
Morpheus: A Vulnerability-Tolerant Secure
Architecture Based on Ensembles of Moving Target

Defenses with Churn
Mark Gallagher

University of Michigan
Lauren Biernacki

University of Michigan
Shibo Chen

University of Michigan

Zelalem Birhanu Aweke
University of Michigan

Salessawi Ferede Yitbarek
University of Michigan

Misiker Tadesse Aga
University of Michigan

Austin Harris
University of Texas at Austin

Zhixing Xu
Princeton University

Baris Kasikci
University of Michigan

Valeria Bertacco
University of Michigan

Sharad Malik
Princeton University

Mohit Tiwari
University of Texas at Austin

Todd Austin
University of Michigan

Abstract
Attacks often succeed by abusing the gap between program
and machine-level semantics– for example, by locating a
sensitive pointer, exploiting a bug to overwrite this sensitive
data, and hijacking the victim program’s execution. In this
work, we take secure system design on the offensive by
continuously obfuscating information that attackers need
but normal programs do not use, such as representation of
code and pointers or the exact location of code and data.
Our secure hardware architecture, Morpheus, combines two
powerful protections: ensembles of moving target defenses
and churn. Ensembles of moving target defenses randomize
key program values (e.g., relocating pointers and encrypting
code and pointers) which forces attackers to extensively
probe the system prior to an attack. To ensure attack probes
fail, the architecture incorporates churn to transparently re-
randomize program values underneath the running system.
With frequent churn, systems quickly become impractically
difficult to penetrate.
We demonstrate Morpheus through a RISC-V-based pro-

totype designed to stop control-flow attacks. Each moving

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS ’19, April 13–17, 2019, Providence, RI, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6240-5/19/04. . . $15.00
https://doi.org/10.1145/3297858.3304037

target defense in Morpheus uses hardware support to indi-
vidually offer more randomness at a lower cost than pre-
vious techniques. When ensembled with churn, Morpheus
defenses offer strong protection against control-flow attacks,
with our security testing and performance studies revealing:
i) high-coverage protection for a broad array of control-flow
attacks, including protections for advanced attacks and an
attack disclosed after the design of Morpheus, and ii) neg-
ligible performance impacts (1%) with churn periods up to
50 ms, which our study estimates to be at least 5000x faster
than the time necessary to possibly penetrate Morpheus.

CCS Concepts • Security and privacy→ Systems secu-
rity; Hardware-based security protocols; Tamper-proof and
tamper-resistant designs; • Computer systems organiza-
tion→ Architectures.

Keywords moving target defense; runtime randomization

ACM Reference Format:
Mark Gallagher, Lauren Biernacki, Shibo Chen, Zelalem Birhanu
Aweke, Salessawi Ferede Yitbarek, Misiker Tadesse Aga, Austin
Harris, Zhixing Xu, Baris Kasikci, Valeria Bertacco, Sharad Malik,
Mohit Tiwari, and Todd Austin. 2019. Morpheus: A Vulnerability-
Tolerant Secure Architecture Based on Ensembles of Moving Target
Defenses with Churn. In 2019 Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’19), April 13–17, 2019,
Providence, RI, USA. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3297858.3304037

1 Introduction
Building vulnerability-free, complex systems is challenging
and further complicated by legacy code and changing threat
models. Control-flow exploits are still prevalent [21] despite
several layers of defenses based on safe pointers [26], control-

Session: Security II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

469

https://doi.org/10.1145/3297858.3304037
https://doi.org/10.1145/3297858.3304037
https://doi.org/10.1145/3297858.3304037

and data-flow integrity [1, 16, 43], limiting the use of data as
code (NX-bit) [67], and address space layout randomization
(ASLR) [54]. A similar arms race is being played out in the
microarchitecture, where side-channels are abusing specu-
lation [42] and memory characteristics [56] to circumvent
architectural isolation guarantees. Current approaches pri-
marily address security as a memory safety or speculative
execution problem. In contrast, we propose to attack the
attacker and systematically thwart their efforts by making
vulnerable systems exceedingly hard to exploit.

We introduce a secure system design approach called en-
sembles of moving target defenses (EMTDs) with churn.
We assume that the system contains vulnerabilities, and
attackers are attempting to penetrate system security via
those vulnerabilities. A large number of these attacks exploit
execution-level semantics (e.g., code location and pointer
values) that are undefined at the language level and to which
normal programs remain agnostic. Furthermore, over time,
sophisticated attacks require progressively more execution-
level information as they attempt to evade successive layers
of defenses such as NX-bit, ASLR, and control-flow integrity.
Hence, we propose to systematically randomize all unde-
fined semantics that are critical to craft successful attacks–
using hardware to enable an ensemble of such moving target
defenses to be deployed concurrently. Additionally, we intro-
duce churn, a mechanism that transparently re-randomizes
the moving target program values while the system is in
operation. By limiting our defenses to values associated with
undefined program semantics, we construct a secure system
that is transparent to normal programs but intentionally hos-
tile to malicious programs. Crucially, even though concrete
exploits and vulnerabilities grow rapidly, security-relevant
undefined semantics do not. Thus, EMTDs with churn provide
a more durable and proactive layer of defense than patching
specific vulnerabilities.

To demonstrate our security claim, we presentMorpheus,
a RISC-V-based system that incorporates EMTDs with churn
to thwart control-flow attacks. Control-flow protection repre-
sents a critical step in the design of secure systems as control-
flow attacks have consistently been the most common vul-
nerability tracked by the CVE database since its inception
in 1999 [21, 49]. Our secure architecture protects critical
information by using two novel moving target defenses: i)
pointer displacement, which randomly and independently
places code and data in the address space, and ii) domain
encryption, which randomizes the representation of code,
code pointers, and data pointers using strong encryption.
These new defenses provide a significantly larger random-
ization space at lower overheads than previous techniques.
Specifically, Morpheus defenses have a randomization space
of 504 bits (referred to as “bits of entropy” for the remainder
of this paper), leading to 2504 possible key configurations.
Once deployed, EMTDs force attackers to extensively

probe the system to discover the randomized values needed

for an attack. Morpheus sabotages the attacker’s ability to
probe the system and gain critical values by using churn to
re-randomize these values at runtime. To further strengthen
the value of churn, Morpheus incorporates an attack de-
tector to sense when an attack is ongoing and immediately
trigger a churn cycle to halt the attack.
To get a sense of how Morpheus works, consider the

code reuse attack shown in Figure 1. This attack exploits
a buffer overflow vulnerability to invoke target() when
vulnerable() returns. The function main() is malicious be-
cause the string passed to strcpy() is too long for the array
buf[], allowing the string to overwrite the return address
with the entry-point of target(). With Morpheus defenses,
two complications arise for the attacker: i) 60-bits of the ad-
dress of target() have been randomized by the pointer dis-
placement defense, and ii) the representation of code pointers
(expressed as “\xf0\x03\x02\x01”) is now encrypted with
a 128-bit key, making the pointer in the string incorrectly
encoded as plaintext. To overcome these challenges, the at-
tacker must either brute-force guess information or probe
Morpheus to discover i) the location of target() and ii) the
representation of code pointers. We show in Section 5.2 that
circumventing Morpheus protections could take several min-
utes or more with the most advanced probes. Unfortunately
for the attacker, the churn mechanism will re-randomize the
address of target() and its pointer representation within
50 ms. Even worse, if the attacker’s probes trigger the attack
detector, a new churn cycle is immediately invoked.

1.1 Contributions of This Work
We build on the successes moving target defenses have
shown for network and software security [38]. Specifically:

• We introduce ensembles of moving target defenses
(EMTDs) with churn. EMTDs randomize undefined val-
ues crucial to perpetrating security attacks (e.g., code
and pointers). Churn re-randomizes the protected val-
ues to defeat probing while being transparent to nor-
mal programs. This paper advances the security of
state-of-the-artmoving target defenses (e.g., ASLR
and instruction-set randomization), and introdu-
ces hardware-based ensemblingwith churn to cre-
ate a new class of vulnerability-tolerant secure
systems.

• We present the Morpheus architecture – a RISC-V-
based processor that is designed to stop control-flow at-
tacks using EMTDs with churn. Using compiler, archi-
tecture, and runtime support, we implement EMTDs
with support for attack-detector-driven churn peri-
ods. Our moving target defenses for code, code point-
ers, and data pointers, termed pointer displacement
and domain encryption, create significant barriers to
control-flow attacks.

Session: Security II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

470

• We show that Morpheus, with 504 bits of entropy and
50 ms churn period, has a 1% average slowdown (7%
worst case) for SPEC’06 and MiBench benchmarks, de-
spite re-randomizing key program values 5000x faster
than estimated attack times. In addition, we show that
Morpheus provides strong security against control-
flow attacks, stopping a broad array of advanced at-
tacks including return-oriented programming [62] and
the Back-Call-Site attack [75], which was disclosed af-
ter the design of Morpheus. These analyses demon-
strate that the Morpheus architecture is an effec-
tive defense against knownandpotentially future
control-flow attacks.

The remainder of this paper is organized as follows: Sec-
tion 2 motivates our vulnerability-tolerant design approach,
Section 3 presents our threat model and Section 4 details the
Morpheus architecture. In Section 5, we present security and
performance analyses of Morpheus, examining its ability to
stop control-flow attacks and at what cost. Finally, Section 6
examines related work before concluding.

2 Vulnerability-Tolerant Secure
Architectures

Our goal of building a vulnerability-agnostic secure system
is achieved by designing a computing platform that is trans-
parent to normal programs but hostile to malicious ones.
To illustrate our approach, consider the malicious program
shown in Figure 1, which exploits a buffer overflow vulnera-
bility in vulnerable() to perform a code reuse attack.

2.1 Malicious Programs are from Mars; Normal
Programs are from Venus

In Figure 1, one might limit the difference between a ma-
licious and non-malicious use of vulnerable() to the ob-
servation that a malicious program overflows buf[], and
a non-malicious program (when the input string is length
4 or less) does not. However, if one takes a slightly more
nuanced view, more distinctions exist.We observe that nor-
mal programs utilize defined program-level semantics,
while malicious programs lean heavily on undefined
semantics.
Undefined semantics are execution-level semantics that

are not explicitly documented, often because they are prop-
erties of the underlying implementation. Examples of unde-
fined semantics include out-of-bounds array accesses, unini-
tialized variable values, execution timing, microarchitectural
sharing characteristics, etc. While savvy programmers know
these values exist and often are static, they should not build
a program that relies on undefined semantics, since these
values can easily change from one build of the program to
the next or from one CPU architecture to another.
In contrast, malicious programs routinely utilize unde-

fined semantics to subvert security measures. For example,

void target() {
printf("You overflowed successfully, gg");
exit(0);

}
void vulnerable(char* str1) {

char buf[5];
strcpy(buf, str1);

}
int main() {

vulnerable("ffffffffffffffff\xf0\x03\x02\x01");
printf("This only prints in normal control flow");

}

Figure 1. Example Attack Code. This code exploits a
buffer overflow vulnerability in vulnerable() to overwrite
a return address. We note that the attack code utilizes unde-
fined semantics associated with array overflows, stack frame
organization, and code addresses. Morpheus randomizes val-
ues associated with undefined semantics to thwart malicious
attacks while remaining benign to normal programs.

the code in Figure 1 copies memory past the end of buf[]
(undefined: out-of-bounds array access), which overwrites
the return address (undefined: return address location) with
the value of 0x010203f0 (undefined: address of a code ob-
ject). We are not the first to make the observation that attacks
rely heavily on undefined semantics; debugging tools have
long focused on finding undefined semantics (e.g., UBSan [4]
or STACK [80, 81]).

