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Abstract

The performance tradeoff between hardware complexity and
clock speed is studied. First, a generic superscaar pipeline is de-
fined. Then the specific areas of register renaming, instruction win-
dow wakeup and selection logic, and operand bypassing are ana-
lyzed. Each is modeled and Spice simulated for feature sizes of
0.8um, 0.35um, and 0.18um. Performance results and trends are
expressed in terms of issue width and window size. Our analysisin-
dicates that window wakeup and selection logic as well as operand
bypass logic are likely to be the most critical in the future.

A microarchitecture that simplifies wakeup and selection logic
is proposed and discussed. Thisimplementation puts chains of de-
pendent instructions into queues, and issues instructions from mul-
tiple queues in paralel. Simulation shows little slowdown as com-
pared with acompl etely flexibleissue window when performanceis
measured in clock cycles. Furthermore, because only instructions at
queue heads need to be awakened and sel ected, issuelogicissimpli-
fied and the clock cycleisfaster —consequently overall performance
isimproved. By grouping dependent instructions together, the pro-
posed microarchitecture will help minimize performance degrada-
tion due to low bypasses in future wide-issue machines.

1 Introduction

For many years, amajor point of contention among microproces-
sor designers hasrevolved around compl ex implementations that at-
tempt to maximizethe number of instructionsissued per clock cycle,
and much simpler implementations that have a very fast clock cy-
cle. Thesetwo campsareoften referred to as“ brainiacs’ and “ speed
demons’ —taken from an editorial in Microprocessor Report [7]. Of
course the tradeoff is not a simple one, and through innovation and
good engineering, it may be possible to achieve mogt, if not al, of
the benefits of complex issue schemes, while still allowing a very
fast clock in the implementation; that is, to develop microarchitec-
tures we refer to as complexity-effective. One of two primary ob-
jectives of this paper is to propose such a complexity-effective mi-
croarchitecture. The proposed microarchitecture achieves high per-
formance, as measured by instructions per cycle (IPC), yet it permits
adesign with avery high clock frequency.

Supporting the claim of high IPC with a fast clock leads to the
second primary objective of this paper. It is commonplace to mea-
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sure the effectiveness (i.e. 1PC) of a new microarchitecture, typ-
icaly by using trace driven simulation. Such simulations count
clock cycles and can provide IPC in a fairly straightforward man-
ner. However, the complexity (or simplicity) of amicroarchitecture
is much more difficult to determine —to be very accurate, it requires
afull implementation in a specific technology. What is very much
needed are fairly straightforward measures of complexity that can
be used by microarchitects at afairly early stage of the design pro-
cess. Such methods would allow the determination of complexity-
effectiveness. It is the second objective of this paper to take a step
inthedirection of characterizing complexity and complexity trends.

Before proceeding, it must be emphasized that while complexity
can be variously quantified in terms such as number of transistors,
diearea, and power dissipated, inthispaper complexity is measured
as the delay of the critica path through a piece of logic, and the
longest critical path through any of the pipeline stages determines
the clock cycle.

The two primary objectives given above are covered in reverse
order — first sources of pipeline complexity are analyzed, then a
new complexity-effective microarchitecture is proposed and eval-
uated. In the next section we describe those portions of a microar-
chitecture that tend to have complexity that grows with increasing
instruction-level parallelism. Of these, we focus on instruction dis-
patch and issue logic, and data bypass logic. We analyze potential
critical pathsin these structures and develop models for quantifying
their delays. We study the variation of these delays with microarchi-
tectural parameters of window size (the number of waiting instruc-
tionsfromwhich ready instructions are sel ected for issue) and theis-
sue width (the number of instructions that can be issued in acycle).
We aso study the impact of the technology trend towards smaller
feature sizes. The complexity analysis shows that logic associated
with the issue window and data bypasses are likely to be key lim-
iters of clock speed since smaller feature sizes cause wire delaysto
dominate overall delay [20, 3].

Taking sources of complexity into account, we propose and eval-
uate a new microarchitecture. This microarchitecture is called
dependence-based because it focuses on grouping dependent in-
structionsrather than independent ones, asis often the casein super-
scalar implementations. The dependence-based microarchitecture
simplifiesissue window logic while exploiting similar levels of par-
alelism to that achieved by current superscalar microarchitectures
using more complex logic.

Therest of the paper is organized asfollows. Section 2 describes
the sources of complexity in a baseline microarchitecture. Section
3 describes the methodology we use to study the critical pipeline



structuresidentified in Section 2. Section 4 presents adetailed anal-
ysis of each of the structures and shows how their delays vary with
microarchitectural parameters and technology parameters. Section
5 presents the proposed dependence-based microarchitecture and
some preliminary performance results. Finally, we draw conclu-
sionsin Section 6.

2 Sources of Complexity

Inthissection, specific sources of pipeline complexity are consid-
ered. Weredlizethat itisimpossibleto capture all possible microar-
chitectures in a single model, however, and any results have some
obvious limitations. We can only hope to provide afairly straight-
forward model that istypical of most current superscalar processors,
and suggest that analyses similar to those used here can be extended
to other, more advanced techniques as they are devel oped.

g || =3 7 &
i E 18
ks 5 [ B2 =S g
- o x| = @ <
= a

FETCH | DECODE | RENAME | ‘Y8 C0T REG READ BUrALS | Acotes | Gommie

Figure 1. Baseline superscalar model.

Figure 1 shows the baseline model and the associated pipéline.
The fetch unit reads multiple instructions every cycle from the in-
struction cache, and branches encountered by the fetch unit are pre-
dicted. Next, instructions are decoded and their register operands
arerenamed. Renamed instructions are dispatched to theinstruction
window, where they wait for their source operands and the appro-
priate functional unit to become available. As soon as these condi-
tions are satisfied, instructions are issued and executed in the func-
tional units. The operand values of an instruction are either fetched
from theregister file or are bypassed from earlier instructionsin the
pipeline. The data cache provides low latency access to memory
operands.

2.1 Basic Structures

As mentioned earlier, probably the best way to identify the pri-
mary sources of complexity in amicroarchitectureisto actually im-
plement the microarchitecture in a specific technology. However,
thisis extremely time consuming and costly. Instead, our approach
is to select certain key structures for study, and develop relatively
simple delay models that can be applied in a straightforward man-
ner without relying on detailed design.

Structures to be studied were selected using the following crite-
ria. First, we consider structures whose delay is a function of issue
window size and/or issue width; these structures are likely to be-
come cycle-time limiters in future wide-issue superscalar designs.
Second, we are interested in dispatch and issue-related structures
because these structures form the core of a microarchitecture and
largely determine the amount of parallelism that can be exploited.
Third, some structures tend to rely on broadcast operations over
long wires and hence their delays might not scale as well as logic-
intensive structuresin future technol ogieswith smaller feature sizes.

The structures we consider are:

o Register rename logic. This logic trandates logica register
designators into physical register designators.

e \Wakeup logic. Thislogic is part of the issue window and is
responsible for waking up instructions waiting for their source
operands to become available.

e Sdectionlogic. Thislogic isanother part of theissue window
and isresponsible for selecting instructionsfor execution from
the pool of ready instructions.

e Bypasslogic. Thislogic isresponsible for bypassing operand
values from instructions that have completed execution, but
have not yet written their results to the register file, to subse-
guent instructions.

