.

To get a full understanding of the effects of our optimi-
zations, the circuit characteristics of scheduler structures
must be examined. The circuit delays and power con-
sumption statistics for scheduler windows used in this
study were derived from an updated version of the SPICE
models used in the work by Palacharla, Jouppi, and Smith
[13]. All timing results are for the TSMC 0.18 µm pro-
cess; a more detailed description of our circuit models can
be found in Appendix A. In addition, we estimated the
power consumed by the last tag prediction array using
CACTI II [15]. Table 1 shows the benchmarks, their
instructions per cycle (IPC) on the baseline microarchitec-
tural model, and their maximum baseline scheduler perfor-
mance in instructions per ns (IPns).

Our baseline simulation configuration models a current
generation out-of-order processor microarchitecture. It
can fetch and issue up to 4 instructions per cycle and it has
a 64 entry dynamic scheduler window with a 32 entry
load/store buffer. There is an 3 cycle minimum branch
misprediction penalty. The processor has 4 integer ALU
units, 2-load/store units, 4-FP adders, 4-integer MULT/
DIV units, and 4-FP MULT/DIV units. The latencies vary
depending on the operation, but all functional units, with
the exception of the divide units, are fully pipelined allow-
ing a new instruction to initiate execution each cycle.

The memory system consists of 32k 4-way set-associa-
tive L1 instruction and data caches. The data cache is
dual-ported and pipelined to allow up to two new requests
each cycle. There is also a 256k 4-way set-associative L2
cache with a 6 cycle hit latency. If there is a second-level
cache miss it takes a total of 36 cycles to make the round
trip access to main memory.

The model uses a GSHARE branch predictor with an 8-
bit global history and an 8k entry BTB. The instruction
fetch stage of the model has a 32 entry instruction queue
and operates at twice the frequency as the rest of the pro-

cessor. While perhaps not realistic, this assures that the
IPC results seen when changing scheduler configurations
are not attenuated by bottlenecks in the front end. Since
improvement in scheduler performance would have to be
accompanied by commensurate improvement in fetch
bandwidth, we feel that this configuration will accurately
portray the benefits of our scheduler optimizations.

The dynamic scheduler distributed with SimpleScalar
is overly simplistic compared to modern schedulers. A
redesigned scheduler was added to sim-outorder to more
accurately reflect the design presented in Section 2. Our
new scheduler includes support for scheduler replay, more
efficient scheduler resource management, decoupled ROB
and RS resources, and support for our optimizations
detailed in Section 3.

The last-tag predictor configuration simulated is a
GSHARE-style predictor with an 8-bit global history and a
8192 entry pattern history table. The global history is
updated when branch instructions complete in the same
way that the branch predictor is updated. A last-tag
mispredict causes a 1 cycle bubble in the scheduler pipe-
line.

4.2. Performance of Reduced-Tag Schedulers
When reduced-tag reservation stations are introduced,

instructions have a new constraint on entering the instruc-
tion window. Not only must there be an empty reservation
station, but the station must also have at least one tag com-
parator for each of the instruction’s unavailable input oper-
ands. If the demand for any particular class of reservation
stations is high, the reduced-tag designs may experience
extra instruction stalls as the allocator waits for reservation
stations to be freed.

These extra stalls reduce the effective number of reser-
vation stations from which the scheduler can choose
instructions to execute. The result, as shown in Figure 9,
is a small IPC change for most configurations and bench-
marks. We label the configurations “x/y/z”, where x, y,
and z indicate the number of two, one and zero tag sta-
tions, respectively. Only the configurations without two-
tag stations employ last-tag speculation. The effects of the
stalls show up most prominently in SWIM. This bench-
mark makes extremely efficient use of the machine
because it has excellent branch predictor performance,
very few stalls, and many tightly coupled dependent
instructions. Consequently, many instructions require the
full two tag comparators. The configurations using last-
tag speculation perform very well, with slightly lower