Indeed, programs can utilize undefined semantics without
malice, as we have seen in some isolated cases in systems
code and buggy code. For the former case, we have accom-
modated these operations (e.g., pointer alignment) in the
design of Morpheus defenses. In the latter case, the program
needs to be debugged. After building nearly 1 million lines
of code to run on Morpheus with no source-level changes
required (including all of SPEC’s C-based benchmarks), we
have found that we can readily accommodate these isolated
cases without making demands on developers and without
taking the heat off malicious programs.

2.2 Boosting Uncertainty with Moving Target
Defenses

Given that malicious programs use undefined semantics
and normal programs avoid them, an attractive approach to
vulnerability-tolerant secure design is to keep well-defined
semantics as such and randomize undefined semantics each
time a program is executed. The use of randomization on
undefined semantics as a defensive measure is an example
of a moving target defense [38]. Moving target defenses
deliberately introduce change into a system, which in turn
increases the attacker’s uncertainty of the system’s state. By
randomizing the undefined semantics of a program each time
it runs, the attacks built for a system with static undefined
semantics will no longer work as key attack values have
become randomized. As shown in Figure 2,moving target

Session: Security II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

471

P
ro

b
e

Weaponize Attack

Ex
pl

oi
te

d

Probe Weaponize Attack

Ex
p

lo
it

e
d

...

C
hu

rn

P
ro

b
e

Conventional
Attacks

Churn Period

+ EMTDs

+ EMTDs
& Churn

Probe
(Detected)

...
C

hu
rn

P
ro

b
e

C
h

u
rn

P
ro

b
e

C
h

u
rn

P
ro

b
e

C
h

u
rn

P
ro

b
e

C
h

u
rn

P
ro

b
e

C
h

u
rn

t

Figure 2. Thwarting Attacks via EMTDs with Churn.
Exploits progress with the following phases: probe,
weaponize, and attack. Ensembles of moving target defenses
(EMTDs) increase uncertainty in key values needed to
weaponize attacks, thus, probe times increase significantly.
To ensure the patient attacker does not complete their probes,
churn re-randomizes key program values at regular intervals.
An attack detector senses when probe-like activity is occur-
ring and reduces the churn period to strengthen defenses.

defenses force the attacker to probe the system for the
unknown values needed to implement an attack. Prob-
ing involves conducting an experiment where the outcome
yields some information about the uncertain value.
For example, if an attacker must contend with a moving

target defense applied to the location of code in Figure 1, they
must first probe the system to determine the location of the
function target(). The attacker could (naively) introduce a
memory scanner that searches the 48-bit address space for
the code of function target(). With a mountain of patience,
the scanner will eventually locate target() and then the
corrected string can be injected into the call to strcpy().

Fortunately, we have a prime example of how the attacker
community responds to moving target defenses with address
space layout randomization (ALSR) [54]. ASLR randomizes
the location of the code, heap, and stack each time a program
runs, which has the effect of applying a moving target de-
fense to code/data locations and pointer values. Today, ASLR
is widely deployed in Windows, Linux, iOS, and Android.
Table 1 lists ASLR defenses and the subsequent probes at-
tackers developed to overcome the uncertainty introduced
by ASLR defenses. The table also shows the entropy of de-
fenses (or number of bits recovered) and estimated time for
an attack. While one-time moving target defenses like ASLR
are very powerful stumbling blocks for attackers, today they
form only temporary barriers since, with enough time and
ingenuity, attackers have overcome all variants of ASLR. For
example, the AnC attack is able to recover a full 48-bit x86_64
virtual address in about 150 seconds [30].

Table 1 also shows that attacking moving target defenses
with high entropy requires the use of either i)more advanced
probing techniques or ii) significant probe time. We would

Table 1. ASLR Defenses and Successive Attacks. This
table (ordered by release date) lists ASLR defenses and attack
probes used to recover randomized addresses for that defense.
It is evident that strong moving target defenses (e.g., 64-bit
ASLR) result in long probe times.

Type Name Entropy / Time (s)Bits Recovered

Defense 32-bit PaX ASLR [54] 16 bits n/a
- Attack Blind calls (Pfaff) [66] 16 bits 216
Defense 64-bit ASLR 30 bits n/a
- Attack BROP [11] 30 bits 1,200
- Attack CROP [29] 30 bits 14,580
- Attack Dedup Est Machina [13] 30 bits 1,800
- Attack JUMP over ASLR [28] 9 bits 0.06
- Attack AnC [30] 30 bits 150
Defense Morpheus Pointer Displacement 60 bits n/a

similarly expect increased probe times for a defense intro-
duced in this work, shown in the last line of the table, which
has significantly higher entropy than current ASLR imple-
mentations. Given this trend, our proposed design technique
leverages high entropy to guarantee long probe times, and re-
randomization (detailed in Section 2.3) to assure that attack
probes fail.

2.3 Ensembles of Moving Target Defenses with
Churn

In this work, we seek to elevate moving target defenses by
combining them with a runtime re-randomization technol-
ogy called churn. EMTDs alone randomize program values
attackers need, boosting uncertainty. It is conceivable that,
with enough time, the attacker may eventually succeed in
probing the system for information needed to launch an at-
tack. Thus, we introduce churn as a mechanism to thwart
even the most patient attackers. As shown in Figure 2, churn
re-randomizes the values that attackers need to craft
successful attacks.With fast churn periods, attack probes
fail to discern the unknown values for which they search.

With moving targets deployed under the code in Figure 1,
an attacker would need to search for the function target().
With churn, the function target() repeatedly moves in
the address space as the search progresses. Thus, the probe
will only succeed on the infinitesimal chance that target()
moves to the immediate vicinity of the probe’s search.

To create an even more hostile environment for attackers,
churn incorporates a reactionary component. Not only can
churn cycles be initiated periodically, but they can also be
triggered in response to a potential attack. As illustrated
by Figure 2, when an attack probe attempt is detected an
additional churn cycle is initiated, severely limiting the time
available for a successful probe. Furthermore, repeated probe
attempts result in continuous churn, making it incredibly
more difficult for attackers. More details on this attack de-
tector are found in Section 4.1.

Session: Security II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

472

3 Threat Model
Morpheus is designed to mitigate control-flow attacks, many
of which utilize memory exploits [73]. Specifically, we seek
to thwart attacks where a trusted but vulnerable victim
program processes untrusted inputs that exploit memory
errors to hijack control-flow of the victim. These attacks
may make use of buffer overflows, format-string, heap-spray,
double-free, return/jump-oriented programming, and other
execution-level semantics to override language-level protec-
tions and hijack control flow. Denial-of-service (DoS) and
side-channel attacks, while good future targets forMorpheus,
are outside the scope of this work.
We assume the following about the attacker: i) they can-

not physically threaten the system via power analysis, fault
injection, etc.; ii) they cannot manipulate the system’s boot
sequence or anticipate the output of the random number
generator; iii) they interact with the system via an interface
such as the network or keyboard; iv) they cannot modify
the original binary; and v) they are able to locate a memory
corruption or disclosure vulnerability in the target program
to exploit. The trusted computing base (TCB) includes the
specialized Morpheus hardware, as well as some software
support from the loader and OS scheduler.

4 The Morpheus Secure Architecture
As shown in Figure 3, Morpheus is a 64-bit RISC-V-based [60]
secure architecture that uses EMTDs with churn to thwart
control-flow attacks. Morpheus deploys moving target de-
fenses to randomize key values needed for these attacks:
i) code, ii) code pointers, and iii) data pointers. These do-
mains can be aggressively churned without breaking normal
programs in the architecture.
Morpheus’ moving target defenses rely on the domain

tagging mechanism (Section 4.1) to precisely track the do-
main of all memory objects at runtime. Morpheus lever-
ages these tags to implement two moving target defenses –
pointer displacement (Section 4.2), which obscures pointer
values by adding a random displacement to them by domain,
and domain encryption (Section 4.3), which encrypts all
domains in the program under their own keys. Both defenses
can be re-randomized at runtime by the churn unit (Sec-
tion 4.4). To do this efficiently, the churn unit updates the
necessary values while program execution continues. Addi-
tionally, Morpheus includes an attack detector (Section 4.1)
to sense when a potential attack is in progress and ramp up
the churn rate to strongly repel the attack.

4.1 Precise Runtime Domain Tagging
The domain tagging infrastructure is at the center of the
Morpheus architecture and serves to precisely track the do-
main of each memory object during execution. Domain tags
are used by the churn unit to correctly re-randomize values
at runtime and by the attack detector to identify operations

 Pipeline Attack
Detector

I$

IT
LB

Decrypt

DRAM ControllerTag $

 L2$

Ta
gs

 DRAMTa
g

St
o

re

D$

Register File

Ta
gs

Ta
gs

D
TL

B

Encrypt/DecryptKC
KCP

KDP

RISC-V Core

Pointer
Displacement

Churn UnitChurn Unit

Tag
Propagator

Threshold
Register C

hu
rn

 S
up

po
rt

Figure 3. TheMorpheus Secure Architecture.Morpheus
implements EMTD protections with churn to stop control-
flow attacks. Components hashed with diagonal lines aug-
ment the baseline RISC-V system to support Morpheus de-
fenses. The dotted line is a bus used for churn control signals
and transmitting keys. Churn Support includes the Attack
Detector and Threshold Register, while logic for propagating
tags and translating pointers is added to the pipeline.

indicative of undefined semantics. Morpheus tracks four dis-
tinct domains using 2-bit domain tags: code (C), code pointers
(CP), data pointers (DP), and other data (D). The pipeline is
responsible for propagating tags; specifically, domain tags
are fetched into the pipeline and used to compute the tag of
the output value for every instruction. Initial tag values come
from the compiler, while the microarchitecture is augmented
to support tag storage.

The Morpheus LLVM-based [44] compiler extensions pro-
vide the locations of code and pointers in the executable to
enable precise tracking of domains at runtime. The input
to the compiler is unmodified C source files, which are con-
verted into the LLVM intermediate representation by the
Clang front-end. Then, a global variable domain analysis
labels each memory object in statically initialized data sec-
tions as data, a code pointer, or a data pointer. Subsequently,
an instruction labeling pass in the Clang back-end identifies
and labels instructions that initialize dynamically created
memory objects (i.e., values on the stack, heap, and .bss
segment). This produces a labeled binary and a domain tag
file that contains the initial tags for memory objects.
Storing tags requires modifications to the microarchitec-

ture. All registers are extended to include a 2-bit tag. To re-
duce the overhead of memory tags, Morpheus only attaches
one tag to each 64-bit aligned word, as pointers in the RISC-V
RV64 ISA are 64 bits wide. Since RISC-V instructions are 32

Session: Security II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

473

Table 2. Attack Detector Logic. ABORT rules monitor
particularly grievous operations and trigger an exception
that terminates the program. CHURN rules detect unde-
fined behavior that may be indicative of an ongoing attack.
In response to these violations, the attack detector initi-
ates a churn cycle. Tags are defined as follows: C = Code,
CP = Code Ptr, D = Data, DP = Data Ptr.

