
ECE D52 Lecture Notes: Chapter 3 1© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Pipelining
• Principles of pipelining

• Simple pipelining

• Structural Hazards

• Data Hazards

• Control Hazards

• Interrupts

• Multicycle operations

• Pipeline clocking

ECE D52 Lecture Notes: Chapter 3 2© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Sequential Execution Semantics
We will be studying techniques that exploit the semantics of

Sequential Execution.

Sequential Execution Semantics:

instructions appear as if they executed in the program specified order
and one after the other

Alternatively

At any given point in time we should be able to identify an instruction so
that:

1. All preceding instructions have executed

2. None following has executed

ECE D52 Lecture Notes: Chapter 3 3© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Exploiting Sequential Semantics
• The “it should appear” is the key

• The only way one can inspect execution order is via the
machine’s state

This includes registers, memory and any other named storage

We will looking at techniques that relax execution order while
preserving sequential execution semantics

ECE D52 Lecture Notes: Chapter 3 4© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Steps of Instruction Execution

Fetch

Decode

Read Operands

Operation

Writeback Result

Determine Next Instruction

Instruction execution is not a
monolithic action

There are multiple micro-
actions involved

ECE D52 Lecture Notes: Chapter 3 5© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Pipelining: Partially Overlap Instructions

Ideally:

This ignores fill and drain times

Timepipeline

Timesequential
PipelineDepth
--=

Unpipelined

instructions

time 1/Throughput

latency

Pipelined

instructions

time
1/Throughput

latency

ECE D52 Lecture Notes: Chapter 3 6© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Sequential Semantics Preserved?

Two execution states:

1. In-progress: changes not visible to outsiders

2. Committed: changes visible

fetch I4 decode I4 r0 = r0 + r2

fetch I5 decode I5 r1 = r1 + 1

fetch I6 decode I6 r3 = r1 != 10

Time
a b

committed

in-progress

in-progress

ECE D52 Lecture Notes: Chapter 3 7© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Principles of Pipelining: Example

Critical Path Determines Clock Cycle

Overlap

Pick Longest Stage

ECE D52 Lecture Notes: Chapter 3 8© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Principles of Pipelining: Ideal Case
Let T be the time to execute an instruction

Instruction execution requires n stages, t1...tn taking T =

W/O pipelining:

W/ n-stage pipeline:

If all ti are equal, Speedup is n

Ideally: Want higher Performance? Use more pipeline stages

ti∑

TR 1
T
--- 1

ti∑
------= = Latency T 1

TR
--------= =

TR
1

max ti()
------------------- n

T
---≤= Latency n max ti()× T≥=

Speedup
ti∑

max ti()
------------------- n≤=

ECE D52 Lecture Notes: Chapter 3 9© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Pipelining Limits
• After a certain number of stages benefits level off and later they
start diminishing

• Pipeline Utility is limited by:

1. Implementation

a. Logic Delay

b. Clock Skew

c. Latch Delay

2. Structures

3. Programs

2 & 3 will be called HAZARDS

ECE D52 Lecture Notes: Chapter 3 10© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Pipeline Limits: #1 Logic Delay
la

tc
h logic

la
tc

h

• tl = logic block’s worst case
delay

• T = clock period

T >= tl
• Today’s Procs:

6-12 2-input gates per stage

computation starts should complete before this

T

tl

clock clock

ECE D52 Lecture Notes: Chapter 3 11© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Pipelining Limits: #2 Clock Skew

t

la
tc

h

la
tc

h stage
i

stage
i+1

tl

tw

DIE

A

B

CLK

CLKA

CLKB

Clock Skew

CLOCK SKEW
• Clock takes time to travel
• Arrival depends on distance/load
• Skew amongst different connections
• Creates additional constraints

ECE D52 Lecture Notes: Chapter 3 12© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Clock Skew contd.

