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Abstract

Pipelining allows processors to exploit parallelism. Un-
fortunately, critical loops—pieces of logic that must evalu-
ate in a single cycle to meet IPC (Instructions Per Cycle)
goals—prevent deeper pipelining. In today’s processors,
one of these loops is the instruction scheduling (wakeup
and select) logic [10]. This paper describes a technique
that pipelines this loop by breaking it into two smaller
loops: a critical, single-cycle loop for wakeup; and a non-
critical, potentially multi-cycle, loop for select. For the 12
SPECint*2000 benchmarks, a machine with two-cycle se-
lect logic (i. e., three-cycle scheduling logic) using this tech-
nique has an average IPC 15% greater than a machine with
three-cycle pipelined conventional scheduling logic, and an
IPC within 3% of a machine of the same pipeline depth and
one-cycle (ideal) scheduling logic. Since select accounts for
more than half the scheduling latency [10], this technique
could significantly increase clock frequency while having
minimal impact on IPC.

1. Introduction

Processor performance has increased a thousandfold
over the past twenty years. Much of this increase is due to
deeper pipelines, which enable greater exploitation of paral-
lelism. Over these twenty years, pipeline depths have grown
from 1 (Intel® 286 processor), to 5 (Inte1486TM processor),
to 10 (Intel Pentium® Pro processor), to 40! (Intel Pentium
4 processor) [6]. Pipeline depths will continue to grow as
processors attempt to exploit more parallelism.

Intel®, Intel486TM, and Pentium® are trademarks or registered
trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

*Other names and brands may be claimed as the property of others.

IThe pipeline depth is given in terms of fast clocks. The fast clock
cycle time was set equal to the time required to execute an operation and
bypass its result to its dependent operations. [5]

Microprocessor Research Labs §
Intel Corporation
jared.w.stark @intel.com

Obstacles to pipelining are critical loops [2]. These are
pieces of logic that must evaluate in a single cycle to meet
IPC (Instructions Per Cycle) performance goals. An exam-
ple of a critical loop—and the subject of this work—is the
wakeup and select (i. e., dynamic instruction scheduling)
logic [10]. The wakeup logic determines when instructions
are ready to execute, and the select logic picks ready in-
structions for execution. Because instructions cannot wake
up until all instructions they are dependent on have been se-
lected, the wakeup and select logic form a critical loop. If
this loop is stretched over more than one cycle, dependent
instructions cannot execute in consecutive cycles. For the
SPECint2000 benchmarks, IPC is 10% lower when stretch-
ing this loop over two cycles, and 19% lower when stretch-
ing it over three cycles.

This paper introduces a technique that pipelines the
scheduling loop by breaking it into two smaller loops: one,
critical, single-cycle loop for wakeup; and one, non-critical,
potentially multi-cycle loop for select. This is accomplished
by speculating that all waking instructions are immediately
selected for execution. We call this technique select-free
scheduling. The select logic—no longer in a critical loop—
can use intelligent, IPC-boosting priority schemes without
impacting cycle time.

The paper describes several examples of implementa-
tions of this technique for a generic dynamically sched-
uled machine. Experimental results for the 12 SPECint2000
benchmarks show that, for two-cycle select logic (i. e.,
three-cycle scheduling logic), a machine using this tech-
nique has an average IPC 15% greater than a machine
with three-cycle pipelined conventional scheduling logic,
and an IPC within 3% of a machine of the same pipeline
depth and one-cycle (ideal) scheduling logic. For one-cycle
select logic, a machine using this technique has an IPC
8.9% greater than a machine with two-cycle pipelined con-
ventional scheduling logic, and an IPC 0.7% less than a
machine of the same pipeline depth and one-cycle (ideal)
scheduling logic. Since select accounts for more than half
the scheduling latency [10], this technique could signifi-



cantly increase clock frequency while having only a min-
imal impact on IPC.

In addition to increasing the clock frequency, select-
free scheduling can also be used to enlarge the scheduling
window and/or reduce the window’s power consumption.
If a machine’s conventional scheduling logic is replaced
with select-free scheduling logic, but the clock frequency
is held constant rather than increased, the window can be
enlarged. Or, the window can be built from slower, lower-
power transistors. The machine’s design constraints (power,
frequency, IPC) dictate how select-free scheduling is used.