<OP> Check Condition Rule

A
BO

RT

Execute Insn.tag != C Only execute C
ANY R1/R2.tag == C No C in the pipeline
JAL(R) R1.tag != CP Jump target must be CP
LD/ST R1.tag != DP Address must be a DP

CH
U
RN

COMPARE R1.tag != R2.tag No inter-domain compares
ANY (not JAL(R)) R1.tag == CP CP arithmetic suspicious
ANY (not LD/ST) R2.tag == DP DP arithmetic suspicious,

except add/sub D
ANY Overflow Occurs Overflows are undefined
SHIFT Shift > RegWidth Invalid shift is undefined

bits wide, we augment the linker to minimally NOP pad each
object file so that every 64-bit code location contains two
32-bit instructions. The tag information resides in physical
DRAM at an offset of taдstart +phyaddr/32, where taдstart
is the address of the tags in DRAM. Also, by concentrating
tags to a fixed location in DRAM, we simplify the churning
process as domain types can be efficiently located within
the tag store. To improve tag access latency, tags are cached
throughout the memory hierarchy. The 64-byte tag groups
read from DRAM are cached in a tag cache, and all data cache
blocks are extended with 2-bits per 64-bit word, to store the
additional domain tag bits with each cache block.

Security Implications: The domain tagging’s propagation
rules enforce closure for pointers under all computation;
i.e., all computation with a pointer produces a pointer. Con-
sequently, pointers are always under Morpheus defenses,
which protects the system against pointer disclosures.

As shown in prior tagged architectures [24, 45, 71, 72, 84],
memory tagging offers security benefits through policy en-
forcement. Morpheus similarly makes use of tag checking
policies to provide additional security guarantees via its
attack detector . This detector watches for suspicious oper-
ations that are indicative of ongoing attacks and responds in
one of two ways: raising an exception or triggering a churn
cycle. Morpheus raises security exceptions on a few grievous
operations, listed under the “ABORT” rules in Table 2. Four
policies are enforced: i) only code can be executed, ii) code
cannot be loaded into a register, thus it can never be read or
written, iii) only data pointers can be load/store addresses,
and iv) only code pointers are valid jump targets.
Other runtime-typed architectures often enforce much

finer-grained rules, such as not permitting code pointer arith-
metic. To ensure minimal impact to programmers, we allow
any of these legitimate (albeit suspicious) operations. Rather

than raising an exception, the attack detector initiates a
churn cycle to destroy any information gained by the at-
tacker. If churn is already ongoing, the system schedules a
subsequent churn cycle. Table 2 lists these triggers under
the “CHURN” rules. For example, a program is permitted to
test individual bits of a pointer (e.g., p&(1 << n)), making
it possible to re-encode the pointer as a non-pointer data
value. However, these operations will immediately initiate
a churn cycle, which has the effect of destroying the utility
of any leaked pointer. It is important to note that churn is
always occurring at a baseline rate in Morpheus, and the
attack detector only serves to increase the churn rate when
a potential attack is detected.
Non-malicious programs rarely exhibit these behaviors,

therefore occasional churn cycles initiated by non-malicious
code will result in negligible slowdowns. Since we can deliver
increased security without making additional demands on
programmers, we have found that our approach is preferred
over systems that force programmers to re-write or annotate
potentially dangerous code (e.g., CHERI [84]). In addition, if
the detector trigger rate rises above a concerning level, the
attack detector raises a signal to the OS to indicate that an
ongoing attack is likely.

4.2 Pointer Displacement Defense
Virtually all control-flow attacks require knowledge of where
memory objects reside. To boost uncertainty in the location
of these values, Morpheus utilizes pointer displacement to
create two randomly displaced address spaces (DASC and
DASD) above the virtual address space (VAS). As shown in
Figure 4, code is displaced by dCODE bytes in DASC , and
data is displaced by dDATA bytes in DASD . In the program-
mer’s view, DASC contains a displaced image of the code
objects and DASD contains this for data objects, with both
supporting wraparound of addresses. This is implemented
by incrementing all code pointers by dCODE , and all data
pointers by dDATA.

A program sees all pointers as displaced for its lifetime, in-
cluding pointers in the registers, caches, andmemory. Pointer
computations (e.g., p + const) proceed on displaced point-
ers as normal without being impacted by the displacement.
Morpheus supports a 60-bit random displacement, with the
lower 4 bits of the displacement always zero. Keeping these
bits zero accommodates codes, such as memcpy(), that want
to enforce physical memory alignment on pointers. When-
ever a translation from DAS→VAS is performed at fetches,
loads, and stores, the hardware reads the pointer’s tag and
subtracts the appropriate displacement (dCODE or dDATA).

To ensure that no exposed latency occurs from displacing
the address space, we pipeline the DAS→VAS translation. In
the decode stage, the displacement key is subtracted from
the load/store offset: o f f set − dDATA. Then in the execute
stage, this delta is added to the base register to produce the
effective address. A similar approach is used for JAL(R)/RET

Session: Security II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

474

Wraparound

DASC
264 - 1

0

VAS

0

248 - 1

Data

Code

DASD
264 - 1

0
Data

dDATA

dCODE

Data

Code

Figure 4. PointerDisplacement. Pointer displacement cre-
ates two displaced address spaces: DASD and DASC , each
shifted by a random displacement of dDATA and dCODE , re-
spectively. By having two displaced address spaces, it is
possible for each address space to utilize any displacement
without colliding with other objects in the other domain,
resulting in higher entropy for the code and data segments.

targets, except using the code pointer displacement (dCODE).
Using this approach, the addresses presented to the memory
system are reformed into their native virtual address counter-
parts, thus retaining localities and incurring no performance
penalties on the memory system.
The operating system is responsible for securely load-

ing and unloading key sets at context switches (as detailed
in Section 4.4). If a program utilizes shared memory, then
processes/threads sharing memory need only share displace-
ment keys if they also share code or pointers. Typically,
this will be required only for tightly threaded programs and
shared libraries, since other popular uses of shared memory
paradigms such as inter-process communication (IPC) do
not share code or pointers. Similarly, forked processes can
simply churn at creation time and continue execution with
their own private keys. Finally, the kernel possesses the sets
of keys for both privileged and user memory, allowing it to
access both address spaces without switching key sets.

Security Implications: Displacing pointers delivers a num-
ber of powerful security properties. First, the defense permits
a full 60-bits of entropy during DAS displacement, which
is significantly more entropy than can be produced by an
ASLR-based defense [54]. ASLR typically has at most 30-bits
of entropy, due to architectures only partially implementing
virtual addresses (e.g., RISC-V and x86_64 have 48-bit virtual
addresses) and because code and data have to avoid colli-
sions when placed. It is also interesting to note that ASLR
and pointer displacement may be complementary: if com-
bined, a displaced pointer disclosure would only reveal the
fixed bits in the ASLR randomization algorithm, leaving the
ASLR-randomized address bits still unknown.

Cipher

Key Store

KC [I$]
KCP [D$]
KDP [D$]

Encrypted/
Decrypted

VALUE

L1$ ↔ L2$ Tag VALUEADDR

XOR

Figure 5. Domain Encryption Defense. Morpheus’ en-
cryption makes use of per-domain keys, denoted as KC , KCP ,
and KDP for code, code pointer, and data pointer, respectively.
These keys are selected by a value’s domain tag and used to
protect it in memory. Non-pointer data is unencrypted.

4.3 Domain Encryption Defense
To prevent attackers from inspecting and forging vital pro-
gram values, the domain encryption defense randomizes the
representation of code, code pointers, and data pointers in
memory using a strong cipher. These assets are encrypted in
memory under their own distinct domain keys. As shown in
Figure 5, protected domains are decrypted when memory is
read (load or instruction fetch) and encrypted when memory
is written (store) between the L1-L2 boundary, keeping the
L2 cache and DRAM encrypted. The tag of the accessed value
is used to select the appropriate cipher key, either the code
key KC , code pointer key KCP , or data pointer key KDP . The
key and the physical address are combined via the cipher to
decorrelate memory locations that contain the same value.
Encrypting the address allows us to use the cipher in counter-
mode, where a keystream is generated and XOR’ed with the
protected value to encrypt or decrypt it. Note that the address
encryption can happen in parallel with the L2 cache access,
reducing the performance penalty. A similar technique was
used to speed up access to the encrypted instruction cache
in the Polyglot architecture [68]. To further reduce the com-
plexity of domain encryption and performance overheads,
variable-sized non-pointer data values are not encrypted.
Our Morpheus implementation utilizes a strong block cipher
introduced for Arm’s Pointer Authentication technology [58]
called QARMA [5], specifically, QARMA7-64-σ1, which en-
crypts 64-bit blocks with a 128-bit key in 16 rounds.

The three keys used for domain encryption (KC , KCP , and
KDP) are stored in microarchitectural registers that are not
accessible by software, so they are private to a process’s ad-
dress space. Multi-processing execution contexts need only
share encryption keys if they are sharing code or pointers,
otherwise, each process will have its own unique keys. Fi-
nally, the kernel will have two sets of keys: one for privileged
memory and one for user space.

Security Implications: Attacks trying to forge or leak in-
formation will face several obstacles. First, using multiple
encrypted domains significantly increases the computational
burden of acquiring a broad set of attack information (e.g.,
code and pointers). Second, code pointer forgery, which is

Session: Security II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

475

required by nearly all control-flow attacks, and data pointer
forgery, which is used for advanced control-flow mimicry
attacks (like DOP [34]), is difficult to accomplish in Mor-
pheus. New pointers can only be derived from knowing an
existing, protected pointer value. Since code and pointers are
always encrypted outside of the pipeline and L1 caches, any
attempt to exfiltrate them by writing them to an I/O location,
or via DMA, RDMA, or cold-boot attack (all of which access
DRAM or the L2 cache) will result in the capture of a useless
encrypted instruction or pointer. Attackers are now limited
in finding base pointer values to launch their attacks. While
our non-pointer data is stored in plaintext, this does not
provide many benefits to CFG attacks since they primarily
focus on code and pointers.
Our approach surpasses prior pointer encryption tech-

niques, such as PointGuard [18] or ASIST [53], where assets
are encrypted by XOR’ing the value with an in-memory key.
Instead, Morpheus uses a strong cipher to encrypt multi-
ple domains within the same program address space. This
provides the physical penetration protections of traditional
enclaves (e.g. Intel SGX [48], XOM [74]), while adding pro-
tections that prevent programs from attempting to disclose
or forge data within their own address space (e.g., buffer
overflow or JavaScript-based attack).

4.4 Churning Moving Target Defenses
In Morpheus, the domain encryption and pointer displace-
ment defenses are re-randomized at runtime beneath live
execution. The churn unit implements re-randomization of
code and pointers in coordination with the main core. In ad-
dition, the churn unit supports secure context switching for
address spaces that have not completed their churn cycle.

Churning Under Live Execution: To accommodate live
churn, the churn unit updates system state concurrently
with the running processor. This serves to minimize the per-
formance impact on running programs. As shown in Figure 6,
the churn unit maintains a threshold register to indicate
how far churn has progressed in the running process’s ad-
dress space. State that has been processed to use the new
keys is “clean”, while state using old keys and awaiting up-
date is “stale”. To make state clean, code and pointers must be
re-encrypted under the new domain encryption key (unless
in a register), and the difference between the new and old
displacements (dNEW − dOLD) must be added to all pointers.
The steps of the churn cycle are illustrated in Figure 6.

First, the pipeline is flushed and fetch is halted to allow churn
to update registers in the next stage. Next, a new set of keys
is generated for all defenses, and then the register values
are updated. To simplify register updates, a process context
switch is initiated, which stores the stale registers to mem-
ory before the churn cycle starts. The context is reloaded
once the churn cycle begins, which has the effect of updating
the registers as they are loaded back into the register file.

Fl
u

sh

K
ey

s

R
eg

Fl
u

sh

K
ey

s

R
eg

t
2 3

Churn Period

C
h

u
rn

P

ro
gr

am

1

Domain Updates

Th
re

sh
o

ld

4

clean stale

Figure 6. Churning During Execution. The churn cycle
starts with 1○ a pipeline flush and 2○ new key generation
and register updates. Next, 3○ a threshold register is used to
coordinate updating values in memory under the new dis-
placements and encryption keys. When 4○ churn completes,
all domains have been updated, effectively disposing of any
information the attacker may have acquired previously.

