
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE JOURNAL OF SOLID-STATE CIRCUITS 1

Eyeriss: An Energy-Efficient Reconfigurable
Accelerator for Deep Convolutional

Neural Networks
Yu-Hsin Chen, Student Member, IEEE, Tushar Krishna, Member, IEEE,
Joel S. Emer, Fellow, IEEE, and Vivienne Sze, Senior Member, IEEE

Abstract— Eyeriss is an accelerator for state-of-the-art deep
convolutional neural networks (CNNs). It optimizes for the energy
efficiency of the entire system, including the accelerator chip
and off-chip DRAM, for various CNN shapes by reconfiguring
the architecture. CNNs are widely used in modern AI systems
but also bring challenges on throughput and energy efficiency
to the underlying hardware. This is because its computation
requires a large amount of data, creating significant data
movement from on-chip and off-chip that is more energy-
consuming than computation. Minimizing data movement energy
cost for any CNN shape, therefore, is the key to high throughput
and energy efficiency. Eyeriss achieves these goals by using a
proposed processing dataflow, called row stationary (RS), on a
spatial architecture with 168 processing elements. RS dataflow
reconfigures the computation mapping of a given shape, which
optimizes energy efficiency by maximally reusing data locally
to reduce expensive data movement, such as DRAM accesses.
Compression and data gating are also applied to further improve
energy efficiency. Eyeriss processes the convolutional layers
at 35 frames/s and 0.0029 DRAM access/multiply and accumula-
tion (MAC) for AlexNet at 278 mW (batch size N = 4), and
0.7 frames/s and 0.0035 DRAM access/MAC for VGG-16
at 236 mW (N = 3).

Index Terms— Convolutional neural networks (CNNs),
dataflow processing, deep learning, energy-efficient accelerators,
spatial architecture.

I. INTRODUCTION

DEEP learning using convolutional neural networks
(CNNs) [1] has achieved unprecedented accuracy on

many modern AI applications [2]–[9]. However, state-of-the-
art CNNs require tens to hundreds of megabytes of para-
meters on billions of operations in a single inference pass,
creating significant data movement from on-chip and off-
chip to support the computation. Since data movement can
be more energy-consuming than computation [10], [11], the

Manuscript received May 5, 2016; revised July 31, 2016; accepted
September 28, 2016. This paper was approved by Associate Editor
Dejan Markovic.

Y.-H. Chen and V. Sze are with the Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Technology, Cambridge,
MA 02139 USA.

T. Krishna was with the Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.
He is now with the School of Electrical and Computer Engineering, Georgia
Institute of Technology, Atlanta, GA 30332 USA.

J. S. Emer is with the Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA,
and also with Nvidia Corporation, Westford, MA 01886 USA.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSSC.2016.2616357

processing of CNNs has to not only provide high parallelism
for high throughput but also optimize for the data movement of
the entire system in order to achieve high energy efficiency.
In addition, this optimization needs to adapt to the varying
shapes of the high-dimensional convolutions in CNN.

To address these challenges, it is crucial to design a compute
scheme, called a dataflow, that can support a highly parallel
compute paradigm while optimizing the energy cost of data
movement from both on-chip and off-chip. The cost of data
movement is reduced by exploiting data reuse in a multilevel
memory hierarchy, and the hardware needs to be reconfig-
urable to support different shapes. To further improve energy
efficiency, data statistics can also be exploited. Specifically,
CNN data contains many zeros. Techniques such as compres-
sion and data adaptive processing can be applied to save both
memory bandwidth and processing power.

Previous work has proposed hardware designs for CNN
acceleration [12]–[22]. However, most of them only have
simulation results that are not verified by the measured results
from fabricated chips; implementations using FPGA also do
not reveal the actual throughput and energy efficiency of the
architecture. A few efforts have demonstrated the measurement
results of fabricated chips [23]–[25]. However, these works
do not benchmark their implementations using widely used
publicly available state-of-the-art CNNs, which is critical to
the hardware evaluation. Specifically, Park et al. [23] propose
a deep-learning processor for running both training and infer-
ence using an MIMD architecture, which was tested on a cus-
tom four-layer network using 5×5 filters. Cavigelli et al. [24]
present a CNN accelerator for inference that is tested on a four-
layer CNN using 7 × 7 filters. Sim et al. [25] demonstrate a
CNN processor and only report the theoretical peak throughput
along with the power measured on a CNN for the MNIST
data set [26], which has storage and computation requirements
that are orders of magnitude lower than the state-of-the-art
CNNs. With the exception of [24], these works did not report
the required DRAM bandwidth for the proposed compute
schemes. It is not sufficient to look at the processor power
alone, since DRAM access is one of the most important factors
dictating the system energy efficiency.

In this paper, we have implemented and fabricated a CNN
accelerator, called Eyeriss, that can support high through-
put CNN inference and optimizes for the energy efficiency
of the entire system, including the accelerator chip and
off-chip DRAM. It is also reconfigurable to handle different

0018-9200 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE JOURNAL OF SOLID-STATE CIRCUITS

TABLE I

SHAPE PARAMETERS OF A CNN LAYER

CNN shapes, including square and nonsquare filters. The main
features of Eyeriss are as follows.

1) A spatial architecture using an array of 168 processing
elements (PEs) that creates a four-level memory hierar-
chy. Data movement can exploit the low-cost levels, such
as the PE scratch pads (spads) and the inter-PE com-
munication, to minimize data accesses to the high-cost
levels, including the large on-chip global buffer (GLB)
and the off-chip DRAM.

2) A CNN dataflow, called Row Stationary (RS), that
reconfigures the spatial architecture to map the compu-
tation of a given CNN shape and optimize for the best
energy efficiency.

3) A network-on-chip (NoC) architecture that uses both
multicast and point-to-point single-cycle data delivery
to support the RS dataflow.

4) Run-length compression (RLC) and PE data gating that
exploit the statistics of zero data in CNNs to further
improve energy efficiency.

The performance of Eyeriss, including both the chip energy
efficiency and required DRAM accesses, is benchmarked with
two publicly available and widely used state-of-the-art CNNs:
AlexNet [2] and VGG-16 [3]. These CNNs are designed for
the most challenging computer vision task to date: 1000-class
image classification on the ImageNet data set [27]. Eyeriss
has also been integrated with Caffe [28] to demonstrate such
application running in real-time [29].