2. Related Work

Weiss and Smith [12] provide an introduction to sched-
ulers. They describe four scheduling paradigms: Toma-
sulo’s algorithm, Thornton scoreboarding, direct tag store,
and in-order execution. For more current information, Yea-
ger [13] describes the scheduler for the MIPS* R10000*
microprocessor. Farrell and Fischer [3]; and Chandrakasan,
Bowhill, and Fox [2]; describe the scheduler for the
Compaq* Alpha* 21264 processor. And Hinton et al. [5]
describe the scheduler for the Intel Pentium 4 processor.

Recently, Palacharla, Jouppi, and Smith [10] presented
a detailed analysis of the delays in the scheduler and com-
pared it to the delays in other parts of a modern processor.
They concluded that the scheduler, along with the operand
bypass, are likely to be the most critical paths as the ma-
chine width and frequency are increased.

To prevent the scheduler from becoming the critical path,
researchers have investigated three classes of techniques:
preschedulers, low-latency schedulers, and pipelined sched-
ulers. Many of these techniques, as well as the technique
described in this paper, may be used in combination with
one another.

Michaud and Seznec [7] proposed prescheduling in-
structions before they are written into the scheduling win-
dow. The prescheduler takes sequentially ordered instruc-
tions and arranges them in dataflow order so that they pass
quickly through the scheduling window. With preschedul-
ing, a large effective scheduling window can be built using
a relatively small, low-latency, scheduler.

Several researchers proposed low-latency schedulers.
Palacharla, Jouppi, and Smith [10] proposed placing chains
of dependent instructions into FIFOs, and issuing from mul-
tiple FIFOs to functional units in parallel. They expect this
scheduler to have lower latency than a conventional sched-
uler due to its relative simplicity. Onder and Gupta [9]
described a scheduler that limits the number of depen-
dent instructions that a selected instruction can immediately
wakeup. By limiting this number, they hope the scheduler
is smaller and faster than a conventional scheduler. Henry
et al. [4] described how to build faster schedulers using

cyclic segmented prefix circuits. Canal and Gonzalez [1]
described two schedulers that eliminate most of the associa-
tive look-up logic that is used by conventional schedulers.
They believe that eliminating associative look-up logic is
the key to building low-latency schedulers.

Finally, our previous paper [11] described speculative
wakeup, which pipelines the scheduling logic over two cy-
cles while having only a minor impact on IPC. Speculative
wakeup uses a dependency lookahead scheme to stretch the
critical scheduling loop (wakeup + select) over two cycles
while still allowing dependent instructions to schedule in
consecutive cycles. Select-free scheduling is complemen-
tary to speculative wakeup; it removes the select logic from
this critical loop. These two techniques can be combined
for even more extreme pipelining of the scheduling logic.

3. Machine Model
3.1. Pipeline Overview

The baseline processor is a conventional superscalar out-
of-order processor. Figure 1 shows its pipeline. Instructions
are fetched and decoded in the first two stages. The rename
stage translates architectural register identifiers into physi-
cal register identifiers. The scheduler is responsible for is-
suing instructions to the execution units when all required
resources (source operands and execution units) are avail-
able. The remainder of the pipeline consists of the regis-
ter file read, execute/bypass, and retirement stages. Some
stages of the pipeline may require more than one cycle.

Register | Execute

Read Bypass Retire

Fetch Decode | Rename J Schedule

Figure 1. Processor Pipeline

3.2. The Execution Core

Figure 2 shows the main structures that make up the exe-
cution core. These structures and the core operation will be
discussed briefly.

The Rename Stage. The rename stage assigns a new
physical register to every destination operand, and maps
the source operands of subsequent instructions onto the
corresponding physical registers. The renamer determines
whether the source operands needed by an instruction cur-
rently reside in the physical register file, or whether the
instruction needs to wait for another instruction in the
scheduling window to produce the operand. The rename
logic outputs the physical register number of the source
operand. As the rename logic determines dependences in
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Figure 2. Execution Core

terms of physical register numbers, it also calculates these
dependences in terms of scheduler entry numbers.

The Wakeup Arrays. After instructions are renamed, they
are placed in the scheduling window. The scheduling win-
dow consists of one or more wakeup arrays, each feeding a
separate selector (i. e., piece of select logic). The wakeup
logic monitors the resource dependencies for instructions to
determine if they are ready to execute. The wakeup logic
sends the select logic a vector (the Request Vector) indicat-
ing which instructions are ready for execution.