• Worst case scenario:

- Output from stage with late clock feeds stage with early
clock

computation would have started here

should complete before this

T

tl

but starts here

ECE D52 Lecture Notes: Chapter 3 13© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Pipelining Limits: #3 Latch Overhead
• Latch takes time

- Setup Time

data must stay stable before clock edge

- Hold Time

data must stay stable after clock edge
should complete before this

T

tl

setup hold

computation starts

ECE D52 Lecture Notes: Chapter 3 14© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Impact of Clock Skew and Latch Overheads
let X be extra delay per stage for

• latch overhead

• clock/data skew

X limits the useful pipeline depth

With n-stage pipeline (all ti equal) (T = n x t)

• throughput =

• latency =

• speedup =

Real pipelines usually do not achieve this due to Hazards

1
X t+
------------ n

T
---<

n X t+()× n X T+×=

T
X t+()

---------------- n≤

ECE D52 Lecture Notes: Chapter 3 15© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Simple pipelines
F- fetch, D - decode, X - execute, M - memory, W -writeback

Classic 5-stage Pipeline

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

i F D X M W

i+1 F D X M W

i+2 F D X M W

i+3 F D X M W

i+4 F D X M W

ECE D52 Lecture Notes: Chapter 3 16© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Simple Pipelines - MIPS/DLX 5-Stages
• integer/logic operations

add $1, $2, $3 --> read 2 regs, write one

• branches

beq $1, $2, LALA --> read 2 regs, compare, change PC

• load/stores

lw $1, 10($3) --> read 1 reg, add, read memory, write reg

sw $1, 10($3) --> read 2 regs, add, write memory

• special ops: syscall, jumps, call/return

read at most 1 reg, write at most 1 reg, change PC

ECE D52 Lecture Notes: Chapter 3 17© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Simple Pipelines - MIPS/DLX 5-Stages

Non-pipelined Implementation
T

ECE D52 Lecture Notes: Chapter 3 18© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Simple Pipelines - MIPS/DLX 5-Stages

Pipelined Implementation: Ideally 5x performance

fetch decode execute memory writeback

T

ECE D52 Lecture Notes: Chapter 3 19© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Pipeling as Datapaths in Time

MEM REG MEM REG

MEM REG MEM REG

MEM REG MEM REG

Time

ECE D52 Lecture Notes: Chapter 3 20© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Hazards
Hazards

• conditions that lead to incorrect behavior if not fixed

Structural Hazard

• two different instructions use same resource in same cycle

Data Hazard

• two different instrucitons use same storage

• must appear as if the instructions execute in correct order

Control Hazard

• one instruction affects which instruction is next

ECE D52 Lecture Notes: Chapter 3 21© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Structural Hazards
When two or more different instructions

want to use the same hardware resource in the same cycle

• e.g., load and stores use the same memory port as IF

MEM REG MEM REG

MEM REG MEM REG

MEM REG MEM REG

MEM REG MEM REG

ECE D52 Lecture Notes: Chapter 3 22© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Dealing with Structural Hazards
Stall:

+ low cost, simple

– decrease IPC

• use for rare case

Pipeline Hardware Resource:

• useful for multicycle resources

+ good performance

– sometimes complex e.g., RAM

– Example 2-stage cache pipeline: decode, read or write
data (wave pipelining - generalization)

ECE D52 Lecture Notes: Chapter 3 23© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Dealing with Structural Hazards
Replicate resource

+ good performance

– increases cost

– increased interconnect delay ?