II. CNN BASICS

The CNN algorithm is constructed by stacking multi-
ple computation layers for feature extraction and classifi-
cation [30]. Modern CNNs achieve their superior accuracy
by building a very deep hierarchy of layers [2]–[5], [7],
which transform the input image data into highly abstract
representations called feature maps (fmaps).

The primary computation in the CNN layers is performing
the high-dimensional convolutions. A layer applies filters on
the input fmaps (ifmaps) to extract embedded characteristics
and generate the output fmaps (ofmaps) by accumulating the
partial sums (psums). The dimensions of both filters and
fmaps are 4-D: each filter or fmap is a 3-D structure con-
sisting of multiple 2-D planes, i.e., channels,1 and a batch of

1To improve readability, except for explicit references to the ofmap channel,
the word channel is used to only refer to the ifmap/filter channel for the rest
of this paper.

Fig. 1. Computation of a CNN layer.

Fig. 2. Eyeriss system architecture.

3-D ifmaps is processed by a group of 3-D filters in a layer.
In addition, there is a 1-D bias that is added to the filtering
results. Given the shape parameters in Table I, the computation
of a layer is defined as

O[z][u][x][y]

= ReLU

⎛
⎝B[u] +

C−1∑
k=0

R−1∑
i=0

S−1∑
j=0

I[z][k][U x + i][U y + j]

×W[u][k][i][j]
⎞
⎠ ,

0 ≤ z < N, 0 ≤ u < M, 0 ≤ y < E, 0 ≤ x < F

E = (H − R + U)/U, F = (W − S + U)/U (1)

where O, I, W, and B are the matrices of the ofmaps,
ifmaps, filters, and biases, respectively. U is a given stride
size. Fig. 1 shows a visualization of this computation (ignoring
biases). After the convolutions, activation functions, such as
the rectified linear unit (ReLU) [31], are applied to introduce
nonlinearity.

III. SYSTEM ARCHITECTURE

A. Overview

Fig. 2 shows the top-level architecture and memory hier-
archy of the Eyeriss system. It has two clock domains:
the core clock domain for processing, and the link clock
domain for communication with the off-chip DRAM through

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: EYERISS: ENERGY-EFFICIENT RECONFIGURABLE ACCELERATOR FOR DEEP CNNs 3

Fig. 3. Processing sequence of a 1-D convolution primitive in a PE. In this example, the filter row size (S) and the ifmap row size (W) are 3 and 5,
respectively.

a 64-b bidirectional data bus. The two domains run inde-
pendently and communicate through an asynchronous FIFO
interface. The core clock domain consists of a spatial array of
168 PEs organized as a 12 × 14 rectangle, a 108-kB GLB,
an RLC CODEC, and an ReLU module. To transfer data
for computation, each PE can either communicate with its
neighbor PEs or the GLB through an NoC, or access a memory
space that is local to the PE called spads (Section V-C).
Overall, there are four levels of memory hierarchy in the
system (in decreasing energy per access): DRAM, GLB,
inter-PE communication, and spads.

B. System Control and Configuration

The accelerator has two levels of control hierarchy. The
top-level control coordinates: 1) traffic between the off-chip
DRAM and the GLB through the asynchronous interface;
2) traffic between the GLB and the PE array through the NoC;
and 3) operation of the RLC CODEC and ReLU module. The
lower-level control consists of control logic in each PE, which
runs independently of each other. Therefore, even though the
168 PEs are identical and run under the same core clock, their
processing states do not need to proceed in lock steps, i.e., not
as a systolic array. Each PE can start its own processing as
soon as any fmaps or psums arrives (fmaps or psums).

The accelerator runs the processing of a CNN layer-by-
layer. For each layer, it first loads the configuration bits
into a 1794 b scan chain serially to reconfigure the entire
accelerator, which takes less than 100 µs. These bits configure
the accelerator for the processing of filters and fmaps in a
certain shape, which includes setting up the PE array computa-
tion mappings (Section IV-A) and NoC data delivery patterns
(Section V-B). They are generated offline and are statically
accessed at runtime. Then, the accelerator loads tiles of the
ifmaps and filters from DRAM for processing, and the com-
puted ofmaps are written back to DRAM. Batches of ifmaps
for the same layer can be processed sequentially without
further reconfigurations of the chip.

IV. ENERGY-EFFICIENT FEATURES

The Eyeriss chip focuses on two main approaches to
improve the energy efficiency: 1) reducing data movement and
2) exploiting data statistics.

A. Energy-Efficient Dataflow: Row Stationary

In Eyeriss, we propose the RS dataflow that maps the
computation of any given CNN shape onto the PE array.
It is reconfigurable for different shapes and optimizes for the

best energy efficiency [32]. The RS dataflow minimizes data
movement for all data types (ifmap, filter, and psums/ofmap)
simultaneously and takes the energy costs at different levels
of the memory hierarchy into account. Data accesses to the
high-cost DRAM and GLB are minimized through maximally
reusing data from the low-cost spads and inter-PE communica-
tion. Compared with existing dataflows from previous works,
the RS dataflow is 1.4–2.5 times more energy efficient in
AlexNet, a widely used CNN [2].

To minimize the movement of ifmaps and filters, the goal
is to maximize three forms of data reuse.

1) Convolutional Reuse: Each filter weight is reused E × F
times in the same ifmap plane, and each ifmap pixel is
usually reused R × S times in the same filter plane.

2) Filter Reuse: Each filter weight is reused across the
batch of N ifmaps.

3) Ifmap Reuse: Each ifmap pixel is reused across M filters
(to generate M ofmap channels).

To minimize the movement of psums, it is desirable that the
psum accumulation across C × R × S values into one ofmap
value can be done as soon as possible to save both the storage
space and memory R/W energy. However, maximum input
data reuse cannot be achieved simultaneously with immediate
psum reduction, since the psums generated by multiply and
accumulations (MACs) using the same filter or ifmap value
are not reducible. Thus, the RS dataflow uses a systematic
approach to optimize for all data types simultaneously as
follows.

