Instruction Set Architecture and its Implications

A.  Moshovos (c)

Based on H&P CA: AQA
Some Figures and Tables taken directly from the book
These are not meant to be slides but notes

Fall 2005
© A. Moshovos (Univ. of Toronto)



Overview

* Instruction Set Architecture Overview
« Interaction of ISA and compilers
* Interaction of ISA and implementation

« Key Idea:
— The ISA can make the compiler or the implementation harder

— Some may argue that the ISA can have a profound impact on
performance, cost and complexity

Fall 2005
© A. Moshovos (Univ. of Toronto)



Instruction Set Architecture: Definition

 The set of all instructions
 Their format (binary representation)
o Specification of their operation

Includes Machine state such as
— Type of Operands
— Memory address space

Fall 2005
© A. Moshovos (Univ. of Toronto)



MIPS ISA Formats

Fyp= nEruction

G 5 ] 16

I COpoocde r= re Immediae

Encedes: Loads and swores of byres, half words, words,
double words. 8ll immediaies (rt —= op immediaie)

Condiional branch irsrucions r= i regiern, rd unused)
Jurnp registar, jumip and link regiscer
ird = 4, r2 = de=tinaton, immedias = 0j

R-typ= insruciion
G =1 &

5 =1 5
lﬂp:::-:la TEJ n:J rd shami funct

=

Regisier—ragister AL apsrations: rd— r2 funct e

Function encoces the dam path operaton: 8dd, Sub, . ..

Readrwnte specid registers and moves

J-iyp= insmucion
G b

COpocde Cftizet added 1o PG

Jump ard jump and link
Trap and rewrn fram excepnan

Fall 2005
© A. Moshovos (Univ. of Toronto)



Classifying Instruction Sets based on Operand Location

istar- Regi
(a) Stack by Accumulator iz Reg=er-Memary o Tﬁémgwr

il

Fall 2005
© A. Moshovos (Univ. of Toronto)



C=A+B

Regisier Reaister
slack Accumulator— {register-memory;  {load-store)
Fush & Load 2 load RL,A Load R1A
Fush B zdd B 2dd R3I,R1,E  Load R2.E
Edd Store C Store R3,C Addd R3,R1,E2
Bop C Store B3, C
Fall 2005

© A. Moshovos (Univ. of Toronto)



Comparing Instruction Sets based on Operand Location

Type

Advantages

Disadvantages

Register-
register
(0.3

Register-
memaory
(1.2)

Memary-
Memory
i2,2)0or
(3,3

simple, fixed-length instruction encoding. Simple
code-generation modal. Instructions take similar
numbers of clocks to execute (s2e App. A).

Data can be accessed without 4 separate load in-
struction first. Instruction fomat tends to be easy
to encode and vields good density.

Most compact. Doesn't waste registers for
tem poraries.,

Higher instruction count than architectures with
memory references in instructions, More instruc-
tions and lower instruction density leads to larger
Programs.

Operands are not equivalent since a source oper-
dand in a binary operation is destroyed. Encoding a
register number and a memaory address in each
instruction may restrict the number of registers.
Clocks per instruction vary by operand location.

Large variation in instruction size, especially for
threg-operand instructions. In addition, large vari-
dtion in work per instruction. Memory accesses
create memory bottlenack. (Not used today. )

FIGURE 2.4 Advantages and disadvantages of the three most commaon types of genaral-purposa register comput-
ars. The notation (m, n) means m mamary operands and n total oparands. In ganeral, computers with fewer atematives
simplify the compiler's task since there ara fawer decisions for the compiler to make (see saction 2.11). Computers with a
wide vanaty of flexible instruction formats reduce the number of bits raquired to encode the program. The numbear of registers
also affects tha instruction size since you naad log, (numbear of registers) for each register spacifier in an instruction. Thus,
doubling the number of registars takes 3 extra bits for a registar-registar architecture, or about 10% of a 32-bit instruction.

Fall 2005

© A. Moshovos (Univ. of Toronto)



Addressing Modes

Addressings

rmascle Fxample instruction Mleaning When used

Register Add R4, B3 Fegs [E4] «— Raga [R4] When a value is in a register.
+ Regz[Rr2]

Immediate Add R4, #3 Eege [B4] «—Rega[R4] +2 For constants.