• use for cheap or divisible resources

demux mux

ECE D52 Lecture Notes: Chapter 3 24© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Impact of ISA on Structural Hazards
Structural hazards are reduced

• If each instruction uses a resource at most once

• Always in same pipeline stage

• For one cycle

Many RISC ISAs designed with this in mind

ECE D52 Lecture Notes: Chapter 3 25© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Data Hazards
When two different instructions use the same storage location It

must appear as if they executed in sequential order

add r1, r2, --

sub r2, --, r1

add r3, r1, --

or r1, --, --

• read-after-write (RAW, true dependence) -- real

• write-after-read (WAR, anti-dependence) -- artificial

• write-after-write (WAW, output-dependence) -- artificial

• read-after-read (no hazard)

ECE D52 Lecture Notes: Chapter 3 26© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Data Hazards

ECE D52 Lecture Notes: Chapter 3 27© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Examples of RAW

unless 100(r2) is the PC of the load (self-modifying code)

add r1, --, -- IF ID EX MEM WB

sub --, r1, -- IF ID EX MEM WB

r1 written

r1 read - not OK

load r1, --, -- IF ID EX MEM WB

sub --, r1, -- IF ID EX MEM WB

r1 written

r1 read - not OK

sw r1, 100(r2) IF ID EX MEM WB

lw r1, 100(r2) IF ID EX MEM WB
OK

ECE D52 Lecture Notes: Chapter 3 28© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Simple Solution to RAW
Hardware detects RAW and stalls

+ low cost, simple

– reduces IPC

Maybe we should try to minimize stalls

add r1, --, -- IF ID EX MEM WB

sub --, r1, -- IF stall stall IF ID EX MEM WB

r1 written

ECE D52 Lecture Notes: Chapter 3 29© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Stall Methods
Compare ahead in pipe

• if rs1(EX) == Rd(MEM) || rs2(EX) == Rd (MEM) then stall

• assumes MEM instr is a load, EX instr is ALU

• Use register reservation bits

one bit per register

loads reserve at ID stage

release at MEM stage
check source Reg bit
stall if reserved

set at ID stage clear at MEM stage

ECE D52 Lecture Notes: Chapter 3 30© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Minimizing RAW stalls
Bypass or Forward or Short-Circuit

Use data before it is in register

+ reduces/avoids stalls

– complex

– Deeper pipelines -> more places to bypass from

• crucial for common RAW hazards

add r1, --, -- IF ID EX MEM WB

sub --, r1, -- IF ID EX MEM WB

r1 writtendata available

data used

ECE D52 Lecture Notes: Chapter 3 31© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Bypass
Interlock logic

• detect hazard

• bypass correct result to ALU

Hardware detection requires extra hardware

• instruction latches for each stage

• comparators to detect the hazards

ECE D52 Lecture Notes: Chapter 3 32© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Bypass Example

ECE D52 Lecture Notes: Chapter 3 33© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Bypass: Control Example
Mux control

• if insn(EX) uses immediate then select IMM

• else if rs2(EX) == rd(MEM) then ALUOUT(MEM)

• else if rs2(EX) == rd(WB) then ALUOUT(WB)

• else select B

ECE D52 Lecture Notes: Chapter 3 34© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

RAW solutions
Hybrid (i.e., stall and bypass) solutions required sometimes

DLX has one cycle bubble if load result used in next instruction

Try to separate stall logic from bypass logic

• avoid irregular bypasses

load r1, --, -- IF ID EX MEM WB

sub --, r1, -- stall IF ID EX MEM WB

ECE D52 Lecture Notes: Chapter 3 35© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Pipeline Scheduling - Compilers can Help
Instructions scheduled by compiler to reduce stalls

a = b + c; d = e + f -- Prior to scheduling

lw Rb, b

lw Rc, c

stall

add Ra, Rb, Rc

sw a, ra

lw Re, e

lw Rf, f

stall

sub Rd, Re, Rf

sw d, Rd

ECE D52 Lecture Notes: Chapter 3 36© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Pipeline Scheduling
After scheduling

lw Rb, b

lw Rc, c

lw Re, e

add Ra, Rb, Rc

lw Rf, f

sw a, ra

sub Rd, Re, Rf

sw d, Rd1

No Stalls

ECE D52 Lecture Notes: Chapter 3 37© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Delayed Load
Avoid hardware solutions - Let the compiler deal with it

