
24

Alpha microprocessors have been
performance leaders since their introduction
in 1992. The first generation 21064 and the
later 211641,2 raised expectations for the
newest generation—performance leadership
was again a goal of the 21264 design team.
Benchmark scores of 30+ SPECint95 and 58+
SPECfp95 offer convincing evidence thus far
that the 21264 achieves this goal and will con-
tinue to set a high performance standard.

A unique combination of high clock speeds
and advanced microarchitectural techniques,
including many forms of out-of-order and
speculative execution, provide exceptional core
computational performance in the 21264. The
processor also features a high-bandwidth mem-
ory system that can quickly deliver data values
to the execution core, providing robust perfor-
mance for a wide range of applications, includ-
ing those without cache locality. The advanced
performance levels are attained while main-
taining an installed application base. All Alpha
generations are upward-compatible. Database,
real-time visual computing, data mining, med-
ical imaging, scientific/technical, and many
other applications can utilize the outstanding
performance available with the 21264.

Architecture highlights
The 21264 is a superscalar microprocessor

that can fetch and execute up to four instruc-
tions per cycle. It also features out-of-order
execution.3,4 With this, instructions execute
as soon as possible and in parallel with other

nondependent work, which results in faster
execution because critical-path computations
start and complete quickly.

The processor also employs speculative exe-
cution to maximize performance. It specula-
tively fetches and executes instructions even
though it may not know immediately whether
the instructions will be on the final execution
path. This is particularly useful, for instance,
when the 21264 predicts branch directions and
speculatively executes down the predicted path.

Sophisticated branch prediction, coupled
with speculative and dynamic execution,
extracts instruction parallelism from applica-
tions. With more functional units and these
dynamic execution techniques, the processor
is 50% to 200% faster than its 21164 prede-
cessor for many applications, even though
both generations can fetch at most four
instructions per cycle.5

The 21264’s memory system also enables
high performance levels. On-chip and off-
chip caches provide for very low latency data
access. Additionally, the 21264 can service
many parallel memory references to all caches
in the hierarchy, as well as to the off-chip
memory system. This permits very high band-
width data access.6 For example, the proces-
sor can sustain more than 1.3 GBytes/sec on
the Stream benchmark.7

The microprocessor’s cycle time is 500 to
600 MHz, implemented by 15 million tran-
sistors in a 2.2-V, 0.35-micron CMOS process
with six metal layers. The 3.1 cm2 processor

R. E. Kessler
Compaq Computer

Corporation

THE ALPHA 21264 OWES ITS HIGH PERFORMANCE TO HIGH CLOCK SPEED,

MANY FORMS OF OUT-OF-ORDER AND SPECULATIVE EXECUTION, AND A HIGH-

BANDWIDTH MEMORY SYSTEM.

0272-1732/99/$10.00  1999 IEEE

THE ALPHA 21264
MICROPROCESSOR

.

comes in a 587-pin PGA package. It can exe-
cute up to 2.4 billion instructions per second.

Figure 1 shows a photo of the 21264, high-
lighting major sections. Figure 2 is a high-level
overview of the 21264 pipeline, which has
seven stages, similar to the earlier in-order
21164. One notable addition is the map stage
that renames registers to expose instruction
parallelism—this addition is fundamental to
the 21264’s out-of-order techniques.

Instruction pipeline—Fetch
The instruction pipeline begins with the

fetch stage, which delivers four instructions
to the out-of-order execution engine each
cycle. The processor speculatively fetches
through line, branch, or jump predictions.
Since the predictions are usually accurate, this
instruction fetch implementation typically
supplies a continuous stream of good-path
instructions to keep the functional units busy
with useful work.

Two architectural techniques increase fetch
efficiency: line and way prediction, and
branch prediction. A 64-Kbyte, two-way set-
associative instruction cache offers much-
improved level-one hit rates compared to the
8-Kbyte, direct-mapped instruction cache in
the Alpha 21164.

Line and way prediction
The processor implements

a line and way prediction tech-
nique that combines the
advantages of set-associative
behavior and fetch bubble
elimination, together with the
fast access time of a direct-
mapped cache. Figure 3 (next
page) shows the technique’s
main features. Each four-
instruction fetch block
includes a line and way pre-
diction. This prediction indi-
cates where to fetch the next
block of four instructions,
including which way—that is,
which of the two choices
allowed by two-way associative cache.

The processor reads out the next instruc-
tions using the prediction (via the wraparound
path in Figure 3) while, in parallel, it completes
the validity check for the previous instruc-
tions. Note that the address paths needing
extra logic levels—instruction decode, branch
prediction, and cache tag comparison—are
outside the critical fetch loop.

The processor loads the line and way pre-
dictors on an instruction cache fill, and

25MARCH–APRIL 1999

F
lo

at
in

g
-p

o
in

t
u

n
it

s Float
map
and

queue

In
st

ru
ct

io
n

fe
tc

h

Bus
interface

unit

Memory
controller

Memory controller

Data and control buses

Data
cacheInstruction

cache B
IU

Integer
queue

Integer
mapper

In
te

g
er

 u
n

it
(c

lu
st

er
 1

)

In
te

g
er

 u
n

it
(c

lu
st

er
 0

)

Figure 1. Alpha 21264 microprocessor die
photo. BIU stands for bus interface unit.

Fetch
0

Rename
2

Issue
3

Register read
4

Execute
5

Integer
execution

Integer
execution

Integer
execution

Integer
execution

Memory
6

Data
cache

(64 Kbytes,
two-way)

Level-
two

cache
and system

interface

Integer
register
rename

Floating-
point
issue
queue
(15)

Floating-
point

register
file
(72)

Floating-
point

register
rename

Slot
1

Branch
predictor

Line/set
prediction

Instruction
cache

(64 Kbytes,
two-way)

Integer
issue
queue

(20
entries)

Integer
register

file
(80)

Integer
register

file
(80)

Addr

Addr

Floating-point
multiply execution

Floating-point
add execution

Mux

M
ux

Figure 2. Stages of the Alpha 21264 instruction pipeline.