Displacemernt 244 R4, 100 (RL) FEegs [E4] «—Regs [R4] Accessing local variables

+ Mem[loo+Regs[RE1] ]

i+ simulates register indirect,
direct addressing modeas}

Register indirect zdd R4, (K1) Fogs [R4]« Faga [R4] Accessing using a pointer or a
+ Mem[Fags [R1] ] computed address.
Indexed z2dd R3, (E1 + E=2) Fegs [R3]« FRaga [R3] Sometimes usaful in array
+Ham [Eeges [R1] +FRags [Rz] ] addressing: R1 = base of amray;
F2 = index amourt.
Drirect ar Add B1, (10013 FEegs [E1] «FRaga [R1] Sometimes u=aful for access-
absolute + HMem[1o01] ing static data; address con-
stant may nead to ba larme.
Memory indirect 244 R1, @ (B2 Fegs [R1] «—Regs [R1] If B2 is the address of a pointer
+ Mam[Mam(REeg=s[RE3]]] 2. then mode vields .
Autoincrameant 2dd rR1, (R2)+ Regs [R1] <« Regs [R1] Useful for stepping through ar-
+ Mem[Reg= [Ez2] ] rays withina loop. B2 points to
Eege [E2] «—FRaga [R2] +d start of aray,; each reference
increments B2 by size of an
element, o.
Autodecrement 2dd rR1, - (RZ) Fegs [E2]«—FRag=s [R2] —d Same use as autoincrement.
FEegs [R1] «—Regs [R1] Antodecrement/increment can
+ Heam [Regs [F2]] dlso act as push/pop to imple-
mert a stack.
Scaled z2dd R1,100(E2) [R2] Fegs [R1]+«— Regs [R1] + Usad to index arrays. May be
Mem[1loo+Regs [R2] applied to army indexed ad-
+ ERegs[R2] *d] drassing mode in some com-
puters.
Fall 2005

© A. Moshovos (Univ. of Toronto)



Do we need all these addressing modes?

Memaory ndirsct spics
Scaled  spice 16%
TeX %

Regeer ndiect  gpjcs

Immediate  spica 175

Displacament  zpjca 55%

s 10% 20% i 40 50 G5
Freguency of the addreszing mode

Immediate, Displacement and Register Indirect dominate
Displacement Constants vary but most are small < 16bit

Fall 2005
© A. Moshovos (Univ. of Toronto)



Operations

Operator type FExamples

Arithmetic and logical Integer arithmetic and logical operations: add, subtract, and, or, multiple, divida
Data transfer Loads-stores (move instructions on computers with memaory addressing)
Control Branch, jump, procedure call and retum, traps

System Operating svstem call, virtual memory management instructions

Floating point Floating-point operations: add, multiply, divide, com pare

Decimal Decimal add, decimal multiply, decimal-to-character conversions

Siring String mowe, string compare, string search

Giraphics Pixel and vertex operations, com pression/decompression oparations

FIGURE 2.15 Catagories of instruction operaters and examples of each. All computers generally provide a full set of
operations for the first three categones. The support for system functions in the instruction set varies widely among archi-
tectures, but all computars must have some instruction suppor for basic system functions. The amount of support in the
instruction set for the last four categories may vary from none to an extensive set of spacial instructions. Floating-point in-
structions will be provided in any computar that is intended for use in an application that makes much use of floating point.
These instructions are somatimes part of an optional instruction set Decimal and string instructions are sometimes primi-
tives, as inthe VAX orthe IBM 360, or may ba synthasized by the compiler from simpler instructions. Graphics instructions
typically operate on many smaller data items in parallel; for example, performing eight 8-bit additions on tao 64-bit oparands.

Fall 2005
© A. Moshovos (Univ. of Toronto)



Common Operations: x86 — Spec92

Integer average

Kank BEG instruction % total executed)
I load 22%
2 conditional branch 205
3 Compare |65
4 store | 2%
5 acld B
6 and 6%
7 suh 3%
B move register-register 4%
9 call | %
[0 return | %
Total O6%

FIGURE 2.1& The top 10 instructions for the 80x86. Simple instructions dominata this
lizt, and are responsible for 96% of the instructions executed. These parcentages are the av-
arage of tha five SPECInt92 programs.

Fall 2005
© A. Moshovos (Univ. of Toronto)



Control Flow Instructions

Jumps

Conditional Branches

— Unconditional Branches

Procedure Calls
Procedure Returns

Fall 2005
© A. Moshovos (Univ. of Toronto)



Conditional Control Flow Operations

Nilme Examples  How condition is tested Advantazes Disadvantages

Condition ROxE6, special bitsare sat by ALU  Sometimes condition  CC is extra sfate, Condition

code (CCy - ARM, operations, possibly under s set for free. codes constrain the ordering
PowerPC,  program control. of instructions since they pass
SPARC, informmation from one instruc-
superH tion to a branch,

Condition Alpha, Tests arbitrary register with ~ Simple. Lises up a register.

regis tar MIPS the result of a comparison.

Compare PA-RISC,  Compare is part of the One instruction rather  May be too much work per

and branch ~ VAX branch. Often compare is than two for a branch.,  instruction for pipelined exe-

limited to subsat. cution.