Instruction Immediately after load can’t/shouldn’t see load result

Compiler has to fill in the delay slot - NOP might be necessary

lw Rb, b
lw Rc, c
nop
add Ra, Rb, Rc
sw a, Ra
lw Re, efs
lw Rf, f
nop

add Rd, Re, Rf ...

lw Rb, b

lw Rc, c

lw Rf, f

add Ra, Rb, Rc

lw Rf, f

sw a, Ra

sub Rd, Re, Rf

sw d, Rd

U
N

S
C

H
E

D
U

L
E

D

S
C

H
E

D
U

L
E

D

ECE D52 Lecture Notes: Chapter 3 38© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Other Data Hazards
WAR add r1, r2, --

sub r2, --, r1

or r1, --, --

Not possible in DLX - read early write late

Consider late read then early write

ALU ops writeback at EX stage

MEM takes two cycles and stores need source reg after 1 cycle

sw r1, -- IF ID EX MEM1 MEM2 WB

add r1, --, -- IF ID EX MEM1 MEM2 WB

also: MUL --, 0(r2), r1

lw --, (r1++)

ECE D52 Lecture Notes: Chapter 3 39© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Other Data Hazards
WAW

Not in DLX : register writes are in order

consider slow then fast operation

divf fr1, --, --

mov --, fr1

addf fr1, --, --

update r1

update r1 not OK

ECE D52 Lecture Notes: Chapter 3 40© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Control Hazards
When an instruction affects which instruction execute next

or changes the PC

• sw $4, 0($5)

• bne $2, $3, loop

• sub -, - , -

1 2 3 4 5 6 7 8 9

sw F D X M W

bne F D X* M W

?? F D X M W

ECE D52 Lecture Notes: Chapter 3 41© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Control Hazards
Handling control hazards is very important

VAX e.g.,

• Emer and Clark report 39% of instr. change the PC

• Naive solution adds approx. 5 cycles every time

• Or, adds 2 to CPI or ~20% increase

DLX e.g.,

• H&P report 13% branches

• Naive solution adds 3 cycles per branch

• Or, 0.39 added to CPI or ~30% increase

ECE D52 Lecture Notes: Chapter 3 42© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Handling Control Hazards
Move control point earlier in the pipeline

• Find out whether branch is taken earlier

• Compute target address fast

Both need to be done

e.g., in ID stage

• target := PC + immediate

• if (Rs1 op 0) PC := target

ECE D52 Lecture Notes: Chapter 3 43© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Handling Control Hazards

Implies only one cycle bubble but

• special PC adder required

1 2 3 4 5 6 7 8 9

N: sw F D X M W

N+1: bne F D X M W

N+2: add F squashed

Y: sub F D X

ECE D52 Lecture Notes: Chapter 3 44© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

ISA and Control Hazard
Comparisons in ID stage

• must be fast

• can’t afford to subtract

• compares with 0 are simple

• gt, lt test sign-bit

• eq, ne must OR all bits

More general conditions need ALU

• DLX uses conditional sets

ECE D52 Lecture Notes: Chapter 3 45© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Handling Control Hazards
Branch prediction

• guess the direction of branch

• minimize penalty when right

• may increase penalty when wrong

Techniques

• static - by compiler

• dynamic - by hardware

• MORE ON THIS LATER ON

ECE D52 Lecture Notes: Chapter 3 46© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Handling Control Hazards
Static techniques

• predict always not-taken

• predict always taken

• predict backward taken

• predict specific opcodes taken

• delayed branches

Dynamic techniques

• Discussed with ILP

ECE D52 Lecture Notes: Chapter 3 47© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Handling Control Hazards
Predict not-taken always

if taken then squash (aka abort or rollback)

• will work only if no state change until branch is resolved

• Simple 5-stage Pipeline, e.g., DLX - ok - why?

• Other pipelines, e.g., VAX - autoincrement addressing?