.

dynamically retrains them when they are in
error. Most mispredictions cost a single cycle.
The line and way predictors are correct 85%
to 100% of the time for most applications, so
training is infrequent. As an additional pre-
caution, a 2-bit hysteresis counter associated
with each fetch block eliminates overtrain-
ing—training occurs only when the current
prediction has been in error multiple times.
Line and way prediction is an important speed
enhancement since the mispredict cost is low
and line/way mispredictions are rare.

Beyond the speed benefits of direct cache
access, line and way prediction has other ben-
efits. For example, frequently encountered
predictable branches, such as loop termina-
tors, avoid the mis-fetch penalty often associ-
ated with a taken branch. The processor also
trains the line predictor with the address of
jumps and subroutine calls that use direct reg-
ister addressing. Code using dynamically
linked library routines will thus benefit after
the line predictor is trained with the target.
This is important since the pipeline delays
required to calculate the indirect (subroutine)
jump address are eight cycles or more.

An instruction cache miss forces the
instruction fetch engine to check the level-two
(L2) cache or system memory for the neces-
sary instructions. The fetch engine prefetch-
es up to four 64-byte (or 16-instruction) cache

lines to tolerate the additional latency. The
result is very high bandwidth instruction
fetch, even when the instructions are not
found in the instruction cache. For instance,
the processor can saturate the available L2
cache bandwidth with instruction prefetches.

Branch prediction
Branch prediction is more important to the

21264’s efficiency than to previous micro-
processors for several reasons. First, the seven-
cycle mispredict cost is slightly higher than
previous generations. Second, the instruction
execution engine is faster than in previous gen-
erations. Finally, successful branch prediction
can utilize the processor’s speculative execution
capabilities. Good branch prediction avoids the
costs of mispredicts and capitalizes on the most
opportunities to find parallelism. The 21164
could accept 20 in-flight instructions at most,
but the 21264 can accept 80, offering many
more parallelism opportunities.

The 21264 implements a sophisticated tour-
nament branch prediction scheme. The scheme
dynamically chooses between two types of
branch predictors—one using local history, and
one using global history—to predict the direc-
tion of a given branch.8 The result is a tourna-
ment branch predictor with better prediction
accuracy than larger tables of either individual
method, with a 90% to 100% success rate on
most simulated applications/benchmarks.
Together, local and global correlation tech-
niques minimize branch mispredicts. The
processor adapts to dynamically choose the best
method for each branch.

Figure 4, in detailing the structure of the
tournament branch predictor, shows the local-
history prediction path—through a two-level
structure—on the left. The first level holds 10
bits of branch pattern history for up to 1,024
branches. This 10-bit pattern picks from one
of 1,024 prediction counters. The global pre-
dictor is a 4,096-entry table of 2-bit saturat-
ing counters indexed by the path, or global,
history of the last 12 branches. The choice pre-
diction, or chooser, is also a 4,096-entry table
of 2-bit prediction counters indexed by the
path history. The “Local and global branch
predictors” box describes these techniques in
more detail.

The processor inserts the true branch direc-
tion in the local-history table once branches

26

ALPHA 21264

IEEE MICRO

Learn dynamic jumps

No branch penalty

Set associativity
PC

Instruction
decode,
branch

prediction,
validity check

Tag
0

Tag
1 Cached

instructions
Line

prediction
Way

prediction

Next line plus wayInstructions (4)

Compare Compare

Hit/miss/way miss

Mux

Mux

Program
counter (PC)
generation

…

Figure 3. Alpha 21264 instruction fetch. The line and way prediction (wrap-
around path on the right side) provides a fast instruction fetch path that
avoids common fetch stalls when the predictions are correct.

.

27MARCH–APRIL 1999

The Alpha 21264 branch predictor uses local history and glob-
al history to predict future branch directions since branches exhib-
it both local correlation and global correlation. The property of
local correlation implies branch direction prediction on the basis
of the branch’s past behavior. Local-history predictors are typi-
cally tables, indexed by the program counter (branch instruction
address), that contain history information about many different
branches. Different table entries correspond to different branch
instructions. Different local-history formats can exploit different
forms of local correlation. In some simple (single-level) predictors,
the local-history table entries are saturating prediction counters
(incremented on taken branches and decremented on not-taken
branches), and the prediction is the counter’s uppermost bit. In
these predictors, a branch will be predicted taken if the branch
is often taken.

The 21264’s two-level local prediction exploits pattern-based
prediction; see Figure 4 in the main text. Each table entry in the
first-level local-history table is a 10-bit pattern indicating the direc-
tion of the selected branch’s last 10 executions. The local-branch
prediction is a prediction counter bit from a second table (the local-
prediction table) indexed by the local-history pattern. In this more
sophisticated predictor, branches will be predicted taken when
branches with the local-history pattern are often taken.

Figure A1 shows two simple example branches that can be
predicted with the 21264’s local predictor. The second branch
on the left (b == 0) is always not taken. It will have a consistent
local-history pattern of all zeroes in the local-history table. After
several invocations of this branch, the prediction counter at
index zero in the local-prediction table will train, and the branch
will be predicted correctly.

The first branch on the left (a % 2 == 0) alternates between
taken and not taken on every invocation. It could not be pre-
dicted correctly with simple single-level local-history predic-
tors. The alternation leads to two local-history patterns in the
first-level table: 0101010101 and 1010101010. After several
invocations of this branch, the two prediction counters at these
indices in the local prediction table will train—one taken and
the other not taken. Any repeating pattern of 10 invocations of
the same branch can be predicted this way.

With global correlation, a branch can be predicted based on
the past behavior of all previous branches, rather than just the
past behavior of the single branch. The 21264 exploits global
correlation by tracking the path, or global, history of all branch-
es. The path history is a 12-bit pattern indicating the taken/not
taken direction for the last 12 executed branches (in fetch order).
The 21264’s global-history predictor is a table of saturating coun-
ters indexed by the path history.