FIGURE 221 The major methods for evaluating branch conditions, their advantages, and thair disadvantages.
Although condition codes can be set by ALL operations that are needad for other purposas, maasuraments on programs
show that this rarely happens. The major implementation problems with condition codes anse whan the condition code is
set by alarge or haphazardly chosen subsat of tha instructions, rather than being controlled by a bit in the instruction. Com-
puters with compare and branch often limit the set of compares and use a condition register for more complex compares.
Often, differant techniques are used for branches based on floating-point comparison versus those based on integer com-
parison. This dichotomy is reasonable since the number of branches that depend on floating-point comparizons is much

smaller than the numbser depanding on integer compansons.

Fall 2005
© A. Moshovos (Univ. of Toronto)



Encoding Instruction Sets

Balance amongst competing forces

As many registers as possible

Impact on instruction size and program size

Simplicity of decoding
— Multiple of bits, bytes or fixed size?

Fall 2005
© A. Moshovos (Univ. of Toronto)



Basic Variations in Instruction Encoding

Oiperation & Address Address | . | Address | Address
no. of ocperarnds | sp=caher 1 hi=dd 1 sp==cifi=r n ek N

jaj vanable {e.g.. VAN el 80xEE)

Ol pe=rEtisn Address Address Adchress
h=dd 1 h=dd = h=ld =

it Fxad =g, &lpha, AR, MIPS, Poes=srFs, SPARC, SuperH)

 Dipsraticn Bodhe=g Adhesg
sp=cifier h=id
Ol pesrE e Sdhress Addhress Adche=s
sp=cifier 1 sp=cifier 2 h=ld
Ol pe=rEie Address Address Adche=s
sp=cifier hf=dd 1 h=ld =

i) Hybnd ¢=.g., IEM 2870, MIPSZ16, Thiumb, TI TMS320CG 5420

FIGURE 2.23 Thres basic wariations in instraction ancoding: variable length, fixed
lamggth, and hylericd. Tha variable format can support any numbeasr of oposrands, with each ad-
dres=s specifier detaemmining the addressing mode and the lanogth of the spacifier for that op-
arand. it ganerally anablas the smallest coda reprasantation, sincae unusad fields neasd not B
includad. Tha fiked formmat alvways has the samsa numbesr of opearands, with the addressing
modas {(if options axist) spaecified as par of the opooda (soo alzo Figuras C.2 on pagse -4 1t
ganarally results in the largast ocodo siza. Although the fields tand not to vary in thair location,
they will be usad for differarmt purposas by different instuctions. The hybrid approach has
multipla formats spacified by thae opoodeae, adding ona ar tena fiolds to spacity the addraessing
moda and ona ar two fields 1o spocify the oporand addrass (seo also Figure D7 on pagas O-
127.

Fall 2005
© A. Moshovos (Univ. of Toronto)



Compilers and the ISA

Compilers will be used to generate most programs

Goal of the Compiler
— Generate the best code
— Best: size and/or speed

The compiler solves a big optimization problem
The ISA can make this harder or easier

Fall 2005
© A. Moshovos (Univ. of Toronto)



Structure of a Modern Optimizing Compiler

Dependencies Function

Lenguags dep=nden; Transtorm language m
maching independant commion inermediats form

Inrermediare
renres enignon

Far example, leop
rarsfomatons and
procadurs inlining
{alo called
procadurs inEgratan

Somawhat languags depandent,
largely mazhine indepandent

Small language dependencies; Including glokal and local
machine dependencies slight Glokal ORmiZanans + registar
{E.0., MEETEr COUNIE Iy R=2E) cptimizer allacation

Highly machine depandent; Detaiked ireruction salection
language independent | Cede generator ' and machine-depandant
opfimizatans; may include

or b= fllomed by assamblar

FIGURE 2.24 Compilers typically consist of two to four passes, with more highly op-
timizing compilers having more passes. This structure maximizes the probakility that a
program compiled at various levels of optimization will produce the =ame output when given
the same input. The optimizing passes are dezigned to be optional and may ba skipped when
faster compilation is the goal and lower quality code is accaptabla. A pass is simply one
phase in which the compiler reads and transforms the entire program. (The temm phasais o
ten used intarchangaably with pass.) Because the optimizing passes are separated, multiple
languages can uza the same optimizing and code-ganeration pas=as. Only a new front endis
required for a new language.

Fall 2005
© A. Moshovos (Univ. of Toronto)



How the ISA can help the Compiler

e Goal:
— Make Frequent Cases fast and the Infrequent Correct
« Regularity
— Operation, data types and addressing modes should be orthogonal
« Can use any combination
 Counter-example: special purpose registers (sp and bp in x86)
* Provide primitives not solutions

— Attempting to support high-level programming language features may
result in suboptimal results

 Example function prologue/epilogue saving/restoring instructions

Fall 2005
© A. Moshovos (Univ. of Toronto)



How the ISA can help the Compiler

 Simplify tradeoffs among alternatives
— What is the best instruction sequence given an operation?
* [nstruction count is not a good metric
 Think of a register-memory architecture like x86

— At which point it makes sense to register allocate a
variable?

Fall 2005
© A. Moshovos (Univ. of Toronto)