There are other important pieces of pipeline logic that are not con-
sidered in this paper, even though their delay is a function of dis-
patch/issue width. In most cases, their delay has been considered
elsewhere. Theseincluderegister filesand caches. Farkaset. a. [6]
study how the access time of the register file varies with the number
of registers and the number of ports. The accesstime of acacheisa
function of the size of the cache and the associativity of the cache.
Wada et. a. [18] and Wilton and Jouppi [21] have developed de-
tailed models that estimate the access time of acache givenitssize
and associativity.

2.2 Current Implementations

The structures identified above were presented in the context
of the baseline superscalar model shown in Figure 1. The MIPS
R10000 [22] and the DEC 21264 [10] arereal implementations that
directly fit thismodel. Hence, the structures identified above apply
to these two processors.

On the other hand, the Intel Pentium Pro [9], the HP PA-8000
[12], the PowerPC 604 [16], and the HAL SPARC64 [8] do not
completely fit the baseline model. These processors are based on
amicroarchitecture where the reorder buffer holds non-committed,
renamed register values. In contrast, the baseline microarchitec-
ture uses the physica register file for both committed and non-
committed values. Nevertheless, the point to be noted isthat the ba-
sic structuresidentified earlier are present in both types of microar-
chitectures. The only notable difference is the size of the physical
register file.

Finally, while the discussion about potential sources of complex-
ity isin the context of an out-of-order baseline superscalar model,
it must be pointed out that some of the critical structures identified
apply to in-order processors, too. For example, part of the register
rename logic (to be discussed | ater) and the bypass logic are present
inin-order superscalar processors.

3 Methodology

The key pipeline structures were studied in two phases. In the
first phase, we selected arepresentative CMOS circuit for the struc-
ture. Thiswas done by studying designs published in the literature
(e.g. 1SSCC ! proceedings) and by collaborating with engineers at
Digital Equipment Corporation. In caseswherethere wasmorethan
one possible design, we did a preliminary study of the designs to
decide in favor of one that was most promising. By basing our cir-
cuits on designs published by microprocessor vendors, we believe
the studied circuits are similar to circuits used in microprocessor de-
signs. Inpractice, many circuit tricks could be employed to optimize
critical paths. However, we believe that the rel ative delays between
different structures should be more accurate than the absolute de-
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Inthe second phase weimplemented thecircuit and optimized the
circuit for speed. We used the Hspice circuit simulator [14] from
Meta-Software to simulate the circuits. Primarily, static logic was
used. However, in situations where dynamic logic helped in boost-
ing the performance significantly, we used dynamic logic. For ex-
ample, in the wakeup logic, a dynamic 7-input NOR gate is used
for comparisons instead of astatic gate. A number of optimizations
were applied to improve the speed of the circuits. First, al the tran-
sistors in the circuit were manually sized so that overall delay im-
proved. Second, logic optimizations like two-level decomposition
were applied to reduce fan-in requirements. We avoided using static
gates with a fan-in greater than four. Third, in some cases transis-
tor ordering was modified to shorten the critical path. Wire para-
sitics were added at appropriate nodes in the Hspice model of the
circuit. These parasitics were computed by calculating the length
of the wires based on the layout of the circuit and using the values
of Rpmetar @Nd Crretar, the resistance and parasitic capacitance of
metal wires per unit length.

To study the effect of reducing the feature size on the delays
of the structures, we simulated the circuits for three different fea-
turesizes: 0.8um, 0.35um, and 0.18um respectively. Layouts for
the 0.35um and 0.18ym process were obtained by appropriately
shrinking the layouts for the 0.8 um process. The Hspice models
used for the three technologies are tabulated in [15].

4 Pipeine Complexity

In this section, we analyze the critical pipeline structures. The
presentation for each structure begins with a description of the log-
ical function being implemented. Then, possible implementation
schemes are discussed, and one is chosen. Next, we summarize our
analysis of the overall delay in terms of the microarchitectural pa-
rameters of issue width and issue window size; a much more de-
tailed version of the analysis appearsin [15]. Finally, Hspicecircuit
simulation results are presented and trends are identified and com-
pared with the earlier analysis.

4.1 Register RenameLogic

Register rename logic tranglates logical register designators into
physical register designators by accessing a map table with the log-
ical register designator as the index. The map table holds the cur-
rent logical to physical mappings and is multi-ported because mul-
tiple instructions, each with multiple register operands, need to be
renamed every cycle. The high level block diagram of the rename
logicisshown in Figure 2. In addition to the map table, dependence
check logic isrequired to detect cases where thelogical register be-
ing renamed iswritten by an earlier instruction in the current group
of instructions being renamed. The dependence check logic detects
such dependences and sets up the output MUXes so that the appro-
priate physical register designators are selected. At the end of every
rename operation, the map tableis updated to reflect the new logical
to physica mappings created for the result registers written by the
current rename group.

411 Structure

The mapping and checkpointing functions of the rename logic
can beimplementedin at least two ways. Thesetwo schemes, called
the RAM scheme and the CAM scheme, are described next.

o RAM scheme
In the RAM scheme, implemented in the MIPS R10000 [22],
themap tableisaregister filewhere thelogical register desig-
nator directly accesses an entry that contains the physical reg-
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Figure 2: Register rename logic.

ister to which it is mapped. The number of entriesin the map
tableisequal to the number of logical registers.

¢ CAM scheme

An alternate scheme for register renaming uses a CAM
(content-addressable memory) [19] to store the current map-
pings. Such aschemeisimplemented in the HAL SPARC [2]
and the DEC 21264 [10]. The number of entriesinthe CAM is
equal to the number of physical registers. Each entry contains
two fields: thelogical register designator that is mapped to the
physical register represented by the entry and avalid bit that is
set if the current mapping isvalid. Renaming is accomplished
by matching on the logical register designator field.

In general, the CAM scheme is less scalable than the RAM scheme
because the number of CAM entries, which is equa to the number
of physical registers, tends to increase with issue width. Also, for
the design space we are interested in, the performance was found to
be comparable. Conseguently, wefocus onthe RAM method bel ow.
A more detailed discussion of the trade-offs involved can be found
in[15].

The dependence check logic proceedsin parallel withthe map ta-
ble access. Every logical register designator being renamed is com-
pared against the logical destination register designators of earlier
instructions in the current rename group. If there is a match, then
the physical register assigned to theresult of theearlier instructionis
used instead of the one read from the map table. In the case of mul-
tiple matches, the register corresponding to the latest (in dynamic
order) match is used. Dependence check logic for issue widths of
2, 4, and 8 was implemented. We found that for these issue widths,
the delay of the dependence check logic isless than the delay of the
map table, and hence the check can be hidden behind the map table
access.