1-D Convolution Primitive in a PE: The RS dataflow first
divides the computation of (1) into 1-D convolution primitives
that can all run in parallel. Each primitive operates on one row
of filter weights and one row of ifmap values, and generates
one row of psums. The psums from different primitives are
further accumulated together to generate the ofmap values.
By mapping each primitive to one PE for processing, the
computation of each row pair stays stationary in the PE.
Due to the sliding window processing of the primitive as
shown in Fig. 3, each PE can use the local spads for both
convolutional data reuse and psum accumulation. Since only
a sliding window of data has to be retained at a time, the
required spad capacity depends only on the filter row size (S)
but not the ifmap row size (W), and is equal to: 1) S for a row
of filter weights; 2) S for a sliding window of ifmap values;
and 3) 1 for the psum accumulation. In AlexNet, for example,
possible values for S are 11 (layer CONV1), 5 (layer CONV2),
and 3 (layers CONV3–CONV5). Therefore, the minimum spad
capacity required for filter, ifmap, and psum is 11, 11, and 1,
respectively, to support all layers.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 4. Dataflow in a PE set for processing a 2-D convolution. (a) Rows of filter weights are reused across PEs horizontally. (b) Rows of ifmap values are
reused across PEs diagonally. (c) Rows of psums are accumulated across PEs vertically. Reuse and accumulation of data within a PE set reduce accesses to
the GLB and DRAM, saving data movement energy cost. In this example, the number of filter rows (R), ifmap rows (H), and ofmap rows (E) are 3, 5,
and 3, respectively. Therefore, the PE set size is 3 × 3. Filter and ifmap values from different rows are sent to the PE set in a time-interleaved fashion; all
the PEs that reuse the same value receive it at the same cycle. The psums generated from one PE are sent to its neighbor PE immediately.

Fig. 5. Mapping of the PE sets on the spatial array of 168 PEs for the CONV layers in AlexNet. For the colored PEs, the PEs with the same color receive
the same ifmap value in the same cycle. The arrow between two PE sets indicates that their psums can be accumulated together.

2-D Convolution PE Set: A 2-D convolution is composed
of many 1-D convolution primitives, and its computation:
1) shares the same row of filter or ifmap across primitives and
2) accumulates the psums from multiple primitives together.
Therefore, a PE Set, as shown in Fig. 4, is grouped to run a
2-D convolution and exploit the interprimitive convolutional
reuse and psum accumulation, which avoids data accesses
from GLB and DRAM. In a set, each row of filter is reused
horizontally, each row of ifmap is reused diagonally, and rows
of psum are accumulated vertically. The dimensions of a PE
set are determined by the filter and ofmap size of a given
layer. Specifically, the height and the width of the PE set are
equal to the number of filter rows (R) and ofmap rows (E),
respectively. In AlexNet, the PE sets are of size 11 × 55
(CONV1), 45 ×27 (CONV2), and 3 ×13 (CONV3–CONV5).

PE Set Mapping: The dimensions of a PE set are a function
of the shape of a layer and are independent of the physical
dimensions of the PE array. Therefore, a strategy is required
to map these PE sets onto the PE array. This mapping strategy
should map a set using nearby PEs in the array to take
the advantage of local data sharing and psum accumulation.
In Eyeriss, a PE set can be mapped to any group of PEs in the
array that has the same dimensions. However, there are two
exceptions.

1) PE Set Has More Than 168 PEs: This can be solved by
strip mining the 2-D convolution, i.e., the PE set only
processes e rows of ofmap at a time, where e ≤ E .
The dimensions of the strip-mined PE set then becomes
R × e and can fit into the PE array.

2) PE Set Has Less Than 168 PEs, But Has Width Larger
Than 14 or Height Larger Than 12: A PE set that is too

wide is divided into separated segments that are mapped
independently to the array. Eyeriss currently does not
support the mapping of a PE set that is taller than the
height of the PE array. Therefore, the maximum natively
supported filter height is 12.

An example of these two exceptions can be seen from the
PE set mapping of layers CONV1–CONV5 in AlexNet onto
the 12×14 PE array of Eyeriss as shown in Fig. 5. The 11×55
PE set of CONV1 is strip-mined to 11×7. The strip-mined PE
set width is determined by a process that optimizes for overall
energy efficiency as introduced in [32]. The 5 × 27 PE set of
CONV2 is divided into two segments with dimensions 5 × 14
and 5 × 13, respectively, and each segment is independently
mapped onto the PE array. Finally, the 3 × 13 PE set of
CONV3–CONV5 can easily fit into the PE array. Except for
CONV2, the PE array can fit multiple PE sets in parallel as
shown in Fig. 5, and the RS dataflow further defines how to
fully utilize hardware resources to minimize data movement in
the dimensions beyond 2-D. This mapping strategy is realized
by a custom designed NoC that is also optimized for energy
efficiency (Section V-B).

Dimensions Beyond 2-D in PE Array: Processing of many
2-D convolutions is required to complete the computation
of (1) due to the three additional dimensions: batch size (N),
number of channels (C), and number of filters (M). Assuming
varying only 1-D at a time and fixing the rest of the two
the same, two 2-D convolutions that use: 1) different ifmaps
reuse the same filter (i.e., filter reuse); 2) different filters reuse
the same ifmap (i.e., ifmap reuse); and 3) filters and ifmaps
from different channels can accumulate their psums together
(i.e., psum accumulation). The filter reuse can be exploited

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: EYERISS: ENERGY-EFFICIENT RECONFIGURABLE ACCELERATOR FOR DEEP CNNs 5

Fig. 6. Handling the dimensions beyond 2-D in each PE by (a) concatenating the ifmap rows, each PE can process multiple 1-D primitives with different
ifmaps and reuse the same filter row and (b) time interleaving the filter rows, each PE can process multiple 1-D primitives with different filters and reuse the
same ifmap row. (c) By time interleaving the filter and ifmap rows, each PE can process multiple 1-D primitives from different channels and accumulate the
psums together.

simply by streaming different ifmaps through the same PE
set sequentially [Fig. 6(a)], since the filter stays constant in
the set. The ifmap reuse and psum accumulation opportunities
can also be exploited by using either the spads or the spatial
parallelism of the PE array, so DRAM and GLB accesses are
further reduced.

1) Multiple 2-D Convolutions in a PE Set: If the spad size
is large enough, each PE can run multiple 1-D convolution
primitives simultaneously by interleaving their computation.
Equivalently, this means each PE set is running multiple 2-D
convolutions on different filters and channels. There are two
scenarios.

1) By interleaving the computation of primitives that run
on the same ifmap with different filters, the spads can
buffer the same ifmap value and reuse it to compute
with a weight from each filter sequentially [Fig. 6(b)].
It requires increasing the filter and psum spad size.

