
Abstract

 This paper presents an analysis of the performance of
the shader processing units in a modern Graphics Proc-
essor Unit (GPU) architecture using real graphic appli-
cations.  The architecture of a modern GPU is described
and a simulator and associated framework used to eval-
uate the architecture is introduced.  The paper analyses
the effects in performance of different configurations of
the shader processing units and compares a classic
GPU with a unified shader GPU.  The evaluated unified
shader architecture proves to be 15% to 30% more effi-
cient, in terms of area, with a 2% to 7%  improvement in
performance when compared with a similar non-unified
architecture.

1. Introduction

The microarchitecture of the shader units in modern

GPUs is becoming a key research topic as they evolve

to support more complex and generic programming

models.  Recently presented by ATI and MS the GPU

for the XBOX360  game platform implements a unified

shader architecture.  However, there are no proper eval-

uations of the performance differences between the

classic GPU architecture (implementing separated ver-

tex and fragment shader units) and a unified shader

GPU architecture.   The present work compares the per-

formance and efficiency of both architectural models

along with other parameters of the architecture.

We have developed a generic GPU microarchitec-

ture that contains most of the advanced hardware fea-

tures seen in today’s major GPUs. We have liberally

blended techniques from all major vendors and also

from the research literature [24], producing a microar-

chitecture that closely tracks today’s GPUs without

being an exact replica of any particular product avail-

able or announced. We have then implemented this

microarchitecture in full detail in a cycle-level, execu-

tion-driven simulator.  In order to feed this simulator,

we have also produced an OpenGL framework (library,

driver and trace capture tool) able to run full applica-

tions (i.e., commercial games) on our GPU microarchi-

tecture.  Finally we have used this simulator to evaluate

the performance of a unified shader architecture and

basic performance parameters of the shader microarchi-

tecture.

The reminder of this paper is organized as follows:

Section 2 introduces the 3D rendering algorithm.  Sec-

tion 3 describes the GPU pipeline and briefly discusses

our ATTILA GPU architecture.  Section 4 introduces

the simulator and the associated OpenGL framework.

Section 5 describes in detail the architecture of the

shader units and the unified shader programming

model.  In Section 6 the performance and efficiency of

different shader architecture configurations is evaluated

using a UT2004 trace.  Finally Sections 7 and 8 present

related work and conclusions.

2. 3D Rendering

GPUs are designed as specific purpose processors

implementing a specific 3D rendering algorithm.  The

3D rendering algorithm implemented takes as input a

stream of vertices that defines the geometry of the

scene.  The input vertex stream passes through a com-

putation stage that transforms and computes some of

the vertex attributes generating a stream of transformed

vertices. The stream of transformed vertices is assem-

bled into a stream of triangles, each triangle keeping the

attributes of its three vertices.  The stream of triangles

may pass through a stage that performs a clipping test.

Then each triangle passes through a rasterizer that gen-

erates a stream of fragments, discrete portions of the tri-
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angle surface that correspond with the pixels of the

rendered image.  Fragment attributes are derived from

the triangle vertex attributes.  

This stream of fragments may pass through a num-

ber of  stages performing a number of visibility tests

(stencil, depth, alpha and scissor) that will remove non

visible fragments and then the stream of fragments will

pass through a second computation stage.  This second

fragment computation stage may modify the fragment

attributes using additional information from n-dimen-

sional arrays stored in memory (textures).  The stream

of shaded fragments will, finally, update the frame-

buffer.

Modern GPUs implement the two described compu-

tation stages as programmable stages named vertex

shading and fragment shading.  The programmability of

these stages and the streaming nature of the rendering

algorithm allows the implementation of other stream

based algorithms over modern GPUs [30][31].  How-

ever those implementations may not be optimal.  The

non programmable stages are configurable using a lim-

ited and predefined set of parameters.

The shading stages are programmed using a shader,

or shader program, a relatively small program written

in either assembly-like (legacy) or high level C-like

languages for graphics that describes how the input

attributes of a processing element (a vertex or a frag-

ment) are used to compute its output attributes.