Table 1: Benchmarks and Baseline Statistics

Bench
mark

Baseline
IPC

Baseline
IPns

Bench
mark

Baseline
IPC

Baseline
IPns

crafty 2.018 4.330 mesa 2.695 5.783

equake 2.622 5.626 parser 1.736 3.725

gcc 1.675 3.593 swim 2.719 5.835

gzip 2.186 4.692 vortex 1.961 4.208
Figure 9: Normalized Instructions Per Cycle for

Varying Configurations

0.6

0.7

0.8

0.9

1

1.1

1.2

crafty00 equake00 gcc00 gzip00 mesa00 parser00 sw im00 vortex00

S
p

ee
d

u
p

64/0/0

20/32/12

16/32/16

12/32/20

8/32/24

0/48/16

0/40/24

0/36/28

0/32/32

IPC’s seen in benchmarks with poor branch predictor
accuracy, such as crafty and GCC. In these programs,
complex program control causes the register dependencies
between instructions to change rapidly, making it more
difficult to predict which operand will arrive last. The
configurations without last-tag speculation slightly outper-
formed the configurations with speculation. Overall, the
performance impacts amounted to only 1-3%.

The main benefit of removing tags from the scheduler
critical path is the reduction in the load capacitance during
instruction wakeup. Lower load capacitance allows for
more aggressive clocking of scheduler circuitry. Based on
our model of the wakeup and select circuitry, the special-
ized windows should allow for 25-45% faster clock rates,
depending on configuration. Figure 10 shows the total
performance (measured in instructions per ns and assum-
ing no other critical path bottlenecks in the system) of
each benchmark. With the exception of SWIM, the rate at
which the scheduler can send instructions to execute mea-
sures between 20-45% higher, again depending on config-
uration1.

To more accurately gauge the impact on modern super-
pipelined processors, we also simulated the scheduler with
last-tag misprediction latencies of 2 and 4 cycles. In these
cases, the IPC of the configurations using the predictor

were reduced an average of 0.7% and 2.4%, respectively.
In every case, there was still a substantial speedup in
instructions per ns.

4.3. Impact of Window Size
Figure 11 shows that reduced-tag scheduler optimiza-

tions continue to pay dividends for differing window sizes.
The results given are the averages across all benchmarks
for monolithic, multiple (5:8:3 ratio), and predicted (0:3:1
ratio) style windows. The gains become more prominent
as total window size grows. The larger windows have
fewer allocator stalls due to more reservation station
resources. The large windows also bear more of the
scheduler latency in result tag broadcasts (as opposed to
the select logic), as a result, they show a larger percentage
gain when tag comparators are eliminated. For a window
with 128 entries, the optimized schedulers were 35-75%
faster.

4.4. Energy and Power Characteristics
Often it is the case that to reduce power consumption,

design changes must be made at the cost of lower perfor-
mance. In our reduced-tag scheduler designs, lower load
capacitance on the result tag bus provides both perfor-
mance and power benefits. Table 2 shows the energy con-
sumption for each configuration. The optimized designs
use 30-60% less energy than the standard monolithic
scheduler. Table 2 also shows the power used by each
configuration if it were to be run at its maximum possible
clock speed. The power reductions are not as pronounced
as the energy improvements because the optimized
designs run at a faster clock rate.

Figure 10: Normalized Instructions Per ns for Varying
Configurations

Figure 11: Impact of Tag-Reduction for Varying
Window Sizes

1. For the purposes of our study, we assume that the sched-
uler critical path is the limiting factor in determining the
clock speed of the entire processor. This may or may not
be true for actual full implementations. Alternatively, if
another pipeline stage limits the clock speed gains that can
be achieved, the performance headroom afforded by tag
elimination can instead be used to make the scheduling
window larger to provide more parallelism.