4.1.2 Deay Analysis

Asthe name suggests, the RAM scheme operates like a standard
RAM. Address decoders drive word lines; an access stack at the ad-
dressed cell pulls abitline low. The bitline changes are sensed by a
sense amplifier whichin turn produces the output. Symbolically the
rename delay can be written as,

Trename = Tdecode + Twordiine + Thittine + Tsenseamp

The anaysis presented here and in following subsections focuses
on those parts of the delay that are a function of the issue width and
window size. All sources of delay are considered in detail in [15].
In the rename logic, the window size is not a factor, and the issue
width affects delay through its impact on wire lengths. Increasing



the issue width increases the number of bitlines and wordlines in
each cell thus making each cell bigger. Thisin turn increases the
length of the predecode, wordline, and bitline wires and the associ-
atedwiredelays. Thenet effect isthefollowing relationshipsfor the
delay components:

2
Taecodes Twordiine s Thitiine = co +c1 X IW 4+ ca2 X IW

where IW istheissuewidth and ¢, ¢1, and ¢2 areconstantsthat are
fixed for agiven technology and instruction set architecture; deriva-
tion of the constants for each component is given in [15]. In each
case, the quadratic component, resulting from the intrinsic RC de-
lay of wires, is relatively small for the design space and technolo-
gies we explored. Hence, the decode, wordline, and bitline delays
are effectively linear functions of the issue width.

For the sense amplifier, we found that even though its structural
constitution isindependent of the issue width, itsdelay isafunction
of the slope of the input — the bitline delay — and therefore varies
linearly with issue width.

4.1.3 Spice Results

For our Hspice simulations, Figure 3 shows how the delay of the
rename logic varies with the issue width i.e. the number of instruc-
tions being renamed every cycle for the three technologies. The
graph includes the breakdown of delay into components discussed
in the previous section.

A number of observations can be made from the graph. The to-
tal delay increases linearly with issue width for all the technologies.
Thisisin conformance with our analysis, summarized in the previ-
ous section. Furthermore, each of the components shows a linear
increase with issue width. Theincrease in the bitline delay islarger
than the increase in the wordline delay as issue width is increased
because the bitlines are longer than the wordlinesin our design. The
bitlinelengthisproportional to the number of logical registers(32in
most cases) whereasthe wordline length is proportional to thewidth
of the physical register designator (less than 8 for the design space
we explored).

Another important observation that can be made fromthegraphis
that the relative increase in wordline delay, bitline delay, and hence,
total delay asafunction of issue width worsens asthe feature sizeis
reduced. For example, as the issue width isincreased from 2 to 8,
the percentage increase in bitline delay shoots up from 37% to 53%
asthefeature sizeisreduced from 0.8um t00.18um. Logic delays
in the various components are reduced in proportion to the feature
size, while the presence of wire delays in the wordline and bitline
components cause the wordline and bitline components to fall at a
dower rate. In other words, wire delays in the wordline and bitline
structureswill becomeincreasingly important asfeature sizesarere-
duced.

4.2 Wakeup Logic

Wakeup logic isresponsible for updating source dependences for
instructionsin theissue window waiting for their source operandsto
become available.

421 Structure

Wakeup logicisillustratedin Figure4. Every timearesultispro-
duced, atag associated with the result is broadcast to al the instruc-
tions in the issue window. Each instruction then compares the tag
with the tags of its source operands. If thereisamatch, the operand
ismarked as available by setting therdyL or rdyR flag. Once al the
operands of an instruction become available (both rdyL and rdyR
are set), the instruction isready to execute, and the ready flag is set
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Figure 3: Rename delay versus issue width.

to indicate this. The issue window isa CAM array holding one in-
struction per entry. Buffers, shown at the top of the figure, are used
todrivetheresult tagstagl totagI W ,where |W istheissuewidth.
Each entry of the CAM has 2 x IW comparators to compare each
of the resultstags against the two operand tags of the entry. The OR
logic ORs the comparator outputs and sets the rdyL/rdyR flags.

taglW tagl

oG

‘rdyL‘ ‘opdtagL‘ ‘opdtagR‘ ‘rdyR‘ inst0

‘rdyL‘ ‘opdtagL‘ ‘opdtagR‘ ‘rdyR‘ instN-1

Figure 4: Wakeup logic.

4.2.2 Deay Analysis

The delay consists of three components. the time taken by the
buffers to drive the tag bits, the time taken by the comparatorsin a
pull-down stack corresponding to amismatching bit position to pull
the matchline low 2, and the time taken to OR the individual match
signals (matchlines). Symbolically,

Delay = Tiagdrive + Ttagmateh + TmatchoRr

The time taken to drive the tags depends on the length of the tag
lines and the number of comparators on thetag lines. Increasing the
window size increases both these terms. For a given window size,

2\We assume that only one pull-down stack is turned on since we are in-
terested in the worst-case delay.



increasing issue width also increases both the terms in the follow-
ing way. Increasing issue width increases the number of matchlines
in each cell and hence increases the height of each cell. Also, in-
creasing issue width increases the number of comparators in each
cell. Note that we assume the maximum number of tags produced
per cycleis equal to the maximum issue width.

Insimplified form (see[15] for amore detailed analysis), thetime
taken to drive the tagsis:

Tta.gdrive = c¢o+ (CI +c2 X IW) x WINSIZE =+
(c3 +ca x IW 4 ¢5 x IW?) x WINSIZE®

The above equation showsthat thetag drivetimeisaquadratic func-
tion of the window size. The weighting factor of the quadratic term
isafunction of the issue width. The weighting factor becomes sig-
nificant for issue widths beyond 2. For agiven window size, thetag
drive timeis also a quadratic function of the issue width. For cur-
rent technologies (0.35um and longer) the quadratic component is
relatively small and the tag drive timeislargely alinear function of
issue width. However, asthe feature sizeis reduced to 0.18 um, the
quadratic component aso increases in significance. The quadratic
component results from the intrinsic RC delay of the tag lines.

In reality, both issue width and window size will be smulta-
neously increased because a larger window is required for find-
ing more independent instructions to take advantage of wider issue.
Hence, the tag drive time will become significant in future designs
with wider issue widths, bigger windows, and smaller feature sizes.

The tag match time is primarily a function of the length of the
matchline, which varies linearly with the issue width. The match
OR timeisthe time taken to OR the match lines, and the number of
matchlines is a linear function of issue width. Both of these (refer
to [15]) have adelay:

Tta.gma.tch, TmatchOR = Co +c1 X Iw “+c2 X IW2
However, in both cases the quadratic term is very small for the de-

sign space we consider, so these delays are linear functions of issue
width.
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Figure 5: Wakeup logic delay versus window size.

4.2.3 Spice Results
The graph in Figure 5 shows how the delay of the wakeup logic
varieswithwindow sizeandissuewidthfor 0.18m technology. As

expected, the delay increases aswindow sizeand issuewidth arein-
creased. The quadratic dependence of thetotal delay on the window
sizeresultsfrom the quadraticincreasein tag drive time as discussed
in the previous section. Thiseffect isclearly visible for issue width
of 8 and is less significant for issue width of 4. We found similar
curves for 0.8um and 0.35um technologies. The quadratic depen-
dence of delay on window sizewas more prominent inthecurvesfor
0.18sm technology than in the case of the other two technologies.

Also, issue width has a greater impact on the delay than window
size because increasing issue width increases all three components
of thedelay. Onthe other hand, increasing window size only length-
ensthetag drivetimeand toasmall extent thetag match time. Over-
all, the results show that the delay increases by almost 34% going
from 2-way to 4-way and by 46% going from 4-way to 8-way for
awindow size of 64 instructions. In redlity, the increase in delay
is going to be even worse because in order to sustain awider issue
width, alarger window isrequired to find independent instructions.