Graphics applications use software APIs (OpenGL

or Direct3D) that present an interface for the described

rendering algorithm and map the algorithm to the mod-

ern GPU hardware  capabilities.

The 3D rendering algorithm is embarrassingly par-

allel and shows parallelism at multiple levels.  The larg-

est source of parallelism comes from the data and

control independency of the processing elements: verti-

ces are independent of each other, triangles are mostly

independent (except for transparent surfaces) and frag-

ments from the same triangle are independent.

GPUs exploit four forms of parallelism: the pipeline

is divided into hundreds of single cycle stages to

increase the throughput and the GPU clock frequency

(pipeline parallelism); the pipeline stages are replicated

to process in parallel multiple vertices, triangles and

fragments (data parallelism); multiple processing ele-

ments are stored and processed concurrently to hide

memory latencies in a specific stage or processing unit

(multithreading); and independent instructions in a

shader program may be executed in parallel (instruction

level parallelism).

3. ATTILA Architecture

We will now briefly describe our ATTILA  imple-

mentation of the 3D rendering pipeline. We have

blended techniques and ideas from different vendors

and publications [24] and we have made educated

guesses in those areas where information was specially

scarce. Our implementation correlates in most aspects

with current real GPUs.

The ATTILA architecture supports both hard parti-

tioning of vertex and fragment shaders (the norm in

current GPUs) or a unified shader model (that will be

implemented in future GPUs). Figure 1 shows the

ATTILA GPU graphic pipeline for the unified shader

model.  The input and output processing elements, the

bandwidth and the latency in cycles of the different

ATTILA stages can be found at Table 1.  Table 2 shows
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the sizes of some of the input queues in those stages and

the number of threads supported in the vertex and frag-

ment/unified shader units.  The diagram and the table

data corresponds to a reference architecture implement-

ing 4 vertex shaders (non unified), 2 shader units (frag-

ment or unified), 2 ROPs and four 32-bit DDR

channels.

Two GPU units are not shown in Figure 1 the Com-

mand Processor that controls the whole pipeline, pro-

cessing the commands received from the system main

processor and the DAC unit that consumes bandwidth

for screen refreshes and outputs the rendered frames

into a file.

The Streamer unit reads streams of vertex input

attributes from GPU or system memory and feeds them

to a pool of vertex or unified shader units (Figure 1).

The streamer also supports an indexed mode that allows

reusing vertices shaded and stored in a small post shad-

ing cache.  After shading the Primitive Assembly stage

converts the shaded vertices into triangles and the Clip-

per stage performs a trivial triangle rejection test.
The rasterizer stages generate fragments from the

input triangles.  The rasterization algorithm is based on

the 2D Homogeneous rasterization algorithm [14]

which allows for unclipped triangles to be rasterized.

The Triangle Setup stage calculates the triangle edge

equations and a depth interpolation equation while the

Fragment Generator stage traverses the whole triangle

generating tiles of fragments.  ATTILA supports two

fragment generation algorithms: a tile based fragment

scanner [16] and a recursive algorithm [15] (used for

the paper experiments).

After fragment generation a Hierarchical Z buffer

[17] is used to remove non visible fragment tiles at a

fast rate without accessing GPU memory. The HZ

buffer is stored as on chip memory and supports resolu-

tions up to 4096x4096 (256 KB).

The processing element for the next stages is the

fragment quad, a tile of 2x2 fragments.  Most modern

GPUs use this working unit for memory locality and the

computation of the texture LOD in the Texture Unit.

The Z and stencil test stage removes as early as pos-

sible non visible fragments  thereby  reducing the com-

putational load in the fragment shaders.  Figure 1 shows

the datapath for early fragment rejection.  However

another path exists to perform the tests after fragment

shading.  ATTILA only supports a depth and stencil

buffer mode: 8 bits for stencil and 24 bits buffer for

depth.  The Z and Stencil test unit implements a 16 KB,

64 lines, 4-way set associative cache.  The cache sup-

ports fast depth/stencil buffer clear and depth compres-

sion.  The architecture is derived from the methods

described for ATI GPUs [18][19].

