
Zurich Open Repository and
Archive
University of Zurich
Main Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2018

DeltaRNN: A Power-efficient Recurrent Neural Network Accelerator

Gao, Chang ; Neil, Daniel ; Ceolini, Enea ; Liu, Shih-Chii ; Delbruck, Tobi

Abstract: Recurrent Neural Networks (RNNs) are widely used in speech recognition and natural language
processing applications because of their capability to process temporal sequences. Because RNNs are fully
connected, they require a large number of weight memory accesses, leading to high power consumption.
Recent theory has shown that an RNN delta network update approach can reduce memory access and
computes with negligible accuracy loss. This paper describes the implementation of this theoretical
approach in a hardware accelerator called ”DeltaRNN” (DRNN). The DRNN updates the output of a
neuron only when the neuron»s activation changes by more than a delta threshold. It was implemented on
a Xilinx Zynq-7100 FPGA. FPGA measurement results from a single-layer RNN of 256 Gated Recurrent
Unit (GRU) neurons show that the DRNN achieves 1.2 TOp/s effective throughput and 164 GOp/s/W
power efficiency. The delta update leads to a 5.7x speedup compared to a conventional RNN update
because of the sparsity created by the DN algorithm and the zero-skipping ability of DRNN.

DOI: https://doi.org/10.1145/3174243.3174261

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-168571
Conference or Workshop Item
Published Version

Originally published at:
Gao, Chang; Neil, Daniel; Ceolini, Enea; Liu, Shih-Chii; Delbruck, Tobi (2018). DeltaRNN: A Power-
efficient Recurrent Neural Network Accelerator. In: 26th ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA’ 18), Monterey, 25 February 2018 - 27 February 2018, 21-30.
DOI: https://doi.org/10.1145/3174243.3174261

https://doi.org/10.1145/3174243.3174261
https://doi.org/10.5167/uzh-168571
https://doi.org/10.1145/3174243.3174261

DeltaRNN: A Power-efficient Recurrent Neural Network
Accelerator

Chang Gao
Institute of Neuroinformatics,

University of Zurich and ETH Zurich
Zurich, Switzerland
chang@ini.uzh.ch

Daniel Neil∗
Institute of Neuroinformatics,

University of Zurich and ETH Zurich
Zurich, Switzerland

daniel.l.neil@gmail.com

Enea Ceolini
Institute of Neuroinformatics,

University of Zurich and ETH Zurich
Zurich, Switzerland
eceoli@ini.uzh.ch

Shih-Chii Liu
Institute of Neuroinformatics,

University of Zurich and ETH Zurich
Zurich, Switzerland
shih@ini.ethz.ch

Tobi Delbruck
Institute of Neuroinformatics,

University of Zurich and ETH Zurich
Zurich, Switzerland
tobi@ini.uzh.ch

ABSTRACT
Recurrent Neural Networks (RNNs) are widely used in speech recog-
nition and natural language processing applications because of their
capability to process temporal sequences. Because RNNs are fully
connected, they require a large number of weight memory accesses,
leading to high power consumption. Recent theory has shown that
an RNN delta network update approach can reduce memory access
and computes with negligible accuracy loss. This paper describes
the implementation of this theoretical approach in a hardware accel-
erator called “DeltaRNN” (DRNN). The DRNN updates the output
of a neuron only when the neuron’s activation changes by more
than a delta threshold. It was implemented on a Xilinx Zynq-7100
FPGA. FPGA measurement results from a single-layer RNN of 256
Gated Recurrent Unit (GRU) neurons show that the DRNN achieves
1.2 TOp/s effective throughput and 164GOp/s/W power efficiency.
The delta update leads to a 5.7x speedup compared to a conventional
RNN update because of the sparsity created by the DN algorithm
and the zero-skipping ability of DRNN.
ACM Reference Format:
Chang Gao, Daniel Neil, Enea Ceolini, Shih-Chii Liu, and Tobi Delbruck.
2018. DeltaRNN: A Power-efficient Recurrent Neural Network Acceler-
ator. In FPGA ’18: 2018 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, February 25–27, 2018, Monterey, CA, USA. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3174243.3174261

1 INTRODUCTION
Recurrent Neural Networks (RNNs) are fully-connected single- or
multi-layered networks with complex neurons that have multiple
memory states and enabled state-of-art accuracies in tasks involving
temporal sequences [27] such as automatic speech recognition [2, 9]
and natural language processing [23]. The prediction accuracy of
∗Currently at BenevolentAI.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
FPGA ’18, February 25–27, 2018, Monterey, CA, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5614-5/18/02.
https://doi.org/10.1145/3174243.3174261

RNNs is further improved by adding gating units to control the data
flow in and between neurons. In deep learning, Long Short-Term
Memory (LSTM) [16] and Gated Recurrent Unit (GRU) [6] are two
major neuron models used in gated RNNs. The gating units in the
LSTM and GRU models help to mitigate the well-known vanishing
gradient problem encountered during the training process.

A challenge in deploying RNN applications in mobile or always-
on applications is access to hardware that achieves high power
efficiency. For mobile applications, edge inference is preferable
because of lower latency, reduced network bandwidth requirement,
robustness to network failure, and better privacy. Recent neural
network applications use GPUs ranging from high-end models such
as the NVIDIA Pascal Titan X GPU to embedded system on chip
(SoC) such as the Kepler GPU in Tegra K1 SoC or smartphone
processor embedded GPU such as the Samsung Exynos Mali. The
server- or desktop-targeted Titan X consumes about 200 W and
achieves a power efficiency around 5GOp/s/W in inference of an
LSTM layer with 1024 neurons [12]. Embedded CPUs and GPUs
consume about 1W, but their RNN power efficiency is actually
much lower (around 8MOp/s/W during inference with an LSTM
network with 2 layers of 128 LSTM neurons each, as measured in
[5]). For mobile GPUs, the low efficiency is from poor matching of
memory architecture to GPU, especially for small RNNs.

The energy figures from Horowitz [17] for a 45nm process show
that Dynamic Random Access Memory (DRAM) access consumes
several hundred times more energy than arithmetic operations. The
power consumption of the LSTM RNN in a complete mobile speech
recognition engine [22] can be estimated. The RNN is a 5-layer
network with 500 units per layer, that is updated at 100 Hz. The
weight matrices are too large to be stored in economical SRAM
and so must be fetched from off-chip DRAM. Using the Horowitz
numbers results in a power consumption of about 0.2W with most
consumed by DRAM access. Thus RNN inference energy is domi-
nated by memory access cost; however, achieving high throughput
requires high memory bandwidth for weight fetching in order to
keep arithmetic units loaded as fully as possible. The key to im-
proving power efficiency (number of arithmetic operations/W) is
to reduce the total memory access therefore decreasing the en-
ergy consumption, while keeping arithmetic units fully utilized to
maintain high throughput.