The Select Logic. The select logic picks one instruction
from those marked in a Request Vector for execution on a
given functional unit. In conventional microprocessor de-
signs, the select logic contains a prioritizer which typically
picks the oldest instructions from the Request Vector. The
select logic outputs a vector (the Grant Vector) indicating
the selected instructions which in turn becomes the input to
the wakeup logic in the next clock. This input wakes up
the instructions’ dependents. Hence the scheduling logic
is a loop: instructions that are ready to be scheduled in the
current clock produce results which are fed to dependent in-
structions that must be scheduled in the following clock (or
some number of clocks in the future depending on execution
latency). The need to prioritize all ready instructions adds
to the delay in the scheduling loop; by removing the priori-
tization and performing selection in a subsequent stage, this
loop can be made to run at a significantly higher frequency.

It is possible to design select logic that can pick multi-
ple instructions per cycle to execute on multiple functional
units. Both the Compaq Alpha 21264 processor [2] and
the MIPS R10000 microprocessor [13] use schedulers that
can pick 2 instructions per cycle. A distributed scheduling
window, where each functional unit has a separate sched-
uler and wakeup array, will have the fastest schedulers be-
cause the wakeup arrays are small and the select logic must

only pick 1 instruction per cycle. Unified (or semi-unified)
scheduling windows, which use one scheduler to pick sev-
eral instructions per cycle, may be slower, but they elim-
inate the load balancing problems present in distributed
scheduling windows.

Payload RAM and Register File. After an instruction is
selected for execution, the instruction’s payload is obtained
from a table. The payload is information needed for the
instruction’s register file access and execution such as its
opcode and the physical register identifiers of its sources
and destination. [3]

Execution and Scheduling Window Deallocation. Some
time after an instruction has been granted execution, it is
deallocated from the wakeup array. It remains in the in-
struction window until it retires, however. By holding only
a subset of the instructions from the instruction window in
the wakeup arrays, the wakeup arrays can be built smaller,
which will reduce the scheduling latency. When the instruc-
tion is deallocated, the rename mapper is updated to indicate
that the instruction’s dependents should get its result from
the register file rather than the bypass network.

Scheduling Implications of Using Heterogeneous Func-
tional Units. An instruction must be steered to a functional
unit that can execute it. Consequently, it must be steered to
a scheduler feeding that type of functional unit.

It may be advantageous to build machines with two
classes of functional units: low-latency functional units and
high-latency functional units. Fast schedulers are needed
for the low-latency functional units, and slow schedulers
can be used for the high-latency functional units, as was
done on the Intel Pentium 4 processor [5]. The fast and slow
schedulers may have the same total scheduling latency (i. e.,
the time required for both wakeup and select). What dif-
ferentiates the two types of schedulers is the time between



when a scheduler schedules an instruction and when the in-
struction’s dependents can be scheduled; that is, the latency
of the scheduler’s critical loop. This latency is lower for the
fast scheduler than for the slow scheduler. In general, the
latency of a scheduler’s critical loop must be less than or
equal to the latency of the functional unit it feeds in order to
prevent the insertion of bubbles into the execution pipeline.
An exception to this rule occurs with instructions that do
not produce register results, such as most branches. Since
these instructions have no instructions that depend on them
via registers, the latency of the critical loop in the scheduler
has absolutely no impact on performance. Hence, these in-
structions can safely be scheduled using a slow scheduler.
Another exception occurs with instructions that do not
produce critical results. These instructions might also be
scheduled using a slow scheduler. Slow schedulers may also
be used to save power or allow larger scheduling windows.
In our machine model, the fast and slow schedulers
have the same number of pipeline stages, and the same to-
tal scheduling latency. The slow schedulers are used for
branches and high-latency instructions, and the fast sched-
ulers are used for the remaining low-latency instructions.

4. Baseline Scheduling Logic

The scheduling logic is comprised of wakeup arrays, se-
lectors, and countdown timers.

Each wakeup array entry contains the wakeup logic for
a single instruction. Our implementation uses wire-OR-
style wakeup logic [3, 8] instead of traditional CAM-style
wakeup logic, although either style could be used with
select-free scheduling logic. Each entry contains a bit vec-
tor, called a Resource Vector, that indicates which resources
the instruction needs. Each bit position, or Resource Bit,
within this vector corresponds to a particular resource. A
resource can be either a result operand produced by the in-
struction in a particular entry of a wakeup array, or a partic-
ular functional unit?>. Each Resource Bit is set if the instruc-
tion requires that resource, and reset if it doesn’t.