1 2 3 4 5 6 7 8 9

i F D X M W

i+1 F D X M W

i+2 F D X M

ECE D52 Lecture Notes: Chapter 3 48© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Handling Control Hazards
Predict taken always

For DLX must know target before branch is decoded

• can use prediction

• special hardware for fast decode

Execute both paths - hardware/memory b/w expensive

1 2 3 4 5 6 7 8 9

i F D X M W

i+8 F D X M W

i+9 F D X M

ECE D52 Lecture Notes: Chapter 3 49© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Handling Control Hazards
Delayed branch - execute next instruction whether taken or not

• i: beqz r1, #8

• i+1: sub --, --, --

•

• i+8 : or --, --, -- (reused by RISC invented by microcode)

1 2 3 4 5 6 7 8 9

i F D X M W

i+1 (delay slot) F D X M W

i+8 F D X M

ECE D52 Lecture Notes: Chapter 3 50© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Filling in Delay slots
Fill with an instr before branch

• When? if branch and instr are independent.

• Helps? always

Fill from target (taken path)

• When? if safe to execute target, may have to duplicate
code

• Helps? on taken branch, may increase code size

Fill from fall-through (not-taken path)

• when? if safe to execute instruction

• helps? when not-taken

ECE D52 Lecture Notes: Chapter 3 51© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Filling in Delay Slots cont.
From Control-Independent code:

that’s code that will be eventually visited no matter where the
branch goes

takennot-taken

control-independent of A

A

control-dependent of A

Nullifying or Cancelling or Likely Branches:

Specify when delay slot is execute and when is squashed

Why? Increase fill opportunities

Major Concern w/ DS: Exposes implementation optimization

ECE D52 Lecture Notes: Chapter 3 52© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Comparison of Branch Schemes
Cond. Branch statistics - DLX

• 14%-17% of all insts (integer)

• 3%-12% of all insts (floating-point)

• Overall 20% (int) and 10% (fp) control-flow insts.

• About 67% are taken

Branch-Penalty = %branches x

(%taken x taken-penalty + %not-taken x not-taken-penalty)

ECE D52 Lecture Notes: Chapter 3 53© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Comparison of Branch Schemes

Assuming: branch% = 14%, taken% = 65%, 50% delay slots are
filled w/ useful work

ideal CPI is 1

scheme taken penalty not-taken pen. CPI penalty

naive 3 3 0.420

fast branch 1 1 0.140

not-taken 1 0 0.091

taken 0 1 0.049

delayed branch 0.5 0.5 0.070

ECE D52 Lecture Notes: Chapter 3 54© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Impact of Pipeline Depth
Assume that now penalties are doubled

For example we double clock frequency

Delayed Branches need special support for interrupts

scheme taken penalty not-taken pen. CPI penalty

naive 6 6 0.840

fast branch 2 2 0.280

not-taken 2 0 0.182

taken 0 2 0.098

delayed branch ? ? ?

ECE D52 Lecture Notes: Chapter 3 55© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Interrupts
Examples:

• power failing, arithmetic overflow

• I/O device request, OS call, page fault

• Invalid opcode, breakpoint, protection violation

Interrupts (aka faults, exceptions, traps) often require

• surprise jump (to vectored address)

• linking return address

• saving of PSW (including CCs)

• state change (e.g., to kernel mode)

ECE D52 Lecture Notes: Chapter 3 56© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Classifying Interrupts
1a. synchronous

• function of program state (e.g., overflow, page fault)

1b. asynchronous

• external device or hardware malfunction

2a. user request

• OS call

2b. coerced

• from OS or hardware (page fault, protection violation)

ECE D52 Lecture Notes: Chapter 3 57© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Classifying Interrupts
3a. User Maskable

User can disable processing

3b. Non-Maskable

User cannot disable processing

4a. Between Instructions

Usually asynchronous

4b. Within an instruction

Usually synchronous - Harder to deal with

5a. Resume

As if nothing happened? Program will continue execution

5b. Termination

ECE D52 Lecture Notes: Chapter 3 58© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Restartable Pipelines
• Interrupts within an instruction are not catastrohic

• Most machines today support this

Needed for virtual memory

• Some machines did not support this

Why?