Next, fetch is resumed and the churn unit walks the virtual
address space from low addresses to high addresses, page
by page, updating all code and pointers indicated in the tag
store. As memory locations are updated, the threshold reg-
ister address is updated to indicate the progress of churn.
The churn unit updates memory by accessing storage on the
coherent L1-to-L2 bus (as shown in Figure 3), after indicating
the address to be accessed in the threshold register. If the
memory location accessed is in the data cache and marked
“dirty”, it is first written back and invalidated from the L1
before being accessed by the churn core. To prevent race con-
ditions between the churn unit and kernel, virtual memory
pages are locked down while being updated by the churn
unit. Once updates are completed, the system can initiate
churn again immediately, or it can delay the next churn cycle
until it meets the desired security-performance trade-offs.
To simplify coordination with the main core, the churn

unit maintains the following invariants: i) all pipeline state
(e.g., instructions and pointers in registers and latches) is
clean, ii) all memory values below the threshold address
are clean, iii) all memory values above the threshold are
stale, and iv) the memory value at the threshold address is
currently being processed by the churn unit. Given these
invariants, the domain encryption unit selects the appro-
priate keys depending on if the value is below or above the
threshold register (KNEW orKOLD respectively). By contrast,
only new keys are necessary for the pointer displacement
defense, since the pointer displacement unit only generates
effective addresses with clean registers. Additionally, when a
load accesses a pointer above the threshold address, the stale
pointer loaded from memory is updated before entering the
register file by adding (dNEW −dOLD) to the value. Similarly,
when a store writes a pointer to memory above the threshold
register, the register pointer value is clean, but it must be
stored as a stale pointer under the old displacement. This

Session: Security II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

476

is done by subtracting (dNEW − dOLD) from the pointer be-
fore writing it to memory. Finally, if the main core makes a
memory access at the threshold address, the core must stall
the access until the churn unit updates the threshold regis-
ter. This last requirement prevents potential write-after-read
and write-after-write hazards that could occur when the core
and churn unit are accessing the same memory address. The
churn unit gets priority over accesses to the conflicting mem-
ory location, to ensure that a rogue core could not perform
a denial-of-service attack on the churn unit.

Support for Context Switching: To prevent adverse im-
pacts to OS scheduling, the churn unit supports context
switching during an active churn cycle. The OS can request
the current context from the churn unit, which is encrypted
with a boot-time private churn key. The encrypted context
is passed to the kernel, which stores it in the kernel’s pro-
cess control block. The churn context contains the threshold
register, the old keys for all defenses, the new keys for all
defenses, and the time that the last churn cycle was initi-
ated. To prevent attacks on mostly idle programs, the churn
unit initiates a churn cycle on a program after it has been
idle longer than its normal churn cycle (as indicated by the
timestamp in the churn context).

5 Morpheus Architecture Study
In this section, we first detail our experimental setup of the
Morpheus secure architecture. Next, we assess the security
of the architecture by examining its ability to stop a wide
range of control-flow attacks, and by exploring how long it
could take an attacker to penetrate Morpheus by crafting
novel attacks directed specifically at our system. Finally, we
assess the performance costs of providing EMTDs with fast
churn for the SPEC’06 and MiBench benchmarks.

5.1 Experimental Framework
To assess security and performance, we implemented our
Morpheus prototype on the RISC-V port of the gem5 simula-
tor [10, 61]. The Morpheus core is built on top of the gem5
MinorCPU 4-stage in-order core, using the configuration pa-
rameters listed in Table 3. We chose this core model because
it would demonstrate the impact of EMTD protections for a
core with little capability to tolerate any introduced latencies
(as opposed to an out-of-order core). Morpheus’ encryption
layer uses QARMA7-64σ1, which, when synthesized in [5],
had a minimum delay of 3.25 ns (9-cycle latency at 2.5 GHz).
This is masked by the L2 access. We used DRAMSim2 [63]
to model the memory system and assess the performance of
tag scanning and churn operations. Specifically, the churn
unit communicates between gem5 and DRAMSim2 to scan
tags and update pointers and code. The churn unit is imple-
mented as a simple FSM with access to the cache-coherent
bus between the main core’s L1-cache and the L2-cache. In
addition, the churn unit has a back-channel connection to

Table 3. Morpheus Microarchitecture Configuration.
Beyond the baseline components, a 4KB tag cache is added
to the EMTD-enabled microarchitecture.

Core Type MinorCPU (In-Order)
CPU Frequency 2.5GHz
Cache Line Size 64B
L1 Instruction Cache Size 32KB with 2-cycle latency
L1 Data Cache Size 32KB with 2-cycle latency
L2 Unified Cache Size 256KB with 20-cycle latency
Tag Cache Size 4KB

the main core to force it to drain the pipeline before a churn
cycle begins. The simulations model a single process context,
using the system call emulation capabilities of gem5.

5.2 Security Analysis
To gauge the security benefits of Morpheus, we perform a
simulation-based study of its ability to stop a wide range of
control-flow attacks, ranging from long-standing attacks (e.g.,
buffer overflow) to advanced attacks (e.g., return-oriented
programming). We then attempt to build Morpheus-specific
attacks, to assess the value of ensembles and churn.

Penetration Testing Results: To build confidence that the
Morpheus architecture is capable of stopping control-flow
attacks, we performed penetration testing with real-world
control-flow attacks running on the simulated Morpheus
architecture. We ran tests from an ongoing port of the RIPE
control-flow attack suite [82]. The port, being developed by
Draper Labs [25], does not yet implement the entire RIPE at-
tack suite, but it did give us access to stack overflow [2], heap
overflow [22, 36], and ROP [62] attacks. In addition to RIPE,
we included hand-crafted implementations of additional at-
tacks, including heap spray [57], format string [52, 59], inte-
ger overflow [12], and back-call-site [75] attacks. All attacks
aimed to overwrite an existing return address or function
pointer as a means to manipulate control flow.

The Morpheus architecture stopped all of the attack
classes from our penetration testing suite. Table 4 lists
the attacks tested and which Morpheus defenses aided in
stopping the attack. Stopping a comprehensive control-flow
attack suite shows that the Morpheus architecture is capable
of stopping state-of-the-art control-flow attacks. Sophisti-
cated software protections that come close (e.g., CPI [43])
are significantly more expensive and advanced hardware
protections such as the soon to be released Intel CET [37] ex-
tensions have notably lower coverage for advanced attacks.
Of the control-flow attacks in Table 4, one of particular

note is the Back-Call-Site attack, which is a recently pub-
lished control-flow attack designed to circumvent advanced
CFI-based control-flow protections [75]. Morpheus stops this
attack when it attempts to forge a code pointer to redirect a
function return. It is interesting to note that we learned of

Session: Security II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

477

Table 4. Penetration Testing Results. The Morpheus se-
cure architecture was shown in simulations to stop all of
the attacks listed. Additionally, all attacks trigger our attack
detector. For each attack, the table shows how Morpheus
stops the attack, with Morpheus domain encryption (E) and
pointer displacement (P) applied to code (C), code pointers
(CP), and data pointers (DP).

Attack Defenses Engaged Bits of
EntropyE-C E-CP E-DP P-CP P-DP

Stack Buffer Overflow [2] X ✓ X ✓ X 188
Heap Overflow [22, 36] X ✓ X ✓ X 188
Heap Spray [57] X ✓ X ✓ X 188
Format String [52, 59] X ✓ ✓ ✓ ✓ 376
Integer Overflow [12] X ✓ ✓ ✓ ✓ 376
ROP [62] ✓ ✓ ✓ ✓ ✓ 504
Back-Call-Site Attack [75] ✓ ✓ ✓ ✓ ✓ 504

0 50 100 150 200 250

EP

EP

EP

EP

Average Attack Probe Time (s)

AnC Address De-randomization

High bit probes

Code search

Blind code search

0.01s

98.6s

152s

251s

𝐸𝑃

𝐸𝑃

𝐸𝑃

𝐸𝑃

Figure 7. Estimated Probe Times. This figure shows the
average estimated attack time to penetrate a de-featuredMor-
pheus, which has fewer defense keys and no churn. Probe
times are shown for Morpheus with (E) and without (E)
domain encryption, and with (P) and without (P) pointer
displacement. As more defenses are engaged, probe times
grow, with fully-activated defenses requiring a probe time
5020x longer than the normal churn period (50 ms).

this last attack after ourMorpheus architecture was de-
signed, suggesting thatMorpheus provides some level of
future-proofing against unknown future CFG attacks.
Table 4 shows that the number of defenses stopping the

attack grows as attacks become more advanced. This growth
in the effective strength of Morpheus occurs because new
attacks nearly always need to acquire additional information
to circumvent defenses introduced to stop earlier attacks.
For example, buffer overflow attacks [2] do not need knowl-
edge of program code. However, the introduction of non-
executable memory led to code reuse attacks like ROP [62],
that do need knowledge of the program code. Our analysis
suggests that, since Morpheus defends critical attack
assets rather than patching vulnerabilities, Morpheus
is more effective even as attacks become more advanced.

Attacking Morpheus: We can gain a deeper understand-
ing of Morpheus’ security benefits by crafting new attacks
designed to penetrate Morpheus defenses. Our attack sce-
nario involves a local program attacking a victim program
(i.e., SPEC’s gobmk in our study) via an IPC interface, where
the program under attack has exception reporting and crash
recovery comparable to vanilla Linux. The goal of the attack
is to call the C-library system() function, thereby giving an
attacker a shell in the victim program’s process context. We
assume that the organization of the code has been random-
ized at build time (similar to [68]), and the victim program
is crash-resilient.

Crafting successful attacks to penetrateMorpheus required
degrading its protections in three ways: i) churn and the at-
tack detector are disabled to give the attacker unlimited time
to probe the system, ii) a single displacement key is used
across all address spaces, since microarchitectural sharing
attacks are not possible with different displacements and iii)
a single key for domain encryption is used to allow code
pointer forgery.

Brute force attacks in this context are infeasible due to the
large randomization space of Morpheus defenses, leading
attackers to use side-channels to leak information. When
attacking Morpheus, we take this approach by combining
techniques from the AnC de-randomization attack [30] and
blind code search [11].We simulated all aspects of each attack
described below, except for IPC calls, exception handling,
and AnC de-randomization. Instead, reported times were
used [14, 30, 78]. Being conservative, we assume AnC can
recover all 48-bits of the virtual address in 150 s, whereas
the original work recovers fewer bits due to limited entropy
in the experimental setup.
As shown in Figure 7, we evaluate the time it takes to

attack the de-featured Morpheus for each of the four combi-
nations of moving target defenses: EP , with no defenses, EP ,
with only encryption, EP , with only pointer displacement,
and EP , with all defenses engaged.
EP— To execute a call to system() when no defenses are

engaged, an attacker needs to simply search the victim’s code
to locate this function. This can be done through exploiting
a stack buffer overflow to call memchr(), which returns the
address of system() in 10 ms.
EP—When encryption is engaged, this technique is not ap-

plicable because functions like memchr() would incorrectly
compare to encrypted code. Rather, an attacker can sim-
ply make blind calls [11] into the code segment, until suc-
cessfully calling system(). We can make these calls using
mimicry [79] to form the code pointer, and use a stack buffer
overflow to test the pointer. This process takes about 98.6 sec
to identify system() and effectively defeats the encryption
defense. It should be noted that these operations would trig-
ger the attack detector on fully featured Morpheus.