Figures 3 and 4 show a dependency graph and an exam-
ple of a wakeup array that contains the instructions in the
graph. The portion of the wakeup array that is shown has
four Resource Vectors with seven Resource Bits. The in-
structions in entries 1-4 are the SHIFT, SUB, ADD, and
MULT instructions from the dependency graph. In this ex-
ample, the instructions that produced the values for the un-
specified source operands of the SHIFT, SUB, ADD, and
MULT instructions have already executed, so their result
values reside in the register file. The SHIFT instruction
only requires the shifter, so only one Resource Bit is set.
The SUB and ADD instructions depend on the result of the

2If a particular functional unit can begin executing a new instruction
every cycle, then a Resource Bit is not needed for that functional unit.

SHIFT and require the ALU, and the MULT instruction de-
pends on the result of the SUB and requires the multiplier.

Figure 3. Dependency Graph
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Figure 4. Wakeup Array

Figure 5 shows the wakeup logic for one wakeup ar-
ray entry. The AVAILABLE lines running vertically pass
through every entry in the array. Each line corresponds to
a Resource Bit in the Resource Vector. The line is high if
the resource is available and low if it is not. The SCHED-
ULED bit indicates whether or not the instruction has been
granted execution. There may be a number of cycles be-
tween the time the instruction is granted execution and the
time it is actually deallocated from the wakeup array. Dur-
ing this time, the SCHEDULED bit is set to prevent the
instruction from requesting execution again. If the instruc-
tion must be rescheduled, for example, due to a load latency
misprediction [8], its SCHEDULED bit is reset by assert-
ing the Reschedule line. The instruction requests execution
if (1) its SCHEDULED bit is not set, and (2) for each re-
source, it does not require that resource or that resource is
available. The AND gate is implemented using a wire-OR
structure to make it fast. Hence, we call this style of wakeup
logic wire-OR-style.

Each selector is a priority circuit. Its input is a bit vec-
tor indicating which instructions from the wakeup array re-
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Figure 5. Logic for One Wakeup Array Entry
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quest execution. One of its outputs is the Grant Vector,
indicating which instructions receive the execution grants.
The wakeup array uses this Grant Vector to set the SCHED-
ULED bits. The other outputs are a set of one-hot bit vec-
tors. The first one-hot specifies the first instruction that re-
ceived an execution grant. The second one-hot specifies the
second instruction that received an execution grant. And
so on. For a select-1 priority circuit, there is only 1 one-
hot, and it is equivalent to the Grant Vector. Each one-hot is
used to access a port (or the port) of a Payload RAM and de-
liver the payload for the associated instruction to the register
file and to the functional unit. The one-hot is the Payload
RAM’s set of word lines, so the Payload RAM doesn’t have
(or require) word decoders.

After instructions receive execution grants, the AVAIL-
ABLE lines for their wakeup array entries are asserted so
that their dependent instructions may wake up. For a single-
cycle instruction, the AVAILABLE line is asserted immedi-
ately. For an N-cycle instruction, the AVAILABLE line is
asserted N — 1 cycles later. This is accomplished by using
a countdown timer initialized to the instruction’s latency.
When an instruction receives an execution grant, its timer
begins to count down. When the timer reaches 1, it asserts
the instruction’s AVAILABLE line.

With wire-OR wakeup logic, data dependencies are
specified in terms of wakeup array entries rather than phys-
ical register identifiers. When an instruction’s wakeup array
entry is deallocated, it may still have dependent instructions
residing in the wakeup arrays. In order to prevent an incor-
rect dependence on a new instruction that gets allocated to
the same entry, when the entry is deallocated, every wakeup
array entry in the scheduling window clears the Resource
Bit that corresponds to the deallocated entry.

5. Select-Free Scheduling Logic

This section explains the operation and implementation
of select-free scheduling logic. For simplicity, we will only
discuss an implementation for single-cycle instructions, al-
though it is also possible to implement select-free sched-
ulers for multi-cycle instructions. Section 5.1 provides the
rationale for select-free scheduling. Section 5.2 explains
some terminology. Section 5.3 explains the implementation
of the scheduling pipeline. Section 5.4 discusses two ways
of avoiding incorrect schedules.