Cost

Slowdown

Key: Precice Interrupts

Will return to this soon

First let’s consider a simple DLX-style pipeline

ECE D52 Lecture Notes: Chapter 3 59© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Handling Interrupts
Precise interrupts (sequential semantics)

• Complete instructions before the offending instr

• Squash (effects of) instructions after

• Save PC (& next PC with delayed branches)

• Force trap instruction into IF

Must handle simultaneous interrupts

• IF, M - memory access (page fault, misaligned, protection)

• ID - illegal/privileged instruction

• EX - arithmetic exception

ECE D52 Lecture Notes: Chapter 3 60© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Interrupts
E.g., data page fault

1 2 3 4 5 6 7 8 9

i F D X M W

i+1 F D X M W <- page fault

i+2 F D X <- squash

i+3 F D <- squash

i+4 F <- squash

x trap -> F D X M W

x+1 trap handler -> F D X M W

ECE D52 Lecture Notes: Chapter 3 61© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Interrupts
Preceding instructions already complete

Squash succeeding instructions

• prevent them from modifying state (registers, CC, memory)

trap instruction jumps to trap handler

hardware saves PC in IAR

trap handler must save IAR

ECE D52 Lecture Notes: Chapter 3 62© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Interrupts
E.g., arithmetic exception

1 2 3 4 5 6 7 8 9

i F D X M W

i+1 F D X M W

i+2 F D X <- exception

i+3 F D <- squash

i+4 F <- squash

x trap -> F D X M W

x+1 trap handler -> F D X M W

ECE D52 Lecture Notes: Chapter 3 63© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Interrupts
E.g., Instruction fetch page fault

1 2 3 4 5 6 7 8 9

i F D X M W

i+1 F D X M W

i+2 F D X M W

i+3 F D X M W

i+4 F <- page fault

x trap -> F D X M W

x+1 trap handler -> F D X M W

ECE D52 Lecture Notes: Chapter 3 64© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Interrupts
Let preceding instructions complete

No succeeding instructions

What happens if i+3 causes a data page fault?

ECE D52 Lecture Notes: Chapter 3 65© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Interrupts
Out-of-order interrupts

• which page fault should we take?

1 2 3 4 5 6 7 8 9

i F D X M W page fault (Mem)

i+1 F D X M W page fault (fetch)

i+2 F D X M W

i+3 F D X M W

ECE D52 Lecture Notes: Chapter 3 66© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Out-of-Order Interrupts
Post interrupts

• check interrupt bit on entering WB

• precise interrupts

• longer latency

Handle immediately

• not fully precise

• interrupt may occur in order different from sequential CPU

• may cause implementation headaches!

ECE D52 Lecture Notes: Chapter 3 67© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Interrupts
Other complications

• odd bits of state (e.g., CC)

• early-writes (e.g., autoincrement)

• instruction buffers and prefetch logic

• dynamic scheduling

• out-of-order execution

Interrupts come at random times

Both Performance and Correctness

• frequent case not everything

• rare case MUST work correctly

ECE D52 Lecture Notes: Chapter 3 68© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Delayed Branches and Interrupts
What happens on interrupt while in delay slot

• next instruction is not sequential

Solution #1: save multiple PCs

• save current and next PC

• special return sequence, more complex hardware

Solution #2: single PC plus

• branch delay bit

• PC points to branch instruction

• SW Restrictions

ECE D52 Lecture Notes: Chapter 3 69© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Multicycle operations
Not all operations complete in 1 cycle

• FP slower than integer

• 2-4 cycles multiply or add

• 20-50 cycles divide

Extend DLX pipeline

• EX stage repeated multiple times

• multiple, parallel functional units

• not pipelined for now

ECE D52 Lecture Notes: Chapter 3 70© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Handling Multicycle Operations
Four functional units