The Interpolator unit uses perspective corrected lin-

ear interpolation [5] to generate the fragment attributes

from the triangle attributes.  However other implemen-

tations may interpolate the fragment attributes in the

Fragment Shader [4].  The interpolated fragment quads

are fed into the fragment or unified shader pool.  The

Texture Unit attached to each fragment or unified

shader supports n-dimensional and cubemap textures,

mipmapping, bilinear, trilinear and anisotropic filtering.

The Texture Cache architecture is based on

[20][21][22] and is configured as a 64 lines, 4-way set

associative, 16 KB cache.  Relatively small texture

caches are known to work well [20].  Compressed tex-

tures are also supported [23].

The Color Write stage basic architecture is similar

Table 1: Queue sizes and number of threads in the 

ATTILA reference architecture

Unit Size Element width

Streamer 48 16×4×32 bits

Primitive Assembly 8 3×16×4×32 bits

Clipping 4 3×4×32 bits

Triangle Setup 12 3×4×32 bits

Fragment Generation 16 3×4×32 bits

Hierarchical Z 64 (2×16+4×32)×4 bits

Z Test 64 (2×16+4×32)×4 bits

Interpolator - -

Color Write 64 (2×16+4×32)×4 bits

Shader (vertex) 12+4 16×4×32 bits

Shader (fragment/unified) 112+16 10×4×32 bits

Table 2: Inputs, outputs and latencies in cycles in 

the reference ATTILA architecture

Unit Input BW Output BW Latency

Streamer 1 index 1 vertex Mem

Primitive Assembly 1 vertex 1 triang. 1

Clipping 1 triang. 1 triang 6

Triangle Setup 1 triang. 1 triang 10

Fragment Generation 1 triang 2×64 frag. 1

Hierarchical Z 2×64 frag. 2×64 frag. 1

Z Test 4 frag. 4 frag. 2+Mem

Interpolator 2×4 frag. 2×4 frag. 2 to 8

Color Write 4 frag. 2+Mem

Shader (vertex) 1 vertex 1 vertex variable

Shader (fragment/unified) 4 frag. 4 frag. variable
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to the Z and Stencil test stage architecture but color

compression is not supported.

The Memory Controller interfaces with the ATTILA

memory and the main computer memory system.  The

ATTILA memory interface simulates a simplified

GDDR memory where banks are not being modeled.

The memory access unit is a 64 byte transaction: a sin-

gle 4 cycle 8 32-bit word burst from a single GDDR

channel.  The number of channels and the channel

interleaving is configurable.  Read to write and write to

read penalties are implemented.  A number of queues

and dedicated buses conform a complex crossbar that

services the memory requests for the different GPU

stages.

4. ATTILA Simulator and OpenGL Frame-
work

We have developed a highly accurate, cycle-level

and execution driven simulator for the ATTILA archi-

tecture described in the previous section.

The model is highly configurable (over 100 parame-

ters) and modular, to enable fast yet accurate explora-

tion of microarchitectural alternatives.

The simulator is “execution driven” in the sense that

real data travels through signals from box to box.  A

box uses the data received from signals and the data it

stores on its local structures to call the associated func-

tional module that creates new or modified data that

continues flowing through the pipeline.  The same (or

equivalent) accesses to memory, hits and misses and

bandwidth usage that a real GPU are generated.  This

key feature of our simulator allows to verify that the

architecture is performing the expected tasks.

Our simulator implements a “hot start” technique

that allows the simulation to be started at any frame of a

trace file.  Frames, disregarding data preload in mem-

ory, are mostly independent from each other and groups

of frames can be simulated independently.  A PC cluster

with 80 nodes is used to simulate dozens of frames in

parallel.  The current implementation of the simulator

can simulate up to 50 frames at 1024x768 of a UT2004

trace, equivalent to 200-300 million cycles, in 24 hours

in a single node (P4 Xeon @ 2 GHz).

We have developed an OpenGL framework (trace

capturer, library and driver) for our ATTILA architec-

ture (D3D is in the works).