Special Session: Deep Learning FPGA’18, February 25–27, Monterey, CA, USA

21

https://doi.org/10.1145/3174243.3174261
https://doi.org/10.1145/3174243.3174261

Sparsity in network activations or input data is a property that
can be used to achieve high power efficiency. In a Matrix-Vector
Multiplication (MxV) between a neuron activation vector and a
weight matrix, zero elements in the vector result in zero partial
sums that do not contribute to the final result. The multiplica-
tions between zero vector elements and their corresponding weight
columns can be skipped to save memory access of weight columns.
Moreover, it is also possible to skip any multiplication between
a zero weight element and a non-zero vector element to further
reduce operations and memory access, though this feature has not
been adopted in this work yet. A common way to create sparsity in
neural network parameters is weight compression, which is shown
in works [14, 19]. The Delta Network algorithm [25] creates spar-
sity in input and activation vectors by exploiting their temporal
dependency.

Although GPUs offer high peak throughput, they may suffer
from irregular execution paths and memory access patterns in
RNN inference, which is caused by recurrent connections and lim-
ited data reuse of RNNs [3]. In this case, it is useful to consider
hardware architectures specialized for RNN inference that enhance
parallelism by matching memory bandwidth to available arithmetic
units. RNN inference accelerators based on FPGA have been ex-
plored because of the potentially higher power efficiency compared
with GPUs. Previous works include LSTM accelerators [4, 5, 11, 21],
a GRU accelerator [26] and a Deep Neural Network (DNN) acceler-
ator [10] that is able to run LSTM inference. These implementations
do not capitalize on the data sparsity of RNNs. The Efficient Speech
Recognition Engine (ESE) proposed by Han et al. [13] employs a
load-balance-aware pruning scheme, including both pruning [15]
and quantization. This pruning scheme compresses the LSTMmodel
size by 20x and a scheduler that parallelizes operations on sparse
models. They achieved 6.2x speedup over the dense model by prun-
ing the LSTM model to 10% non-zeros. However, none of these
works use the temporal property of RNN data.

In this paper, a GRU-RNN accelerator architecture called the
DeltaRNN (DRNN) is proposed. This implementation is based on
the Delta Network (DN) algorithm that skips dispensable com-
putations during network inference by exploiting the temporal
dependency in RNN inputs and activations [25] (Sec. 2.2). The sys-
tem was implemented on an Xilinx Zynq-7100 FPGA controlled
by a dual ARM Cortex-A9 CPU. To provide sufficient bandwidth
for arithmetic units and less external memory access, DRNN V1.0
stores the network weight matrix in BRAM blocks. It was tested on
the TIDIGITS dataset using an RNN model with one GRU layer of
256 neurons.

2 BACKGROUND
2.1 Gated Recurrent Unit
A GRU RNN has similar prediction accuracy to an LSTM RNN
but lower complexity of computation. We implemented the GRU
which requires a smaller number of network parameters (therefore
less hardware resource) than the LSTM. Fig. 1 shows the data flow
within a GRU neuron.

The GRU neuron model has two gates–a reset gate r and an
update gate u–and a candidate hidden state c . The reset gate deter-
mines the amount of information from the previous hidden state

Figure 1: Data flow of GRU

that will be added to the candidate hidden state. The update gate
decides to what extent the activation h should be updated by the
candidate hidden state to enable a long-term memory. The GRU
formulation used in this paper is shown below:

r (t) = σ [Wxrx(t) +Whrh(t − 1) + br] (1)

u(t) = σ [Wxux(t) +Whuh(t − 1) + bu] (2)

c(t) = tanh[Wxcx(t) + r (t) ⊙ (Whch(t − 1)) + bc] (3)

h(t) = (1 − u(t)) ⊙ h(t − 1) + u(t) ⊙ c(t) (4)
where x is the input vector, h the activation vector,W the weight
matrix, b the bias and r , u, c correspond to the reset gate, update
gate and candidate activation respectively. σ and ⊙ signify logistic
sigmoid function and element-wise multiplication respectively.

2.2 Delta Network Algorithm
This section explains the principle of the DN algorithm [25] and
show how a conventional GRU-RNN model with full updates can
be converted to a delta network.

The DN algorithm reduces both memory access and arithmetic
operations by exploiting the temporal stability of RNN inputs and
outputs. Computations associated with a neuron activation that
has a small amount of change from its previous timestep can be
skipped. As shown in Fig. 2, all gray circles represent neurons
whose corresponding computations are skipped. The previous re-
search on the DN algorithm [25] demonstrated for the TIDIGITS
audio digit recognition benchmark that the algorithm can achieve
8x speedup with 97.5% accuracy when the network was trained
as a delta network without considering sparsity in the weight ma-
trix. Pre-trained networks can also be greatly accelerated as delta
networks. The large Wall Street Journal (WSJ) speech recognition
benchmark showed speedup of 5.7x with word error rate of 10.2%,
which is the same with using a conventional RNN [25].

Fig. 3 shows how skipping a single neuron saves multiplications
of an entire column in all related weight matrices as well as fetches
of the corresponding weight elements. The following equations
describe the conversion between an MxV with full update and one
with delta updates:

y (t) =Wx (t) (5)

y (t) =W∆x (t) + y (t − 1) (6)

Special Session: Deep Learning FPGA’18, February 25–27, Monterey, CA, USA

22

Figure 2: Comparison between a standard gated RNN net-
work (left) and a sparse delta network (right)

where ∆x (t) = x (t) − x (t − 1) and y (t − 1) is the MxV result from
the previous timestep. The MxV in equation (6) becomes a sparse
MxV if all computations with respect to small ∆x(t) elements are
ignored. As shown in Fig. 3, the sparser the ∆x(t) vector, the more
memory access and arithmetic operations are saved.