• EX: integer E*: FP/integer multiplier

• E+: FP adder E/: FP/integer divider

Assume

• EX takes 1 cycle and all FP take 4 cycles

• separate integer and FP registers

• all FP arithmetic in FP registers

Worry about hazards

• structural, RAW (forwarding), WAR/WAW (between I & FP)

ECE D52 Lecture Notes: Chapter 3 71© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Simple Multicycle Example
1 2 3 4 5 6 7 8 9 10 11

int F D X M W

fp* F D E* E* E* E* M W

int F D EX M W (1)

fp/ F D E/ E/ E/ E/ M W

int F D EX M W (2)

fp/ F D -- -- E/ E/ (3)

fp* F -- -- D X (4)

ECE D52 Lecture Notes: Chapter 3 72© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Simple Multicycle Example
Notes:

• (1) - no WAW but complicates interrupts

• (2) - no WB conflict

• (3) - stall forced by structural hazard

• (4) - stall forced by in-order issue

Different FP operation times are possible

• Makes FP WAW hazards possible

• Further complicates interrupts

ECE D52 Lecture Notes: Chapter 3 73© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

FP Instruction Issue
Check for structural hazards

• wait until functional unit is free

Check for RAW - wait until

• source regs are not used as destinations by instrs in EXi

Check for forwarding

• bypass data from MEM or WB if needed

What about overlapping instructions?

• contention in WB

• possible WAR/WAW hazards

• interrupt headaches

ECE D52 Lecture Notes: Chapter 3 74© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Overlapping Instructions
Contention in WB

• static priority

• e.g., FU with longest latency

• instructions stall after issue

WAR hazards

• always read registers at same pipe stage

WAW hazards

• divf f0, f2, f4 followed by subf f0, f8, f10

• stall subf or abort divf’s WB

ECE D52 Lecture Notes: Chapter 3 75© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Multicycle Operations
Problems with interrupts

• DIVF f0, f2,f4

• ADDF f2,f8, f10

• SUBF f6, f4, f10

ADDF completes before DIVF

• Out-Of-Order completion

• Possible imprecise interrupts

What if divf excepts after addf/subf complete?

Precice Interrupts Paper

ECE D52 Lecture Notes: Chapter 3 76© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Precice Interrupts
• Simple solution: Modify state only when all preceding insts. are
known to be exception free.

Mechanism: Result Shif Register

Reserve all stages for the duration of the instruction

Memory: Either stall stores at decode or use dummy store

stage FU DR V PC

1 div R1 1 1000

...

n add R2 1 1001

m
ot

io
n

oldest

youngest

ECE D52 Lecture Notes: Chapter 3 77© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Reorder Buffer

st. FU V tag

result shift reg.
div (4 cycles)
add (1 cycle)

div

add 5

4 m
o

ti
o

n

tag DR Result V E PC

reorder buffer

r2
 r1

5
4

m
o

ti
o

nhead

tail

• Out-of-order completition

• Commit: Write results to register file or memory

• Reorder buffer holds not yet committed state

ECE D52 Lecture Notes: Chapter 3 78© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Reoder Buffer Complications
• State is kept in the reorder buffer

• May have to bypass from every entry

• Need to determine the latest write

• If read not at same stage need to determine closest earlier write

RF

RB

Two Solutions:

History Buffer

Future File

results

ECE D52 Lecture Notes: Chapter 3 79© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

History Buffer
• Allow out-of-oder register file updates

• At decode record current value of target register in reorder buffer
entry.

• On commit: do nothing

• On exception: scan following reorder buffer entries restoring
register values

RF

HB

dst.

results

exception

ECE D52 Lecture Notes: Chapter 3 80© 1998 by Hill, Wood, Sohi,
Smith and Vijaykumar and

Moshovos

Future File
• Two register files:

One updated out-of-order (FUTURE)

assume no exceptions will occur

One updated in order (ARCHITECTURAL)

• Advantage: No delay to restore state on exception

FF

AF

results

exception

RB