Figure 2 shows the whole framework and the pro-

cess of collecting traces from real graphic applications,

verifying the trace, simulating the trace and verifying

the simulation result.

Our OpenGL stack bridges the gap between the

OpenGL API and the ATTILA architecture translating

each OpenGL call into one or more low-level control

commands and maintaining and updating OpenGL

state. The driver software organization is layered: the

top layer manages all OpenGL state while the lower

layer offers basic services to configure the graphics

hardware and a basic memory allocation model.  The

features supported by our OpenGL library are: basic

OpenGL functionality, about 200 API calls supported;

ARB Vertex and Fragment program extensions; vertex

arrays and vertex buffer objects; legacy vertex and frag-

ment fixed function API emulated with library gener-

ated shader programs [25]; texturing; stencil test, Z test

and blending functions; and alpha test and fragment fog

emulated using library generated shaders.

The GLInterceptor tool uses an OpenGL stub

library  to capture a trace of all the OpenGL API calls

and data that the graphic application is generating as

shown in Figure 2.  All this information is stored in an

output file (a trace).  To allow the graphic application

continue its normal execution GLInterceptor also

passes on all the OpenGL commands and data to the

original library.  To verify the integrity and faithfulness

of the recorded trace a second tool, GLPlayer, can be

used to reproduce the trace.

After the trace is validated, it is feed by our

OpenGL stack into the simulator. Using traces from

graphic applications isolates our simulator from any

non GPU system related effects (for example CPU lim-

ited executions, disk accesses, memory swapping).  Our

simulator uses the simulated DAC unit to dump the ren-

dered frames into files. The dumped frame is used for

verifying the correctness of our simulation and archi-

tecture.
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Figure 2. ATTILA Simulation Framework.
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5. Unified Shader Architecture

Our shader architecture follows the OpenGL ARB

specifications for vertex [27] and fragment [28] shader

programs.

The ARB vertex and fragment program specifica-

tions define assembly alike instructions that can be used

to program how the vertex and fragment output regis-

ters can be calculated from per vertex and fragment

input registers and a set of per batch constant parame-

ters.  There are four defined register banks (as shown in

Figure 3): the input register bank, a read only bank,

stores the vertex and fragment input attributes; the out-

put register bank, write only, stores the vertex and frag-

ment output attributes; the temporal register bank,

which supports reading and writing, is used to store

intermediate values; and a constant parameter bank

stores parameters that are constant for a whole batch.  A

shader register is a 4 component 32-bit float point vec-

tor, limiting the ARB shader program models to support

only float point data.  The program size is limited to a

few hundred instructions and changes in the execution

flow control (loops, branches, functions) are not sup-

ported.

The OpenGL specification supports a high level

shader language, glSlang [29], that offers additional

programming features (vertex textures, looping,

branching, functions) but our OpenGL framework

doesn’t support it yet.  The glSlang  programming lan-

guage virtualizes all the hardware resources available

for the shader architecture and tasks the compiler and

optimizer with accommodating the requested resources

with the resources available in the target architecture.

The ARB instructions are defined as an operation

opcode, a destination operand and up to three source

operands.  The source operands support full per compo-

nent swizzling and negation and absolute value modifi-

ers.  The destination operand supports full per

component swizzling and masking of the operation

result.  The ISA supports two types of operations: 4

component SIMD operations, (ADD, CMP, DP3, DP4,

MAD, etc.) and scalar operations (COS, EX2, RCP,

etc.).

 There are a few differences between the vertex and

fragment program specifications.  Fragments can access

texture data with the TEX, TXB, and TXP instructions

while vertices can’t.  Texture instructions, in our archi-

tecture, use the SIMD ALU for the texture address

computation and then the texture request is issued to the

Texture Unit.  The Texture Unit processes the request,

accesses the Texture Cache and, optionally, memory

and performs the filtering of the sampled texels.  For

fragment programs a KILL instruction is defined, used

to ‘stop’ the processing of a fragment  Texture and

KILL instructions use vectorial operands.  An addi-

tional instruction modifier _SAT is defined only for

fragment programs to inexpensively implement the

required clamping (to the [0, 1] range) of color result

values.