Figure 3: Skipping neuron updates save multiplications be-
tween input vectors and columns that correspond to zero
∆x(t) (also the behavior of Matrix-Vector Multiplication
Channel discussed in Section 3.2.2)

Assuming the length of all vectors is n and dimension of the
weight matrixW is n × n, the computation cost for calculating a
dense MxV is n2 while the computation cost for calculating a DN
MxV is oc · n2 + 2n, where oc is the occupancy1 of the delta vector
∆x(t). The term 2n exists because calculating the delta vector ∆x(t)
and adding y(t − 1) to W∆x(t) respectively needs n operations.
As for memory access, to calculate a dense MxV, oc · n2 weight
elements and n vector elements has to be fetched. The DN MxV
needs to fetch oc ·n2 weight elements, 2n vector elements for ∆x(t),
n vector elements for y(t − 1) and finally write n vector elements
for y(t). Thus, the theoretical computation speedup and memory
access reduction approaches 1/oc when n → ∞. A summary of the
computation cost and memory cost is shown by:

Ccomp,dense = n
2 (7)

Ccomp,sparse = oc · n2 + 2n (8)

Cmem,dense = n
2 + n (9)

1Occupancy is defined as the ratio of non-zero elements to all elements of a vector or
a matrix

Cmem,sparse = oc · n2 + 4n (10)

Speedup =
Ccomp,dense

Ccomp,sparse
≈ 1

oc
(11)

Memory Access Reduction =
Cmem,dense
Cmem,sparse

≈ 1
oc

(12)

To skip the computations related to any small ∆x (t), the delta
thresholdΘ is introduced to decide when a delta vector element can
be ignored. The change of a neuron’s activation is only memorized
when it is larger than Θ. Furthermore, to prevent the accumulation
of error with time, only the last activation value that has a change
larger than the delta threshold is memorized. This is defined by the
following equation sets:

x̂(t − 1) =
{
x(t − 1) , |x(t) − x̂(t − 1)| > Θ
x̂(t − 2) , |x(t) − x̂(t − 1)| ≤ Θ

(13)

ĥ(t − 2) =

h(t − 2) ,

���h(t − 1) − ĥ(t − 2)
��� > Θ

ĥ(t − 3) ,
���h(t − 1) − ĥ(t − 2)

��� ≤ Θ
(14)

∆x (t) =
{
x (t) − x̂ (t − 1) , |x (t) − x̂ (t − 1)| > Θ

0 , |x (t) − x̂ (t − 1)| ≤ Θ
(15)

∆h (t − 1) =

h (t − 1) − ĥ (t − 2) ,

���h (t − 1) − ĥ (t − 2)
��� > Θ

0 ,
���h (t − 1) − ĥ (t − 2)

��� ≤ Θ

(16)
where memorized changes ∆x(t) and ∆h(t − 1) are calculated by
using x̂(t − 1) and ĥ(t − 2). Next, using (13), (14), (15) and (16), the
conventional GRU equation set can be transformed into its delta
network version:

Mr (t) =Wxr∆x(t) +Whr∆h(t − 1) +Mr (t − 1) (17)

Mu (t) =Wxu∆x(t) +Whu∆h(t − 1) +Mu (t − 1) (18)
Mcx (t) =Wxc∆x(t) +Mcx (t − 1) (19)

Mch (t) =Whc∆h(t − 1) +Mch (t − 1) (20)
r (t) = σ [Mr (t)] (21)
u(t) = σ [Mu (t)] (22)

c(t) = tanh[Mcx (t) + r (t) ⊙ Mch (t)] (23)
h(t) = [1 − u(t)] ⊙ h(t − 1) + u(t) ⊙ c(t) (24)

whereMr (0) = br ,Mu (0) = bu ,Mcx (0) = bc ,Mch (0) = 0.

3 IMPLEMENTATION
The DN algorithm can theoretically reduce arithmetic operations
and memory access by reducing weight fetches. The main target of
the DRNN accelerator is to realize efficient zero-skipping on sparse
and irregular data patterns of ∆x(t) and ∆h(t − 1).

Fig. 4 shows the overview of thewhole system. The Programmable
Logic (PL) part is implemented on a Xilinx Zynq-7100 FPGA chip
running at 125 MHz. An AXI Direct Memory Access (DMA) mod-
ule converts between AXI4-Stream (AXIS) and full AXI4 so that
data can be transferred between the PL and the Processing System
(PS). The PS is the Dual ARM-Cortex A9 CPU on the Zynq SoC.
The data transfer between DRNN and AXI DMA is managed in
packets. The Memory Mapped to Stream (MM2S) interrupt and
the Stream to Memory Mapped (S2MM) interrupt are respectively
used to indicate the end of corresponding data transfers. Read and

Special Session: Deep Learning FPGA’18, February 25–27, Monterey, CA, USA

23

write operations on DDR3 memory are managed by the DRAM
controller of the PS [28].

Figure 4: Acceleration system overview

The input and output interface of the DRNN accelerator uses
the AXIS protocol to stream data in from the MM2S Data FIFO and
out to the S2MM Data FIFO. Both the input and output interfaces
are 64-bit wide in order to transfer 4 16-bit values per clock cycle.
The weight BRAM block consumes 400 36-Kbit BRAM blocks (∼
1.76 MB) to store all weight matrices and biases on-chip to provide
sufficient bandwidth. Input vectors are stored in DRAM to be trans-
ferred to DRNN during runtime and output vectors are written back
to DRAM immediately after being produced by DRNN. Previous
research shows that RNNs with quantized fixed-point parameters
down to 8 and even 4 bits can still work well [18, 20]. In this work, to
demonstrate the benefit of the DRNN architecture on performance
gain with minimum RNN accuracy loss on practical applications,
we quantize all 32-bit floating-point parameters used by the DRNN
including GRU input/output vectors, weights and biases into fixed-
point 16-bit Q8.8 integers by Fixed16 = round (256 × Float32).

3.1 DRNN Architecture
The top-level block diagram of the DRNN Accelerator is shown in
Fig. 5. It is composed of three main modules, the Input Encoding
Unit (IEU), theMxVUnit which is controlled by theMxV controller,
and the Activation Pipeline (AP).

The function of the IEU is to execute subtractions and com-
parisons between the input vectors from the current and previ-
ous timesteps to generate delta vectors. The MxV Unit executes
Multiply-Accumulate (MAC) operations using the sparse IEU out-
put. It contains 768 MAC units that performs 16-bit multiplications
and 32-bit accumulations on signed integers. Accumulation results
from the MxV Unit are sent to the AP module which computes
the activation of the GRU layer for the current timestep. The ar-
chitecture and function of each block is next presented in detail.

3.1.1 Input Encoding Unit. The IEU encodes dense input vec-
tors x(t) and h(t − 1) into sparse delta input vectors ∆x(t) and
∆h(t − 1); however, the sparsity of these delta input vectors is not
predictable and can only be known at runtime, leading to irregular
data patterns. Hence another function of IEU is to format non-zero
elements of delta input vectors so that they can be fetched one by
one in consecutive clock cycles. This IEU is the most significant
and complicated module of the DRNN.