0.4

0.6

0.8

1

1.2

1.4

1.6

crafty00 equake00 gcc00 gzip00 mesa00 parser00 sw im00 vortex00

S
p

ee
d

u
p

64/0/0

20/32/12

16/32/16

12/32/20

8/32/24

0/48/16

0/40/24

0/36/28

0/32/32

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

32 Entry 64 Entry 128 Entry

A
ve

ra
g

e
S

p
ee

d
u

p

Monolithic

Multiple

Predicted

Table 2: Energy and Power

Scheduler
Energy

(nJ)
Power
(W)

Scheduler
Energy

(nJ)
Power
(W)

64/0/0 0.468 1.550 0/48/16 0.255 1.548

20/32/12 0.314 1.435 0/40/24 0.222 1.416

16/32/16 0.289 1.375 0/36/28 0.207 1.372

12/32/20 0.263 1.322 0/32/32 0.191 1.281

8/32/24 0.239 1.250

Figure 12: Energy-Delay Product for Varying
Configurations

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

crafty00 equake00 gcc00 gzip00 mesa00 parser00 swim00 vortex00
A

ve
ra

g
e

In
st

ru
ct

io
n

 E
n

er
g

y-
D

el
ay

 (
n

J*
n

s)

64/0/0

20/32/12

16/32/16

12/32/20

8/32/24

0/48/16

0/40/24

0/36/28

0/32/32

The power usage of the last-tag predictor was also cal-
culated. It was found to consume less than 10% of the
power used by the scheduler in all cases.

One way to quantify an architecture’s ability to balance
both power and performance is through the use of the
energy-delay product [7]. This metric is the product of
program run-time and total energy consumed to run the
program. Figure 12 shows that the energy-delay product
of the optimized scheduler is 50-75% lower than the base-
line configurations. The 0/32/32 speculative configuration
had the best return, with a 65-75% lower energy-delay
across all experiments, including SWIM, which had the
largest IPC impacts. The optimized designs show large
gains because eliminating tag comparators and tag bus
wiring lowers the result tag bus capacitance, which both
reduces energy consumption and allows for higher clock
speeds. The energy-delay products for 128 entry windows
also showed a 70% gain for the optimized configurations,
suggesting that these benefits continue with larger window
sizes.

5. Related Work
There have been several other efforts to reduce the

complexity of dynamic schedulers, many of which can be
used in combination with tag elimination.

Some current designs bank their selection logic by hav-
ing separate groups of reservation stations for each group
of functional units. Each of these station groups has its
own, smaller, selection network. While result tag broad-
casts still need to be sent to all of the reservation stations,
the latency for selecting instructions for execution can be
reduced. As a consequence of this optimization, the
latency of the wakeup path makes up a higher percentage
of the total scheduler delay. Because of this, as Figure 13
shows, schedulers with banked selection logic reap a
larger benefit from using tag elimination techniques.

Palacharla, Jouppi, and Smith studied the effects of
process scaling on microprocessor design and proposed a
complexity-effective superscalar processor [12,13]. Their
design uses a set of FIFO queues for dynamic scheduling
to reduce complexity and allow for very aggressive clock-
ing. Instructions can only be issued from the front of the
queues; instructions are steered into them using depen-
dence information. This approach attempts to maximize
the number of ready instructions at the issue boundary.

Stark, Brown, and Patt have proposed two methods for
pipelining wakeup and selection logic, allowing for a
faster clock. For their first method [19], each reservation
station entry carries its own input tags along with its par-
ent instructions’ input tags in order to allow back-to-back
dependent instructions to execute consecutively. They
also propose speculating on which parent instruction will
finish last, reducing the number of “grandparent” tags that
must be stored.

Their second method, select-free logic [22], enables
pipelining by allowing all instructions that wakeup to
broadcast back into the window the following cycle, even
though some of them may not be selected for execution.
Combining tag elimination with either of these schemes
could be very lucrative because the latency of the wakeup
stage is fully exposed.

In their studies on energy-effective issue logic, Foleg-
nani and Gonzalez [5] also made the observation that
many comparators in the instruction window are unused
and unnecessary. In their low-power scheduler design,
tags that are marked ready do not precharge their match
lines, resulting in lower comparator power consumption.
This approach dynamically reduces the power consump-
tion of the window, but it doesn’t allow for a faster clock
rate.