Figure 6 shows the effect of reducing feature sizes on the vari-
ous components of the wakeup delay for an 8-way, 64-entry win-
dow processor. The tag drive and tag match delays do not scale as
well asthematch OR delay. Thisisexpected sincetag drive and tag
match delays include wire delays whereas the match OR delay only
consists of logic delays. Quantitatively, the fraction of thetotal de-
lay contributed by tag drive and tag match delay increases from 52%
to 65% as the feature size is reduced from 0.84m t0 0.18um. This
shows that the performance of the broadcast operation will become
more crucia in future technologies.
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Figure 6: Wakeup delay versus feature size.

4.3 Selection Logic

Selectionlogicisresponsible for choosing instructionsfor execu-
tion from the pool of ready instructions in the issue window. Some
form of selection logic isrequired because the number and types of
ready instructions may exceed the number and types of functional
units available to execute them.

Inputs to the selection logic are request (REQ) signals, one per
instruction in the issue window. Therequest signal of an instruction
israised when the wakeup logic determines that all its operands are
available. Theoutputs of the selectionlogic aregrant (GRANT) sig-
nals, one per request signal. On receipt of the GRANT signal, the
associated instruction is issued to the functional unit.

A selection policy is used to decide which of the requesting in-
structions is granted. An example selection policy is oldest first -
theready instruction that occurs earliest in program order is granted



the functional unit. Butler and Patt [5] studied various policies for
scheduling ready instructions and found that overall performanceis
largely independent of the selection policy. The HP PA-8000 uses
a selection policy that is based on the location of the instruction in
the window. We assume the same selection policy in our study.

‘ ISSUE WINDOW

lilg!ﬁ IR
L ’T;

hhhhhh

from/to other subtrees

= 111
| o5

Figure 7: Selection logic.

4.3.1 Structure

Thebasic structure of selection logicisshownin Figure 7. Modi-
ficationsto this scheme for handling multiple functional units of the
sametype are discussed in [15]. Selection logic consists of atree of
arbiters that works in two phases. In thefirst phase, request signals
are propagated up thetree. Each cell raisesthe anyreq signal if any
of itsinput request signalsis high. Thisin turn raises the input re-
quest signal of its parent arbiter cell. At the root cell one or more
of theinput request signals will be high if there are one or morein-
structions that are ready. The root cell grants the functional unit to
one of its children by raising one of its grant outputs. Thisinitiates
the second phase where the grant signal is propagated down the tree
totheinstruction that isselected. Theenablesignal totheroot cell is
high whenever thefunctional unit isready to execute an instruction.

The selection policy implemented is static and based strictly on
location of theinstruction in theissue window. Theleftmost entries
in the window have the highest priority. The oldest first policy can
be implemented using this scheme by compacting the issue window
totheleft every timeinstructions areissued and by inserting new in-
structions at theright end. However, it is possible that the complex-
ity of compaction could degrade performance. In this case, some
restricted form of compacting can be used — so that overall perfor-
mance is not affected. We did not analyze the complexity of com-
pacting in this study.

4.3.2 Delay Analysis

Thedelay of the selection logic isthetimeit takesto generate the
grant signal after therequest signal has been raised. Thisisequal to
the sum of three terms: the time taken for the request signal to prop-
agate to the root of the tree, the delay of the root cell, and the time
taken for the grant signal to propagate from the root to the selected
instruction. Hence, the selection delay depends on the height of the
arbitration tree and can be written as (see [15] for a more detailed
andysis):

Tsetection = Co + €1 X lOg4(WINSIZE)

wherecp and ¢; are constants determined by the propagation delays
of asingle arbiter. We found the optimal number of arbiter inputsto
be four in our case, so the logarithm is base 4. The selection logic
in the MIPS R10000, described in [17], is also based on four-input
arbiter cells.

4.3.3 SpiceResults

Figure 8 shows the delay of the selection logic for various win-
dow sizes and for the three feature sizes assuming a single func-
tional unit is being scheduled. The delay is broken down into the
three components. From the graph we can see that for all the three
technologies, the delay increases logarithmically with window size.
Also, theincrease in delay islessthan 100% when the window size
isincreased from 16 instructions to 32 instructions (or from 64 in-
structions to 128 instructions) since one of the components of the
total delay, the delay at the root cell, isindependent of the window
size.
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Figure 8: Selection delay versus window size.

The various components of the total delay scale well as the fea-
ture sizeisreduced. Thisis not surprising since al the delays are
logic delays. It must be pointed out that we do not consider the
wires in the circuit, so the selection delays presented here are op-
timistic, especialy if the request signals (the ready flags discussed
in the wakeup logic) originate from the CAM entries in which the
instructions reside. On the other hand, it might be possible to mini-
mize the effect of these wire delaysif theready signalsare stored in
asmaller, more compact array.

4.4 DataBypassLogic

Databypasslogicisresponsiblefor forwarding result valuesfrom
completing instructions to dependent instructions, bypassing the
register file. The number of bypass paths required is determined by
the depth of the pipeline and the issue width of the microarchitec-
ture. Aspointed out in[1], if IW istheissue width, and if thereare
S pipestages after the first result-producing stage, then a fully by-
passed design would require (2 x ITW? x S bypass paths assuming
2-input functional units. In other words, the number of bypass paths
grows quadratically with issuewidth. Thisisof critical importance,
given the current trends toward deeper pipelines and wider issue.

Bypass logic consists of two components: datapath and control.
The datapath comprises result busses, that are used to broadcast by-



pass values from each functiona unit source to al possible des-
tinations. Buffers are used to drive the bypass values on the re-
sult busses. In addition to the result busses, the datapath comprises
operand MUXes. Operand MUXes arerequired to gatein the appro-
priate result on to the operand busses. The control logicisresponsi-
ble for controlling the operand MUXes. It compares the tags of the
result values with the tag of source value required at each functional
unit. If there is a match, the MUX control is set so that the result
value is driven on the appropriate operand bus. The key factor that
determines the speed of the bypass logic is the delay of the result
wires that are used to transmit bypassed values, not the control.

441 Structure

A commonly used structurefor bypasslogicisshowninFigure9.
The figure shows a bit-dlice of the datapath. There are four func-
tional units marked FUO to FU3. Consider the hit dlice of FUO. It
getsitstwo operand bits from the opdO-I and opdO-r wires. There-
sult bit is driven on the resO result wire by the result driver. Tris-
tate buffers are used to drive the result bits on to the operand wires
from the result wires of the functional units. These buffers imple-
ment the MUXes shown in the figure. To bypass the result of func-
tional unit FU1 to the left input of functional unit FUOQ, the tristate
driver marked A isswitched on. Thedriver A connectstheresl wire
and the opdO-1 wire. In the case where bypasses are not activated,
operand bitsare placed on the operand wires by theregister fileread
ports 3. The result bits are written to the register file in addition to
being bypassed.

FU3
mux C@ % @ @ S & & &
288 %8
o o o O
FU2
==
mux
Regfile H
AUX
FUO
r@ltéfi <_<1J
wires =
FU1
<+

Figure 9: Bypasslogic.