2) By interleaving the computation of primitives that run
on different channels, the PE can accumulate through
all channels sequentially on the same psum [Fig. 6(c)].
This requires increasing the ifmap and filter spad size.

The mapping of multiple primitives in the same PE can
be described by parameters p and q . Each PE runs p × q
primitives simultaneously from q different channels of p
different filters. The required spad capacity for each data type
is: 1) p ×q × S for the rows of filter weights from q channels
of p filters; 2) q × S for q sliding windows of ifmap values
from q different channels; and 3) p for the accumulation of
psums in p ofmap channels. In Eyeriss, where ifmap spad is
12 b ×16 b, filter spad is 224 b ×16 b, and psum spad is
24 b ×16 b, p can be up to 24, and q can be up to 4 in
AlexNet since the minimum S is 3.

2) Multiple PE Sets in the PE Array: As shown in Fig. 5,
the PE array can fit more than one PE set if the set is
small enough. Mapping multiple sets not only increases the
utilization of PEs, which increases processing throughput, but
also brings two extra advantages: 1) the same ifmap is read
once from the GLB and reused in multiple sets simultaneously
and 2) the psums from different sets are further accumulated
within the PE array directly.

The mapping of multiple sets is described by parame-
ters r and t . The PE array fits r × t PE sets in parallel
that run r different channels of t different filters simulta-
neously. Every t sets share the same ifmap with t filters,
and every r sets that run on r channels accumulate their
psums within the PE array. Fig. 5 shows the mapping of
multiple sets and the reuse of ifmaps in Eyeriss. Specifically,
CONV1 and CONV3 have t = 2 and 4, respectively, and the
same ifmap value is sent to all sets. CONV4 and CONV5
have r = t = 2. The same ifmap value is sent to every
other set, and the psums from the top and bottom two sets
are accumulated together. In each layer, the PEs that are
not covered by any sets are clock gated to save energy
consumption.

a) PE array processing passes: So far we have described
a way to exploit data reuse by maximally utilizing the storage
of spads and the spatial parallelism of the PE array. The PE
array can run multiple 2-D convolutions from up to q × r
channels of p × t filters simultaneously. Multiple ifmaps can
also be processed sequentially through the array. The amount
of computation done in this fashion is called a Processing
Pass. In a pass, each input data are read only once from the
GLB, and the psums are stored back to the GLB only once
when the processing is finished.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 7. Scheduling of processing passes. Each block of filters, ifmaps,
or psums is a group of 2-D data from the specified dimensions used by a
processing pass. The number of channels (C), filters (M), and ifmaps (N)
used in this example layer created for demonstration purpose are 6, 8, and 4,
respectively, and the RS dataflow uses eight passes to process the layer.

TABLE II

MAPPING PARAMETERS OF THE RS DATAFLOW

A CNN layer usually requires hundreds to thousands of
processing passes to complete its processing, and ifmap reuse
and psum accumulation also exist across these passes. The
GLB is used to exploit these opportunities by buffering two
types of data: ifmaps and psums. The ifmaps stored in the
GLB can be reused across multiple processing passes; the
psums that are accumulated across passes use the GLB as
the intermediate storage, so they do not go off-chip until the
final ofmap values are obtained.

Fig. 7 shows the scheduling of processing passes. This
example layer, created only for illustrative purposes, has six
channels (C), eight filters (M), and four ifmaps (N). A pass
is assumed to process three channels (q × r) and four filters
(p × t). Also, the number of ifmaps that a pass processes,
denoted as n, is assumed to be 2. Overall, the computation of
this layer uses eight processing passes. Each group of ifmaps
is read from DRAM once, stored in the GLB, and reused
in two consecutive passes with total eight filters to generate
eight ofmap channels. However, this also requires the GLB
to store psums from two consecutive passes so they do not
go to DRAM. In this case, the GLB needs to store m = 8
ofmap channels. Each filter weight is read from DRAM into
the PE array once for every four passes.

The scheduling of the processing passes determines the
storage allocation required for ifmaps and psums in the GLB.
Specifically, n×q×r 2-D ifmaps and n×m 2-D psums have to
be stored in the GLB for reuse. Since these parameters change
based on the mapping of each layer, the GLB allocation for
ifmaps and psums has to be reconfigurable to store them in
different proportions.

b) Summary: Table II summarizes a list of dataflow map-
ping parameters that define the mapping of the RS dataflow.
For a given CNN shape, these parameters are determined
by an optimization process that takes: 1) the energy cost
at each level of the memory hierarchy and 2) the hardware
resources, including the GLB size, spad size, and number

Fig. 8. Encoding of the RLC.

of PEs, into account [32]. Table III lists the RS dataflow
mapping parameters used for AlexNet in Eyeriss. It also shows
the storage required in the GLB for both ifmap and psum.

B. Exploit Data Statistics

Even though the RS dataflow optimizes data movement
for all data types, the intrinsic amount of data and the
corresponding computation are still high. To further improve
energy efficiency, data statistics of CNN is explored to:
1) reduce DRAM accesses using compression, which is the
most energy consuming data movement per access, on top of
the optimized dataflow; and 2) skip the unnecessary compu-
tations to save processing power (Section V-C).

The ReLU function introduces many zeros in the fmaps
by rectifying all negative filtering results to zero. While the
number of zeros in the fmaps depends on the input data to the
CNN, it tends to increase with deep layers. In AlexNet, almost
40% of ifmap values of CONV2 are zeros on average, and it
goes up to around 75% at CONV5. In addition to the fmap,
a recent study has also shown that 16%–78% filter weights in
a CNN can be pruned to zero [33].

RLC is used in Eyeriss to exploit the zeros in fmaps and
save DRAM bandwidth. Fig. 8 shows an example of RLC
encoding. Consecutive zeros with a maximum run length of 31
are represented using a 5-b number as the Run. The next value
is inserted directly as a 16-b Level, and the count for run starts
again. Every three pairs of run and level are packed into a 64-b
word, with the last bit indicating if the word is the last one in
the code. Based on our experiments using AlexNet with the
ImageNet data set, the compression rate of RLC only adds
5%–10% overhead to the theoretical entropy limit.