Session: Security II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

478

EP—When pointer displacement is engaged, an attacker
needs to determine the displacement key to locate the code
segment before searching for the system() function. To leak
a pointer and uncover the key, an attacker can use an AnC de-
randomization probe to reveal a virtual address, followed by
high-bit probes to determine where the code resides among
the remaining 216 possible locations (i.e., the DAS address).
Breaking displacement takes 150 sec for AnC and 2.3 sec for
high bit probes. After the pointer displacement defense is
defeated, an attacker can perform a normal code search as
described above. Overall, this exploit takes about 152 sec.
EP— Finally, with all defenses engaged, the above tech-

niques are combined to first de-randomize pointer displace-
ment, and then blindly search the code segment for a call
to system(). This approach uses a combination of an AnC
de-randomization probe to recover the 48-bit virtual address,
high-bit probes with blind calls to recover the upper DAS
address, and a full blind-call search for system(). Combined,
this attack takes a total of 251 sec.

It is clear that ensembling defenses carrymuch value,
since attack times progressively increase as more mov-
ing target defenses are engaged.Moreover, the time needed
to attack the fully engaged defenses is 251 sec. This provides
a useful metric for assessing churn periods, which should be
much faster than 251 sec. With churn on, attackers resort to
brute-force guessing, which will take substantially longer.
When examining the individual attack details, it is pos-

sible to see the direct benefits of ensembles. Clearly, with
all defenses engaged, it is the worst of both worlds for the
attacker, since they do not know where the code is located
in the displaced address space, and once found, they cannot
inspect it to easily find the location of system(). It is also
interesting to note that the increase in attack time is purely
additive, since, for this attack, defeating one defense provides
no value in penetrating the other defense.

5.3 Performance Impact of EMTDs with Churn
To assess the performance overheads of EMTD defenses, we
ran experiments on our augmented gem5 simulator with all
Morpheus protections engaged, i.e., domain encryption and
pointer displacement. We evaluated Morpheus using bench-
marks from MiBench [32] and SPEC’06 [33]. By comparing
the performance impacts on these two suites, we can get
an understanding of the relative costs for small embedded
programs (MiBench) and larger desktop/server workloads
(SPEC’06). Simulations were run with a 3 billion instruc-
tion cap. From MiBench, we analyzed the performance of
13 programs: basicmath, bitcount, qsort, susan, dijkstra, pa-
tricia, stringsearch, blowfish, rijndael, sha, crc32, fft, and ad-
pcm; and from SPEC’06, we analyzed the performance of all
C-code benchmarks, 12 in total, using the reference input:
perlbench, bzip2, gcc,mcf,milc, gobmk, hmmer, sjeng, libquan-
tum, h264ref, lbm, and sphinx3. All programs were built using
LLVM 5.0.0 for the RISC-V RV64IMA architecture [3] with

0%

5%

10%

15%

20%

25%

30%

35%

None 200ms
(1255x)

100ms
(2510x)

50ms
(5020x)

25ms
(10040x)

10ms
(25100x)

Cont.*
(90320x)

P
er

ce
n

t
 S

lo
w

d
o

w
n

Churn Period
(Churns/Est. Probe Time)

SPEC'06 Worst-Case (403.gcc)

SPEC'06 Average

MiBench Worst-Case (dijkstra)

MiBench Average

N
o

rm
al

 C
h

u
rn

 P
er

io
d

P
er

ce
n

t
Sl

o
w

d
o

w
n

None
200ms

(1255x)

Churn Period

100ms
(2510x)

50ms
(5020x)

25ms
(10040x)

10ms
(25100x)

Cont.
(90320x)

Figure 8. Performance Overhead. This graph shows the
average and worst-case performance overheads of the cho-
sen MiBench and C-based SPEC’06 benchmarks, with churn
periods varying from no churn (left) to continuous churn
(right). The expected number of churn periods that would
complete in the time estimated to penetrate Morpheus de-
fenses, based on the attack study in Section 5.2, is shown
below each churn period. Given these results, we target 50ms
as a “normal” churn period.

P
er

ce
n

t
Sl

o
w

d
o

w
n

0%

5%

10%

15%

20%

25%

30%

35% 50ms 25ms 10ms Cont.

2.3ms

0.3ms

19.4ms

0.3ms

0.3ms

2.4ms

0.5ms

1.0ms

0.3ms

4.1ms

0.2ms
2.2ms

2.8ms

Figure 9. SPEC’06 Performance Overheads. The graph
shows SPEC’06 performance overheads for varied churn
periods. The continuous churn period is listed above the bar.

optimization level -O2. The benchmarks were linked against
a Morpheus-built RISC-V Musl C library [64].

Figure 8 shows the slowdown for theMiBench and SPEC’06
benchmark suites with full Morpheus protections at varied
churn periods. The slowdowns measured are with respect to
the program running on the baseline architecture without
Morpheus protections. For both MiBench and SPEC’06, the
graph shows the average slowdown at each measured churn
period, plus the benchmark with the highest slowdown (i.e.,
dijkstra for MiBench and gcc for SPEC’06). The points on the
far right of the graph represent a continuous churn period,
where a new churn cycle starts immediately after the previ-
ous one ends. For these points, the churn period varies by
program; the average continuous churn period for SPEC’06

Session: Security II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

479

was 2.8 ms, with gcc having the slowest churn time of 19.4 ms.
For MiBench, the average churn time was much smaller, at
0.4 ms, with the worst case being patricia at 2.1 ms.
As shown in Figure 9, slowdowns for short churn peri-

ods are quite low, with an average overhead of 0.84% (and
a worst-case slowdown of 6.71%) at 50 ms. Overheads even
seem tolerable up to 10 ms, but quickly grow as the system
approaches continuous churn. These low overheads are the
result of efficient hardware-based churn, and the fact that
code and pointers only make up a small fraction of over-
all memory. Non-pointer data is not accessed during the
churn phase. Surprisingly, running without churn results in
a slightly higher overhead than running with 200 ms churn
(0.6% vs. 0.2%), because our churn unit is essentially acting
as a cache prefetcher. To better understand the churn unit’s
workload, we analyzed gcc since it had the largest slowdown.
We found that gcc has i) the largest data segment, with an
average footprint of 47.8 MB, ii) the most pointers, with over
300,000, and iii) the largest codebase, at 5.3 MB. The combi-
nation of these factors resulted in more work for the churn
unit, and therefore higher overheads.
It is interesting to consider how fast the churn period

should be. In existing network security protocols, churn pe-
riods are very large. The re-key period for the TLS secure
web protocol defaults to 1 hour (3.6 million ms) [85]. In the
previous section, we found that it took 251 sec to penetrate
the de-featuredMorpheus architecture. The number of churn
cycles that would complete in that time is shown in paren-
thesis on the x-axis of Figure 8. Here, we see that a churn
period of 50 ms is 5020x faster than the expected attack
time, thus we see 50 ms as a reasonable “normal” churn
period. In all likelihood, an attack would frequently trigger
the attack detector, leading to continuous churn, which is
on average 90,320x faster than the expected attack time.

6 Related Work
Networking and software security has adopted many forms
of moving target defenses (MTDs), including popular ex-
amples like randomizing network-service ports and ASLR.
However, prior research typically focuses on protecting a
single asset due to the high overhead introduced by apply-
ing multiple MTDs. Morpheus supports multiple MTDs in
hardware to provide protection for more assets with lower
overhead. A comparison of Morpheus against prior works
is shown in Table 5. In this table, we show the information
assets protected by each work, their associated entropies,
average overhead, and if they support runtime churn.

Displacement: ASLR [54] randomizes the base addresses of
code and data segments each time a program is loaded, but is
susceptible to insufficient randomness [11, 66] – worse, a sin-
gle address leakage through a memory disclosure vulnerabil-
ity can reveal the location of all code and data [28, 30, 65, 69].

Kil et al. [41] proposed a finer-grained permutation of pro-
cedures and data objects for ASLR, such that the leakage of
a single address does not immediately reveal the location
of all program information. Remix [17], TASR [9], and Run-
timeASLR [46] augment ASLR with a run-time component
either by rearranging direct calls, direct jumps, and indirect
jumps (leaving indirect calls intact and hence being vulnera-
ble to return-to-libc attacks [70]) or by re-randomizing the
memory layout after sensitive system calls.

Encryption: PointGuard [18] and related techniques [77]
have employed encryption to obfuscate pointers as a means
to defend against control-flow attacks. Besides having higher
overheads, these approaches have consistently been compro-
mised due to either weak encryption (typically XOR-based),
or read attacks that extracted the key. In contrast, Morpheus
uses strong encryption and encrypts disparate domains (an
idea in [20]) with distinct keys held in protected registers.

Encryption has also been used to protect code, as in binary-
translation based Instruction Set Randomization (ISR) [6, 35,
40] – with ∼10% overhead common for network-facing ser-
vices and up to 75% for databases. This overhead decreases
to ∼1% with hardware support in ASIST [53]. Randomiza-
tion schemes have also been employed for data [8, 15], in
which static analysis is used to partition memory into classes
that each have their own distinct, random mask. Its average
slowdown for SPEC is 14%. While these techniques are ap-
pealing as they obscure code and data efficiently, they use
weak encryption, both from a brute-force protection and
cryptanalysis standpoint. As such, Morpheus forgoes these
approaches and adopts a strong cipher.

Another approach to program randomization is N-version
systems [7, 19, 51], which require an attacker to break de-
fenses in multiple domains simultaneously. Overheads range
from 28%-129% for latency and ∼50% for server through-
put. While these techniques are powerful, Morpheus defends
against the same attacks with lower overheads.

Comparison with Shuffler: The value of hardware-based
EMTDs comes into focus when we contrast Morpheus to a
software-based moving target defense. The fastest previous
continuous address space reorganization technology we are
aware of is Shuffler [83], which moves code periodically
in the address space of a running program. Shuffler also
encrypts return addresses with XOR.

There are some advantages Morpheus has over Shuffler: i)
hardware enables faster churn periods, ii) more randomiza-
tion with a total of 504 key bits and strong encryption, iii)
more domain coverage, including code and code & data point-
ers, and iv) lower overhead at a 50 ms churn period – <1%
compared to 15% (with a worst-case of 45%). An advantage
of Shuffler is that it destroys relative distance between code
objects, whereas Morpheus’ displacement does not. However,
Morpheus’ hardware-based defenses have lower overhead
while delivering more randomization.

Session: Security II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

480

Table 5. Comparison Against Prior Works. The assets protected by each work is listed. A ✓* indicates protection for only
return addresses (for CP), or frame pointers (for DP). Displacing the code segment is listed as protection for code pointers (CP),
rather than for code (C). For Fixed Interval systems, the average overhead is quoted at 50 ms. †TASR’s overhead is originally
2.1%, however, as noted in Shuffler [83], TASR uses -Og, which can slow down SPEC benchmarks by ∼30% compared to -O2.