Figure 5: Top-level block diagram of the DRNN Accelerator

The structure of the IEU is shown in Fig. 6. The IEU has two
identical parts that are responsible for generating∆x(t) and∆h(t−1)
respectively. The width of the inputs of the two parts are 64 bits
and 512 bits. Since both x(t) and h(t − 1) elements are 16-bit Q8.8
integers, the two IEU parts respectively consume 4 elements of
x(t) and 32 elements of h(t − 1) per clock cycle, both of which
should be set as large as possible to enhance performance but
are respectively limited by the AXI-DMA bandwidth and timing
requirements. The same number of delta vector elements are then
calculated by the Delta Encoder by subtracting the current input
from the input of last timestep stored in the Previous Time (PT)
register file and comparing the result with the delta threshold to
decide if the magnitude of change should be dropped or saved into
the register file in the Delta Scheduler. After being processed by
the Delta Encoder, x̂(t − 1), ĥ(t − 2) are selected from x(t), h(t − 1)
respectively and then written into the PT Register to be used to
calculate delta vectors for the next timestep. The Delta Scheduler
in either of the two parts of IEU can generate 2 non-zero ∆x(t)
elements or 2 non-zero∆h(t−1) elements. Next, any non-zero values
in delta vectors and their corresponding indices are respectively
allocated in two groups of FIFOs to form the Non-Zero Value List
(NZVL) and the Non-Zero Index List (NZIL), which is a variant of
the sparsity map used in [1].

The latency of calculating a ∆h(t − 1) vector with 1024 elements
is at best 1024/32 = 32 cycles with all elements to be zeros (0%
occupancy) and at worst 1024/2 = 512 cycles with all elements to
be non-zero (100% occupancy). The DRNN is designed to calculate
MxV column-wise so that the MxV computation can be started
immediately after a valid delta vector element is generated. In this
way, multiplications between a matrix column and a delta vector
element can be easily parallelized because of the locality of the non-
zero delta vector element; otherwise, if MxV is calculated row-wise,
the delta encoding process might introduce a huge overhead when
running a large model.

Moreover, since the IEU part for generating ∆x(t) consumes
4 elements per cycle, any input vector with an odd number of
elements has to be extended to a length that is a multiple of 4 using
zero-padding (this does not apply to h(t − 1) vectors because only
even numbers of hidden layer neurons are supported by DRNN).
For example, if the length of the input vectors x(t) is 39, then 1
extra zero will be appended to the end of x(t). Thus it takes at best
10 clock cycles and at worst 20 cycles for IEU to generate a ∆x(t)
vector with 40 elements.

Special Session: Deep Learning FPGA’18, February 25–27, Monterey, CA, USA

24

Figure 6: Block diagram of the IEU

Figure 7: Principle of generating and allocating NZVL and
NZIL

As shown in Fig. 7, a complete NZVL consists of all non-zero
elements of ∆x(t) or ∆h(t −1) and the corresponding NZIL contains
indices of elements in the NZVL and can be encoded into addresses
for fetching corresponding weight columns. Either NZVL or NZIL
is split and allocated in two FIFOs in ascending order of indices.
Zero padding is conducted at the end of the allocation if the number
of non-zero values is an odd number.

3.1.2 Matrix-Vector Multiplication (MxV) Unit. The MxV Unit
performs dense matrix and sparse vector multiplications to skip
columns of computations that correspond to zero vector elements
in ∆x(t) and ∆h(t − 1), which is different from previous works on
accelerating sparse matrix-vector multiplications that mainly ex-
ploit sparsity in matrices [7, 8, 29]. The MxV Unit is composed of 3
channels, R, U and C. Channels R and U are respectively respon-
sible for calculating memories Mr (t) and Mu (t) while Channel C
calculates bothMcx (t) andMch (t). Each channel has 128 clusters
of multipliers (MUL) and 128 clusters of summation adders (ADD)
both with two instances per cluster. This is equivalent to 256 MAC
units per channel. Multipliers are instantiated using DSP blocks
to perform multiplications on 16-bit signed integers. Summation
adders are synthesized by Look-up Tables (LUTs) and perform 32-
bit summation. Partial sums are accumulated on the accumulation

registers (ACC REG). The data flow of an MxV channel is shown
in Fig. 8.

Figure 8: MxV channel

As shown in Fig. 8, in each multiplier cluster (MUL), the two
operands of one of the multipliers are NZVL0 and the correspond-
ing weight element in the column addressed by NZIL0. Operands of
the other multipliers are driven by NZVL1 and the corresponding
weight element in another column addressed by NZIL1. Operands
w0 and w1 are provided by RAMB18E1 cells in the Weight BRAM
block with each configured in true dual-port mode. The MxV chan-
nel is fully pipelined to fetch operands in every following clock cycle
once launched. When NZVL and NZIL FIFOs are not empty, the
channel starts to fetch data in all FIFOs simultaneously including
any padded zeros to ensure that NZVL and NZIL are synchronized.
Since ∆h(t − 1) is generally longer than ∆x(t), all MxV channels
calculateWx∆x(t) beforeWh∆h(t − 1) to hide the overhead of gen-
erating ∆h(t−1) under the computation time. Accumulation results,
Mr (t),Mu (t),Mcx (t) andMch (t), are held in ACC REGs. Channel
C has two clusters of ACC REGs to storeMcx (t) andMch (t) respec-
tively while Channels R and U each have one cluster of ACC REGs
to storeMr (t) andMu (t) respectively.

Fig. 9 illustrates the computation pattern of MxV channels. One
MxV channel can simultaneously calculate multiplications between
two non-zero delta vector elements and weight elements in two cor-
responding columns, reducing the total number of fetching/writing
accumulation registers by approximately 2x. The MxV channel cal-
culates the MxV in a column-wise style. The Channel Width equals
to the number of multiplier clusters in each MxV channel, so that
it denotes the amount of column elements that can be processed by
the channel in each clock cycle. The Channel Worksize indicates
how many clock cycles the MxV channel needs to finish processing
a column. In this design, the Channel Width is 128 and the Chan-
nel Worksize is 2. It takes 2 clock cycles for each MxV channel to
process 2 columns.

3.1.3 Activation Pipeline (AP). The AP produces the final hid-
den layer activation from the accumulation results held in ACC
REGs. Fig. 10 shows the data flow of the AP, which has 6 pipeline
stages, S0-S5. The GRU formulation is divided into 6 steps corre-
spond to each pipeline stage.