Except for the input data to the first layer of a CNN, all the
fmaps are stored in RLC compressed form in the DRAM. The
accelerator reads the encoded ifmaps from DRAM, decom-
presses it with the RLC decoder, and writes it into the GLB.
The computed ofmaps are read from the GLB, processed
by the ReLU module optionally, compressed by the RLC
encoder, and transmitted to the DRAM. This saves both space
and R/W bandwidth of the DRAM. From our experiments
using AlexNet, the DRAM accesses for fmaps alone, including
both ifmaps and ofmaps, can be saved by nearly 30% in
CONV1, and nearly 75% in CONV5. Fig. 9 shows the overall
DRAM accesses in AlexNet before and after RLC. The traffic
includes filters, ifmaps, and ofmaps. The DRAM access could
be further reduced if RLC was applied to filter weights.

V. SYSTEM MODULES

A. Global Buffer

The Eyeriss accelerator has a GLB of 108 kB that can
communicate with DRAM through the asynchronous interface

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: EYERISS: ENERGY-EFFICIENT RECONFIGURABLE ACCELERATOR FOR DEEP CNNs 7

TABLE III

SHAPE PARAMETERS OF AlexNet AND ITS RS DATAFLOW MAPPING PARAMETERS ON EYERISS. THIS MAPPING ASSUMES A BATCH SIZE (N) OF 4

Fig. 9. Comparison of DRAM accesses (read and write), including filters,
ifmaps, and ofmaps, before and after using RLC in the five CONV layers of
AlexNet.

and with the PE array through the NoC. The GLB stores all
the three types of data: ifmaps, filters, and psums/ofmaps.
100 kB of the GLB is allocated for ifmaps and psums as
required by the RS dataflow for reuse. Even though it is not
required by the dataflow, the remaining 8 kB (two banks of
512-b × 64-b SRAMs) of the GLB is allocated for filter
weights to compensate for insufficient off-chip traffic band-
width. While the PE array is working on a processing pass,
the GLB preloads the filters used by the next processing pass.

The 100-kB storage space for ifmaps and psums has to be
reconfigurable to fit the two data types in different proportions
for supporting different shapes (Table III). It also has to
provide enough bandwidth for accesses from the PE array.
To meet the two demands, the space is divided into 25 banks,
each of which is a 512-b ×64-b (4 kB) SRAM. Each bank
is assigned entirely to ifmaps or psums, and the assignment
is reconfigurable based on the scan chain bits. Therefore, the
PE array can access both ifmaps and psums simultaneously,
each from one of the 25 banks.

B. Network-on-Chip

The NoC manages data delivery between the GLB and
the PE array as well as between different PEs. The NoC
architecture needs to meet the following goals. First, the

NoC has to support the data delivery patterns used in the
RS dataflow. While the data movement within a PE set is
uniform (Fig. 4), there are three scenarios in the mapping
of real CNNs that can break the uniformity and should be
taken care of: 1) different convolution strides (U) result in the
ifmap delivery, skipping certain rows in the array (AlexNet
CONV1 in Fig. 5); 2) a set is divided into segments that
are mapped onto different parts of the PE array (AlexNet
CONV2 in Fig. 5); and 3) multiple sets are mapped onto the
array simultaneously and different data is required for each set
(AlexNet CONV4 and CONV5 in Fig. 5). Second, the NoC
should leverage the data reuse achieved by the RS dataflow
to further improve energy efficiency. Third, it has to provide
enough bandwidth for data delivery in order to support the
highly parallel processing in the PE array.

Conventional approaches usually use hop-by-hop mesh
NoC at the cost of increased ramp-up time and router
overhead [34], [35]. To avoid this overhead, we chose to imple-
ment a custom NoC for the required data delivery patterns that
is optimized for latency, bandwidth, energy, and area. The
custom NoC comprises three different types of networks as
described in the following.

1) Global Input Network: The global input network (GIN)
is optimized for a single-cycle multicast from the GLB to
a group of PEs that receive the same filter weight, ifmap
value, or psum. Fig. 5 shows an example of ifmap delivery
in AlexNet. The challenge is that the group of destination
PEs varies across layers due to the differences in data type,
convolution stride, and mapping. Broadcasting each data with
a bit-vector tag of the same size of the PE array (i.e., 168 b),
which indicates the IDs of destination PEs, can support any
arbitrary mapping. However, doing so is also very costly
in terms of both area and energy consumption due to the
increased GIN bus width. Instead, we implemented the GIN,
as shown in Fig. 10, with two levels of hierarchy: Y-bus and
X-bus. A vertical Y-bus consists of 12 horizontal X-buses,
one at each row of the PE array, and each X-bus connects
to 14 PEs in the row. Each X-bus has a row ID, and each PE
has a col ID. These IDs are all reconfigurable, and a unique
ID is given to each group of X-buses or PEs that receives
the same data in a given CNN layer. Each data read from
the GLB is augmented with a (row, col) tag by the top-level
controller, and the GIN guarantees that the data are delivered to
all and only the X-buses and then PEs with the ID that matches
the tag within a single cycle. The tag-ID matching is done
using the Multicast Controller (MC). There are 12 MCs on the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 10. Architecture of the GIN.

Fig. 11. row IDs of the X-buses and col IDs of the PEs for ifmap
delivery using GIN in AlexNet layers. (a) CONV1. (b) CONV2. (c) CONV3.
(d) CONV4 and CONV5. In this example, assuming the tag on the data has
row = 0 and col = 3, the X-buses and PEs in red are the activated buses
and PEs that receive the data, respectively.

Y-bus to compare the row tag with the row ID of each X-bus,
and 14 MCs on each of the X-buses to compare the col tag
with the col ID of each PE. The unmatched X-buses and PEs
are gated to save energy. For flow control, the data are passed
from the GLB down to the GIN only when all destination PEs
have issued a ready signal. An example of the row and col
ID setup for ifmap delivery using GIN in AlexNet is shown
in Fig. 11.

Eyeriss has separate GINs for each of the three data types
(filter, ifmap, and psum) to provide sufficient bandwidth from
the GLB to the PE array. All GINs have 4-b row IDs to
address the 12 rows. The filter and psum GINs use 4-b col
IDs to address the 14 columns, while ifmap GIN uses 5 b
to support maximum 32 ifmap rows passing in diagonal. The
filter and psum GINs have data bus width of 64 b (4b ×16 b),
while the ifmap GIN has the data bus width of 16 b.

2) Global Output Network: The GON is used to read the
psums generated by a processing pass from the PE array back
to the GLB. The GON has the same architecture as the GIN;

Fig. 12. PE architecture. The datapaths in red show the data gating logic to
skip the processing of zero ifmap data.

only the direction of data transfer is reversed. The data bus
width is also 64b as the psum GIN.