Our unified shader architecture implements the

super set of both vertex and fragment program models,

however our current OpenGL framework is limited to

the ARB vertex and fragment program features.

The support for a non unified shader model is

implemented capping a unified shader unit to work as a

vertex shader unit from a current GPU would.  The uni-

fied model not only creates a coherent programming

model for both fragment and vertex processing but also

simplifies the architecture design, and allows a more

flexible and efficient use of the shading units.  As the

workload balance of vertices and fragments changes

from batch to batch more shader units can be allocated

to the more demanding task.  The unification of the ver-

tex and fragment programming models is the target for

future APIs (Shader Model 4.0 [26] in Direct3D  and

OpenGL glSlang) and GPU architectures.  

The abundance of parallelism inherent to shader

processing (all processing elements are always inde-

pendent) is exploited via multithreading.  The reference

architecture used for the paper experiments implements

128 threads per (unified or fragment) shader unit to

hide texture (memory)  access latency.  The vertex

shaders for the non unified architecture implement 12

threads to hide the instruction execution latency.  The

ARB programming model specifies a relatively large

number of temporal registers, but in most cases most of

those registers aren’t used by the shader program.  For a

more efficient use of the available transistor budget we

have implemented per program static allocation of tem-
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Figure 3. Shader architecture.
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poral live registers from a per shader unit physical reg-

ister file to each thread.  The number of available

threads for multithreaded execution changes as the

shader program requirements for live temporal registers

changes.  The reference architecture implements 4 tem-

poral registers per thread and the allocation granularity

is set at two registers per thread. 

The shader units process in parallel groups of four

threads (each thread corresponding with a vertex or a

fragment) because of a requirement of fragment pro-

cessing (texture LOD derivative computation).  A sin-

gle PC is kept per group to fetch and issue the same

instruction for the four threads implementing an addi-

tional SIMD level to the architecture.  For the non uni-

fied vertex shader architecture no grouping of vertices

is performed and each thread has an associated state

and PC.  A group may be in one of four states: free (no

fragments or vertices allocated), ready (instructions can

be fetched), blocked or finished (waiting for the thread

results to be sent out of the shader unit).

We support two configurable fetch and issue modes

in our simulated architecture: fetch and issue of a SIMD

instruction and a scalar instruction per cycle and group

or fetch and issue of 1 to n instructions (disregarding

the type) per cycle and group.  Texture instructions can

only be issued one per cycle and group and after decode

the group becomes blocked, waiting for the Texture

Unit to return the result.

The shader instruction decoder detects dependen-

cies and conflicts accessing the register bank ports and

may request the shader fetch unit to refetch instructions

that can’t be issued in a given cycle.  Instructions are

fetched and issued for any group that is ready in a per

shader unit thread group window, supporting the disor-

dered execution of groups.  Instructions in the execu-

tion flow of a group are always fetched and issued in

order.  The instructions are fetched from a small sized

(not below 512 instructions) instruction memory where

shader programs are explicitly loaded before starting

the rendering batch.

The shader execution pipeline consists of the fol-

lowing single cycle stages: a fetch stage; a decode

stage; a register read stage; a variable number of execu-

tion stages (1 to 9 depending on the instruction latency)

and a register write back stage.  Split hardware pipe-

lines are implemented to receive the shader inputs (ver-

tex and fragment input attributes) from the feeding

stage (streamer or interpolator) and send the shader

results (vertex and fragment output attributes) to the

next rendering stages (post shading vertex cache or the

ROP units).

GPU hardware vendors don’t disclose the number

of supported threads or temporal registers in their archi-

tectures.  However they do disclose information about

the organization of the shader hardware ALUs.  While

there are many differences between the GPU architec-

tures, most allow grouping multiple ARB instructions

(up to 5 or 6) in single cycle issue to a number of paral-

lel SIMD ALUs (even implementing partitioned 2+2

operations), scalar ALUs and special ‘mini-ALUs’

implementing per operand modifier operations (e.g.

vector normalization).  Our OpenGL framework

doesn’t support such level of optimization and the

implemented arrangement of ALUs in the shader units

is relatively simple (swizzle, modifier, SIMD | scalar,

write mask).