Figure A2 shows an example that could use global correlation.
If both branches (a == 0) and (b == 0) are taken, we can easily
predict that a and b are equal and, therefore, the (a == b) branch

will be taken. This means that if the path history is xxxxxxxxxx11
(ones in the last two bits), the branch should be predicted taken.
With enough executions, the 21264’s global prediction counters
at the xxxxxxxxxx11 indices will train to predict taken and the
branch will be predicted correctly. Though this example requires
only a path history depth of 2, more complicated path history
patterns can be found with the path history depth of 12.

Since different branches can be predicted better with either
local or global correlation techniques, the 21264 branch pre-
dictor implements both local and global predictors. The choos-
er (choice prediction) selects either local or global prediction as
the final prediction.1 The chooser is a table of prediction coun-
ters, indexed by path history, that dynamically selects either
local or global predictions for each branch invocation. The
processor trains choice prediction counters to prefer the correct
prediction whenever the local and global predictions differ. The
chooser may select differently for each invocation of the same
branch instruction.

Figure A2 exemplifies the chooser’s usefulness. The choos-
er may select the global prediction for the (a == b) branch when-
ever the branches (a == 0) and (b == 0) are taken, and it may
select the local prediction for the (a == b) branch in other cases.

Reference
1. S. McFarling, Combining Branch Predictors, Tech.

Note TN-36, Compaq Computer Corp. Western
Research Laboratory, Palo Alto, Calif., June 1993;
http://www.research.digital.com/wrl/techreports/abst
racts/TN-36.html.

If (a%2 == 0)

TNTN

If (b == 0)

NNNN

If (a == 0)

If (b == 0)

If (a == b)

(Taken)

(Taken)

(Predict
taken)

(1) (2)

Figure A. Branch prediction in the Alpha 21264 occurs by means of
local-history prediction (1) and global-history prediction (2). “TNTN”
indicates that during the last four executions of the branch, the
branch was taken twice and not taken twice. Similarly, NNNN indi-
cates that the branch has not been taken in the last four executions—
a pattern of 0000.

Local and global branch predictors

.

issue and retire. It also trains the correct pre-
dictions by updating the referenced local,
global, and choice counters at that time. The
processor maintains path history with a silo
of 12 branch predictions. This silo is specu-
latively updated before a branch retires and is
backed up on a mispredict.

Out-of-order execution
The 21264 offers out-of-order efficiencies

with higher clock speeds than competing
designs, yet this speed does not restrict the
microprocessor’s dynamic execution capabili-
ties. The out-of-order execution logic receives
four fetched instructions every cycle,
renames/remaps the registers to avoid unneces-
sary register dependencies, and queues the

instructions until operands or functional units
become available. It dynamically issues up to six
instructions every cycle—four integer instruc-
tions and two floating-point instructions. It also
provides an in-order execution model to the
programmer via in-order instruction retire.

Register renaming
Register renaming exposes application

instruction parallelism since it eliminates
unnecessary dependencies and allows specu-
lative execution. Register renaming assigns a
unique storage location with each write-ref-
erence to a register. The 21264 speculatively
allocates a register to each instruction with a
register result. The register only becomes part
of the user-visible (architectural) register state
when the instruction retires/commits. This
lets the instruction speculatively issue and
deposit its result into the register file before
the instruction retires. Register renaming also
eliminates write-after-write and write-after-
read register dependencies, but preserves all
the read-after-write register dependencies that
are necessary for correct computation.

The left side of Figure 5 depicts the map,
or register rename, stage in more detail. The
processor maintains storage with each inter-
nal register indicating the user-visible register
that is currently associated with the given
internal register (if any). Thus, register renam-
ing is a content-addressable memory (CAM)
operation for register sources together with a
register allocation for the destination register.
All pipeline stages subsequent to the register
map stage operate on internal registers rather
than user-visible registers.

Beyond the 31 integer and 31 floating-
point user-visible (non-speculative) registers,
an additional 41 integer and 41 floating-point
registers are available to hold speculative
results prior to instruction retirement. The
register mapper stores the register map state
for each in-flight instruction so that the
machine architectural state can be restored in
case a misspeculation occurs.

The Alpha conditional-move instructions
must be handled specially by the map stage.
These operations conditionally move one of
two source registers into a destination regis-
ter. This makes conditional move the only
instruction in the Alpha architecture that
requires three register sources—the two

28

ALPHA 21264

IEEE MICRO

Local
history
table

(1,024 × 10)

Local
prediction
(1,024 × 3)

Global prediction
(4,096 × 2)

Choice prediction
(4,096 × 2)

Path history

Program
counter

Branch
prediction

Mux

Figure 4. Block diagram of the 21264 tournament branch predictor. The local
history prediction path is on the left; the global history prediction path and
the chooser (choice prediction) are on the right.

Map

Saved
map
state

Map content-
addressable
memories

Queue

Arbiter80 in-flight
instructions

Request Grant

Register
numbers

Internal
register numbers

72–80
internal registers

Instructions (4)

Register
scoreboard

Queue
entries

Issued
instructions

…

Figure 5. Block diagram of the 21264’s map (register rename) and queue
stages. The map stage renames programmer-visible register numbers to
internal register numbers. The queue stage stores instructions until they
are ready to issue. These structures are duplicated for integer and floating-
point execution.

.

sources plus the old value of the destination
register (in case the move is not performed).

The 21264 splits each conditional move
instruction into two and maps them separate-
ly. These two new instructions only have two
register sources. The first instruction places the
move value into an internal register together
with a 65th bit indicating the move’s ultimate
success or failure. The second instruction reads
the first result (including the 65th bit) togeth-
er with the old destination register value and
produces the final destination register result.

Out-of-order issue queues
The issue queue logic maintains two lists of

pending instructions in separate integer and
floating-point queues. Each cycle, the queue
logic selects from these instructions, as their
operands become available, using register score-
boards based on the internal register numbers.
These scoreboards maintain the status of the
internal registers by tracking the progress of sin-
gle-cycle, multiple-cycle, and variable-cycle
(memory load) instructions. When functional-
unit or load-data results become available, the
scoreboard unit notifies all instructions in the
queue that require the register value. These
dependent instructions can issue as soon as the
bypassed result becomes available from the
functional unit or load. The 20-entry integer
queue can issue four instructions, and the 15-
entry floating-point queue can issue two
instructions per cycle. The issue queue is
depicted on the right in Figure 5.