4.4.2 Deay Analysis

Thedelay of thebypasslogicislargely determined by theamount
of time it takes for the driver at the output of each functional unit
to drive the result value on the corresponding result wire. Thisin
turn depends on the length of the result wires. From the figureitis
apparent that the length of the wiresisafunction of the layout. For
the layout presented in the figure, the length of the result wiresis
determined by the height of the functional units and the register file.

31n areservation-station based microarchitecture, the operand bits come
from the data field of the reservation station entry.

|ssue Wire Delay

width | length (\) | (ps)
) 20500 184.9
8 49000 | 1056.4

Table 1: Bypass delays for a 4-way and a8-way processor.

Considering the result wires as distributed RC lines, the delay is
given by

2
Tbypa.s.s =0.5x Rmetal X Cmeta.l x L

where L is the length of the result wires, and R,.cta; and Chrctal
are the resistance and parasitic capacitance of metal wires per unit
length respectively.

Increasing issue width increases the length of the result wires,
and hence causes the bypass delay to grow quadratically with issue
width. Increasing the depth of the pipeline also increases the delay
of the bypass logic in the following manner. Making the pipeline
deeper increases the fan-in of the operand MUXes connected to a
given result wire. Thisin turn increases the amount of capacitance
on the result wires, and hence adds to the delay of the result wires.
However, this component of the delay is not captured by our smple
model. This component of the delay is likely to become relatively
less significant as feature size is reduced.

4.4.3 SpiceResults

We computed the wire delays for hypothetical 4-way and 8-way
machines assuming common mixes of functional units and func-
tional unit heights reported in the literature. Table 1 shows the re-
sults. Wirelengths are shown interms of A, where A ishalf the fea-
ture size. The delays are the same for the three technologies since
wire delays are constant according to the scaling model assumed.
See [15] for the detailed data and analysis.

4.4.4 Alternative Layouts

The results presented above assume a particular layout; the func-
tional units are placed on either side of the register file. However,
as mentioned before, the length of the result wires is a function of
thelayout. Hence, VLSI designerswill haveto study alternativelay-
outsinorder to reduce bypass delays. Alternative layouts aone will
only decrease constants; the quadratic delay growth with number of
bypasses will remain.

In the long term, microarchitects will have to consider clustered
organizationswhere each cluster of functional unitshasitsown copy
of the register file and bypasses within a cluster completein asin-
gle cycle whileinter-cluster bypasses take two or more cycles. The
hardware or the compiler or both will have to ensure that inter-
cluster bypasses occur infrequently. In addition to mitigating the de-
lay of the bypass logic, this organization also has the advantage of
faster register files since there are fewer ports on each register file.

45 Summary of Delays and Pipeline I ssues

We now summarize the pipeline delay results and consider the
implications for future complexity-effective microarchitectures. It
is easiest to frame this discussion in terms of satisfying the goal of
permitting avery fast pipeline clock while, at the sametime, exploit-
ing high ILPthrough relatively wide, out-of-order superscalar oper-
ation.



Issue | Window | Rename | Wakeup+Select Bypass
width size delay (ps) delay (ps) delay (ps)
0.8um technology
4 32 1577.9 2903.7 184.9
8 64 17105 3369.4 1056.4
0.35m technology
4 32 627.2 1248.4 184.9
8 64 726.6 1484.8 1056.4
0.18um technology
4 32 351.0 578.0 184.9
8 64 427.9 724.0 1056.4

Table 2: Overall delay results.

To aid in thisdiscussion, consider the overall resultsfor a4-way
and a8-way microarchitecturein 0.18m technology shown in Ta-
ble 2. We chose the 0.18um technology because of our interest in
future generation microarchitectures. For the 4-way machine, the
window logic (wakeup + select) hasthe greatest delay among all the
structures considered, and hence determines the critical path delay.
The register rename delay comes next; it is about 39% faster than
the delay of the window logic. The bypass delay isrelatively small
inthiscase. Theresultsare similar for the 8-way machine, with one
very notable exception: the bypass delay grows by a factor of over
5, and is now worse than the (wakeup + select) delay.

Now, let’s turn to the problem of designing a future generation
microarchitecture with a faster clock cycle. Of the structures we
have examined here, the window logic and the bypasses seem to
posethelargest problems. Moreover, both of these cause difficulties
if we wish to divide them into more pipeline segments; these diffi-
culties will be discussed in the following paragraphs. All the other
structures either will not cause a clock cycle problem, or if they do,
they can be pipdined. The pipelining aspects of these structuresis
discussed in [15]. This additiona pipelining can cause some per-
formance impact, although it is beyond the scope of this paper to
evaluate the exact impact.

‘ MAKEUP SELECT| EXEC ‘ addr10, r1, r2
‘ . AKEUP\-SELECT EXEC . ‘ bubbie
‘ WAKEUP| SELECT| EXEC ‘ ‘sub r1, 10, 2

Figure 10: Pipelining wakeup and select.

Wakeup and select together constitute what appears to be an
atomic operation. That is, if they are divided into multiple pipeline
stages, dependent instructions cannot issue in consecutive cycles.
Consider the pipeline example shownin Figure 10. Theadd andthe
sub instructions cannot be executed back-to-back because the re-
sult of the select stage has to feed the wakeup stage. Hence, wakeup
and select together constitute an atomic operation and must be ac-
complished inasinglecycle, at least if dependent instructionsareto
be executed on consecutive cycles.

Data bypassing is another example of what appears to be an
atomic operation. In order for dependent operations to execute in
consecutive cycles, the bypass value must be made available to the
dependent instruction within acycle. Results presented in table Ta-
ble 2 show that thisisfeasible for a 4-way machine. However, by-
pass delay can easily become a bottleneck for wider issue-widths.

One solution is to include only a proper subset of bypass paths

[1], and take a penalty for those that are not present. For an 8-way
machine with deep pipelines, this would exclude a large number of
bypass paths. Another solution isto generalize the method used in
the DEC 21264 [10] and use multiple copies of theregister file. This
isthe “cluster” method referred to in Section 4.4.

In the following section we tackle both the window logic and
bypass problems by proposing a microarchitecture that simplifies
window logic and which naturally supports clustering of functional
units.

5 A Complexity-Effective Microarchitecture

From the analysis presented in the previous sections we see that
the issue window logic is one of the primary contributors of com-
plexity in typical out-of-order microarchitectures. Also, as archi-
tects employ wider issue-widths and deeper pipelines, the delay of
the bypass|ogic becomes even morecritical. Inthissection, we pro-
pose a dependence-based microarchitecture that replaces the issue
window with asimpler structure that facilitates afaster clock while
exploiting similar levels of parallelism. In addition, the proposed
microarchitecture naturally lendsitself to clustering and helps miti-
gate the bypass problem to alarge extent.
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Figure 11: Dependence-based microarchitecture.