Gonzalez and Canal [23] also propose a way to reduce
the overall complexity of scheduling logic by using N-Use
issue scheme. Their optimization takes advantage of the
observation that most instruction output values are ready
only once.

Michaud and Seznec [21] proposed a method for reor-
dering instructions as they enter the instruction window.
By performing dependence analysis in a pre-schedule
stage, they are able to place more usable instructions into
the window, increasing its effective size.

Kucuk, et al. [24] propose an alternate comparator cir-
cuit to reduce energy dissipation in dynamic schedulers.
Their optimization, like many of the others, could be used
in combination with tag elimination for improved energy-
efficiency.

6. Conclusions
The wakeup and select logic of dynamic schedulers has

become one of the primary bottlenecks in high-perfor-
mance microprocessor design. While architects have
sought larger scheduling windows to allow for wider issue
widths and higher IPCs, the circuit complexity of these
devices forces any gains to be at the expense of clock
speeds. Moreover, interconnect-intensive scheduling
logic consumes a significant portion of processor design
power budgets. Designers must be aware of all these fac-
tors when making scheduler design decisions because
changes that improve one aspect of the design may
adversely effect another.

We have introduced more efficient reduced-tag sched-
uler designs that improve both scheduler speed and power
requirements. By employing more specialized window
structures and last-tag speculation, a large percentage of
tag comparisons were removed from the scheduler critical
path. These optimizations reduced the load capacitance
seen during tag broadcast while maintaining instruction
throughputs that are close to those of inefficient mono-
lithic scheduler designs. The optimized designs allow for
more aggressive clocking and significantly reduce power
consumption.

Figure 13: IPns Comparison of Banking Benefits

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

64/0/0 0/32/32

A
ve

ra
g

e
A

d
d

it
io

n
al

 S
p

ee
d

u
p

1 Bank

2 Banks

4 Banks

There are still many ideas to be explored in this area.
There are potentially many improvements to be made in
the last tag prediction mechanism. Specifically, in an
effort to improve accuracy, factors that contribute to a
change in issue order could be examined, such as branch
mispredictions and instruction latency variations.

In addition, these techniques could be combined with
many of the prior proposals detailed in the related work
section to produce greater benefits. For example, tag elim-
ination and last-tag prediction can be used to further
reduce the complexity of banked-select scheduling logic
or select-free logic. Similarly, the power-saving tech-
niques introduced by Gonzalez could be combined with
our scheduler for additional power savings or even for the
purposes of allowing the logic to modify its own clock
rate.

Acknowledgements
We would like to thank Chris Weaver and Matt Guthaus

for their help with our CAD tools. We also thank all of the
reviewers and our collegues for their insights and sugges-
tions for strengthening our paper.

This work was supported by Contract No. 98-DT-660
to the Regents of the University of California from Micro-
electronic Advanced Research Corporation (MARCO) and
by the National Science Foundation CADRE program,
Grant No. EIA-9975286.

References
[1] V. Agarwal, M. Hrishikesh, S. Keckler, and D. Burger.

“Clock Rate versus IPC: The End of the Road for Conventional
Microarchitectures”, Proceedings of the 27th Annual Interna-
tional Symposium on Computer Architecture, June 2000.

[2] D. Brooks, V. Tiwari, and M. Martonosi. “Wattch: A
framework for architectural-level power analysis and optimiza-
tions”, In 27th Annual International Symposium on Computer
Architecture, June 2000.

[3] D. Burger and T. M. Austin. "The SimpleScalar tool set,
version 2.0", Tech. Rep. CS-1342, University of Wisconsin-Mad-
ison, June 1997.

[4] Brian A Fields, Shai Rubin and Rastislav Bodik, “Focus-
ing Processor Policies via Critical-Path Prediction”, 28th Annual
International Symposium on Computer Architecture, June 2001.

[5] Daniele Folegnani and Antonio Gonzalez, “Energy-
Effective Issue Logic”, In 28th Annual International Symposium
on Computer Architecture, June 2001.