The integer queue statically assigns, or slots,
each instruction to one of two arbiters before
the instructions enter the queue. Each arbiter
handles two of the four integer pipes. Each
arbiter dynamically issues the oldest two queued
instructions each cycle. The integer queue slots
instructions based on instruction fetch position
to equalize the utilization of the integer execu-
tion engine’s two halves. An instruction cannot
switch arbiters after the static assignment upon
entry into the queue. The interactions of these
arbitration decisions with the structure of the
execution pipes are described later.

The integer and floating-point queues issue
instructions speculatively. Each queue/arbiter
selects the oldest operand-ready and func-
tional-unit-ready instructions for execution
each cycle. Since older instructions receive pri-
ority over newer instructions, speculative

issues do not slow down older, less speculative
issues. The queues are collapsable—an entry
becomes immediately available once the
instruction issues or is squashed due to mis-
speculation. New instructions can enter the
issue queue when there are four or more avail-
able queue slots, and new instructions can
enter the floating-point queue when there are
enough available queue slots.9

Instruction retire and exception handling
Although instructions issue out of order,

instructions are fetched and retired in order.
The in-order retire mechanism maintains the
illusion of in-order execution to the pro-
grammer even though the instructions actu-
ally execute out of order. The retire
mechanism assigns each mapped instruction
a slot in a circular in-flight window (in fetch
order). After an instruction starts executing,
it can retire whenever all previous instructions
have retired and it is guaranteed to generate
no exceptions. The retiring of an instruction
makes the instruction nonspeculative—guar-
anteeing that the instruction’s effects will be
visible to the programmer. The 21264 imple-
ments a precise exception model using in-
order retiring. The programmer does not see
the effects of a younger instruction if an older
instruction has an exception.

The retire mechanism also tracks the inter-
nal register usage for all in-flight instructions.
Each entry in the mechanism contains storage
indicating the internal register that held the
old contents of the destination register for the
corresponding instruction. This (stale) regis-
ter can be freed for other use after the instruc-
tion retires. After retiring, the old destination
register value cannot possibly be needed—all
older instructions must have issued and read
their source registers; all newer instructions
cannot use the old destination register value.

An exception causes all younger instruc-
tions in the in-flight window to be squashed.
These instructions are removed from all
queues in the system. The register map is
backed up to the state before the last squashed
instruction using the saved map state. The
map state for each in-flight instruction is
maintained, so it is easily restored. The regis-
ters allocated by the squashed instructions
become immediately available. The retire
mechanism has a large, 80-instruction in-

29MARCH–APRIL 1999

.

flight window. This means that up to 80
instructions can be in partial states of com-
pletion at any time, allowing for significant
execution concurrency and latency hiding.
(This is particularly true since the memory
system can track an additional 32 in-flight
loads and 32 in-flight stores.)

Table 1 shows the minimum latency, in
number of cycles, from issue until retire eligi-
bility for different instruction classes. The
retire mechanism can retire at most 11
instructions in a single cycle, and it can sustain
a rate of 8 per cycle (over short periods).

Execution engine
Figure 6 depicts the six execution pipelines.

Each pipeline is physically placed above or
below its corresponding register file. The
21264 splits the integer register file into two
clusters that contain duplicates of the 80-entry
register file. Two pipes access a single register
file to form a cluster, and the two clusters com-

bine to support four-way integer instruction
execution. This clustering makes the design
simpler and faster, although it costs an extra
cycle of latency to broadcast results from an
integer cluster to the other cluster. The upper
pipelines from the two integer clusters in Fig-
ure 6 are managed by the same issue queue
arbiter, as are the two lower pipelines. The
integer queue statically slots instructions to
either the upper or lower pipeline arbiters. It
then dynamically selects which cluster to exe-
cute an instruction on, left or right.

The performance costs of the register clus-
tering and issue queue arbitration simplifica-
tions are small—a few percent or less compared
to an idealized unclustered implementation in
most applications. There are multiple reasons
for the minimal performance effect. First, for
many operations (such as loads and stores) the
static-issue queue assignment is not a restriction
since they can only execute in either the upper
or lower pipelines. Second, critical-path com-
putations tend to execute on the same cluster.
The issue queue prefers older instructions, so
more-critical instructions incur fewer cross-clus-
ter delays—an instruction can usually issue first
on the same cluster that produces the result.
This integer pipeline architecture as a result pro-
vides much of the implementation simplicity,
lower risk, and higher speed of a two-issue
machine with the performance benefits of four-
way integer issue. Figure 6 also shows the float-
ing-point execution pipes’ configuration. A
single cluster has the two floating-point execu-
tion pipes, with a single 72-entry register file.

The 21264 includes new functional units
not present in prior Alpha microprocessors.
The Alpha motion-video instructions (MVI,
used to speed many forms of image process-
ing), a fully pipelined integer multiply unit,
an integer population count and leading/trail-
ing zero count unit (PLZ), a floating-point
square-root functional unit, and instructions
to move register values directly between float-
ing-point and integer registers are included.
The processor also provides more complete
hardware support for the IEEE floating-point
standard, including precise exceptions, NaN
and infinity processing, and support for flush-
ing denormal results to zero. Table 2 shows
sample instruction latencies (issue of produc-
er to issue of consumer). These latencies are
achieved through result bypassing.

30

ALPHA 21264

IEEE MICRO

Table 1. Sample 21264 retire pipe stages.

Instruction class Retire latency (cycles)

Integer 4
Memory 7
Floating-point 8
Branch/jump to subroutine 7

Integer

+1

+1

Integer multiply

Cluster 0

Shift/branch

Add/logic

80 registers

Load/store

MVI/PLZ

Cluster 1

Shift/branch

Add/logic

Add/logicAdd/logic

80 registers

Load/store

Floating-
point

multiply

Floating point

Floating-point
add

Floating-point
divide

Floating-point
SQRT

72 registers

MVI
PLZ

SQRT

Motion video instructions
Integer population count
 and leading/trailing

Square-root functional unit
zero count unit

Figure 6. The four integer execution pipes (upper and lower
for each of a left and right cluster) and the two floating-point
pipes in the 21264, together with the functional units in each.

