
Advanced Computer Architecture
Instructor: Andreas Moshovos
moshovos@eecg.toronto.edu

Fall 2005

Some material is based on slides developed by profs. Mark Hill, David Wood, Guri Sohi and Jim Smith at the University of
Wisconsin-Madison.

All other material (c) A. Moshovos.

Today’s Lecture #1
• Course Content:

– Building the best processor
• Who cares
• How to define “best”
• Needs/Metrics
• Forces that determine “needs”

– Applications
– Technology

• What is “Computer Architecture”
– Implementation

• Role of the Architect
• Overview of course policies

What this course is about

Advanced Uniprocessor Architecture
Build the Best Processor

What is this course about
• Advanced Computer Architecture
• Really is on: Advanced uni-processor architecture

– Previous courses:
• How to build a processor that works?

• This course: What is the BEST processor I can build?
• This is not as easy as it sounds.

• To explain why let’s consider an example:

• What is the best means of transportation?
• 1. Porche? / 2. SUV? / 3. Truck? / 4. Train? / 5. Plane? /

6. Bike?

What BEST means?
• Really depends on what your goal is:

– Moving: Best take truck - unless you have nothing...
– SUV? I don’t know, you tell me
– Porche? Have money to burn - cruising

• Observation #1:
– Before we can decide what is best we need to know

the Needs are.
• Moving vs. cruising
• Observation #2:

– Then we need to be able to judge how well each
option serves these needs. Metrics

• Truck vs. Porche
• What if you had to build the best car for a given

purpose?

What BEST processor means?
• Needs:

– Performance: word processing vs. weather
simulation

– Cost: would you pay 5x $ for 2x performance?
– Complexity: Design/validation time -> cost and perf.
– Power: PDA, laptop, server
– Reliability: Must work correctly

• There are a number of forces at work:
– 1. What does the user needs: applications
– 2. What does technology offers: semiconductors

• Why this is challenging:
– Many applications, some yet to be developed
– Technology changes

What is Computer Architecture

It’s the interface

What is Computer Architecture?
• Architecture: How are things organized and what you

can do with them (functionality)

• Many different “Architectures” exist in a system
– Application/System architecture

• Structure of the application itself

– Interface to outside world (API, libraries, GUIs, etc.)
– Operating system calls
– Often appear as layers

• For our purposes Computer architecture is the
Interface between hardware and software

What is Computer Architecture?
System attributes as seen by the programmer
The term architecture is used here to describe the attributes of a system as

seen by the programmer, i.e., the conceptual structure and functional
behavior as distinct from the organization of the dataflow and controls, the

logic design, and the physical implementation.

Gene Amdahl, IBM Journal of R&D, April 1964
• What you the user needs to know to reason about how

the machine behaves

• A contract between users and the designer/architect
– Architect: I guarantee these features, anything else

can change across different designs
– User can develop applications and reason about what

they will do having a guarantee that they will work
across different designs

Architecture, µArch and Implementation
• Computer “Architecture”: HW/SW interface

– instruction set
– memory management and protection
– interrupts and traps
– floating-point standard (IEEE)
– Could include others: designer beware

• µMarch (micro-Arch): also called organization
– number/location of functional units
– pipeline/cache configuration
– programmer transparent techniques: prefetching

• Implementation (Hardware): low-level circuits

Architecture vs. Implementation
• AND Gate:

– Architecture is the interface:
• 2 inputs - 1 output and function
• Truth table defines behavior

– Implementation?
• Transistor based (How many can you think?)
• static, dynamic? CMOS, NMOS?
• Moshovos™ implementation
• others?

Computer Architecture
• The big question for computers is what goes into

Architecture
• Too much:

– Too restrictive
• Additions take 1 cycle to complete

• Too little:
– Lost opportunity
– Substandard performance

• Subtract and branch if negative is good enough
• Multimedia instruction set extensions

• Challenge is to forsee how technology/application trends
may create problems in the future
– Delay slots

Architecture vs. µMarch vs. Impl.
The boundaries are a bit blurred, still
64-bit Adder:

— Arch: What it does
— take two 64-bit numbers produce 64-bit sum

— µMarch: How it does it:
— Ripple carry
— Carry lookahead
— Carry prediction

— Implementation
— static, dynamic, CMOS, Synthesized, Custom, etc...