5.1. Rationale

In a given wakeup array, usually no more than one in-
struction becomes ready per cycle. Simulations show that a
16-entry wakeup array in a machine with 8 select-1 sched-
ulers has, on average, no waking instructions in 53% of the
cycles (including branch recovery cycles), one waking in-
struction in 39% of the cycles, and two or more waking
instructions in the remaining 8% of the cycles.> Because
there is usually no more than one instruction per wakeup ar-
ray requesting execution, it is possible to speculate that any
waking instruction will be selected for execution. Select-
free scheduling logic exploits this fact by removing the se-
lect logic from the critical scheduling loop and scheduling
instructions speculatively. The select logic is only used to
confirm that the schedule is correct.

5.2. Collisions and Pileups

With select-free scheduling logic, instructions speculate
that they will be selected for execution, and they assert the
AVAILABLE lines for their wakeup array entries before
their selection is really confirmed.

A collision is the scenario where more instructions wake
up than can be selected, resulting in a misspeculation. Any
unselected instructions assert their AVAILABLE lines too
early. We will call these instructions the collision victims.
Collision victims are identified at the same time an instruc-
tion is selected: when the Grant Vector is produced, a sec-
ond vector of collision victims is also produced. Depen-
dents of the collision victims may wake up before they are
really ready to be scheduled, thus entering the scheduling
pipeline too early. We call these instructions pileup vic-
tims. Pileup victims are identified by a scoreboard check
before the execute stage. The misspeculation is analogous
to a freeway accident with the instructions being the vehi-
cles. Hence the terms collision and pileup. The next section
explains in more detail how select-free scheduling logic de-
tects and reschedules collision and pileup victims.

3Section 6 provides the machine configurations.
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Figure 6. Execution Core with Select-Free Scheduling

5.3. Select-Free Scheduling Implementation

Figure 6 shows an execution core using a select-free
scheduler. The wakeup logic is the same as for base-
line scheduling logic shown in Figure 5. With select-free
scheduling, an instruction assumes it will be selected when
it wakes up. Hence, once an instruction is awakened, it im-
mediately sets its SCHEDULED bit and asserts its AVAIL-
ABLE line. The select logic still produces a set of one-
hot vectors that are used to index the Payload RAM, but it
also produces a Collision Victim vector indicating which re-
questing instructions did nof receive an execution grant. An
instruction that is selected is not necessarily really ready for
execution because it may have been a pileup victim.

To check for pileup victims, a scoreboard is placed after
the Payload RAM. The scoreboard is accessed in parallel
with the register file, and does not add pipeline stages. The
scoreboard records which instructions have been correctly
scheduled. An instruction reads the scoreboard to determine
if the instructions that produce its sources have been cor-
rectly scheduled. If all have been correctly scheduled, the
instruction records in the scoreboard that it was correctly
scheduled. Otherwise, the instruction is a pileup victim and
does not update the scoreboard.

When an instruction is identified as a collision or pileup
victim, the SCHEDULED bit of its wakeup array entry
must be reset so that it will be rescheduled. A bit vec-
tor specifying the pileup victims is ORed with the Col-
lision Victim vector produced by the select logic to indi-
cate which Reschedule lines must be asserted. Instructions
should not be deallocated from the wakeup entries until they
have passed the scoreboard check.

With select-free scheduling logic, collision and pileup
victims suffer a scheduling penalty. With the baseline
scheduling logic, an instruction may request execution ev-

ery cycle until it is granted execution. With select-free
scheduling logic, a collision victim—or any misscheduled
instruction—takes at least as long as the latency of the
scheduling pipeline to reschedule. Pileup victims will incur
an additional penalty if the payload RAM and scoreboard
logic are pipelined over several cycles.

When a machine uses a combination of baseline and
select-free schedulers, only the select-free schedulers will
have collision victims. However, the AVAILABLE lines
originating from the select-free schedulers pass through the
baseline schedulers, and may be speculative. Therefore,
pileup victims may reside in either type of scheduler. Hence
instructions from all schedulers must check the scoreboard.