.

Internal memory system
The internal memory system supports

many in-flight memory references and out-
of-order operations. It can service up to two
memory references from the integer execution
pipes every cycle. These two memory refer-
ences are out-of-order issues. The memory
system simultaneously tracks up to 32 in-
flight loads, 32 in-flight stores, and 8 in-flight
(instruction or data) cache misses. It also has
a 64-Kbyte, two-way set-associative data
cache. This cache has much lower miss rates
than the 8-Kbyte, direct-mapped cache in the
earlier 21164. The end result is a high-band-
width, low-latency memory system.

Data path
The 21264 supports any combination of

two loads or stores per cycle without conflict.
The data cache is double-pumped to imple-
ment the necessary two ports. That means
that the data cache is referenced twice each
cycle—once per each of the two clock phases.
In effect, the data cache operates at twice the
frequency of the processor clock—an impor-
tant feature of the 21264’s memory system.

Figure 7 depicts the memory system’s inter-
nal data paths. The two 64-bit data buses are
the heart of the internal memory system. Each
load receives data via these buses from the data
cache, the speculative store data buffers, or an
external (system or L2) fill. Stores first trans-
fer their data across the data buses into the
speculative store buffer. Store data remains in
the speculative store buffer until the stores
retire. Once they retire, the data is written
(dumped) into the data cache on idle cache
cycles. Each dump can write 128 bits into the
cache since two stores can merge into one
dump. Dumps use the double-pumped data
cache to implement a read-modify-write
sequence. Read-modify-write is required on
stores to update the stored SECDED ECC
that allows correction of single-bit errors.

Stores can forward their data to subsequent
loads while they reside in the speculative store
data buffer. Load instructions compare their
age and address against these pending stores.
On a match, the appropriate store data is put
on the data bus rather than the data from the
data cache. In effect, the speculative store data
buffer performs a memory-renaming func-
tion. From the perspective of younger loads,

it appears the stores write into the data cache
immediately. However, squashed stores are
removed from the speculative store data buffer
before they affect the final cache state.

Figure 7 shows how data is brought into and
out of the internal memory system. Fill data
arrives on the data buses. Pending loads sam-
ple the data to write into the register file while,
in parallel, the caches (instruction or data) also
fill using the same bus data. The data cache is
write-back, so fills also use its double-pumped
capability: The previous cache contents are
read out in the same cycle that fill data is writ-
ten in. The bus interface unit captures this vic-
tim data and later writes it back.

Address and control structure
The internal memory system maintains a

32-entry load queue (LDQ) and a 32-entry

31MARCH–APRIL 1999

Table 2. Sample 21264 instruction latencies

(s-p means single-precision; d-p means double-precision).

Instruction class Latency (cycles)

Simple integer operations 1
Motion-video instructions/integer population count and

leading/trailing zero count unit (MVI/PLZ) 3
Integer multiply 7
Integer load 3
Floating-point load 4
Floating-point add 4
Floating-point multiply 4
Floating-point divide 12 s-p,15 d-p
Floating-point square-root 15 s-p, 30 d-p

64

64

128

128

128

64
System

Bus
interface

L2

Cluster 1
memory unit

Cluster 0
memory unit

Data
buses

Speculative
store data

Instruction
cache

Fill
data

Victim data

Data cache

Figure 7. The 21264’s internal memory system data paths.

.

store queue (STQ) that manage the references
while they are in-flight. The LDQ (STQ) posi-
tions loads (stores) in the queue in fetch order,
although they enter the queue when they issue,
out of order. Loads exit the LDQ in fetch order
after the loads retire and the load data has been
returned. Stores exit the STQ in fetch order
after they retire and dump into the data cache.

New issues check their address and age
against older references. Dual-ported address
CAMs resolve the read-after-read, read-after-
write, write-after-read, and write-after-write
hazards inherent in a fully out-of-order mem-
ory system. For instance, to detect memory
read-after-write hazards, the LDQ must com-
pare addresses when a store issues: Whenever
an older store issues after a younger load to
the same memory address, the LDQ must
squash the load—the load got the wrong data.
The 21264’s response to this hazard is
described in more detail in a later section. The
STQ CAM logic controls the speculative store
data buffer. It enables the bypass of speculative
store data to loads when a younger load issues
after an older store.

Figure 8 shows an example scheduling of the
memory system, including both data buses,
the data cache tags, and both ports to the data
cache array itself. Nine load issues, L1–L9,
pieces of nine stores, S1–S9, and pieces of three
fills (each requiring four data bus cycles to get
the required 64 bytes), F1–F3, are included.
Loads reference both the data cache tags and
array in their pipeline stage 6, and then the
load result uses the data bus one cycle later in
their stage 7. For example in Figure 8, loads

L6 and L7 are in their stage 6
(from Figure 2) in cycle 13,
and in their stage 7 in cycle
14.

Stores are similar to loads
except they do not use the
cache array until they retire.
For example, S5 uses the tags
in cycle 1 in Figure 8 but does
not write into the data cache
until cycle 16. The fill pat-
terns from the figure corre-
spond to fills from the fastest
possible L2 cache. The data
that crosses the data buses in
cycle 0 gets skewed to cycle 2
and written into the cache.

This skew is for performance reasons only—
the fill data could have been written in cycle
1 instead, but pipeline conflicts would allow
fewer load and store issues in that case. Fills
only need to update the cache tags once per
block. This leaves the data cache tags more
idled than the array or the data bus.