[6] Antonio Gonzalez, Jose Gonzalez and Mateo Valero.
“Virtual-Physical Registers”, Proc. 4th Intl. Symp. High-Perfor-
mance Computer Architecture (HPCA-4), Feb 1998.

[7] Ricardo Gonzalez and Mark Horowitz. “Energy Dissipa-
tion in General Purpose Microprocessors”, IEEE Journal of
Solid-State Circuits, 31(9):1277-1284, September 1996.

[8] Keller, J. 1996. “The 21264: a superscalar Alpha proces-
sor with out-of-order execution”, Presented at the 9th Annual
Microprocessor Forum, San Jose, CA.

[9] S. Manne, D. Grunwald, A. Klauser, "Pipeline Gating:
Speculation Control for Energy Reduction", 25th Annual Inter-
national Symposium on Computer Architechture, June 1998.

[10] Scott McFarling. “Combining branch predictors”,
Technical Report TN-36, Digital Western Research Laboratory,
June 1993.

[11] Kevin J. Nowka, “High-Performance CMOS System
Design using Wave Pipelining”, Stanford University Ph.D. The-
sis, September 1995.

[12] Subbarao Palacharla, Norman P. Jouppi and J.E. Smith.
"Complexity-Effective Superscalar Processors”, In 24th Annual
International Symposium on Computer Architecture, May 1997.

[13] Subbarao Palacharla, Norman P. Jouppi and J.E. Smith.
"Quantifying the Complexity of Superscalar Processors", Tech.
Rep. CS-1328, University of Wisconsin-Madison, May 1997.

[14] Patterson, D. A. and Hennessy, J. L. Computer Archi-
tecture, A Quantitative Approach. Morgan Kaufmann Publishers,
Inc., San Francisco, CA, second edition, 1996.

[15] Glenn Reinman and Norm Jouppi, “An Integrated
Cache Timing and Power Model”, Compaq Technical Report,
http://www.research.compaq.com/wrl/people/jouppi/cacti2.pdf.

[16] The MOSIS Service, http://www.mosis.com/Technical/
Processes/proc-tsmc-cmos018.html

[17] SPEC System Performance Evaluation Committee,
www.spec.org.

[18] S. T. Srinivasan, A. R. Lebeck. "Load Latency Toler-
ance in Dynamically Scheduled Processors", Proceedings of the
31st Annual ACM/IEEE International Symposium on Microar-
chitecture, 148-159, 1998.

[19] J. Stark, M. Brown, and Y. Patt, “On Pipelining
Dynamic Instruction Scheduling Logic”, Proceedings of the 33rd
Annual ACM/IEEE International Symposium on Microarchitec-
ture, December 2000.

[20] Dean M. Tullsen, Susan J. Eggers, Joel S. Emer, Henry
M. Levy, Jack L. Lo, and Rebecca L. Stamm. “Exploiting
choice: Instruction fetch and issue on an implementable simulta-
neous multithreading processor”, In Proceedings of the 23rd
Annual International Symposium on Computer Architecture,
pages 191-202, May 22-24, 1996.

[21] P. Michaud, A. Seznec. “Data Flow Prescheduling for
Large Instruction Windows in Out-of-Order Processors”, HPCA-
7. January 2001.

[22] M. Brown, J. Stark, and Y. Patt, “Select-Free Instruc-
tion Scheduling Logic”, To appear in Proceedings of the 34th
Annual ACM/IEEE International Symposium on Microarchitec-
ture, December 2-5, 2001.

[23] Ramon Canal and Antonio Gonzalez, “Reducing the
Complexity of the Scheduling Logic”, ICS-01, June 2001.

[24] G. Kucuk, K. Ghose, D. Ponomarev, and P. Kogge,
“Energy-Efficient Instruction Dispatch Buffer Design for Super-
scalar Processors”, ISLPED ‘01, August 2001.