• This course: Architecture, µMarch and its interactions/
implications to software and implementation

Role of the Computer (µ)Architect
• Architect: Define hardware/software interface
• µArchitect: Define the hardware organization, usually

same person as above
• Goal:

– 1. Determine important attributes (e.g., performance)
– 2. Design machine to maximize those attributes under

constraints (e.g., cost, complexity, power).
• How : Study applications

Consider underlying technology
Cost
Performance
Complexity
Power
Reliability

Two Aspects of CA
• Techniques:

— This is the accumulated experience
— Typically, there is no formal way of developing these (innovation)
— Know how to evaluate

• When to use them?
RISC architectures: Could fit a CPU within a single chip in the early
80’s

Architecture is a “science” of tradeoffs
No underlying one-truth - we build our own world and mess
Too many options -> too many different ways of being wrong

Why Study Computer Architecture
• Build faster processors

– Why? my MS-Word, Latex runs quite fast on my Pentium 166
MMX thank you very much

– How about weather simulation? Speech recognition? MRI
Processing? MPEG-4 (7?), Your Killer-App circa 2005-2010?

• Bottom line:
– Historically, faster processors facilitated new applications
– Similarly, novel applications created a need for faster machines
– Cost is factor
– Facilitate further scientific development
– Any reason why this will change?

• Also performance not the only requirement
– #1: User requirements are constantly changing

Why Study Computer Architecture #2
• Implementation technologies change rapidly
• Technology Annual improvement
• Transistor density 50%
• Die size 10% - 20%
• Transistor Count 60%-80%
• Transistor speed 20-25%
• DRAM density 40% - 60% (4x in 3 years)
• DRAM speed 4% (1/3 in 10 years)
• Disk density 100% (4x in 2 years)
• Disk speed 4% (1/3 in 10 years)

• They also change relative to one another

Implications of Implementation Technology
• Caches (“bad” for IBM-XT, “a must” for Pentium 4):
• 70’s: thousands of xtors, DRAM faster than 8088 microprocessor
• nice way of slowing down your program
• 80’s: depends on machine
• 90’s: millions of xtors, what to do with them, DRAM much slower than

processor
• a must, otherwise your ~3Ghz processor spends most of its time waiting for

memory

• #2: Technology changes rapidly making past
choices often obsolete

• #3: Also opens up new opportunities (e.g., out-of-
order)

Classes of Computers

Not to be taken literally.

Evolution of microprocessors

Moore’s “Law”
• “Cramming More Components onto Integrated Circuits”
• G.E. Moore, Electronics, 1965

• observation: (DRAM) transistor density doubles annually
– became known as “Moore’s Law”
– wrong, density doubles every 18 months (had only 4 data points)

• corollaries
– cost / transistor halves annually
– power decreases with scaling
– speed increases with scaling
– reliability increases with scaling (??)

• Recent trends different: technology or marketing?

The Other “Moore’s Law”
• “performance doubles every 18 months”

• • common interpretation of Moore’s Law, not original intent

• • wrong, “performance” doubles every ~2 years

• • self-fulfilling prophecy (Moore’s Curve)

• • doubling every 18 months = ~4% increase per month

• • 4% per month used to judge performance features,
• if feature adds 2 months to schedule,
• it should add at least 8% to performance

Technology Scaling
• ICs characterized by Feature Size
• minimum xtor/wire size in x or y dimension
• 10 microns in 1971, 0.13 microns today, ~76x

reduction
• Xtor density: quadratic w/ respect to feature size
• Xtor performance: complex, but almost linear (lower

Vdd required for correct operation)
• Wire Delay: complex, distances shorter, but R and C

higher/unit. Net effect, wires do not scale as well as
xtors.

• Power: dynamic and static. ~CxFxV2 . Currently a big
problem.

Intel Processor Family

Ideal Technology Scaling Scenario

We will see why this is not the case most of the time.