6. Analysis of shader performance

6.1. Unified shader architecture

The experiments in the current section are per-

formed using a 450 frame trace from an Unreal Tourna-

ment 2004 Primeval map time demo.  The Unreal game

engine supports both the OpenGL and Direct3D APIs.

The engine (for UT2004) is limited to the OpenGL

fixed function API and doesn’t use shader programs.

However our OpenGL framework generates shader

programs that emulate all the fixed function API calls.

The vertex and texture load of UT2004 is comparable

(or even higher) to other current games.

The vertex shader programs generated for UT2004

are relatively large (in some cases up to 100 instruction

long) and implement multiple lights and complex trans-

formations.  Meanwhile the fragment programs ar at

top a dozen instructions long and implement mostly

texture instructions with a few arithmetic instructions

combining the texture and input colors and performing

the alpha test.

The first 50 and the last 20 frames of the trace aren’t

used in the experiments because they correspond to

load or exit screens.  The trace is simulated at a
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1024x768 resolution with 8X Anisotropic Filtering

enabled.  Four regions of 40 frames were rendered for

the experiments: frames 100 to 139, 200 to 239, 300 to

339 and 400 to 439.  The simulation CPU time (P4

Xeon @ 2 GHz) was 24 hours per region and configu-

ration.

Figure 4 compares the performance of 32 configura-

tions in three axis: unified and non unified shader archi-

tectures, number of shader units and the shader

instruction fetch/issue width.  All the configurations are

based on the reference architecture we have described

in sections 3 and 5: two ROP units (working on frag-

ment quads) and four 32-bit memory channels.  All the

non unified shader configurations implement 4 vertex

shaders.  Figure 4 shows the performance improvement

of each configuration relative to the baseline configura-

tion: a non-unified 2 fragment shader 2-way architec-

ture.

As expected, the main performance gain comes

from increasing the number of shading units as the

inherent parallelism of the independent fragment (or

vertices) is exploited.  We can clearly see a two fold

increase in performance going from 2 to 4 shader units.

From 2 to 6 the gain is below linear and it drops further

for 2 to 8.  The reason, as we will discuss in the next

subsections, is that the rendered frame becomes limited

by the memory system rather than by fragment shading.

Increasing the fetch/issue width of the shader units

allows for up to 8% improvement in some configura-

tions when comparing 1-way to 2-way execution.

Going to a 4-way configuration does not yield any addi-

tional benefit over the 2-way configuration for our trace

set.  It must be noted though that the fragment programs

in the trace are relatively small and our current OpenGL

framework only performs a limited instruction reorder-

ing optimization over them.  With a better optimizer

and larger fragment programs the improvement for the

2-way and 4-way configurations might be higher.

The difference between equivalent configurations

for non-unified and unified shader architectures shows

that the unified architecture can use the larger shader

pool to shade vertices at a faster rate.  The improvement

is small though, ranging from a 1% to an 8% depending

on the configuration.  The reason is that the frames in

our trace are mostly limited by fragment shading.

Another reason is that the same configuration is used

for the geometry stages in both architectures and is cur-

rently limited to a throughput of 1 vertex and 1 triangle

per cycle.  The vertex data fetch from memory may also

become a bottleneck for not properly aligned or inter-

leaved streams.

6.2. Area comparisons

We have built a rough estimation of the transistor

cost of a shader unit based on the difference in transis-

tors between the ATI R400 (160 million transistors for

6 vertex shaders and 4 fragment shader units) and ATI

RV400 (120 million transistors for 4 vertex shaders and

2 fragment shader units) as detailed in [5].  Our estima-

tion puts 2.5 million transistors per vertex shader, 15

million transistors per shader unit (fragment or unified)

and a 15% increase in transistors per extra SIMD ALU

and a 5% increase for the extra scalar ALU.  Using this

estimation, Figure 5 compares the same 32 configura-

tions in terms of transistor area and efficiency.