Name
Assets

Entropy/Key Size Runtime Churn Avg. OverheadC CP DP

D
is
pl
ac
em

en
t 64-bit PaX ASLR [54, 55] - ✓ ✓ 29-30 bits (48-bit vaddr) No 3.6%

TASR [9] - ✓ ✓ 29-30 bits (48-bit vaddr) At I/O Only 30-40%†

Remix [17] - ✓ X ASLR + log2(basic blocks per func.) Random Interval 2.8%
Apache on x86 (32-bit): 16+4 = 20 bits max (one-time)

RuntimeASLR [46] - ✓ ✓ 28-48 bits (48-bit vaddr) At fork() Only 0.5%

En
cr
yp

tio
n

PointGuard [18] X ✓ ✓ 64 bits (weak XOR cipher, on 64-bit ISA) No 10.0%

CCFI [47] X ✓ ✓* 128 bits (strong cipher) No 23.0%

ASIST [53] ✓ ✓* X 32-128 bits (weak XOR cipher) or No 1.0%
32 bits (weak transposition)

Polyglot [68] ✓ X X 163 bits (strong cipher) No 4.6%

En
c.
+
D
is
p. Shuffler [83] Displacement - ✓ X 27 bits (48-bit vaddr) Fixed Interval 14.9%

Encryption X ✓* X 64 bits (weak XOR cipher)

Morpheus Displacement - ✓ ✓ 60 bits per segment Fixed Interval 0.9%

Encryption ✓ ✓ ✓ 128 bits per asset (strong cipher)

Tagged Architectures: Secure architectures often utilize
tags to provide defenses with more information at runtime.
For example, Dynamic Information FlowTracking (DIFT) [23,
27, 31, 39, 50, 71, 76] enables analyses to assign labels to sen-
sitive data, code, or inputs. These labels are tracked as the
program executes and raise an exception if a ‘tainted’ label
is used for a sensitive operation (i.e., as an information flow
‘sink’). This approach is quite powerful at ferreting out vul-
nerabilities; however, finding all of the vulnerabilities would
require i) full path coverage of the program, and ii) a very
detailed vulnerability model. Both of these challenges ulti-
mately keep detection of all vulnerabilities beyond reach. Our
EMTDs, on the other hand, are vulnerability-agnostic, since
they hide the information needed to exploit vulnerabilities.
Other architectures, such as CHERI [84], lowRISC [45],

the Dover processor [72], and PUMP [24], have implemented
tags in hardware to enforce security policies. Like Morpheus,
these systems rely on precise tagging of memory objects.
However, these systems often face high false-positive rates,
leading to the failure of benign programs. Morpheus oper-
ates differently, as false-positive security violations from the
attack detector only trigger a churn cycle.

7 Conclusions and Future Directions
While traditional security protections work to find and fix ev-
ery last vulnerability, EMTDs with churn take the approach
of protecting a system by randomizing the information as-
sets that attackers need to craft successful attacks. In this
paper, we presented theMorpheus secure architecture, which

brings together multiple moving target defenses to protect a
system from control-flow attacks. Pointer displacement and
domain encryption work in tandem to protect the code and
pointers needed to launch control-flow attacks. A hardware-
based churning mechanism is able to re-randomize these
values at runtime, without impacting normal programs. To-
gether, these protections demonstrate a high level of protec-
tion against control-flow attacks with very low overheads.

Looking ahead, we see great potential for EMTD technolo-
gies. Beyond control-flow attacks, we envision that a similar
approach could be adopted to protect against side-channel
attacks, timing attacks, Rowhammer attacks, and even cache
attacks. To address each of these additional challenges, we
will explore what assets the attacker needs and then develop
efficient mechanisms to boost uncertainty and stifle attacks.

Acknowledgments
We would like to thank the anonymous reviewers for their
valuable feedback. This work was supported by DARPA un-
der Contract HR0011-18-C-0019. Any opinions, findings and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of DARPA. Technology detailed in this paper has been
licensed from the University of Michigan by Agita Labs Inc.,
an ongoing concern of Todd Austin and Valeria Bertacco.

Session: Security II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

481

References
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005.

Control-flow Integrity. In Proceedings of the 12th ACM Conference on
Computer and Communications Security (CCS ’05). ACM, New York,
NY, USA, 340–353. https://doi.org/10.1145/1102120.1102165

[2] Aleph One. 1996. Smashing the stack for fun and profit. Phrack Maga-
zine. Retrieved April 6, 2018 from http://www.phrack.org/archives/
49/P49-14

[3] AndesTech. 2017. Andes Technology GitHub - riscv-llvm. Retrieved
August 2, 2018 from https://github.com/andestech/riscv-llvm

[4] Apple Corporation. 2018. Undefined Behavior Sanitizer. Retrieved Au-
gust 6, 2018 from https://developer.apple.com/documentation/code_
diagnostics/undefined_behavior_sanitizer

[5] Roberto Avanzi. 2017. The QARMA Block Cipher Family. Almost MDS
Matrices Over Rings With Zero Divisors, Nearly Symmetric Even-
Mansour Constructions With Non-Involutory Central Rounds, and
Search Heuristics for Low-Latency S-Boxes. IACR Transactions on
Symmetric Cryptology 2017, 1 (Mar. 2017), 4–44. https://doi.org/10.
13154/tosc.v2017.i1.4-44

[6] Elena Gabriela Barrantes, David H. Ackley, Stephanie Forrest, Trek S.
Palmer, Darko Stefanovic, and Dino Dai Zovi. 2003. Randomized In-
struction Set Emulation to Disrupt Binary Code Injection Attacks.
In Proceedings of the 10th ACM Conference on Computer and Com-
munications Security (CCS ’03). ACM, New York, NY, USA, 281–289.
https://doi.org/10.1145/948109.948147

[7] Emery D. Berger and Benjamin G. Zorn. 2006. DieHard: Proba-
bilistic Memory Safety for Unsafe Languages. In Proceedings of the
27th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’06). ACM, New York, NY, USA, 158–168.
https://doi.org/10.1145/1133981.1134000

[8] Sandeep Bhatkar and R. Sekar. 2008. Data Space Randomization.
In Proceedings of the 5th International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment (DIMVA ’08).
Springer-Verlag, Berlin, Heidelberg, 1–22. https://doi.org/10.1007/
978-3-540-70542-0_1

[9] David Bigelow, Thomas Hobson, Robert Rudd, William Streilein, and
Hamed Okhravi. 2015. Timely Rerandomization for Mitigating Mem-
ory Disclosures. In Proceedings of the 22Nd ACM SIGSAC Conference
on Computer and Communications Security (CCS ’15). ACM, New York,
NY, USA, 268–279. https://doi.org/10.1145/2810103.2813691

[10] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar
Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad
Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. 2011. The
Gem5 Simulator. SIGARCH Comput. Archit. News 39, 2 (Aug. 2011),
1–7. https://doi.org/10.1145/2024716.2024718

[11] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, and Dan
Boneh. 2014. Hacking Blind. In Proceedings of the 2014 IEEE Symposium
on Security and Privacy (SP ’14). IEEE Computer Society, Washington,
DC, USA, 227–242. https://doi.org/10.1109/SP.2014.22

[12] blexim. 2002. Basic integer overflows. Phrack Magazine. Retrieved
April 6, 2018 from http://phrack.org/issues/60/10.html

[13] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
2016. Dedup Est Machina: Memory Deduplication as an Advanced
Exploitation Vector. In 2016 IEEE Symposium on Security and Privacy
(SP). IEEE Computer Society, Washington, DC, USA, 987–1004. https:
//doi.org/10.1109/SP.2016.63

[14] Vince Bridgers. 2015. Real Time Linux Scheduling Comparison. In
Embedded Linux Conference 2015 (ELC 15). The Linux Foundation,
CA. http://events17.linuxfoundation.org/sites/events/files/slides/
Real-Time-Linux-Comparison-Bridgers-ELC2015.pdf

[15] Cristian Cadar, Periklis Akritidis, Manuel Costa, Jean-Philippe Martin,
and Miguel Castro. 2008. Data Randomization. Technical Report.
Microsoft Research, Redmond, WA, USA. 14 pages. https://www.

microsoft.com/en-us/research/publication/data-randomization/ MSR-
TR-2008-120.

[16] Miguel Castro, Manuel Costa, and Tim Harris. 2006. Securing Software
by Enforcing Data-flow Integrity. In Proceedings of the 7th Symposium
on Operating Systems Design and Implementation (OSDI ’06). USENIX
Association, Berkeley, CA, USA, 147–160. http://dl.acm.org/citation.
cfm?id=1298455.1298470

[17] Yue Chen, Zhi Wang, David Whalley, and Long Lu. 2016. Remix:
On-Demand Live Randomization. In Proceedings of the Sixth ACM
Conference on Data and Application Security and Privacy (CODASPY
’16). ACM, New York, NY, USA, 50–61. https://doi.org/10.1145/2857705.
2857726

[18] Crispin Cowan, Steve Beattie, John Johansen, and Perry Wagle. 2003.
Pointguard TM: Protecting Pointers from Buffer Overflow Vulnerabili-
ties. In Proceedings of the 12th conference on USENIX Security Sympo-
sium, Vol. 12. USENIX Association, Berkeley, CA, USA, 91–104.

[19] Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill, Wei
Hu, Jack Davidson, John Knight, Anh Nguyen-Tuong, and Jason Hiser.
2006. N-variant Systems: A Secretless Framework for Security Through
Diversity. In Proceedings of the 15th Conference on USENIX Security
Symposium - Volume 15 (USENIX-SS’06). USENIX Association, Berkeley,
CA, USA, Article 9. http://dl.acm.org/citation.cfm?id=1267336.1267344

[20] John Criswell and Vikram Adve. 2010. Chaos for a Fast, Secure, and
Predictable Future. In Fun and Interesting Thoughts at the 31st ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (FIT PLDI ’10). 2. http://pldi10fit.blogspot.com/2010/05/
chaos-for-fast-secure-and-predictable.html

[21] CVEs by Type. 2018. CVE Details: Vulnerabilities By Type.
Retrieved April 6, 2018 from https://www.cvedetails.com/
vulnerabilities-by-types.php

[22] CWE-122. 2018. CWE-122: Heap-based Buffer Overflow. Retrieved
April 6, 2018 from https://cwe.mitre.org/data/definitions/122.html

[23] Michael Dalton, Hari Kannan, and Christos Kozyrakis. 2007. Raksha:
A Flexible Information Flow Architecture for Software Security. In
Proceedings of the 34th Annual International Symposium on Computer
Architecture (ISCA ’07). ACM, New York, NY, USA, 482–493. https:
//doi.org/10.1145/1250662.1250722

[24] Udit Dhawan, Catalin Hritcu, Raphael Rubin, Nikos Vasilakis, Silviu
Chiricescu, Jonathan M. Smith, Thomas F. Knight, Jr., Benjamin C.
Pierce, and Andre DeHon. 2015. Architectural Support for Software-
Defined Metadata Processing. In Proceedings of the Twentieth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’15). ACM, New York, NY, USA, 487–
502. https://doi.org/10.1145/2694344.2694383

[25] Draper Laboratory. 2018. Draper Laboratory GitHub - hope-RIPE.
Retrieved April 6, 2018 from https://github.com/draperlaboratory/
hope-RIPE

[26] Gregory J. Duck and Roland H. C. Yap. 2016. Heap Bounds Protection
with Low Fat Pointers. In Proceedings of the 25th International Confer-
ence on Compiler Construction (CC 2016). ACM, New York, NY, USA,
132–142. https://doi.org/10.1145/2892208.2892212

[27] William Enck, Peter Gilbert, SeungyeopHan, Vasant Tendulkar, Byung-
Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and
Anmol N. Sheth. 2014. TaintDroid: An Information-Flow Tracking
System for Realtime Privacy Monitoring on Smartphones. ACM
Trans. Comput. Syst. 32, 2, Article 5 (June 2014), 29 pages. https:
//doi.org/10.1145/2619091

[28] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2016.
Jump over ASLR: Attacking Branch Predictors to Bypass ASLR. In The
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-49). IEEE Press, Piscataway, NJ, USA, Article 40, 13 pages.
http://dl.acm.org/citation.cfm?id=3195638.3195686