The latency of the AP affects the utilization rate of the MxV Unit.
Although the part of IEU that processes input x(t) keeps working
whenever there are new input vectors coming from the M2SS Data
FIFO, the other part that works on h(t − 1) must be stalled until
a new activation vector is generated by the AP. The condition
to launch the MxV Unit is when both NZVL FIFOs for ∆x(t) and
∆h(t − 1) are not empty. Thus, during this period, the MxV Unit

Special Session: Deep Learning FPGA’18, February 25–27, Monterey, CA, USA

25

Figure 9: MxV Channel computation pattern

Figure 10: Data flow of the Activation Pipeline module; blue
arrows denote data paths from AP to MxV multipliers and
red arrows denote those from MxV multipliers to AP

is in idle state due to no new non-zero ∆h(t − 1) elements coming
from the IEU. When running larger models, the MxV Unit will run
for more clock cycles per timestep compared to the AP and thus the
MxV Unit utilization rate is improved. In this case, to enhance the
utilization rate of theMxVUnit, multiplications in AP are conducted
by reusing the MxV Unit. Multiplexers and demultiplexers are used
to control the data paths between AP and multipliers in MxV Unit.
Adders in the AP are synthesized by LUT. Adders in S1 and S5
perform 16-bit integer summation and those in S2 perform 32-bit
integer summation to calculate Mc (t) = Mcx (t) + Mch (t). 32-bit
Q16.16 outputs of ’virtual’ multipliers in S2 and S4 are transformed
into 16-bit Q8.8 before reaching adders in S5. Sigmoid and tanh
functions in the AP are realized by using the Range Addressable
Lookup Table (RALUT) [24]. A RALUT can save hardware resources
by quantizing the non-linear functions within a given input range
and any input that exceeds the range will give an output which
is saturated to the maximum or minimum of the corresponding
non-linear function. The precision and range of the inputs and
outputs of sigmoid and tanh RALUTs are shown in Table 1.

Table 1: Precision and range of inputs and outputs of RA-
LUTs in AP

sigmoid tanh

Input Precision signed 16-bit Q8.8 signed 16-bit Q8.8
Sampling Range [-0x0008,0x0008) [-0x0008,0x0008)
Sampling Points 4096 4096
Output Precision unsigned 9-bit Q1.8 signed 10-bit Q2.8
Output Range [0x0000,0x0100] [-0xFF00, 0x0100]

The activation vector is stored into the Output Buffer, which
can independently write outputs into the S2MM Data FIFO so that
computations for the next timestep can be immediately started after
the activation vector of current timestep is generated.

4 RESULTS
4.1 Experimental Setup
Vivado 2017.2 was used for synthesis and implementation of the de-
sign. After place and route, the system is able to operate at 125 MHz.
As shown in Fig. 11, the system is implemented on an Xilinx Zynq-
7000 All Programmable SoC Mini-Module Plus (MMP) system-on-
a-module (SOM) mounted on a customized baseboard with a power
module. It has a dual ARM Cortex-A9 CPU, a Kintex-7 XC7Z100
FPGA, and 1 GB DDR3 SDRAM.

Figure 11: Our customized baseboard supporting Xilinx
Zynq-7100 All Programmable SoC Mini-Module Plus from
AVNET

DRNN is used to accelerate a single-layer GRU-RNN with 256
neurons that forms part of a classifier to enable real-time spoken
digit recognition. The network structure is shown in Fig. 12. The
GRU RNN is trained by applying the DN algorithm with different
delta thresholds Θ from 0x00 to 0x80 2 on the TIDIGITS dataset
using 32-bit single precision floating-point parameters. The test set
has 128 samples, each of which has different numbers of timesteps
due to the different audio sequence lengths. Outputs of the GRU
RNN layer are processed by two Fully-Connected (FC) layers to
2The delta threshold is in 16-bit Q8.8 format. For example, 0x80 in Q8.8 corresponds
to 0.5 in 32-bit floating-point numbers.

Special Session: Deep Learning FPGA’18, February 25–27, Monterey, CA, USA

26

Figure 12: Network structure of the test RNN model

generate the final classification results. Computations of FC lay-
ers are handled by the ARM CPU. For training, all samples were
zero-padded to have the same length of 249 timesteps. The final
classification is done for all the samples on their last timestep. The
input dimension is 39 and the input vectors are quantized into 16-bit
Q8.8 fixed-point numbers. They are stored in the off-chip DRAM
and are transferred to the DRNN one sample at a time during run-
time using the AXI-DMA. Hidden layer outputs are written back to
the off-chip DRAM to be used by the CPU to produce classification
results.

The dimensions of the weight matrices corresponding to inputs
and activations are 256× 39 and 256× 256 respectively. All matrices
are quantized into the same format as the input vectors, which gives
the total size of 0.43 MB, which are initialized in BRAM blocks
together with biases. The test bench is a bare metal C program
compiled in the Xilinx SDK environment and is passed to Zynq
MMP by USB-JTAG on the baseboard. The range of parameter
values before and after quantization is summarized in Table 2.

Table 2: Quantization of the input vector and weight matri-
ces (trained at Θ = 0.5)

Range (Float-32) Range (Fixed-16 Q8.8)

x(t) [-8.3845, 12.1637] [0xF79E, 0x0C2A]
Wxr [-0.4260, 0.3914] [0xFF93, 0x0064]
Wxu [-0.4505, 0.4107] [0xFF8D, 0x0069]
Wxc [-0.3862, 0.3649] [0xFF9D, 0x005D]
Whr [-0.4249, 0.4426] [0xFF93, 0x0071]
Whu [-0.5975, 0.4878] [0xFF67, 0x007D]
Whc [-0.4617, 0.4566] [0xFF8A, 0x0075]

4.2 Hardware Resource Utilization
The hardware resource utilization percentage is shown in Table 3.
The maximum number of DSPs used in this design is limited by the
maximum bandwidth that RAMB18E1 cells in the weight BRAM
block can provide to enable a weight fetch in 1 clock cycle for each

DSP cell and also the available LUTs to synthesize adders in the
MxV Unit.

Table 3: Hardware utilization of DRNN

FF LUT DSP BRAM

Available 554800 277400 2020 755
Used 119260 261357 768 457.5
Percentage 21.50% 94.22% 38.02% 60.60%

4.3 Performance
4.3.1 Numerical Accuracy. RNNmodels trained at different delta

thresholds are first computed by an Intel i7-8700k CPU in 32-bit
floating-point precision on the 128 test samples. Then the numerical
accuracy is calculated as the percentage of same classification re-
sults generated by DRNN in 16-bit fixed-point precision compared
to those by the CPU. Results shown in Fig. 13 indicate that the same
delta threshold Θ should be used in both training and inference to
achieve better numerical accuracy. For example, the model with the
best numerical accuracy 98.43% (126 out of 128 correct classifica-
tions vs. CPU) achieved during inference atΘ = 0x80 is trained also
at Θ = 0x80. There is no numerical accuracy loss when Θ <= 0x40
if using the same Θ in both training and inference.