3) Local Network: Between every pair of PEs that are on
two consecutive rows of the same column, a dedicated 64b data
bus is implemented to pass the psums from the bottom PE to
the top PE directly. Therefore, a PE can get its input psums
either from the psum GIN or LN. The selection is static
within a layer, which is controlled by the scan chain configu-
ration bits and only depends on the dataflow mapping of the
CNN shape.

C. Processing Element and Data Gating

Fig. 12 shows the architecture of a PE. FIFOs are used at the
I/O of each PE to balance the workload between the NoC and
the computation. The numbers of filters (p) and channels (q)
that the PE processes at once are statically configured into
the control of a PE, which determines the state of processing.
This configuration controls the pattern with which the PE steps
through the three spads. The datapath is pipelined into three
stages: one stage for spad access, and the remaining two for
computation. The computation consists of a 16-b two-stage
pipelined multiplier and adder. Since the multiplication results
are truncated from 32 to 16 b, the selection of 16 b out of
the 32 b is configurable, and can be decided by the dynamic
range of a layer from offline experiments. Spads are separated
for three data types to provide enough access bandwidth. The
filter spad is implemented in a 224-b ×16-b SRAM due to its
large size; the ifmap and psum spads of size 12 b ×16 b and
24 b ×16 b, respectively, are implemented using registers.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: EYERISS: ENERGY-EFFICIENT RECONFIGURABLE ACCELERATOR FOR DEEP CNNs 9

Fig. 13. Die micrograph and floorplan of the Eyeriss chip.

Data gating logic is implemented to exploit zeros in the
ifmap for saving processing power. An extra 12-b Zero Buffer
is used to record the position of zeros in the ifmap spad.
If a zero ifmap value is detected from the zero buffer, the
gating logic will disable the read of the filter spad and prevent
the MAC datapath from switching. Compared with the PE
design without the data gating logic, it can save the PE power
consumption by 45%.

VI. RESULTS

The Eyeriss chip shown in Fig. 13 was implemented in
65-nm CMOS [36] and had been integrated into the Caffe
framework [28] (Fig. 14). Table IV lists a summary of the chip
specifications. At 1 V, the peak throughput is 33.6 GMAC/s
(GMACS) with a 200-MHz core clock. Most of the state-of-
the-art CNNs have shapes that lie within the native support of
Eyeriss, so they can easily leverage Eyeriss for acceleration
with no modification required.

Fig. 15(a) shows the area breakdown of the Eyeriss core,
i.e., the area without I/O pads. It includes the logic cells,
registers, and SRAMs from both the core and link clock
domains. The area of the PE array includes all 168 PEs, and
the area breakdown of each PE is shown in Fig. 15(b). The
spads from all PEs take nearly half of the total area, which is
2.5 × larger than that of the GLB. However, the aggregated
capacity of the spads is 1.5 times smaller than the size of the
GLB. Overall, the on-chip storage, including the GLB and all
spads, takes two-thirds of the total area while the multipliers
and adders from all 168 PEs only account for 7.4%.

We benchmark the chip performance using two pub-
licly available and widely used CNNs: AlexNet [2] and
VGG-16 [3]. The input frames are resized according to
the requirement of each CNN: 227 × 227 for AlexNet and
224 × 224 for VGG-16. A batch size (N) of 4 and 3 is
used for AlexNet and VGG-16, respectively; these batch sizes
deliver the highest energy efficiency on Eyeriss according to
the optimization in [32].

Fig. 14. Eyeriss-integrated deep-learning system that runs Caffe [28],
which is one of the most popular deep-learning frameworks. The customized
Caffe runs on the NVIDIA Jetson TK1 development board, and offloads the
processing of a CNN layer to Eyeriss through the PCIe interface. The Xilinx
VC707 serves as the PCIe controller and does not perform any processing.
We have demonstrated an 1000-class image classification task [27] using this
system, and a live demo can be found in [29].

TABLE IV

CHIP SPECIFICATIONS

A. AlexNet

Table V shows the measured performance breakdown of
the five CONV layers in AlexNet at 1 V. The chip power
consumption gradually decreases through deeper layers, since
data gating can leverage more zeros in the ifmaps. On average,
the Eyeriss chip achieves a frame rate of 34.7 frames/s, or
equivalently a processing throughput of 23.1 GMACS. The
measured chip power is 278 mW, and the corresponding
energy efficiency is 83.1 GMACS/W. The actual throughput is
lower than the peak throughput for three reasons: 1) only 88%
of the PEs are active; 2) it takes time to load data from the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 15. Area breakdown of (a) Eyeriss core and (b) PE.

TABLE V

PERFORMANCE BREAKDOWN OF THE FIVE CONV LAYERS IN AlexNet AT 1 V. BATCH SIZE (N) IS 4.
THE CORE AND LINK CLOCKS RUN AT 200 AND 60 MHz, RESPECTIVELY

Fig. 16. Power breakdown of the chip running layer. (a) CONV1 and (b) CONV5 of AlexNet.

GLB into the PE array to ramp up each processing pass; and
3) the chip does not perform processing while it is loading
ifmap from DRAM or dumping ofmaps to DRAM. The
last point, nevertheless, can be optimized with the refined
control of the DRAM traffic at negligible cost. Therefore,
we also provide the Processing Latency in Table V that
shows the performance when DRAM traffic is fully over-
lapped with processing. For a batch of four frames, the
required DRAM access is 15.4 MB, or 0.0029 access/MAC
(37.4 access/input pixel).2

Fig. 16 shows the power breakdown of the chip running
CONV1 and CONV5. This is obtained by performing post-
place and route simulations using actual workloads as in chip
measurement. Different dataflow mappings and data reuse
patterns result in different power distributions. Specifically, the
power consumed in the spads as well as multipliers and adders
is much lower in CONV5 than CONV1 due to the zeros in
ifmaps. Overall, the ALUs only account for less than 10%

2Each access is for a 16-b data value (fmaps or filters).