Appendix A. Circuit Analysis Methodology
Our timing analyses are based on Palacharla’s original

wakeup and select circuit designs [12,13]. We ported
Palacharla’s physical design to Taiwan Semiconductor
Corporation’s (TSMC) 1.8V 0.18µm fabrication technol-
ogy, using a physical design flow consisting of Cadence
and Synopsis design tools. We first optimized Pala-
charla’s original design using Synopsys’s AMPS circuit
optimization tool (version 5.5). AMPS attempts to opti-
mize circuit latency, power, or area under a given set of
constraints. We configured AMPS to optimize circuit
latency, with the constraint that transistor area could not
increase. AMPS provided the most benefit for the select
circuit design, producing a re-sized design that is more
than 25% faster, and with only 90% of the original area.
AMPS improved wakeup latency nearly 5% with no
reduction in area.

Once transistors were sized, timing analysis was per-
formed on a SPICE representation of Palacharla’s opti-
mized scheduler design, augmented with parasitic wire
delays. Wire parasitics were computed in the same fash-
ion as Palacharla’s earlier study, except wire resistance
and capacitance was adjusted for the TSMC process.
Finally, timing and power analysis was performed using
Avant!’s HSPICE circuit tool (version 2001.2), using level
49 typical transistor parameters supplied by Taiwan Semi-
conductor Corporation for their TSMC 0.18µm 1.8V fab-
rication process. These parameters are available from
MOSIS’s secure website [16].

Palacharla’s original analyses predate the existence of a
functional 0.18µm fabrication technology. Because of this,
the device parameters in that work were extrapolated from
a Digital Equipment Corporation 0.8µm technology. The
timing and power figures for our work were the result of
porting Palacharla’s original design to TSMC’s 0.18µm
production fabrication technology and performing timing
optimizations using commercial tools configured for the
implementation technology. Overall, the ported design is
about 24% faster in the commercial technology. The pri-
mary factors leading to the faster design are roughly split
between faster transistor speed (due to a lower threshold
voltage and gate capacitance) and improved logic perfor-
mance due to better transistor sizing.

Table 3 lists the circuit delay, power, and energy con-
sumption for all analyzed scheduler configurations. For
the table, all configurations assume a 4-wide machine
capable of producing four results per cycle. In addition,
the column labeled ftagload lists the relative tag broadcast
bus capacitive load, compared to the same-sized two-tag
baseline design. This value indicates the relative decrease
in comparator diffusion capacitance, and the relative
reduction in tag bus wire length due to elimination of 0-tag
reservation stations and denser layout provided by the
smaller 1-tag reservation stations.

Table 3: Characteristics of Studied Scheduler
Configurations. Scheduler configuration are listed using
the notation “x/y/z”, where “x” represents the number of

2-tag reservation stations, “y” the number of 1-tag
stations, and “z” the number of 0-tag stations. All

schedulers are designed for use in a 4-wide
microarchitecture and thus have 4 result buses.

Configuration
Total Delay (ps)

(wakeup + select)

Total
Power
(W)

Total
Energy

(nJ)
ftagload

64/0/0 466 (302 + 164) 1.550 0.468 1.0000

20/32/12 383 (219 + 164) 1.435 0.314 0.5625

16/32/16 374 (210 + 164) 1.375 0.289 0.5000

12/32/20 363 (199 + 164) 1.322 0.263 0.4375

8/32/24 355 (191 + 164) 1.250 0.239 0.3750

0/48/16 329 (165 + 164) 1.548 0.255 0.3750

0/40/24 321 (157 + 164) 1.416 0.222 0.3125

0/36/28 315 (151 + 164) 1.372 0.207 0.2813

0/32/32 313 (149 + 164) 1.281 0.191 0.2500

128/0/0 775 (573 + 202) 1.921 1.101 1.0000

40/64/24 552 (350 + 202) 2.064 0.722 0.5625

0/96/32 430 (228 + 202) 2.413 0.550 0.3750

32/0/0 349 (198 + 151) 1.068 0.211 1.0000

10/16/6 317 (166 + 151) 0.938 0.156 0.5625

0/24/8 290 (139 + 151) 0.968 0.135 0.3750