Cycles 7, 10, and 16 in the example each
show two stores that merge into a single cache
dump. Note that the dump in cycle 7 (S1 and
S2 writing into the data cache array) could not
have occurred in cycles 1–6 because the cache
array is busy with fills or load issues in each case.
Cache dumps can happen when only stores
issue, such as in cycle 10. Loads L4 and L5 at
cycle 5 are a special case. Note how these two
loads only use the cache tags. These loads decou-
ple the cache tag lookup from the data array and
data bus use, taking advantage of the idle data
cache tags during fills. This decoupling is par-
ticularly useful for loads that miss in the data
cache, since in that case the cache array lookup
and data bus transfer of the load issue slot are
avoided. Decoupled loads maximize the avail-
able bandwidth for cache misses since they elim-
inate unnecessary cache accesses.

The internal memory system also contains
an eight-entry miss address file (MAF). Each
entry tracks an outstanding miss (fill) to a 64-
byte cache block. Multiple load and store miss-
es to the same cache block can merge and be
satisfied by a single MAF entry. Each MAF
entry can be either an L2 cache or system fill.
Both loads and stores can create a MAF entry
immediately after they check the data cache tags
(on initial issue). This MAF entry is then for-

32

ALPHA 21264

IEEE MICRO

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

F1 F1

F1

F1

F1

F1

F1F1

Cache tag 0

Cache tag 1

Data array 0

Data bus 0

Data array 1

Data bus 1

F1

F1

F1 F1

F1 F1

F1 F1

F1 F1

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

L1

L1

L1 S1

S5

S2

S3

S4

S5

L2

L2

L2

L3

L3

L3

L5

L4

S7

S6

S6

S7

L6

L6

L6

L7

L7

L7

S9

S8

S5

S8

S9

L8

L9

F3

F3 F3

F3

F3

F3

F3

F3

L8

L8

L9

L9

S6

S7

64-byte f i l l X Load X SX Store XFX LX

Figure 8. A 21264 memory system pipeline diagram showing major data path elements—
data cache tags, data cache array, and data buses for an example usage containing loads,
stores, and fills from the L2 cache.

.

warded for further processing by the bus inter-
face unit—before the load or store is retired.

The Alpha memory model is weakly ordered.
Ordering among references to different mem-
ory addresses is required only when the pro-
grammer inserts memory barrier instructions.
In the 21264, these instructions drain the inter-
nal memory system and bus interface unit.

Cache prefetching and management
The memory system implements cache

prefetch instructions that let the programmer
take full advantage of the memory system’s par-
allelism and high-bandwidth capabilities. These
prefetches are particularly useful in applications
with loops that reference large arrays. In these
and other cases where software can predict
memory references, it can prefetch the associ-
ated 64-byte cache blocks to overlap the cache-
miss time with other operations. The prefetch
can be scheduled far in advance because the
block is held in the cache until it is used.

Table 3 describes the cache prefetch and
management instructions. Normal, modify-
intent, and evict-next prefetches perform sim-
ilar operations but are used in different specific
circumstances. For each, the processor fills the
block into the data cache if it was not already
present in the cache. The write-hint 64
instruction resembles a prefetch with modify
intent except that the block’s previous value
is not loaded. This is useful, for example, to
zero out a contiguous memory region.

Bus interface unit
The 21264 bus interface unit (BIU) inter-

faces the internal memory system and the exter-
nal (off-chip) L2 cache and the rest of the
system. It receives MAF references from the
internal memory system and responds with fill
data from either the L2 cache on a hit, or the
system on a miss. It forwards victim data from

the data cache to the L2 and from the L2 to the
system using an eight-entry victim file. It man-
ages the data cache contents. Finally, it receives
cache probes from the system, performs the
necessary cache coherence actions, and
responds to the system. The 21264 implements
a write-invalidate cache coherence protocol to
support shared-memory multiprocessing.

Figure 9 shows the 21264’s external inter-
face. The interface to the L2 (on the right) is
separate from the interface to the system (on
the left). All interconnects on and off the
21264 are high-speed point-to-point chan-
nels. They use clock-forwarding technology
to maximize the available bandwidth and
minimize pin counts.

The L2 cache provides a fast backup store
for the primary caches. This cache is direct-
mapped, shared by both instructions and data,
and can range from 1 to 16 Mbytes. The BIU
can support a wide range of SRAM part vari-
ants for different size, speed, and latency L2,
including late-write synchronous, PC-style,
and dual-data for very high speed operation.
The peak L2 transfer rate is 16 bytes every 1.5
CPU cycles. This is a bandwidth of 6.4
Gbytes/sec with a 400-MHz transfer rate. The
minimum L2 cache latency is 12 cycles using
an SRAM part with a latency of six cycles—
nine more than the data cache latency of three.

Figure 9 shows that the 21264 has split

33MARCH–APRIL 1999

Table 3. The 21264 cache prefetch and management instructions.

Instruction Description

Normal prefetch The 21264 fetches the 64-byte block into the L1 data and L2 cache.
Prefetch with modify intent The same as the normal prefetch except that the block is loaded into the cache in a writeable state.
Prefetch and evict next The same as the normal prefetch except that the block will be evicted from the L1 data cache on the

next access to the same data cache set.
Write-hint 64 The 21264 obtains write access to the 64-byte block without reading the old contents of the block
Evict The cache block is evicted from the caches.

System pin bus L2 cache port

Address out

Address in

System data

64 bits

System
chipset
(DRAM
and I/O)

Alpha
21264

Tag

Address

Data

128 bits

L2 cache
tag RAMs

L2 cache
data RAMs

Figure 9. The 21264 external interface.

.

address-out and address-in buses in the sys-
tem pin bus. This provides bandwidth for new
address requests (out from the processor) and
system probes (into the processor), and allows
for simple, small-scale multiprocessor system
designs. The 21264 system interface’s low pin
counts and high bandwidth let a high-perfor-
mance system (of four or more processors)
broadcast probes without using a large num-
ber of pins. The BIU stores pending system
probes in an eight-entry probe queue before
responding to the probes, in order. It responds
to probes very quickly to support a system
with minimum latency, and minimizes the
address bus bandwidth required in common
probe response cases.

The 21264 provides a rich set of possible
coherence actions; it can scale to larger-scale
system implementations, including directo-
ry-based systems.4 It supports all five of the
standard MOESI (modified-owned-exclusive-
shared-invalid) cache states.