Fig. 17. Impact of voltage scaling on AlexNet Performance.

of the total power, while data movement related components,
including spads, GLB, and NoC, account for up to 45%. This
confirms that data movement is more energy consuming than

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: EYERISS: ENERGY-EFFICIENT RECONFIGURABLE ACCELERATOR FOR DEEP CNNs 11

TABLE VI

PERFORMANCE BREAKDOWN OF THE 13 CONV LAYERS IN VGG-16 AT 1 V. BATCH SIZE (N) IS 3.
THE CORE AND LINK CLOCKS RUN AT 200 AND 60 MHz, RESPECTIVELY

computation. Besides the clock network, the spads dominate
on-chip power consumption, which shows that RS dataflow
effectively reuses data locally for reducing DRAM accesses
and optimizing overall system energy efficiency as estimated
in [32]. This is also why looking at the chip power alone
is not sufficient to assess the energy efficiency of the sys-
tem. Fig. 17 shows the impact of voltage scaling on-chip
performance running AlexNet. The maximum throughput is
45 frames/s at 1.17 V, and the maximum energy efficiency
is 122.8 GMACS/W at 0.82 V.

B. VGG-16

Table VI shows the measured performance breakdown of
the 13 CONV layers in VGG-16 at 1 V. On average, the chip
operates at 0.7 frames/s with a measured power consumption
of 236 mW. The frame rate is lower than that of AlexNet
mainly since VGG-16 requires 23 times more computations
per frame than AlexNet. The performance, however, depends
not only on the computation but also on the shape configu-
ration. For example, CONV1-2 and CONV4-2 have the same
amount of MAC operations, but the former takes nearly four
times longer to process than the latter. This is because the early
layers require more processing passes than the deeper layers.
Therefore, it spends more time on ramping up the processing
in the PE array. The large number of processing passes is
dictated by the large fmap size. The required DRAM access for
a batch of three frames is 321.1 MB, or 0.0035 access/MAC
(1066.6 access/input pixel).

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–444, May 2015.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 25. 2012, pp. 1097–1105.

[3] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, pp. 1–14,
Sep. 2014.

[4] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 1–9.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2016.

[6] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2014,
pp. 580–587.

[7] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun,
“OverFeat: Integrated recognition, localization and detection using con-
volutional networks,” CoRR, vol. abs/1312.6229, pp. 1–16, Dec. 2013.

[8] M. Bojarski et al. (2016). “End to end learning for self-driving cars.”
[Online]. Available: https://arxiv.org/abs/1604.07316

[9] D. Silver et al., “Mastering the game of Go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, Jan. 2016.

[10] R. Hameed et al., “Understanding sources of inefficiency in general-
purpose chips,” in Proc. 37th Annu. Int. Symp. Comput. Archit., 2010,
pp. 37–47.

[11] M. Horowitz, “Computing’s energy problem (and what we can do about
it),” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC),
Feb. 2014, pp. 10–14.

[12] M. Sankaradas et al., “A massively parallel coprocessor for convolutional
neural networks,” in Proc. 20th IEEE Int. Conf. Appl.-Specific Syst.,
Archit. Process., Jul. 2009, pp. 53–60.

[13] V. Sriram, D. Cox, K. H. Tsoi, and W. Luk, “Towards an embedded
biologically-inspired machine vision processor,” in Proc. Int. Conf.
Field-Program. Technol. (FPT), Dec. 2010, pp. 273–278.

[14] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, “A
dynamically configurable coprocessor for convolutional neural net-
works,” in Proc. 37th Annu. Int. Symp. Comput. Archit., 2010,
pp. 247–257.

[15] M. Peemen, A. A. A. Setio, B. Mesman, and H. Corporaal, “Memory-
centric accelerator design for convolutional neural networks,” in
Proc. IEEE 31st Int. Conf. Comput. Design (ICCD), Oct. 2013,
pp. 13–19.

[16] V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello,
“A 240 G-ops/s mobile coprocessor for deep neural networks,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW),
Jun. 2014, pp. 696–701.

[17] T. Chen et al., “DianNao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning,” in Proc. 19th Int. Conf. Archit. Support
Program. Lang. Oper. Syst., 2014, pp. 269–284.

[18] Z. Du et al., “ShiDianNao: Shifting vision processing closer to
the sensor,” in Proc. 42nd Annu. Int. Symp. Comput. Archit., 2015,
pp. 92–104.

[19] Y. Chen et al., “DaDianNao: A machine-learning supercomputer,”
in Proc. 47th Annu. IEEE/ACM Int. Symp. Microarchitecture, 2014,
pp. 609–622.

[20] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” CoRR, vol. abs/1502.02551,
pp. 1–10, Feb. 2015.

[21] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-based accelerator design for deep convolutional neural networks,”
in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, 2015,
pp. 161–170.

[22] F. Conti and L. Benini, “A ultra-low-energy convolution engine for fast
brain-inspired vision in multicore clusters,” in Proc. Design, Autom. Test
Eur. Conf. Exhibit., 2015, pp. 683–688.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE JOURNAL OF SOLID-STATE CIRCUITS

[23] S. Park, K. Bong, D. Shin, J. Lee, S. Choi, and H.-J. Yoo,
“A 1.93TOPS/W scalable deep learning/inference processor with tetra-
parallel MIMD architecture for big-data applications,” in Proc. IEEE
Int. Solid-State Circuits Conf. (ISSCC), Feb. 2015, pp. 1–3.

[24] L. Cavigelli, D. Gschwend, C. Mayer, S. Willi, B. Muheim, and
L. Benini, “Origami: A convolutional network accelerator,” in Proc. 25th
Ed. Great Lakes Symp. VLSI, 2015, pp. 199–204.

[25] J. Sim, J.-S. Park, M. Kim, D. Bae, Y. Choi, and L.-S. Kim,
“A 1.42TOPS/W deep convolutional neural network recognition proces-
sor for intelligent IoE systems,” in Proc. IEEE Int. Solid-State Circuits
Conf. (ISSCC), Jan./Feb. 2016, pp. 264–265.

[26] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[27] O. Russakovsky et al., “ImageNet large scale visual recognition chal-
lenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, Dec. 2015.

[28] Y. Jia et al. (2014). “Caffe: Convolutional architecture for fast feature
embedding.” [Online]. Available: https://arxiv.org/abs/1408.5093

[29] Y.-H. Chen. An 1000-Class Image Classification Task Performed by the
Eyeriss-Integrated Deep Learning System, accessed on 2016. [Online].
Available: https://vimeo.com/154012013

[30] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional net-
works and applications in vision,” in Proc. IEEE Int. Symp. Circuits
Syst. (ISCAS), May/Jun. 2010, pp. 253–256.