Figure 13: Numerical accuracy of classification results ob-
tained by DRNN running test RNN models trained at differ-
ent delta thresholds

4.3.2 Throughput. According to the standard GRU formulation,
the total Operations per Timestep (OPsT) is:

OPsT = 6 × LX × LH + 6 × LH × LH = 453120 (25)

where LX is the length of the input vectors and LH is the length of
the activations. Since MxV operations dominate the total number
of operations, all element-wise multiplications, additions and non-
linear functions are ignored. For this test model, LX = 39 and LH =
256. Then the effective throughput is defined as:

Eff. Throughput =
OPsT × Timesteps

Time
(26)

Special Session: Deep Learning FPGA’18, February 25–27, Monterey, CA, USA

27

The effective throughput of the DRNN is evaluated by streaming
128 input samples to DRNN and measuring the time to process
all samples. Padded zeros in each sample are removed. The total
number of timesteps of the 128 samples is 12263 leading to a total
number of operations equaling 12263 × 453120 = 5.56GOp. Time
used by DRNN to finish computing all GRU layer outputs and
corresponding effective throughputs at each delta threshold are
shown in Table 4. Increasing Θ increases throughput. The highest
throughput of 1.2 TOp/s is obtained at Θ = 0x80, which is the delta
threshold where optimal throughput with negligible numerical
accuracy loss can be achieved. According to Fig. 13 and our previous
research [25], delta thresholds larger than 0.5 may cause dramatic
accuracy loss.

Table 4: DRNN effective throughput with respect to delta
threshold

Delta Threshold Time [ms] Eff. Throughput [GOp/s]

0x00 26.43 210.37
0x02 22.77 244.18
0x04 18.89 294.34
0x08 14.61 380.56
0x10 11.12 500.00
0x20 8.14 683.05
0x40 6.04 920.53
0x80 4.64 1198.28

Fig. 14 shows the occupancy of delta input vectors ∆x and delta
activation vectors ∆h averaged across all timesteps, as well as the
speedup of GRU layer computation with respect to the delta thresh-
old Θ. When Θ = 0x00 the occupancy of either ∆x or ∆h is not
100%, indicating that both inputs and activations already have some
sparsity without the delta threshold. When Θ = 0x80, the occu-
pancy of ∆x and ∆h are respectively reduced to 57% and 2%, which
means that the total arithmetic operations and memory access are
reduced by 43% and 98% for ∆x and ∆h, respectively. Thanks to
the zero-skipping capability, DRNN achieved 5.7x speedup when
Θ = 0x80 compared to that when Θ = 0x00. Together with Fig. 13,
Fig. 14 also indicates that DRNN can achieve 4.4x speedup without
any numerical accuracy loss on the test samples.

The occupancy of ∆x is much higher than that of ∆h atΘ = 0x80,
which indicates that the possibility of IEU to give an invalid output
is much higher for ∆h than for ∆x . For example, if the occupancy of
∆h is zero at any timestep, it will take 8 clocks for IEU to consume a
∆h vector with 256 elements without generating any valid operand
that is useful for the MxV Unit. To reduce the possibility of the MxV
Unit idling at the beginning of IEU encoding delta vectors, DRNN
calculatesWh∆h(t − 1) afterWx∆x(t) because ∆x might provide
valid operands more frequently.

4.3.3 MAC Computation Efficiency. The MAC computation effi-
ciency measures how efficiently the hardware makes use of MAC
units and is defined as:

MAC Comp. Efficiency =
Eff. Throughput
Peak Throughput

(27)

Figure 14: Average vector sparsity and speedup with respect
to delta threshold

where peak throughput is defined as 2×#MAC× f and #MAC is the
total number of MAC units, each of which contains a multiplier and
an accumulator. Thus the peak throughput of DRNN is calculated as
2×768×125×106 = 192GOp/s and theMAC computation efficiency
of DRNN is 1198/192 = 623.96% for this example workload and
delta threshold.

4.3.4 DSP Utilization Efficiency. Here we propose a method to
estimate the efficiency of utilizing DSP blocks for MAC compu-
tations without considering the bandwidth limitation of memory
access. For example, a DSP block in Xilinx FPGAs consists of a
25-bit x 18-bit multiplier followed by an accumulator; thus poten-
tially every DSP can be instantiated as a MAC unit to perform 16-bit
fixed-point multiplications or 32-bit floating-point multiplications 3
and accumulation. In this case, assuming each DSP can be used as
a MAC unit, we calculate the potential peak throughput in terms
of the number of DSPs instantiated in the design:

Potential Peak Throughput = 2 × #DSP × f (28)

where #DSP is the number of DSPs after synthesis and implemen-
tation. Thus the DSP utilization efficiency is defined as:

DSP Util. Efficiency =
Eff. Throughput

Potential Peak Throughput
(29)

Note that any techniques that synthesize multipliers by LUT or use
low precision operands, such as 8-bit or 4-bit numbers, to produce
multiple products out of a single DSP should result in higher DSP
utilization efficiency.

4.3.5 Power. Wemeasured thewall-plug power using a Voltcraft
4500ADVANCED Energy Monitor (Fig. 15).

As shown in Fig. 15, the power of the baseboard plus the fan
when the Zynq MMP is not mounted is 7.9 W. It also includes the
power of the power supply. It increases to 9.4 W when the Zynq
MMP is mounted without programming the FPGA so that the Zynq
MMP is in idle state. After programming the FPGA, the power rises
to 10.0 W and further to 15.2 W when the system is iteratively
3A single-precision (32-bit) floating-point multiplier can be synthesized using multiple
DSPs to achieve high performance or single DSP at the expense of potentially longer
latency and higher LUT usage.

Special Session: Deep Learning FPGA’18, February 25–27, Monterey, CA, USA

28

Figure 15: (a): Measured power of the baseboard plus the fan;
(b)measured power of thewhole systemwith the ZynqMMP
in idle; (c)measured power of thewhole systemwhenDRNN
is fully loaded by iteratively calculating GRU layer outputs

calculating the hidden layer outputs. Thus the power consumption
of the Zynq MMP is 15.2 − 7.9 = 7.3 W and the on-chip power, i.e,
the power of the FPGA PL, is 15.2 − 9.7 = 5.5 W. This number is
nearly identical to 5.503 estimated from the Xilinx Power Analyzer
using a switching rate of 50%. The power analyzer shows that
the power of DRNN and weight BRAM are respectively 2.727 W
and 2.284 W. The measured power consumption is summarized in
Table 5.

Table 5: Power consumption hierarchy of the system

Power (W)

Total (Running DRNN) 15.2
Baseboard + Fan 7.9
Baseboard + Fan + Zynq MMP 9.7
Zynq MMP 7.3
FPGA 5.5

4.3.6 Power Efficiency. When the delta threshold is 0x80, the
effective power efficiency of the DRNN is 1198/5.5 = 218GOp/s/W
with respect to the FPGAon-chip power or 1198/7.3 = 164GOp/s/W
with respect to the power of the Zynq MMP board. A summary of
the DRNN performance is shown in Table 6.