5.4. Collision Avoidance Techniques
This section describes two ways to avoid collisions.

Select-N Schedulers. One way to avoid collisions is to use
schedulers that can select more than one instruction per cy-
cle. For select-1 schedulers, there is a collision when 2 or
more instructions request execution. For select-2 sched-
ulers, there is a collision when 3 or more instructions re-
quest execution. As the number of instructions selected in-
creases and the total number of schedulers decreases, the
probably of a collision decreases. To demonstrate this, three
machines were simulated, each with eight functional units
and the same size scheduling window. The first had eight
select-1 schedulers, the second had four select-2 schedulers,
and the third had two select-4 schedulers. For an average
cycle, the probability of a collision in any scheduler for the
machine with select-1 schedulers was 39%, for the machine
with select-2 schedulers was 26%, and for the machine with
select-4 schedulers was 15%. Although select-2 and select-
4 logic are more complex than select-1 logic, select-free



scheduling allows this logic to be pipelined with little loss
in IPC.

Predict Another Wakeup (PAW). If an instruction can de-
termine that another instruction in the same wakeup array
will wake up at the same time as itself, it can avoid a col-
lision by delaying its execution request. For example, the
ADD in Figure 7 will wakeup at the same time as the SUB.
If the ADD’s wakeup logic knows that this will happen, it
can delay its request. However, dynamically determining
that this will happen is quite complex. It is easier to detect
that an instruction in the same wakeup array might poten-
tially wake up. This is accomplished by detecting when an
operand required by any older instruction becomes avail-
able. This detection is made using a bit vector, called the
PAW vector, that indicates all of the sources needed by all
older instructions in the wakeup array.

Like the Resource Vector, each bit position of the PAW
vector corresponds to a particular resource. A bit is set if
there is an older instruction in the wakeup array requiring
the resource. Figure 8 shows an example of the wakeup ar-
ray with PAW vectors for the instructions in the dependency
graph in Figure 7. The 1s indicate the bits of the Resource
vectors that are set. The shaded portions indicate the bits of
the PAW vectors that are set.

Program Order:

1: SHIFT \’ ’/
2: SUB
3: ADD
4: MULT
5: XOR
6: NOT

Figure 7. Dependency Graph

Instructions should not request execution when any of
the resources marked in the PAW vector first become avail-
able. Each time one of these resources becomes available,
an awake instruction delays its execution request one cycle.
For example, the ADD will not request execution the first
cycle that the ENTRY 1 (SHIFT’s) AVAILABLE line is as-
serted even though it will be ready to execute, because the
SUB also wakes up this cycle. If the ADD’s AVAILABLE
line becomes asserted the cycle after the SUB’s AVAIL-
ABLE line becomes asserted, the NOT will delay its request
for 2 cycles after it wakes up.

Although PAW vectors reduce the collision rate by over
50%, they increase the amount of state stored in the wakeup
array and possibly the size and/or latency of the wakeup ar-
ray. The wakeup logic for each entry is also modified: the
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Figure 8. Wakeup Array

request line can only be asserted if the bitwise AND of the
PAW Vector and the AVAILABLE lines is zero. The PAW
Vector bits must be reset when the AVAILABLE lines are
first asserted to prevent further delays in requesting execu-
tion.

The PAW vector for each instruction is computed in the
rename stage as follows: The rename stage has one register
per wakeup array. This register is the PAW vector for the
next instruction to be placed in that array. The instruction
first reads the register to determine its PAW vector, and then
updates the register by ORing the register with the portion
of the instruction’s Resource Vector marking the instruc-
tion’s own source operands. When AVAILABLE lines are
first asserted, the resource bits corresponding to those lines
are cleared from the register.

The PAW technique does not perfectly predict when
older instructions request execution. One reason is that
many instructions have two sources. When the first source
of an instruction with two sources becomes available, the
instruction does not wake up, although it may prevent a
younger, waking instruction from requesting execution due
to a PAW vector match. Another reason is that two instruc-
tions may both delay their execution requests because of
a PAW vector match, and then both request execution in
the following cycle, resulting in a collision. Despite these
problems, the PAW technique is still good enough to make
a noticeable improvement in IPC.

6. Experiments

All experiments were run using a cycle-accurate simula-
tor for the Alpha ISA. The SPECint2000 benchmarks were
compiled using the Compaq C Compiler with aggressive
optimizations (the - fast switch and feedback-directed op-
timizations). All benchmarks were run to completion using
modified input sets to reduce run time.