[31] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
Boltzmann machines,” in Proc. 27th Int. Conf. Mach. Learn. (ICML),
2010, pp. 807–814.

[32] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” in Proc.
43rd Annu. Int. Symp. Comput. Archit. (ISCA), 2016, pp. 367–379.

[33] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 28. 2015, pp. 1135–1143.

[34] J. Howard et al., “A 48-core IA-32 message-passing processor with
DVFS in 45 nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig.
Tech. Papers (ISSCC), Feb. 2010, pp. 108–109.

[35] B. K. Daya et al., “SCORPIO: A 36-core research chip demonstrating
snoopy coherence on a scalable mesh NoC with in-network ordering,”
in Proc. 41st Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2014,
pp. 25–36.

[36] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural
networks,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech.
Papers (ISSCC), Jan./Feb. 2016, pp. 262–263.

Yu-Hsin Chen (S’11) received the B.S. degree in
electrical engineering from National Taiwan Univer-
sity, Taipei, Taiwan, in 2009, and the M.S. degree in
electrical engineering and computer science from the
Massachusetts Institute of Technology, Cambridge,
MA, USA, in 2013, where he is currently pursuing
the Ph.D. degree with the focus on the architecture
design and hardware implementation for deep learn-
ing accelerators.

His current research interests include energy-
efficient VLSI system design, computer vision, and

digital signal processing.
Mr. Chen was a recipient of the 2015 NVIDIA Graduate Fellowship and

the 2015 ADI Outstanding Student Designer Award.

Tushar Krishna (S’08–M’15) received the
B.Tech. degree in electrical engineering from IIT
Delhi, New Delhi, India, in 2007, the M.S.E. degree
in electrical engineering from Princeton University,
Princeton, NJ, USA, in 2009, and the Ph.D. degree
in electrical engineering and computer science
from the Massachusetts Institute of Technology,
Cambridge, MA, USA, in 2014.

He was a Researcher with the VSSAD Group,
Intel, Hudson, MA, USA, from 2013 to 2015,
and a Post-Doctoral Researcher with the MIT

SMART-LEES Center in 2015. He has been an Assistant Professor with
the School of Electrical and Computer Engineering, Georgia Institute of
Technology, Atlanta, GA, USA, since 2015. His current research interests
include computer architecture, interconnection networks, on-chip networks,
HPC, and reconfigurable architectures.

Joel S. Emer (M’73–SM’03–F’04) received the B.S.
(Hons.) and M.S. degrees in electrical engineering
from Purdue University, West Lafayette, IN, USA,
in 1974 and 1975, respectively, and the Ph.D. degree
in electrical engineering from the University of Illi-
nois at Urbana–Champaign, Champaign, IL, USA,
in 1979.

He was with Intel, where he was an Intel Fel-
low and the Director of Microarchitecture Research.
At Intel, he led the VSSAD Group, which he had
previously been a member of at Compaq and Digital

Equipment Corporation. He is currently a Senior Distinguished Research
Scientist with the Nvidia’s Architecture Research Group, Westford, MA,
USA, where he is responsible for exploration of future architectures and
modeling and analysis methodologies. He is also a Professor of the Practice at
the Massachusetts Institute of Technology, Cambridge, MA, USA, where he
teaches computer architecture and supervises graduate students. He has held
various research and advanced development positions investigating processor
microarchitecture and developing performance modeling and evaluation tech-
niques. He has made architectural contributions to a number of VAX, Alpha,
and X86 processors and is recognized as one of the developers of the widely
employed quantitative approach to processor performance evaluation. He has
been recognized for his contributions in the advancement of simultaneous
multithreading technology, processor reliability analysis, cache organization,
and spatial architectures for deep learning.

Dr. Emer is a Fellow of the ACM. He has been a recipient of numerous
public recognitions. In 2009, he received the Eckert-Mauchly Award for
lifetime contributions in computer architecture, the Purdue University Out-
standing Electrical and Computer Engineer Alumni Award, and the University
of Illinois Electrical and Computer Engineering Distinguished Alumni Award
in 2010 and 2011, respectively. His 1996 paper on simultaneous multithread-
ing received the ACM/SIGARCH-IEEE-CS/TCCA: Most Influential Paper
Award in 2011. He was named to the ISCA and Micro Halls of Fame in 2005
and 2015, respectively. He has had five papers selected for the IEEE Micro’s
Top Picks in Computer Architecture, in 2003, 2004, 2007, 2013, and 2015.
He was the Program Chair of ISCA in 2000. He is the 2017 Program Chair
for Micro.

Vivienne Sze (S’04–M’10–SM’16) received the
B.A.Sc. (Hons) degree from the University of
Toronto, Toronto, ON, Canada, in 2004, and the
S.M. and Ph.D. degree from the Massachusetts Insti-
tute of Technology (MIT), Cambridge, MA, in 2006
and 2010, respectively, all in electrical engineering.

She has been an Assistant Professor with MIT
in the Electrical Engineering and Computer Science
Department since August 2013. Her research inter-
ests include energy-aware signal processing algo-
rithms and low-power circuit and system design for

portable multimedia applications. Prior to joining MIT, she was a Member
of Technical Staff with the Systems and Applications R&D Center, Texas
Instruments (TI), Dallas, TX, USA, where she designed low-power algorithms
and architectures for video coding. She also represented TI at the international
JCT-VC standardization body developing HEVC. Within the committee, she
was the primary coordinator of the core experiment on coefficient scanning
and coding, and has chaired/vice-chaired several ad hoc groups on entropy
coding. She is a coeditor of High Efficiency Video Coding (HEVC): Algorithms
and Architectures (Springer, 2014).

Prof. Sze was a recipient of the 2016 AFOSR Young Investigator Research
Program (YIP) Award, 2016 3M Non-Tenured Faculty Award, 2014 DARPA
Young Faculty Award, 2007 DAC/ISSCC Student Design Contest Award and
a co-recipient of the 2008 A-SSCC Outstanding Design Award. In 2011, she
received the Jin-Au Kong Outstanding Doctoral Thesis Prize in Electrical
Engineering at MIT. She received the Natural Sciences and Engineering
Research Council of Canada (NSERC) Julie Payette fellowship in 2004,
the NSERC Postgraduate Scholarships in 2005 and 2007, and the Texas
Instruments Graduate Women’s Fellowship for Leadership in Microelectronics
in 2008.