Figure 5 a) compares the configurations in terms or

frames per second per million of transistors.  Figure 5

b) tallies the simulated frames per second with the esti-
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mated area of the configuration.  The linear perfor-

mance line shows a linear improvement of performance

per additional transistor based on the non unified 2

shader 1-way configuration.  Figure 5 demonstrates that

a unified shader architecture is more efficient, ranging

from 30% more efficient for the 1-way configurations

to 15% more efficient for the 4-way configurations,

than a non unified architecture in terms of performance

per area.  A unified architecture becomes more efficient

as the work load (vertices or fragments) of the rendered

frame becomes more unbalanced from batch to batch.

The UT2004 trace we use is limited in this aspect and

other applications may get additional improvements

from a unified architecture.

6.3. Detailed performance analysis

In this section we will analyze in detail what are the

bottlenecks in the configurations from the previous sec-

tion.  We will use trace frame 330 for the detailed anal-

ysis.

Figure 6 shows the number of vertex and fragment

program instructions per batch in frame 330 (260

batches are rendered in total).  Figure 7 shows the

workload balance between the vertex and fragment

shader units in the non-unified 8 shader 2-way configu-

ration for frame 330, sampled at 10Kcycle intervals.

Batches 120 to 200 (large vertex programs) in Figure 6

correspond with the vertex dominated zone at Figure 7

(cycles 2900K to 3100K).  This limited zone accounts

for most of the performance difference between the uni-

fied and non-unified shader architectures.

Figure 8 shows the average utilization, sampled at

10K cycle intervals, of the three key GPU subsystems:

the memory system, the shader execution pipeline and

the ROP (color and z) pipeline, Figure 8 also shows the

bandwidth consumed for vertex, texture, z and color

data for frame 330.  The pipeline utilization graphics

are normalized to the maximum data, instruction and

fragment operation rates.  For the memory subsystem,

maximum data rate is 1 datum being read or written per

cycle; maximum shader execution is 1 instruction per

cycle in 8 b) and 2 instructions per cycle in 8 d); maxi-

mum ROP bandwidth is 8 fragments/cycle in all config-

urations.  Figures 8 a) and 8 c) are normalized to the

maximum per cycle bandwidth also for all the configu-

rations tested so far: 64 bytes per cycle.

We compare two configurations implementing a

unified shader architecture, the first with two shaders

units and 1-way fetch/issue width and the second with

eight shader units and 2-way fetch/issue width.

Figure 6 shows that most fragment shaders are 6 to

10 instruction long, so given that the ROPs process

fragments at a rate of 8 per cycle the GPU would

require a pool of 12 to 20 1-way shader units to peak

the ROPs.  As we can see in figures 8 b) and d) the

ROPs only reach a 70% utilization at the start of the

frame with the 8 shader configuration.  However, even

if the two shader configuration is clearly limited by

fragment shading the eight shader configuration isn’t.

Figure 8 d) shows that the average utilization of the

shaders is a 30% with peaks of over 50% utilization.  If

we consider that even for a 2-way shader configuration

the shader unit still executes on average 1 instruction

per cycle and thread, this 30% is equivalent to a 60%

utilization on a 1-way architecture.  What keeps the 8

shader configuration from becoming fragment shader

limited is the memory system, that as we can se in Fig-

ure 8 c) is at 60-70% utilization with a peak for a small

fillrate limited zone of 90%.  The memory system is

unable to go beyond that 60-70% because of inefficien-

cies and conflicts, and because the increased latency of

memory requests can not be hidden by the shader unit

threads.  Using a pure fill rate benchmark, drawing a

full screen quad with forced reading and writing of Z

and color buffers, the memory subsystem seems to peak

at 80%-90%.

If we analyze the bandwidth usage in Figures 8 a)

and c) texture data dominates in both cases, followed

by color data and z data.  Color data dominates over z

data because our architecture supports z compression

and fast early rejection using an on chip hierarchical Z

buffer, and both techniques save a large amount of z

bandwidth. The bandwidth usage for the vertex limited

zone of frame 330, see Figures 6 and 7, shows a clear

increase in the amount of vertex data read from mem-

ory.