[29] Robert Gawlik, Benjamin Kollenda, Philipp Koppe, Behrad Garmany,
and Thorsten Holz. 2016. Enabling Client-Side Crash-Resistance to

Session: Security II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

482

https://doi.org/10.1145/1102120.1102165
http://www.phrack.org/archives/49/P49-14
http://www.phrack.org/archives/49/P49-14
https://github.com/andestech/riscv-llvm
https://developer.apple.com/documentation/code_diagnostics/undefined_behavior_sanitizer
https://developer.apple.com/documentation/code_diagnostics/undefined_behavior_sanitizer
https://doi.org/10.13154/tosc.v2017.i1.4-44
https://doi.org/10.13154/tosc.v2017.i1.4-44
https://doi.org/10.1145/948109.948147
https://doi.org/10.1145/1133981.1134000
https://doi.org/10.1007/978-3-540-70542-0_1
https://doi.org/10.1007/978-3-540-70542-0_1
https://doi.org/10.1145/2810103.2813691
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/SP.2014.22
http://phrack.org/issues/60/10.html
https://doi.org/10.1109/SP.2016.63
https://doi.org/10.1109/SP.2016.63
http://events17.linuxfoundation.org/sites/events/files/slides/Real-Time-Linux-Comparison-Bridgers-ELC2015.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/Real-Time-Linux-Comparison-Bridgers-ELC2015.pdf
https://www.microsoft.com/en-us/research/publication/data-randomization/
https://www.microsoft.com/en-us/research/publication/data-randomization/
http://dl.acm.org/citation.cfm?id=1298455.1298470
http://dl.acm.org/citation.cfm?id=1298455.1298470
https://doi.org/10.1145/2857705.2857726
https://doi.org/10.1145/2857705.2857726
http://dl.acm.org/citation.cfm?id=1267336.1267344
http://pldi10fit.blogspot.com/2010/05/chaos-for-fast-secure-and-predictable.html
http://pldi10fit.blogspot.com/2010/05/chaos-for-fast-secure-and-predictable.html
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://cwe.mitre.org/data/definitions/122.html
https://doi.org/10.1145/1250662.1250722
https://doi.org/10.1145/1250662.1250722
https://doi.org/10.1145/2694344.2694383
https://github.com/draperlaboratory/hope-RIPE
https://github.com/draperlaboratory/hope-RIPE
https://doi.org/10.1145/2892208.2892212
https://doi.org/10.1145/2619091
https://doi.org/10.1145/2619091
http://dl.acm.org/citation.cfm?id=3195638.3195686

Overcome Diversification and Information Hiding. In Proceedings of
the Network and Distributed System Security Symposium 2016 (NDSS
’16). Internet Society, Reston, VA, USA. https://doi.org/10.14722/ndss.
2016.23262

[30] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano
Giuffrida. 2017. ASLR on the Line: Practical Cache Attacks on the
MMU. In Proceedings of the Network and Distributed System Security
Symposium 2017 (NDSS ’17). Internet Society, Reston, VA, USA. https:
//doi.org/10.14722/ndss.2017.23271

[31] Joseph L. Greathouse, Ilya Wagner, David A. Ramos, Gautam Bhat-
nagar, Todd Austin, Valeria Bertacco, and Seth Pettie. 2008. Testudo:
Heavyweight Security Analysis via Statistical Sampling. In Proceedings
of the 41st Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO 41). IEEE Computer Society, Washington, DC, USA,
117–128. https://doi.org/10.1109/MICRO.2008.4771784

[32] Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst, Todd M. Austin,
Trevor Mudge, and Richard B. Brown. 2001. MiBench: A Free, Com-
mercially Representative Embedded Benchmark Suite. In Proceedings
of the Workload Characterization, 2001. WWC-4. 2001 IEEE International
Workshop (WWC ’01). IEEE Computer Society, Washington, DC, USA,
3–14. https://doi.org/10.1109/WWC.2001.15

[33] John L. Henning. 2006. SPEC CPU2006 Benchmark Descriptions.
SIGARCH Comput. Archit. News 34, 4 (Sept. 2006), 1–17. https:
//doi.org/10.1145/1186736.1186737

[34] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Pra-
teek Saxena, and Zhenkai Liang. 2016. Data-Oriented Programming:
On the Expressiveness of Non-control Data Attacks. In 2016 IEEE Sym-
posium on Security and Privacy (SP). IEEE Computer Society, Washing-
ton, DC, USA, 969–986. https://doi.org/10.1109/SP.2016.62

[35] Wei Hu, Jason Hiser, Dan Williams, Adrian Filipi, Jack W. David-
son, David Evans, John C. Knight, Anh Nguyen-Tuong, and Jonathan
Rowanhill. 2006. Secure and Practical Defense Against Code-injection
Attacks Using Software Dynamic Translation. In Proceedings of the
2Nd International Conference on Virtual Execution Environments (VEE
’06). ACM, New York, NY, USA, 2–12. https://doi.org/10.1145/1134760.
1134764

[36] Yan Huang. 2016. Heap Overflows and Double-Free Attacks. Retrieved
April 6, 2018 from http://homes.soic.indiana.edu/yh33/Teaching/
I433-2016/lec13-HeapAttacks.pdf

[37] Intel Corporation. 2017. Control-flow Enforcement Tech-
nology Preview. Retrieved August 6, 2018 from
https://software.intel.com/sites/default/files/managed/4d/2a/
control-flow-enforcement-technology-preview.pdf

[38] Sushil Jajodia, Anup K. Ghosh, Vipin Swarup, Cliff Wang, and X. Sean
Wang. 2011. Moving Target Defense: Creating Asymmetric Uncertainty
for Cyber Threats (1st ed.). Springer-Verlag, New York, NY, USA. https:
//doi.org/10.1007/978-1-4614-0977-9

[39] Min Gyung Kang, Stephen McCamant, Pongsin Poosankam, and Dawn
Song. 2011. DTA++: Dynamic Taint Analysis with Targeted Control-
Flow Propagation. In Proceedings of the Network and Distributed System
Security Symposium 2011 (NDSS ’11). Internet Society, Reston, VA, USA.

[40] Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. 2003.
Countering Code-injection Attacks with Instruction-set Randomiza-
tion. In Proceedings of the 10th ACM Conference on Computer and Com-
munications Security (CCS ’03). ACM, New York, NY, USA, 272–280.
https://doi.org/10.1145/948109.948146

[41] Chongkyung Kil, Jinsuk Jun, Christopher Bookholt, Jun Xu, and Peng
Ning. 2006. Address Space Layout Permutation (ASLP): Towards Fine-
Grained Randomization of Commodity Software. In Proceedings of
the 22Nd Annual Computer Security Applications Conference (ACSAC
’06). IEEE Computer Society, Washington, DC, USA, 339–348. https:
//doi.org/10.1109/ACSAC.2006.9

[42] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Ham-
burg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,

and Yuval Yarom. 2018. Spectre Attacks: Exploiting Speculative
Execution. CoRR abs/1801.01203 (2018). arXiv:1801.01203 http:
//arxiv.org/abs/1801.01203

[43] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea,
R. Sekar, and Dawn Song. 2014. Code-Pointer Integrity. In Proceedings
of the 11th USENIX Conference on Operating Systems Design and Im-
plementation (OSDI’14). USENIX Association, Berkeley, CA, USA, 147–
163. https://www.usenix.org/conference/osdi14/technical-sessions/
presentation/kuznetsov

[44] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In Proceedings
of the International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization (CGO ’04). IEEE Computer
Society, Washington, DC, USA, 75–86. https://doi.org/10.1109/CGO.
2004.1281665

[45] lowRISC. 2018. lowRISC Project. Retrieved April 5, 2018 from
http://www.lowrisc.org/

[46] Kangjie Lu, Wenke Lee, Stefan Nürnberger, and Michael Backes. 2016.
How to Make ASLR Win the Clone Wars: Runtime Re-Randomization.
In Proceedings of the Network and Distributed System Security Sym-
posium 2016 (NDSS ’16). Internet Society, Reston, VA, USA. https:
//doi.org/10.14722/ndss.2016.23173

[47] Ali Jose Mashtizadeh, Andrea Bittau, Dan Boneh, and David Mazières.
2015. CCFI: Cryptographically Enforced Control Flow Integrity. In
Proceedings of the 22Nd ACM SIGSAC Conference on Computer and
Communications Security (CCS ’15). ACM, New York, NY, USA, 941–
951. https://doi.org/10.1145/2810103.2813676

[48] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas,
Hisham Shafi, Vedvyas Shanbhogue, and Uday R. Savagaonkar. 2013.
Innovative Instructions and Software Model for Isolated Execution.
In Proceedings of the 2Nd International Workshop on Hardware and
Architectural Support for Security and Privacy (HASP ’13). ACM, New
York, NY, USA, Article 10, 8 pages. https://doi.org/10.1145/2487726.
2488368

[49] National Institute of Standards and Technology. 2018. National Vul-
nerability Database. Retrieved April 6, 2018 from https://nvd.nist.gov

[50] James Newsome and Dawn Song. 2005. Dynamic Taint Analysis for
Automatic Detection, Analysis, and Signature Generation of Exploits
on Commodity Software. In Proceedings of the Network and Distributed
System Security Symposium 2005 (NDSS ’05). Internet Society, Reston,
VA, USA.

[51] Anh Nguyen-Tuong, David Evans, John C. Knight, Benjamin Cox, and
Jack W. Davidson. 2008. Security through redundant data diversity. In
2008 IEEE International Conference on Dependable Systems and Networks
With FTCS and DCC (DSN). IEEE Press, Piscataway, NJ, USA, 187–196.
https://doi.org/10.1109/DSN.2008.4630087

[52] OWASP. 2015. Format string attack. Retrieved April 6, 2018 from
https://www.owasp.org/index.php/Format_string_attack

[53] Antonis Papadogiannakis, Laertis Loutsis, Vassilis Papaefstathiou, and
Sotiris Ioannidis. 2013. ASIST: Architectural Support for Instruction
Set Randomization. In Proceedings of the 2013 ACM SIGSAC Conference
on Computer & Communications Security (CCS ’13). ACM, New York,
NY, USA, 981–992. https://doi.org/10.1145/2508859.2516670

[54] PaX Team. 2003. PaX address space layout randomization (ASLR).
Retrieved April 6, 2018 from http://pax.grsecurity.net/docs/aslr.txt

[55] Mathias Payer. 2012. Too much PIE is bad for performance. Technical
Report. ETH Zurich, Department of Computer Science, Zürich. https:
//doi.org/10.3929/ethz-a-007316742 Technical Reports D-INFK.

[56] Colin Percival. 2005. Cache missing for fun and profit. In Proceedings
of the Technical BSD Conference 2005 (BSDCan ’05).