Actual Scaling

Shrink

New uArch

Many factors determine what the new arch should be.

Putting things into Perspective

Perpetually Open Problems in CA
• Performance
• Cost
• Complexity
• Power
• Reliability
• Architectural Support for…

About the Course
• Instructors: Andreas Moshovos
• Office hours: via appointment only
• best way to communicate with me: e-mail

– Persist if I don’t respond the “first” time
– moshovos@eecg.toronto.edu

• Please use “ACA: Your header here” for all your e-mails
• Course web site: www.eecg.toronto.edu/~moshovos/ACA05
• nothing there yet
• There is no TA
• Meet twice a week: Tue. 2 hour lecture, Thursday 3 hours.

– Probably not throughout the semester
• You are responsible for all material discussed in class

Texts
• These slides
• • Computer Architecture: A Quantitative Approach, Hennessy

and Patterson, Third Edition, Morgan Kaufmann, 1-55860-596-7
(cloth), 1-55860-724-2 (paper)

• • Readings in Computer Architecture, Hill, Jouppi and Sohi.
• • Related conference papers - both classic and cutting-edge
• Conferences:
• • ISCA (international symposium on CA)
• • ASPLOS (arch. support for progr. languages & OSes)
• • MICRO (microarchitecture)
• • HPCA (all encompassing?)
• • Others: PACT, ICS...
• GENERAL INFO: www.cs.wisc.edu/~arch/www
• Online papers: www.computer.org, citeseer.nj.nec.com

Schedule
• First half (you attend lectures):
• Lectures on advanced architecture topics
• Some assignments

• • Second half (you give lectures and discuss):
• In groups you select among a set of research papers
• You give a presentation
• We discuss them in class
• You work on a project
• (you define or pick from a set of suggestions)

Expected Background
• Organization and Comp. Arch. (some overlap)
• Design simple uniprocessor
• Instruction set concepts: registers, instructions, etc.
• Organization
• Datapath design
• Hardwired/microprogrammed control
• Simple pipelining
• Basic caches, main memory
• High-level programming experience (C is a must)
• Compilers (back-end) and VLSI highly desired
• You are expected to read on your own and fill-in any

gaps

Topics
1. Technology Trends / Performance Metrics / Methodology
2. Pipelinining
3. Advanced Instruction Level Parallel Processing
4. Control Flow Prediction
5. Memory System
6. Instruction Set Principles
7. New Challenges: Power/Reliability
8. State-of-the-Art Research Papers and Classics

1 through 7 is my responsibility
8: I provide pointers, you make the presentation, we

discuss the papers in class

Marking
• This is a grad course: You are expected to be able to

seek information beyond what is discussed in class.
• Project X1%
• Homeworks X2%
• Presentations X3%

– If needed (Intention is NOT to have one):
• Take Home Exam X4%

• You must score at least 5/10 in all of the above
separately to pass

Project
• This is probably the most important part of the course
• • You will be required to propose and conduct “research” in

computer architecture
• — I will provide some suggestions
• — You are strongly encouraged to suggest your own:
• Validate data in some paper
• Evaluate extension to existing work
• Propose something completely new (difficult)
• Since this is a class project negative results are OK
• — In general it is hard to publish negative results
• You will probably have to use the simplescalar simulator
• Requires strong programming skills in C
• You must be familiar with UNIX or learn your way through it
• Groups of 2 or 3 if necessary (depends on class size too)
• More details coming “soon”

Homeworks
• There will be 5-6 assignments
• They will include assignments from the H&P book
• May require material that we do not cover in depth in

class
• There will be series of programming assignments that

are designed to help you learn the simulation
infrastructure that is commonly used in our research
community: www.simplescalar.com

• Assignments require strong programming skills primary
in C

• Also require that you are familiar with UNIX systems
• Environment to be determined within two weeks:

– Either cygwin/WinXP or access to linux cluster

Policies
• No late work will be accepted

— You will be given able time to complete all coursework
— There is no TA, dealing with late work is a logistical
nightmare

• • All work must be your own unless otherwise
specified

• — Please take this seriously
• — Make sure to reference any external sources