6.4. Increasing memory bandwidth

To verify that the memory system is the bottleneck

for the six and eight shader configurations we per-

formed an experiment increasing the available band-
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width.  If the six and eight shader configuration are

unbalanced in terms of bandwidth per shader unit the

experiment should show an improvement in perfor-

mance when the additional bandwidth is provided.

In modern GPUs the number of 32-bit memory

channels ranges from 1 in the lower-end segments to 4

in the high-end implementations of the architecture.

More than 4 channels add a large number of extra pins

in the package and is too expensive to implement with

current technology.  Therefore for a high end architec-

ture the offered bandwidth can only be modified by

changing the memory frequency.  Modern GPUs allow

running the memory subsystem with a different, faster,

clock than the GPU pipeline to provide more than 64

bytes per cycle to the GPU pipeline.  However our cur-

rent implementation of the simulator only supports run-

ning the memory subsystem at the same frequency as

the GPU pipeline.  For this reason we are limited to

increasing the number of channels in order to simulate

an increase in memory bandwidth.

Figure 9 shows the improvement of adding 1 and 2

additional memory channels, normalized to the non

unified two shader 1-way architecture.  The bandwidth

is increased by 25% and 50% and goes from 64 to 80

and 96 bytes per cycle.  The graphic demonstrates that

the 6 and 8 shader configurations are limited by mem-

ory as the increase in bandwidth produces a a 7% to

14% increase in performance.  In this high bandwidth

scenario the 8 shader configurations deliver more than

a three fold improvement over the base architecture.

7. Related work

NVidia presented their first implementation of a

vertex shader for the NV2x GPU architecture [3].

Information obtained from available patents [4] and the

analysis of the shaders performance and architecture

using shader benchmarks [31] is limited.  Some of the

information  about NVidia and ATI implementations

surfaces on unofficial Internet forums [5][6].  Beyond

shader microarchitecture, some recent work can be

found: T. Aila et al. proposed delay streams [7] and

Akenine-Möller described a graphic rasterizer for

mobile phones [8].  We can find research on other

graphic algorithms: a Reyes renderer was implemented

on the Imagine [1] stream processor by Owens [11], the

SaarCor [2] group presented a FPGA [13] implementa-

tion of their raytracing architecture and ray tracing and

photon mapping [12] has been implemented on a mod-

ern GPU. 

On the side of simulators Stanford has a public soft-

ware implementation of the OpenGL library that can be

used for profiling.  GLSim [9] and the GLTrace tool are

used in university courses for limited experiments on

the graphic pipeline but support for the last OpenGL

API specification or extensions is not available.  QSil-

c) effective bandwidth usage for eight shaders 2-way d) per GPU unit utilization for eight shaders 2-way

Figure 8. Frame 330 characterization for two unified shader architectures.

a) effective bandwidth usage for two shaders 1-way b) per GPU unit utilization for two shaders 1-way
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ver [10] is a GPU simulator framework that combines a

flexible and programmable OpenGL trace capturing

and profiling tool, based on the Chromium tool, that

feeds a preprocessed trace into a cycle-timer simulation

model.  QSilver doesn’t emulate the GPU functionality

and uses statistics and probability distributions as

inputs to the model.

8. Conclusions

Research on the microarchitecture of the shader

units in modern GPU has become a hot topic in the last

couple of years.  Future GPUs will change from the

current non-unified shader model towards a unified

shader model.  This work evaluates the differences in

performance and efficiency between both models.

The experiments in this paper show that the main

source of performance improvement in modern GPUs

comes, as expected, from increasing the number of

shader units working in parallel.  The increase is near

linear as long as the other GPU subsystems, for exam-

ple memory, don’t become the bottleneck.  The experi-

ments show that exploiting ILP with superscalar shader

units adds an additional 8% performance increase.  The

unified shader architecture shows a little performance

benefit, at least for the tested trace, over the non-unified

architecture but the largest gain comes from improved

efficiency per area, up to 30% better.
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