Branch Predictor
Instruction Cache

16-bit gshare, 4096-entry BTB

64KB 4-way set associative (pipelined)
2-cycle directory and data access

256 instructions

128 instructions

4 single-cycle functional units +

4 pipelined, multi-cycle functional units
64KB 4-way set associative (pipelined)
2-cycle directory and data access

1MB, 8-way, 7-cycle access

2 banks, contention is modeled

100 cycles minimum access

Instruction Window
Scheduling Window
Execution Width

Data Cache

Unified L2 Cache

Main Memory

Table 1. Machine Configuration

Instruction Class

Latency (in Cycles) |

integer arithmetic | 1

integer multiply 8, pipelined

fp arithmetic 4, pipelined

fp divide 16

loads and stores 1 + dcache latency
all others 1

Table 2. Instruction Latencies

All experimental machines were 8-wide superscalar pro-
cessors, configured as shown in Table 1. Instruction la-
tencies are shown in Table 2. To prevent instruction re-
execution from becoming a factor in our analysis, all ma-
chines used perfect load latency prediction and memory de-
pendence prediction. Each machine required 2 cycles for
fetch, 2 for decode, 2 for rename, 1 for Payload RAM read,
1 for register read, and 1 for retire. All machines used
1-cycle wakeup logic and either 1-cycle or 2-cycle select
logic. Each machine had four pipelined functional units
for executing multi-cycle instructions (including loads and
stores) and branches, and four functional units for executing
single-cycle instructions. On average, 52% of the instruc-
tions were executed on the multi-cycle functional units. An
instruction with a 1-cycle execution latency required a min-
imum of 11 or 12 cycles (depending on the select logic la-
tency) to advance from the first fetch stage to retire.

6.1. Scheduler Configurations

To measure the effectiveness of select-free scheduling,
we modeled several machines: a baseline machine, six ma-
chines with select-free scheduling, and an ideal machine.
The six machines with select-free scheduling are divided
into three pair, with each pair using a different technique
for handling collisions. Within each pair, one machine uses
the PAW technique and the other doesn’t.

The baseline machine uses baseline scheduling logic for
all functional units, except that it pipelines this logic over
two or three cycles. As a result, there is a minimum of two

cycles between the scheduling of an instruction and its de-
pendent instructions. This means there is at least a one cycle
bubble between the execution of a single-cycle instruction
and its dependents, although independent instructions may
be scheduled to fill these bubbles. There are no bubbles be-
tween a multi-cycle instruction and its dependents.

The three pair of machines with select-free scheduling
have select-free schedulers for the fast functional units,
and pipelined baseline schedulers for the multi-cycle func-
tional units. The first pair, labeled Scoreboard and Score-
board, PAW in the graphs, use the implementation de-
scribed in Section 5; that is, collision and pileup victims
reset their SCHEDULED bits when they are in the Collision
Victim vector or they fail the scoreboard check. The second
pair of machines (Squash All) squash and reschedule all in-
structions from all stages of the scheduling pipeline when-
ever the last stage of select detects a collision. The third
pair of machines (Squash Dep) only squash collision vic-
tims and their dependents from the scheduling pipeline as
soon as a collision is detected. The simulator performs de-
pendency analysis to determine which instructions should
be squashed. The second and third pair of machines are
not suggested implementations, but they show the worst and
best case rescheduling techniques for the described schedul-
ing logic implementation. Neither of these pair require a
scoreboard because they have no pileup victims.

The ideal machine pipelines the scheduling logic over
the same number of cycles as the other machines, but still
allows dependents of single-cycle instructions to schedule
without pipeline bubbles. Conceptually, this machine is a
machine with 1-cycle scheduling logic and one or two ex-
tra pipeline stages. The pipeline depth was kept consistent
with the other machines to remove the effects of changing
the branch mispredict penalty. Because the wakeup/select
loop is performed in one cycle, its clock frequency is con-
siderably lower than that of the baseline machine or the ma-
chines with select-free scheduling.

6.2. Simulation Results

Figure 9 shows the harmonic means of the IPC on the
SPECint2000 benchmarks of all eight machines using both
1-cycle and 2-cycle select logic. All machines have eight
select-1 schedulers. The bars showing the IPC of the ma-
chines using 1-cycle and 2-cycle select logic are overlaid;
the upper bars (in black) show the IPC for the machines
with 1-cycle select logic.

Of the select-free machines, the Squash All machines
have the lowest IPC because correctly scheduled instruc-
tions may be squashed unnecessarily. The simultaneous re-
waking of these squashed instructions caused further colli-
sions. The Squash Dep machines had the highest IPC of the
select-free machines because pileup victims were squashed



254
208 214 212 214 _2.1
© 20| gul 98 103 1.7 M2.04 mm> > 207 [F]2.11
& 1.78 gul-84 s
: 154 1.53 .
o0
g
@ 1.04
>
<
0.5+
0.0
3 > $ o) >
&7 RS A L
® A & & 0\?% szl'"
ol S P g
i o i

Machine Configurations

Figure 9. Average IPC

when collisions were detected, allowing the independent in-
structions to be selected for execution.