Theideabehind the dependence-based microarchitectureisto ex-
ploit the natural dependences among instructions. A key point is
that dependent instructions cannot execute in parallel. In the pro-
posed microarchitecture, shown in Figure 11, the issue window is
replaced by a small number of FIFO buffers. The FIFO buffers are
constrained to issue in-order, and dependent instructions are steered
to the same FIFO. This ensures that the instructions in a particular
FIFO buffer can only execute sequentially. Hence, unlike the typ-
ical issue window where result tags have to be broadcast to all the
entries, the register availability only needs to be fanned out to the
heads of the FIFO buffers. Theinstructions at the FIFO heads mon-
itor reservation hits (one per physical register) to check for operand
availability. Thisisdiscussed indetail later. Furthermore, the selec-
tion logic only has to monitor instructions at the heads of the FIFO
buffers.

The steering of dependent instructions to the FIFO buffers is
performed at run-time during the rename stage. Dependence in-
formation between instructions is maintained in a table called the
SRC_FI FOtable. Thistableisindexed using logica register des-
ignators. SRC_FI FQ( Ra) , the entry for logical register Ra, con-
tains the identity of the FIFO buffer that contains the instruction
that will writeregister Ra. If that instruction has already completed
i.e. register Ra contains its computed value, then SRC_FI FQ( Ra)
isinvalid. This table is similar to the map table used for reg-
ister renaming and can be accessed in paralel with the rename
table. In order to steer an instruction to a particular FIFO, the
SRC_FI FO table is accessed with the register identifiers of the
source operands of an instruction. For example, for steering thein-
struction add r 10, r5, 1 wherer 10 is the destination register,



the SRC_FI FOtable is indexed with 5. The entry is then used to
steer the instruction to the appropriate FIFO.

5.1 Instruction Steering Heuristics

A number of heuristics are possible for steering instructions to
the FIFOs. A simple heuristic that we found to work well for our
benchmark programs is described next.

Let| betheinstruction under consideration. Depending upon the
availability of | 's operands, the following cases are possible:

o All the operands of | have aready been computed and are re-
siding in the register file. Inthiscase, | is steered to a new
(empty) FIFO acquired from apool of free FIFOs.

e | requiresasingle outstanding operand to be produced by in-
struction | sour ce residing in FIFO Fa. Inthiscase, if there
isno instruction behind | sour ce in Fa then | is steered to
Fa, elsel issteered to anew FIFO.

e | requires two outstanding operands to be produced by in-
structions| | ef t and | ri ght residing in FIFOs Fa and Fb
respectively. In this case, apply the heuristic in the previous
bullet to the left operand. If the resulting FIFO is not suitable
(it iseither full or thereis an instruction behind the source in-
struction), then apply the same heuristic to the right operand.

If all the FIFOs arefull or if no empty FIFO isavailable then the
decoder/steering logic stalls. A FIFO is returned to the free pool
when the last instruction in the FIFO isissued. Initialy, all the FI-
FOsareinthefree pool. Figure 12 illustratesthe heuristic on acode
segment from one of the SPEC benchmarks.

Fetch width

any 8 instructions

I-cache

Perfect instruction cache

Branch Predictor

McFarling's gshare [13]
4K 2-bit counters, 12 hit history
unconditional control instructions

predicted perfectly
Issue window size 64
Max. in-flight 128
instructions
Retire width 16
Functional Units 8 symmetrical units
Functional Unit Latency | 1cycle

Issue Mechanism

out-of-order issue of up to 8 ops/cycle
loads may execute when all prior

store addresses are known
Physical Registers 120int/120 fp
D-cache 32KB, 2-way SA

write-back, write-allocate
32 byte lines,1 cycle hit,6 cycle miss
four load/store ports

TIME
20
> Y .
013
o addusiggoge (O ® ® —3 e
1: addiu $2,$0,-1 ]
2 Ibeq $i18,$2,L%$ ) N
3 lw $4,-32768($28
4: dlv£2,$§8§20 o e _ 2]
5: xor $16,$2,$19 754 .
6: lw 83, 32676(526) \ — 24bise
7: ol $2,$16,0x2
8 ladd; $2(,§2),$23 @/ — 1
9: lw $2,0($2
10: i;\é $g,$1g,4$§ ﬂ éﬁ l 1110
11: u 17, y 19 9875 R
12 addiu$3831 > ) % 5,10 issue
13 v $3-32676(328) (8)
14: beq $2,$17,L.3 é@/ _ ]
e 1
14987 .
o 7,11,12 issue
]

Figure 12: Instruction steering example.

This figure shows how instructions are steered to FIFOs using the heuristic
presented in Section 5.1 for a sample code segment. Instructions can issue
only from the heads of the four FIFOs. The steering logic steersfour instruc-
tions every cycle and amaximum of four instructions can issue every cycle.

5.2 Performance Results

We compare the performance of the dependence-based microar-
chitecture against that of a typical microarchitecture with an issue
window. The proposed microarchitecture has 8 FIFOs, with each
FIFO having 8-entries. The issue window of the conventional pro-
cessor has 64 entries. Both microarchitectures can decode, rename,
and execute amaximum of 8 instructions per cycle. Thetimingsim-
ulator, amodified version of SimpleScalar [4], isdetailed in Table 3.

Table 3: Basdline simulation modd!.

An aggressive instruction fetch mechanism is used to stress the is-
sue and execution subsystems. We ran seven benchmarks from the
SPEC' 95 suite, using their training input datasets. Each benchmark
was run for a maximum of 0.5B instructions.

40, Baseline microarch.

3.5 [ Dependence-based microarch.
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Figure 13: Performance (IPC) of dependence-based microarchitec-
ture.

The performance results (in terms of instructions committed per
cycle) are shown in Figure 13. The dependence-based microarchi-
tectureisnearly aseffective (extractssimilar parallelism) asthe typ-
ical window-based microarchitecture. The cycle count numbers are
within 5% for five of the seven benchmarks and the maximum per-
formance degradation is 8% in the case of Ii.

5.3 Complexity Analysis

First, consider the delay of the wakeup and selection logic.
Wakeup logicisrequired to detect cross-FIFO dependences. For ex-
ample, if theinstruction | a at the head of FIFO Fa is dependent on
aninstruction | b waitingin FIFOFb, then| a cannot issueuntil | b
completes. However, the wakeup logic in this case does not involve
broadcasting the result tags to all the waiting instructions. Instead,
only the instructions at the FIFO heads have to determine when all



Issue | No. physical | No. table | Bitsper Total
width registers entries entry delay (ps)
4 80 10 8 192.1
8 128 16 8 2517

Table 4: Delay of reservation table in 0.18m technology.

their operands are available. Thisisaccomplished by interrogating
atable called the reservation table. The reservation table contains a
single bit per physical register that indicates whether the register is
waiting for its data. When an instruction is dispatched, the reserva
tion bit corresponding to its result register is set. The hit is cleared
when the instruction executes and the result value is produced. An
instruction at the FIFO head waits until the reservation bits corre-
sponding toitsoperands arecleared. Hence, the delay of thewakeup
logic is determined by the delay of accessing the reservation table.
The reservation table isrelatively small in size compared to the re-
name table and the register file. For example, for a 4-way machine
with 80 physical registers, the reservation table can belaid out asa
10-entry table with each entry storing 8 bits 4. Table 4 shows the
delay of the reservation table for 4-way and 8-way machines. For
both cases, the wakeup delay ismuch smaller than the wakeup delay
for a4-way, 32-entry issue window-based microarchitecture. Also,
thisdelay issmaller than the corresponding register renaming delay.
The selection logic in the proposed microarchitecture is simple be-
cause only theinstructions at the FIFO heads need to be considered
for selection.