The BIU supports a wide range of system
data bus speeds. The peak bandwidth of the
system data interface is 8 bytes of data per 1.5
CPU cycles—or 3.2 Gbytes/sec at a 400-MHz
transfer rate. The load latency (issue of load to
issue of consumer) can be as low as 160 ns with
a 60-ns DRAM access time. The total of eight
in-flight MAFs and eight in-flight victims pro-
vide many parallel memory operations to
schedule for high SRAM and DRAM effi-
ciency. This translates into high memory sys-
tem performance, even with cache misses. For
example, the 21264 has sustained in excess of
1.3 Gbytes/sec (user-visible) memory band-
width on the Stream benchmark.7

Dynamic execution examples
The 21264 architecture is very dynamic. In

this article I have discussed a number of its

dynamic techniques, including the line predic-
tor, branch predictor, and issue queue schedul-
ing. Two more examples in this section further
illustrate the 21264’s dynamic adaptability.

Store/load memory ordering
The 21264 memory system supports the

full capabilities of the out-of-order execution
core, yet maintains an in-order architectural
memory model. This is a challenge when mul-
tiple loads and stores reference the same
address. The register rename logic cannot
automatically handle these read-after-write
memory dependencies as it does register
dependencies because it does not have the
memory address until the instruction issues.
Instead, the memory system dynamically
detects the problem case after the instructions
issue (and the addresses are available).

This example shows how the 21264
dynamically adapts to avoid the costs of load
misspeculation. It remembers the first mis-
speculation and avoids the problem in subse-
quent executions by delaying the load.

Figure 10 shows how the 21264 resolves a
memory read-after-write hazard. The source
instructions are on the far left—a store fol-
lowed by a load to the same address. On the
first execution of these instructions, the 21264
attempts to issue the load as early as possi-
ble—before the older store—to minimize load
latency. The load receives the wrong data since
it issues before the store in this case, so the
21264 hazard detection logic squashes the
load (and all subsequent instructions). After
this type of load misspeculation, the 21264
trains to avoid it on subsequent executions by
setting a bit in a load wait table.

Figure 10 also shows what happens on sub-
sequent executions of the same code. At fetch
time the store wait table bit corresponding to
the load is set. The issue queue then forces the
issue point of the marked load to be delayed
until all prior stores have issued, thereby
avoiding this store/load order violation and
also allowing the speculative store buffer to
bypass the correct data to the load. This store
wait table is periodically cleared to avoid
unnecessary waits.

This example store/load order case shows
how the memory system produces a result that
is the same as an in-order memory system
while capturing the performance advantages

34

ALPHA 21264

IEEE MICRO

(Assume R10 = R11)
Source code

STQ R0, 0(R10)

LDQ R1, 0(R11)

First execution

LDQ R1, 0(R11)

STQ R0, 0(R10)

This load got
the wrong data!

Subsequent executions

STQ R0, 0(R10)

LDQ R1, 0(R11)

The marked (delayed)
load gets the store data.

Figure 10. An example of the 21264 memory load-after-store hazard
adaptation.

.

of out-of-order execution.
Unmarked loads issue as early
as possible, and before as
many stores as possible, while
only the necessary marked
loads are delayed.

Load hit/miss prediction
There are minispeculations

within the 21264’s specula-
tive execution engine. To
achieve the minimum three-
cycle integer load hit latency,
the processor must specula-
tively issue the consumers of
the integer load data before
knowing if the load hit or
missed in the on-chip data
cache. This early issue allows
the consumers to receive
bypassed data from a load at
the earliest possible time.
Note in Figure 2 that the data
cache stage is three cycles after the queue, or
issue, stage, so the load’s cache lookup must
happen in parallel with the consumers issue.
Furthermore, it really takes another cycle after
the cache lookup to get the hit/miss indica-
tion to the issue queue. This means that con-
sumers of the results produced by the
consumers of the load data (the beneficiaries)
can also speculatively issue—even though the
load may have actually missed.

The processor could rely on the general
mechanisms available in the speculative exe-
cution engine to abort the integer load data’s
speculatively executed consumers; however,
that requires restarting the entire instruction
pipeline. Given that load misses can be fre-
quent in some applications, this technique
would be too expensive. Instead, the proces-
sor handles this with a minirestart. When con-
sumers speculatively issue three cycles after a
load that misses, two integer issue cycles (on
all four integer pipes) are squashed. All inte-
ger instructions that issued during those two
cycles are pulled back into the issue queue to
be reissued later. This forces the processor to
reissue both the consumers and the benefi-
ciaries. If the load hits, the instruction sched-
ule shown on the top of Figure 11 will be
executed. If the load misses, however, the orig-
inal issues of the unrelated instructions L3–L4

and U4–U6 must be reexecuted in cycles 5
and 6. The schedule thus is delayed two cycles
from that depicted.

While this two-cycle window is less costly
than fully restarting the processor pipeline, it
still can be expensive for applications with
many integer load misses. Consequently, the
21264 predicts when loads will miss and does
not speculatively issue the consumers of the
load data in that case. The bottom half of Fig-
ure 11 shows the example instruction schedule
for this prediction. The effective load latency
is five cycles rather than the minimum three
for an integer load hit that is (incorrectly) pre-
dicted to miss. But more unrelated instruc-
tions are allowed to issue in the slots not taken
by the consumer and the beneficiaries.

The load hit/miss predictor is the most-sig-
nificant bit of a 4-bit counter that tracks the
hit/miss behavior of recent loads. The satu-
rating counter decrements by two on cycles
when there is a load miss, otherwise it incre-
ments by one when there is a hit. This hit/miss
predictor minimizes latencies in applications
that often hit, and avoids the costs of over-
speculation for applications that often miss.