Table 6: Summary of DRNN Performance

Parameter Value

Delta Threshold 0.5 (0x80)
Frequency 125 MHz
Effective Throughput 1198 GOp/s
Potential Peak Throughput 192 GOp/s
MAC Computation Efficiency 623.96%
Power Efficiency (FPGA) 217.82 GOp/s/W
Power Efficiency (Board) 164.11 GOp/s/W

4.4 Comparison to Prior Work, CPU & GPU
Table 7 shows performance of DRNN compared to prior work, an
Intel i7-8700K CPU, and an NVIDIA GTX 1080 Ti GPU. The total
power of the Zynq MMP development board measured by the wall

plug power meter is used in this comparison. Ref. [10] supports
either 32-bit floating-point or 16-bit fixed-point precision and we
use results obtained in fixed-point precision. Ref. [4] has three
different implementations, and we used the one called "DeepStore"
that stores weights on BRAM in Table 7, which is the closest one to
our work. To measure the performance of CPU/GPU on the same
task discussed in Section 4.3, we try to follow a method similar
to the one used in Ref. [13]. For the CPU benchmark, we run the
test model in Theano with Intel Software Optimization (Intel MKL
2018), and the CPU power is measured by using the Stress Terminal
UI monitoring tool4 since our CPU does not support the Intel pcm-
power utility. For GPU, the model is run in Theano with CUDA 9
and cuDNN 7 while the GPU power is measured using the nvidia-
smi utility. With batch size = 128, the CPU/GPU finished the task
in 295.87/45.05 ms with 35.6/95.9 W average power. On this task,
DRNN is 63.8x/9.7x faster and 312.7x/128.5x more power efficient
than CPU/GPU.

5 CONCLUSION
In this paper, we illustrate howhigh power efficiency can be achieved
for RNN inference by combining the DN algorithm, of which the
training process is already integrated in Lasagne powered by Theano,
with our proposed DRNN hardware architecture. The DRNN fea-
tures the ability to reduce MxV operations and corresponding
weight fetches by skipping dispensable neuron activation changes
below a threshold. The DRNN allows trade-off between accuracy
and runtime cost. Our previous research on the DN algorithm [25]
showed that pre-trained RNNs can also be accelerated by simply
running them as delta networks, but the accuracy will be higher if
the RNN is trained as a delta network.

The DRNN is implemented on an Xilinx Zynq-7100 FPGA embed-
ded on a Zynq MMP development board running at 125 MHz. With-
out weight compression and using 16-bit parameters, the DRNN
achieved an effective throughput of 1.2 TOp/s and MAC computa-
tion efficiency of 623.96% with negligible numerical accuracy loss
in a simple speech RNN. The power consumption of the Zynq MMP
board with a programmed DRNN is 7.3 W, leading to a power effi-
ciency of 164GOp/s/W. The use of pruning and other optimizations
allowed Han et. al [13] to achieve 2520 GOp/s, which is impres-
sive considering they used external DRAM for weights. Chang et.
al [4] proposed an implementation using BRAM for weights, but
achieved 0.45 GOp/s/W. The power efficiency achieved by DRNN
shows the utility of the delta network approach even without any
other optimizations.

The main limitation of our work is the low scalability limited
by the available number of BRAM blocks. Moreover, to provide
sufficient bandwidth, space in BRAM is not fully utilized. In the
future, we will address these limitations to target a lower power
design with better scalability to process large multi-layered RNNs.

ACKNOWLEDGMENTS
This work was supported by Samsung Advanced Institute of Tech-
nology (SAIT), University of Zurich and ETH Zurich. We thank A.
Rios-Navarro, R. Morales and A. Linares-Barranco from the Univer-
sity of Seville for creating the baseboard. We also thank A. Aimar,
4https://github.com/amanusk/s-tui

Special Session: Deep Learning FPGA’18, February 25–27, Monterey, CA, USA

29

Table 7: Comparison to prior works and CPU, GPU

This work [13] [10] [4] CPU GPU

Hardware Model XC7Z100 XCKU060 GSMD5 XC7Z045 i7-8700K GTX 1080 Ti
Frequency [MHz] 125 200 150 142 - -
Input Precision Fixed16 Fixed16 Fixed16 Fixed16 Float32 Float32
Weight Precision Fixed16 Fixed12 Fixed16 Fixed16 Float32 Float32
#DSP 768 1504 1036 - - -
#Multiplier 768 1536 - - - -
#MAC 768 1024 - - - -
Peak Throughput [G(FL)Op/s] 192 409.6 - - - -
Effective Throughput [G(FL)Op/s] 1198 2520 315.85 1.04 18.78 123.34
MAC Comp. Efficiency 623.96% 615.23% - - - -
DSP Util. Efficiency 623.96% 418.88% 101.62% - - -
Power [W] 7.3 41 25 2.3 35.6 95.9
Power Efficiency [G(FL)Ops/s/W] 164.11 61.46 12.63 0.45 0.53 1.29

E. Calabrese and other Sensors Group members for support on the
FPGA implementation.

REFERENCES
[1] A. Aimar, H. Mostafa, E. Calabrese, A. R. Navarro, R. T. Morales, I-A. Lungu,

M. B. Milde, F. Corradi, A. Linares-Barranco, S-C. Liu, and T. Delbrück. 2017.
NullHop: A Flexible Convolutional Neural Network Accelerator Based on Sparse
Representations of Feature Maps. CoRR abs/1706.01406 (2017). arXiv:1706.01406

[2] D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catanzaro, J. Chen, M.
Chrzanowski, A. Coates, G. Diamos, E. Elsen, J. Engel, L. Fan, C. Fougner, T. Han,
A. Y. Hannun, B. Jun, P. LeGresley, L. Lin, S. Narang, A. Y. Ng, S. Ozair, R. Prenger,
J. Raiman, S. Satheesh, D. Seetapun, S. Sengupta, Y. Wang, Z. Wang, C. Wang, B.
Xiao, D. Yogatama, J. Zhan, and Z. Zhu. 2015. Deep Speech 2: End-to-End Speech
Recognition in English and Mandarin. CoRR abs/1512.02595 (2015).

[3] N. Bell and M. Garland. 2008. Efficient Sparse Matrix-Vector Multiplication on
CUDA. NVIDIA Technical Report NVR-2008-004. NVIDIA Corporation.

[4] A. X. M. Chang and E. Culurciello. 2017. Hardware accelerators for Recurrent
Neural Networks on FPGA. In 2017 IEEE International Symposium on Circuits and
Systems (ISCAS) (ISCAS ’17).

[5] A. X. M. Chang, B. Martini, and E. Culurciello. 2015. Recurrent Neural Networks
Hardware Implementation on FPGA. CoRR abs/1511.05552 (2015).