Instruction steering is done in paraléel with register renaming.
Because the SRC_FI FOtable is smaller than the rename table, we
expect the delay of steering to belessthan therename delay. Incase
amore complex steering heuristic is used, the extradelay can easily
be moved into the wakeup/select stage, or a new pipestage can be
introduced — at the cost of an increase in branch mispredict penalty.

In summary, the complexity analysis presented above shows that
by reducing the delay of the window logic significantly, it is likely
that the dependence-based microarchitecture can be clocked faster
than the typical microarchitecture. In fact, from the overall delay
results shown in Table 2, if the window logic (wakeup + select)
is reduced substantially, register rename logic becomes the critical
stagefor a4-way microarchitecture. Consequently, the dependence-
based microarchitecture can improve the clock period by asmuch as
(an admittedly optimistic) 39% in 0.18um technology. Of course,
this may require that other stages not studied here be more deeply
pipelined. Combining the potential for amuch faster clock with the
resultsin Figure 13 indicates that the dependence-based microarchi-
tectureiscapable of superior performancerelativeto atypical super-
scalar microarchitecture.

5.4 Clustering the Dependence-based Microar chi-
tecture

Thereal advantage of the proposed microarchitectureisfor build-
ing machines with issue widths greater than four where, as shown
by Table 2, the delay of both the large window and the long bypass
busses can be significant and can considerably slow theclock. Clus-
tered microarchitectures based on the dependence-based microar-
chitecture are ideally suited for such situations because they sm-
plify both the window logic and the bypass logic. We describe one
such microarchitecture for building an 8-way machine next.

4A column MUX is used to select the appropriate bit from each entry.
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Figure 14: Clustering the dependence-based microarchitecture: 8-
way machine organized as two 4-way clusters (2 X 4-way).

Consider the 2x4-way clustered system shown in Figure 14. Two
clusters are used, each of which contains four FIFOs, one copy of
theregister file, and four functional units. Renamed instructions are
steered to aFIFO in one of thetwo clusters. Local bypasseswithina
cluster (shown using thick lines) areresponsible for bypassing result
values produced in the cluster to the inputs of the functional unitsin
the same cluster. As shown by the delay results in Table 2, loca
bypassing can be accomplished in asingle cycle. Inter-cluster by-
passes areresponsible for bypassing val ues between functional units
residing in different clusters. Because inter-cluster bypasses require
long wires, it islikely that these bypasses will be relatively slower
and take two or more cyclesin future technologies. The two copies
of the register file are identical, except for the one or more cycles
difference in propagating results from one cluster to another.

This clustered, dependence-based microarchitecture has a num-
ber of advantages. First, wakeup and selection logic are simplified
as noted previously. Second, because of the heuristic for assigning
dependent instructions to FIFOs, and hence indirectly to clusters,
local bypasses are used much more frequently than inter-cluster by-
passes, reducing overall bypass delays. Third, using multiple copies
of theregister filereduces the number of portson theregister fileand
will make the access time of the register file faster.

5.5 Performance of Clustered Dependence-based
Microar chitecture

The graph in Figure 15 compares performance, in terms of in-
structions committed per cycle (IPC), for the 2x4-way dependence-
based microarchitecture against that of a conventional 8-way mi-
croarchitecture with a single 64-entry issue window. For the
dependence-based system, instructions are steered using the heuris-
tic described in Section 5.1 with a dight modification. Instead of
using asingle free list of empty FIFOs, we maintain two free lists
of empty FIFOs, one per cluster. A request for afree FIFO is sat-
isfied if possible from the current freelist. If the current freelistis
empty, then the second freelist is interrogated for a new FIFO and
the second free list is made current. This scheme ensures that in-
structions adjacent in the dynamic stream are assigned to the same
cluster to minimize inter-cluster communication. Local bypasses
take one cycle while inter-cluster bypasses take 2 cycles. Also, in
the conventional 8-way system, all bypasses are assumed to com-



pletein asingle cycle. From the graph we can see that for most of
the benchmarks, the dependence-based microarchitecture is nearly
as effective as the window-based microarchitecture even though the
dependence-based microarchitecture is handicapped by slow inter-
cluster bypasses that take 2 cycles. However, for two of the bench-
marks, m88ksimand compress, the performance degradationisclose
to 12% and 9% respectively. We found that this degradation is
mainly due to extralatency introduced by the slow inter-cluster by-
passes.

64-entry window-based 8-way

B 2-cluster dependence-based 8-way

Instructions Per Cycle
CO000ORPRPRERPENNNNNWWWWW A
OI\Jh@OOOI\JhC‘)OOIOthOOONAOOOO

compress gcc go li m88ksm perl vortex
Figure 15: Performance of clustered dependence-based microarchi-

tecture.

Because the dependence-based microarchitecture will facilitate a
faster clock, afair performance comparison must take clock speed
into account. The local bypass structure within a cluster is equiva
lent to a conventional 4-way superscalar machine, and inter-cluster
bypasses are removed from the critical path by taking an extraclock
cycle. Consequently, the clock speed of the dependence-based mi-
croarchitecture is at least as fast as the clock speed of a 4-way, 32-
entry window-based microarchitecture, and is likely to be signifi-
cantly faster because of the smaller (wakeup + selection) delay com-
pared to a conventional issue window as discussed in Section 5.3.
Hence, if Cy.p isthe clock speed of the dependence-based microar-
chitecture, and C'w:x is the clock speed of the window-based mi-
croarchitecture, then from Table 2 for 0.18m technol ogy:

Cdep
C’win

delay of 8 way 64 entry window

= 1.252
~ delay of 4way 32 entry window

In other words, the dependence-based microarchitecture is capa-
ble of supporting a clock that is 25% faster than the clock of
the window-based microarchitecture. Taking this factor into ac-
count (and ignoring other pipestages that may have to be more
deeply pipelined), we can estimate the potential speedup with a
dependence-based microarchitecture. The performance improve-
mentsvary from 10% to 22% with an average improvement of 16%.

5.6 Other Clustered Microarchitectures

The microarchitecture presented in the previous section is one
point in the design space of clustered superscalar microarchitec-
tures. The dependence-based microarchitecture simplifies both the
window logic and naturally reduces the performance degradation
due to slow inter-cluster bypass paths. In order to further explore
the space, we studied the performance of some other interesting de-
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signs. In each case there are two clusterswith inter-cluster bypasses
taking an extra cycle to complete.
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Figure 16: Clustered microarchitectures.

5.6.1 SingleWindow, Execution-Driven Steering

In the dependence-based microarchitecture described above, in-
structions are pre-assigned to acluster when they are dispatched; we
refer to this asdispatch-driven instruction steering. In contrast, Fig-
ure 16(a) illustrates a microarchitecture where instructionsresidein
a central window while waiting for their operands and functional
units to become available. Instructions are assigned to the clusters
at thetimethey begin execution; thisis execution-driven instruction
steering.