The 21264 treats floating-point loads dif-
ferently than integer loads for load hit/miss
prediction. The floating-point load latency is
four cycles, with no single-cycle operations, so

35MARCH–APRIL 1999

Figure 11. Integer load hit/miss prediction example. This figure depicts the execution of a
workload when the selected load (P) is predicted to hit (a) and predicted to miss (b) on the
four integer pipes. The cross-hatched and screened sections show the instructions that are
either squashed and reexecuted from the issue queue, or delayed due to operand availabili-
ty or the reexecution of other instructions.

0Cycle 1 2 3 4 5 6

U1 U3 U5 U7 C

L1 L5 L6 B1

U9

U2 U4 U6 U8

L2P L3 L4 L7 L8P
re

di
ct

 m
is

s
in

te
ge

r
pi

pe
s

U1 U3 CC U5U5

B1B1

U4U4 U6U6

L3L3 L4L4

C U5 B2

L1 B1 L5

U9

U9U2 U4 U6 U7

L2P L3 L4 L6 L7

P
re

di
ct

 h
it

in
te

ge
r

pi
pe

s

P

C

BX

LX

UX

Producing load

Consumer

Beneficiary of load

Unrelated instruction, lower pipes

Unrelated instruction, upper pipes

Squashed and reexecuted if P misses

Delayed (rescheduled) if P misses

(a)

(b)

.

there is enough time to resolve the exact
instruction that used the load result.

Compaq has been shipping the 21264 to
customers since the last quarter of 1998.

Future versions of the 21264, taking advantage
of technology advances for lower cost and high-
er speed, will extend the Alpha’s performance
leadership well into the new millennium. The
next-generation 21364 and 21464 Alphas are
currently being designed. They will carry the
Alpha line even further into the future. MICRO

Acknowledgments
The 21264 is the fruition of many individ-

uals, including M. Albers, R. Allmon, M.
Arneborn, D. Asher, R. Badeau, D. Bailey, S.
Bakke, A. Barber, S. Bell, B. Benschneider, M.
Bhaiwala, D. Bhavsar, L. Biro, S. Britton, D.
Brown, M. Callander, C. Chang, J. Clouser,
R. Davies, D. Dever, N. Dohm, R. Dupcak,
J. Emer, N. Fairbanks, B. Fields, M. Gowan,
R. Gries, J. Hagan, C. Hanks, R. Hokinson,
C. Houghton, J. Huggins, D. Jackson, D.
Katz, J. Kowaleski, J. Krause, J. Kumpf, G.
Lowney, M. Matson, P. McKernan, S. Meier,
J. Mylius, K. Menzel, D. Morgan, T. Morse,
L. Noack, N. O’Neill, S. Park, P. Patsis, M.
Petronino, J. Pickholtz, M. Quinn, C. Ramey,
D. Ramey, E. Rasmussen, N. Raughley, M.
Reilly, S. Root, E. Samberg, S. Samudrala, D.
Sarrazin, S. Sayadi, D. Siegrist, Y. Seok, T.
Sperber, R. Stamm, J. St Laurent, J. Sun, R.
Tan, S. Taylor, S. Thierauf, G. Vernes, V. von
Kaenel, D. Webb, J. Wiedemeier, K. Wilcox,
and T. Zou.

References
1. D. Dobberpuhl et al., “A 200 MHz 64-bit Dual

Issue CMOS Microprocessor,” IEEE J. Solid
State Circuits, Vol. 27, No. 11, Nov. 1992,
pp. 1,555–1,567.

2. J. Edmondson et al., “Superscalar
Instruction Execution in the 21164 Alpha
Microprocessor,” IEEE Micro, Vol. 15, No.
2, Apr. 1995; pp. 33–43.

3. B. Gieseke et al., “A 600 MHz Superscalar
RISC Microprocessor with Out-of-Order
Execution,” IEEE Int’l Solid-State Circuits
Conf. Dig., Tech. Papers, IEEE Press,
Piscataway, N.J., Feb. 1997, pp. 176–177.

4. D. Leibholz and R. Razdan, “The Alpha
21264: A 500 MHz Out-of-Order Execution

Microprocessor,” Proc. IEEE Compcon 97,
IEEE Computer Soc. Press, Los Alamitos,
Calif., 1997, pp. 28–36.

5. R.E. Kessler, E.J. McLellan, and D.A. Webb,
“The Alpha 21264 Microprocessor
Architecture,” Proc. 1998 IEEE Int’l Conf.
Computer Design: VLSI in Computers and
Processors, IEEE Computer Soc. Press, Oct.
1998, pp. 90–95.

6. M. Matson et al., “Circuit Implementation of
a 600 MHz Superscalar RISC Microproces-
sor,” 1998 IEEE Int’l Conf. Computer
Design: VLSI in Computers and Processors,
Oct. 1998, pp. 104–110.

7. J.D. McCalpin, “STREAM: Sustainable
Memory Bandwidth in High-Performance
Computers,” Univ. of Virginia, Dept. of
Computer Science, Charlottesville, Va.;
http://www.cs.virginia.edu/stream/.

8. S. McFarling, Combining Branch Predictors,
Tech. Note TN-36, Compaq Computer Corp.
Western Research Laboratory, Palo Alto,
Calif., June 1993; http://www.research.
digital.com/wrl/techreports/abstracts/
TN-36.html.

9. T. Fischer and D. Leibholz, “Design
Tradeoffs in Stall-Control Circuits for 600
MHz Instruction Queues,” Proc. IEEE Int’l
Solid-State Circuits Conf. Dig., Tech. Papers,
IEEE Press, Feb. 1998, pp. 398–399.

Richard E. Kessler is a consulting engineer in
the Alpha Development Group of Compaq
Computer Corp. in Shrewsbury, Massachu-
setts. He is an architect of the Alpha 21264 and
21364 microprocessors. His interests include
microprocessor and computer system archi-
tecture. He has an MS and a PhD in comput-
er sciences from the University of Wisconsin,
Madison, and a BS in electrical and computer
engineering from the University of Iowa. He is
a member of the ACM and the IEEE.

Contact Kessler about this article at Compaq
Computer Corp., 334 South St., Shrewsbury,
MA 01545; richard.kessler@compaq.com.

36

ALPHA 21264

IEEE MICRO

.