[6] K. Cho, B. v. Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk, and Y. Ben-
gio. 2014. Learning Phrase Representations using RNN Encoder-Decoder for
Statistical Machine Translation. CoRR abs/1406.1078 (2014).

[7] R. Dorrance, F. Ren, and D. Marković. 2014. A Scalable Sparse Matrix-vector
Multiplication Kernel for Energy-efficient Sparse-blas on FPGAs. In Proceedings
of the 2014 ACM/SIGDA International Symposium on Field-programmable Gate
Arrays (FPGA ’14). ACM, New York, NY, USA, 161–170.

[8] J. Fowers, K. Ovtcharov, K. Strauss, E. S. Chung, and G. Stitt. 2014. A High
Memory Bandwidth FPGAAccelerator for SparseMatrix-VectorMultiplication. In
Proceedings of the 2014 IEEE 22Nd International Symposium on Field-Programmable
Custom Computing Machines (FCCM ’14). IEEE Computer Society, Washington,
DC, USA, 36–43.

[9] A. Graves, A. Mohamed, and G. E. Hinton. 2013. Speech Recognition with Deep
Recurrent Neural Networks. CoRR abs/1303.5778 (2013).

[10] Y. Guan, H. Liang, N. Xu, W. Wang, S. Shi, X. Chen, G. Sun, W. Zhang, and
J. Cong. 2017. FP-DNN: An Automated Framework for Mapping Deep Neural
Networks onto FPGAs with RTL-HLS Hybrid Templates. In 2017 IEEE 25th Annual
International Symposium on Field-Programmable Custom Computing Machines
(FCCM). 152–159.

[11] Y. Guan, Z. Yuan, G. Sun, and J. Cong. 2017. FPGA-based accelerator for long
short-term memory recurrent neural networks. In 2017 22nd Asia and South
Pacific Design Automation Conference (ASP-DAC). 629–634.

[12] K. Guo, S. Han, S. Yao, Y. Wang, Y. Xie, and H. Yang. 2017. Software-Hardware
Codesign for Efficient Neural Network Acceleration. IEEE Micro 37, 2 (Mar 2017),
18–25.

[13] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao, Y. Wang, H.
Yang, and W. J. Dally. 2017. ESE: Efficient Speech Recognition Engine with Sparse
LSTM on FPGA. In Proceedings of the 2017 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays (FPGA ’17). ACM, New York, NY, USA, 75–84.

[14] S. Han, H. Mao, and W. J. Dally. 2015. Deep Compression: Compressing Deep
Neural Network with Pruning, Trained Quantization and Huffman Coding. CoRR
abs/1510.00149 (2015).

[15] S. Han, J. Pool, J. Tran, and W. J. Dally. 2015. Learning Both Weights and Con-
nections for Efficient Neural Networks. In Proceedings of the 28th International
Conference on Neural Information Processing Systems (NIPS’15). MIT Press, Cam-
bridge, MA, USA, 1135–1143.

[16] S. Hochreiter and J. Schmidhuber. 1997. Long Short-Term Memory. Neural
Comput. 9, 8 (Nov. 1997), 1735–1780.

[17] M. Horowitz. 2014. 1.1 Computing’s energy problem (and what we can do about
it). In 2014 IEEE International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC). 10–14.

[18] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. 2016. Quantized
Neural Networks: Training Neural Networks with Low Precision Weights and
Activations. CoRR abs/1609.07061 (2016). arXiv:1609.07061

[19] D. Kadetotad, S. Arunachalam, C. Chakrabarti, and Jae sun Seo. 2016. Efficient
memory compression in deep neural networks using coarse-grain sparsification
for speech applications. In 2016 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). 1–8.

[20] S. Kapur, A. K. Mishra, and D. Marr. 2017. Low Precision RNNs: Quantizing RNNs
Without Losing Accuracy. CoRR abs/1710.07706 (2017). arXiv:1710.07706

[21] M. Lee, K. Hwang, J. Park, S. Choi, S. Shin, and W. Sung. 2016. FPGA-
Based Low-Power Speech Recognition with Recurrent Neural Networks. CoRR
abs/1610.00552 (2016).

[22] I. McGraw, R. Prabhavalkar, R. Alvarez, M. G. Arenas, K. Rao, D. Rybach, O.
Alsharif, H. Sak, A. Gruenstein, F. Beaufays, and C. Parada. 2016. Personalized
speech recognition on mobile devices. In 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). 5955–5959.

[23] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudanpur. 2010. Recurrent
neural network based language model.. In Interspeech, Vol. 2. 3.

[24] A. H. Namin, K. Leboeuf, R. Muscedere, H. Wu, and M. Ahmadi. 2009. Efficient
hardware implementation of the hyperbolic tangent sigmoid function. In 2009
IEEE International Symposium on Circuits and Systems. 2117–2120.

[25] D. Neil, J. H. Lee, T. Delbruck, and S-C. Liu. 2017. Delta Networks for Optimized
Recurrent Network Computation. In Proceedings of the 34th International Con-
ference on Machine Learning (Proceedings of Machine Learning Research), Doina
Precup and YeeWhye Teh (Eds.), Vol. 70. PMLR, International Convention Centre,
Sydney, Australia, 2584–2593.

[26] E. Nurvitadhi, J. Sim, D. Sheffield, A. Mishra, S. Krishnan, and D. Marr. 2016.
Accelerating recurrent neural networks in analytics servers: Comparison of FPGA,
CPU, GPU, and ASIC. In 2016 26th International Conference on Field Programmable
Logic and Applications (FPL). 1–4.

[27] J. Schmidhuber. 2014. Deep Learning in Neural Networks: An Overview. CoRR
abs/1404.7828 (2014).

[28] Xilinx. 2017. Zynq-7000 All Programmable SoC Data Sheet: Overview. https://www.
xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.
pdf

[29] L. Zhuo and V. K. Prasanna. 2005. Sparse Matrix-Vector Multiplication on FPGAs.
In Proceedings of the 2005 ACM/SIGDA 13th International Symposium on Field-
programmable Gate Arrays (FPGA ’05). ACM, New York, NY, USA, 63–74.

Special Session: Deep Learning FPGA’18, February 25–27, Monterey, CA, USA

30

http://arxiv.org/abs/1706.01406
http://arxiv.org/abs/1609.07061
http://arxiv.org/abs/1710.07706
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Gated Recurrent Unit
	2.2 Delta Network Algorithm

	3 Implementation
	3.1 DRNN Architecture

	4 Results
	4.1 Experimental Setup
	4.2 Hardware Resource Utilization
	4.3 Performance
	4.4 Comparison to Prior Work, CPU & GPU

	5 Conclusion
	Acknowledgments
	References