With this method, cluster assignment works asfollows. The reg-
ister values in the clusters become available at dightly different
times; that is, the result register value produced by acluster isavail-
ableinthat cluster one cycle earlier than in the other cluster. Conse-
quently, an instruction waiting for the value may be enabled for exe-
cution onecycleearlier inonecluster thaninthe other. Theselection
logic monitors the instructionsin the window and attemptsto assign
them to the cluster which provides their source values first (assum-
ing there is a free functional unit in the cluster). Instructions that
have their source operands available in both clusters are first con-
sidered for assignment to cluster 0. Static instruction order is used
to bresk tiesin this case.

The execution-driven approach uses agreedy policy to minimize
the use of dow inter-cluster bypasses while maintaining a high uti-
lization of the functional units. It does so by postponing the as-
signment of instructions to clusters until execution time. Whilethis
greedy approach may gain some | PC advantages, this organization
suffers from the previously discussed drawbacks of a central win-
dow and complex selection logic.

5.6.2 Two Windows, Dispatch-Driven Steering

This microarchitecture, shown in Figure 16(b), is identical to
the dependence-based clustered microarchitecture except that each



cluster has acompletely flexible window instead of FIFOs. Instruc-
tions are steered to the windows using a heuristic that takes both de-
pendences between instructions and the relative |oad of the clusters
into account. Wetried anumber of heuristicsand found asimple ex-
tension of the FIFO heuristic presented in Section 5.1 to work best.
In our scheme the window is modeled as if it is a collection of FI-
FOs with instructions capable of issuing from any slot within each
individual FIFO. Inthisparticular case, wetreat each 32-entry win-
dow aseight FIFOswith four slotseach. Notethat these FIFOsarea
conceptua device used only by the assignment heuristic—inreality,
instructions issue from the window with complete flexibility.

Kemp and Franklin [11] studied an organization called PEWs
(Parallel Execution Windows) for simplifying the logic associated
with a central window. PEWs simplifies window logic by splitting
the central instruction window among multiple windows much like
theclustered microarchitecture described above. Register valuesare
communicated between clusters (called pews) via hardware queues
and aring interconnection network. In contrast, we assume a broad-
cast mechanism for the same purpose. Instructions are steered to
the pews based on instruction dependences with agoal to minimize
inter-pew communication. However, for their experiments they as-
sume that each of the pews has as many functional units as the cen-
tral window organization. This assumption implies that the reduc-
tion in complexity achieved islimited since the wakeup and selec-
tion logic of the windows in theindividual pews still have the same
porting requirements as the central window.

5.6.3 Two Windows, Random Steering

This microarchitecture, using the structure presented in Fig-
ure 16(b), is a basis for comparisons. Instructions are steered ran-
domly to one of the clusters. If the window for the selected cluster
is full, then the instruction is inserted into the other (free) cluster.
This design point was evauated in order to determine the degree to
which clustered microarchitectures are capable of tolerating the ex-
tralatency introduced by slow inter-cluster bypasses and the impor-
tance of dependence-aware scheduling. Each window has 32 entries
in this case.

5.6.4 Performance of Clustered Microarchitectures

Thetop graphin Figure 17 shows the performance of various mi-
croarchitectures in terms of instructions committed per cycle (IPC).
The leftmost bar in each group shows the performance of the ideal
microarchitecture: a single 64-entry window with single cycle by-
pass between all functional units. A number of observations can
be made from the figure. First, random steering consistently per-
forms worse than the other schemes. The performance degradation
with respect to the ideal case varies from 17% in the case of vor-
tex to 26% in the case of m88ksim. Hence, it is essential for the
steering logic to consider dependences when routing instructions.
Second, the microarchitecture with acentral window and execution-
driven steering performs nearly as well as the ideal microarchitec-
ture with a maximum degradation of 6% in the case of m88ksim.
However, as discussed earlier in Section 5.6.1, this microarchitec-
ture requires a centralized window with complex selection logic.
Third, both the dependence-based microarchitecture and the flex-
ible window microarchitecture using dispatch-driven steering per-
form competitively in comparison to the ideal microarchitecture.

The bottom graph in Figure 17 shows the frequency of inter-
cluster communication for each organization. We measure inter-
cluster communication in terms of the fraction of total instructions
that exercise inter-cluster bypasses. This does not include cases
where an instruction reads its operands from the register file in the
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cluster i.e. casesinwhichtheoperandsarrived fromtheremoteclus-
ter in advance. As expected, we see that there is a high correlation
between the frequency of inter-cluster communication and perfor-
mance - organizations that exhibit higher inter-cluster communica-
tion commit fewer instructions per cycle. Theinter-cluster commu-
nication is particularly high in the case of random steering, reaching
as high as 35% in the case of m88ksim.
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Figure 17: Performance of clustered microarchitectures.

Overall, the above results show that clustered microarchitectures
using distributed windows coupled with dispatch-driven steering
can deliver performance similar, in terms of instructions committed
per cycle, to that of an ideal microarchitecture with alarge window
and uniform single cycle bypasses between all functional units.

6 Conclusions

We studied the variation of delays of key structuresin a generic
superscalar processor with two important microarchitectural param-
eters: issue width and issue window size. We also analyzed theim-
pact of advanced technologies with smaller feature sizes on the de-
lay of these structures. Our results show that the logic associated
with theissue window and the databypass|ogic are going to become
increasingly critica as future designs employ wider issue widths,
bigger windows, and smaller feature sizes. Furthermore, both of
these structures rely on broadcasting values on long wires, and in
future technologies wire delays will increasingly dominate total de-
lay.

This is not to say that the delay of other structures, for exam-
ple register files and caches, will not cause problems. However,



these structures can be pipelined to some extent. In contrast, win-
dow logic and data bypass logic implement atomic operations that
cannot be pipelined while alowing dependent instructions to exe-
cute in successive cycles. This characteristic makes the delay of the
window logic and the data bypass logic even more crucial.

Hence, as architects build machines with wider issue widths and
larger window sizes in advanced technologies, it is essential to con-
sider microarchitectures that are complexity-effective i.e. microar-
chitecturesthat facilitate afast clock while exploiting similar levels
of ILP as anideal large-window machine.

In the second half of the paper, we proposed one such mi-
croarchitecture call ed the dependence-based microarchitecture. The
dependence-based microarchitecture detects chains of dependent in-
structions and steers the chains to FIFOs which are constrained to
executein-order. Since only theinstructions at the FIFO heads have
to bemonitored for execution, the dependence-based microarchitec-
ture simplifies window logic. Furthermore, the dependence-based
microarchitecture naturally lendsitself to clustering by grouping de-
pendent instructions together. This grouping of dependent instruc-
tions helps mitigate the bypass problem to a large extent by using
fast local bypasses more frequently than slow inter-cluster bypasses.
We compared the performance of a2x4-way dependence-based mi-
croarchitecture with a typical 8-way superscalar. Our results show
two things. Firgt, the proposed microarchitecture has IPC perfor-
mance close to that of atypical microarchitecture (average degra-
dation in IPC performance is 6.3%). Second, when taking the clock
speed advantage of the dependence-based microarchitectureinto ac-
count the 8-way dependence-based microarchitecture is 16% faster
than the typical window-based microarchitecture on average.
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