[57] Jonathan Pincus and Brandon Baker. 2004. Beyond Stack Smashing:
Recent Advances in Exploiting Buffer Overruns. IEEE Security &
Privacy 2, 4 (July 2004), 20–27. https://doi.org/10.1109/MSP.2004.36

Session: Security II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

483

https://doi.org/10.14722/ndss.2016.23262
https://doi.org/10.14722/ndss.2016.23262
https://doi.org/10.14722/ndss.2017.23271
https://doi.org/10.14722/ndss.2017.23271
https://doi.org/10.1109/MICRO.2008.4771784
https://doi.org/10.1109/WWC.2001.15
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1109/SP.2016.62
https://doi.org/10.1145/1134760.1134764
https://doi.org/10.1145/1134760.1134764
http://homes.soic.indiana.edu/yh33/Teaching/I433-2016/lec13-HeapAttacks.pdf
http://homes.soic.indiana.edu/yh33/Teaching/I433-2016/lec13-HeapAttacks.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://doi.org/10.1007/978-1-4614-0977-9
https://doi.org/10.1007/978-1-4614-0977-9
https://doi.org/10.1145/948109.948146
https://doi.org/10.1109/ACSAC.2006.9
https://doi.org/10.1109/ACSAC.2006.9
http://arxiv.org/abs/1801.01203
http://arxiv.org/abs/1801.01203
http://arxiv.org/abs/1801.01203
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kuznetsov
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kuznetsov
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
http://www.lowrisc.org/
https://doi.org/10.14722/ndss.2016.23173
https://doi.org/10.14722/ndss.2016.23173
https://doi.org/10.1145/2810103.2813676
https://doi.org/10.1145/2487726.2488368
https://doi.org/10.1145/2487726.2488368
https://nvd.nist.gov
https://doi.org/10.1109/DSN.2008.4630087
https://www.owasp.org/index.php/Format_string_attack
https://doi.org/10.1145/2508859.2516670
http://pax.grsecurity.net/docs/aslr.txt
https://doi.org/10.3929/ethz-a-007316742
https://doi.org/10.3929/ethz-a-007316742
https://doi.org/10.1109/MSP.2004.36

[58] Qualcomm Product Security. 2017. Pointer Authentication on ARMv8.3:
Design and Analysis of the New Software Security Instructions. Technical
Report. Qualcomm Technologies, Inc., San Diego, CA, USA.

[59] riq and gera. 2001. Advances in Format String Exploiting. Phrack
Magazine. Retrieved April 6, 2018 from http://phrack.org/issues/59/7.
html

[60] RISC-V Foundation 2017. The RISC-V Instruction Set Manual, Volume I:
User-Level ISA, Document Version 2.2. RISC-V Foundation, Berkeley,
CA, USA. Editors Andrew Waterman and Krste Asanović. May 2017.

[61] Alec Roelke and Mircea R. Stan. 2017. RISC5: Implementing the RISC-
V ISA in gem5. In Proceedings of Computer Architecture Research in
RISC-V (14) (CARRV ’17). 7.

[62] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage.
2012. Return-Oriented Programming: Systems, Languages, and Ap-
plications. ACM Trans. Inf. Syst. Secur. 15, 1, Article 2 (March 2012),
34 pages. https://doi.org/10.1145/2133375.2133377

[63] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. 2011. DRAM-
Sim2: A Cycle Accurate Memory System Simulator. IEEE Comput. Ar-
chit. Lett. 10, 1 (Jan. 2011), 16–19. https://doi.org/10.1109/L-CA.2011.4

[64] rv8. 2018. rv8.io GitHub - musl-riscv. Retrieved August 2, 2018 from
https://github.com/rv8-io/musl-riscv

[65] Fermin J. Serna. 2012. The info leak era on software exploitation. In
Black Hat USA.

[66] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra
Modadugu, and Dan Boneh. 2004. On the Effectiveness of Address-
space Randomization. In Proceedings of the 11th ACM Conference on
Computer and Communications Security (CCS ’04). ACM, New York,
NY, USA, 298–307. https://doi.org/10.1145/1030083.1030124

[67] Gennadiy Shvets. 2018. Enhanced Virus Protection / Execute Disable
Bit. Retrieved January 24, 2019 from http://www.cpu-world.com/
Glossary/E/EVP_XD.html

[68] Kanad Sinha, Vasileios P. Kemerlis, and Simha Sethumadhavan. 2017.
Reviving instruction set randomization. In 2017 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST). IEEE
Press, Piscataway, NJ, USA, 21–28. https://doi.org/10.1109/HST.2017.
7951732

[69] Kevin Z. Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko,
Christopher Liebchen, and Ahmad-Reza Sadeghi. 2013. Just-In-Time
Code Reuse: On the Effectiveness of Fine-Grained Address Space Lay-
out Randomization. In Proceedings of the 2013 IEEE Symposium on
Security and Privacy (SP ’13). IEEE Computer Society, Washington, DC,
USA, 574–588. https://doi.org/10.1109/SP.2013.45

[70] Solar Designer. 1997. lpr LIBC RETURN exploit. Retrieved April 6,
2018 from http://insecure.org/sploits/linux.libc.return.lpr.sploit.html

[71] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. 2004.
Secure Program Execution via Dynamic Information Flow Tracking. In
Proceedings of the 11th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS XI). ACM,
New York, NY, USA, 85–96. https://doi.org/10.1145/1024393.1024404

[72] Gregory T. Sullivan, André DeHon, Steven Milburn, Eli Boling, Marco
Ciaffi, Jothy Rosenberg, and Andrew Sutherland. 2017. The Dover
inherently secure processor. In 2017 IEEE International Symposium on
Technologies for Homeland Security (HST). IEEE Press, Piscataway, NJ,
USA, 1–5. https://doi.org/10.1109/THS.2017.7943502

[73] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK:
Eternal War in Memory. In Proceedings of the 2013 IEEE Symposium
on Security and Privacy (SP ’13). IEEE Computer Society, Washington,
DC, USA, 48–62. https://doi.org/10.1109/SP.2013.13

[74] David Lie Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln,
Dan Boneh, John Mitchell, and Mark Horowitz. 2000. Architectural
Support for Copy and Tamper Resistant Software. In Proceedings of the
Ninth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS IX). ACM, New York,
NY, USA, 168–177. https://doi.org/10.1145/378993.379237

[75] Michael Theodorides and David Wagner. 2017. Breaking Active-Set
Backward-Edge CFI. In 2017 IEEE International Symposium on Hard-
ware Oriented Security and Trust (HOST). IEEE Press, Piscataway, NJ,
USA, 85–89. https://doi.org/10.1109/HST.2017.7951803

[76] Mohit Tiwari, ShashidharMysore, and Timothy Sherwood. 2009. Quan-
tifying the Potential of Program Analysis Peripherals. In Proceedings
of the 2009 18th International Conference on Parallel Architectures and
Compilation Techniques (PACT ’09). IEEE Computer Society, Washing-
ton, DC, USA, 53–63. https://doi.org/10.1109/PACT.2009.38

[77] Nathan Tuck, Brad Calder, and George Varghese. 2004. Hardware and
Binary Modification Support for Code Pointer Protection From Buffer
Overflow. In Proceedings of the 37th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 37). IEEE Computer Society,
Washington, DC, USA, 209–220. https://doi.org/10.1109/MICRO.2004.
20

[78] Aditya Venkataraman and Kishore Kumar Jagadeesha. 2015. Evalu-
ation of Inter-Process Communication Mechanisms. Technical Report.
University of Wisconsin-Madison, Madison, WI, USA.

[79] David Wagner and Paolo Soto. 2002. Mimicry Attacks on Host-based
Intrusion Detection Systems. In Proceedings of the 9th ACM Conference
on Computer and Communications Security (CCS ’02). ACM, New York,
NY, USA, 255–264. https://doi.org/10.1145/586110.586145

[80] Xi Wang, Haogang Chen, Alvin Cheung, Zhihao Jia, Nickolai Zel-
dovich, and M. Frans Kaashoek. 2012. Undefined Behavior: What
Happened to My Code?. In Proceedings of the Asia-Pacific Workshop
on Systems (APSYS ’12). ACM, New York, NY, USA, Article 9, 7 pages.
https://doi.org/10.1145/2349896.2349905

[81] Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-
Lezama. 2013. Towards Optimization-safe Systems: Analyzing the
Impact of Undefined Behavior. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles (SOSP ’13). ACM, New
York, NY, USA, 260–275. https://doi.org/10.1145/2517349.2522728

[82] John Wilander, Nick Nikiforakis, Yves Younan, Mariam Kamkar, and
Wouter Joosen. 2011. RIPE: Runtime Intrusion Prevention Eval-
uator. In Proceedings of the 27th Annual Computer Security Appli-
cations Conference (ACSAC ’11). ACM, New York, NY, USA, 41–50.
https://doi.org/10.1145/2076732.2076739

[83] David Williams-King, Graham Gobieski, Kent Williams-King, James P.
Blake, Xinhao Yuan, Patrick Colp, Michelle Zheng, Vasileios P. Ke-
merlis, Junfeng Yang, and William Aiello. 2016. Shuffler: Fast and
Deployable Continuous Code Re-Randomization. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
16). USENIX Association, GA, 367–382. https://www.usenix.org/
conference/osdi16/technical-sessions/presentation/williams-king

[84] Jonathan Woodruff, Robert N.M. Watson, David Chisnall, Simon W.
Moore, Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neu-
mann, Robert Norton, and Michael Roe. 2014. The CHERI Capa-
bility Model: Revisiting RISC in an Age of Risk. In Proceeding of
the 41st Annual International Symposium on Computer Architecu-
ture (ISCA ’14). IEEE Press, Piscataway, NJ, USA, 457–468. http:
//dl.acm.org/citation.cfm?id=2665671.2665740

[85] James Yonan. 2010. OpenVPN 2.0.x man pages. Re-
trieved April 6, 2018 from https://openvpn.net/index.php/open-source/
documentation/manuals/65-openvpn-20x-manpage.html

Session: Security II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

484

http://phrack.org/issues/59/7.html
http://phrack.org/issues/59/7.html
https://doi.org/10.1145/2133375.2133377
https://doi.org/10.1109/L-CA.2011.4
https://github.com/rv8-io/musl-riscv
https://doi.org/10.1145/1030083.1030124
http://www.cpu-world.com/Glossary/E/EVP_XD.html
http://www.cpu-world.com/Glossary/E/EVP_XD.html
https://doi.org/10.1109/HST.2017.7951732
https://doi.org/10.1109/HST.2017.7951732
https://doi.org/10.1109/SP.2013.45
http://insecure.org/sploits/linux.libc.return.lpr.sploit.html
https://doi.org/10.1145/1024393.1024404
https://doi.org/10.1109/THS.2017.7943502
https://doi.org/10.1109/SP.2013.13
https://doi.org/10.1145/378993.379237
https://doi.org/10.1109/HST.2017.7951803
https://doi.org/10.1109/PACT.2009.38
https://doi.org/10.1109/MICRO.2004.20
https://doi.org/10.1109/MICRO.2004.20
https://doi.org/10.1145/586110.586145
https://doi.org/10.1145/2349896.2349905
https://doi.org/10.1145/2517349.2522728
https://doi.org/10.1145/2076732.2076739
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/williams-king
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/williams-king
http://dl.acm.org/citation.cfm?id=2665671.2665740
http://dl.acm.org/citation.cfm?id=2665671.2665740
https://openvpn.net/index.php/open-source/documentation/manuals/65-openvpn-20x-manpage.html
https://openvpn.net/index.php/open-source/documentation/manuals/65-openvpn-20x-manpage.html

	Abstract
	1 Introduction
	1.1 Contributions of This Work

	2 Vulnerability-Tolerant Secure Architectures
	2.1 Malicious Programs are from Mars; Normal Programs are from Venus
	2.2 Boosting Uncertainty with Moving Target Defenses
	2.3 Ensembles of Moving Target Defenses with Churn

	3 Threat Model
	4 The Morpheus Secure Architecture
	4.1 Precise Runtime Domain Tagging
	4.2 Pointer Displacement Defense
	4.3 Domain Encryption Defense
	4.4 Churning Moving Target Defenses

	5 Morpheus Architecture Study
	5.1 Experimental Framework
	5.2 Security Analysis
	5.3 Performance Impact of EMTDs with Churn

	6 Related Work
	7 Conclusions and Future Directions
	Acknowledgments
	References