The Baseline machine had the largest IPC difference
when moving from 1-cycle to 2-cycle select logic because
of the extra pipeline bubble between a single-cycle in-
struction and its dependents. The machines with select-
free scheduling logic and 2-cycle select performed worse
than their counterparts with 1-cycle select primarily because
the pileups were larger, causing more instructions to be
rescheduled after a collision. The IPC difference between
the two Ideal machines reflects only the increased branch
misprediction penalty.

Simulations of all machines were run using 8, 4, and 2
schedulers that each selected 1, 2, and 4 instructions per
cycle, respectively. The number of wakeup array entries per
scheduler were 16, 32, and 64, respectively. Hence the total
size of the scheduling window was always 128 instructions.
Figures 10, 11 and 12 show the IPC for the benchmarks
using select-1, select-2, and select-4 schedulers. Variations
on the PAW technique were only marginally effective for
machines with select-2 and select-4 schedulers. Hence we
show results for PAW only for select-1 schedulers.

The average IPC and fraction of retired instructions that
are collision victims and pileup victims are shown in Ta-
ble 3. The machines which squash instructions when colli-
sions are detected have no pileup victims.

The PAW technique reduces the number of collision vic-
tims by over half for the select-1 schedulers. While this
technique is more effective at reducing collisions than using
select-2 schedulers, the IPC improvements with each tech-
nique are similar. This is because the PAW technique may
unnecessarily delay ready instructions from waking up.

7. Conclusion

The wakeup and select logic is a critical loop in high-
performance processors. Select-free scheduling breaks this
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Figure 10. IPC with 8 Select-1 Schedulers
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Figure 11. IPC with 4 Select-2 Schedulers

= Baseline, 1-cycle select

@ Scoreboard, 1-cycle select
= Ideal, 1-cycle select

= Baseline, 2-cycle select

o Scoreboard, 2-cycle select
= Ideal, 2-cycle select

twolf vortex

bzip2 crafty

eon gzip mcf parser perl

Benchmarks

gap  gce vpr

Figure 12. IPC with 2 Select-4 Schedulers

loop into two smaller loops: a critical single-cycle loop for
wakeup, and a non-critical (potentially) multi-cycle loop for
select. By breaking this loop, the processor cycle time is no
longer set by the time required for wakeup and select, but is
instead set just by the time required for wakeup.

The benefit provided by this aggressive pipelining of



Machine Model IPC | collision | pileup
victim victim
I-cycle select
Baseline, Select-1 1.98 n/a n/a
Baseline, Select-2 2.01 n/a n/a
Baseline, Select-4 2.03 n/a n/a
Squash All, Select-1 1.84 12.9% n/a
Squash All, Select-1, PAW 1.93 9.5% n/a
Squash All, Select-2 1.96 9.1% n/a
Squash All, Select-4 2.07 6.4% n/a
Scoreboard, Select-1 2.08 10.6% 11.0%
Scoreboard, Select-1, PAW 2.14 4.9% 3.8%
Scoreboard, Select-2 2.18 7.3% 7.2%
Scoreboard, Select-4 2.23 4.4% 3.7%
Squash Dep, Select-1 2.12 10.3% n/a
Squash Dep, Select-1, PAW | 2.14 4.9% n/a
Squash Dep, Select-2 2.19 6.6% n/a
Squash Dep, Select-4 2.23 4.0% n/a
Ideal, Select-1 2.17 n/a n/a
Ideal, Select-2 2.22 n/a n/a
Ideal, Select-4 2.24 n/a n/a
2-cycle select
Baseline, Select-1 1.78 n/a n/a
Baseline, Select-2 1.81 n/a n/a
Baseline, Select-4 1.83 n/a n/a
Squash All, Select-1 1.53 13.9% n/a
Squash All, Select-1, PAW 1.67 9.6% n/a
Squash All, Select-2 1.67 10.4% n/a
Squash All, Select-4 1.81 7.2% n/a
Scoreboard, Select-1 1.97 10.0% 13.4%
Scoreboard, Select-1, PAW 2.04 4.9% 6.6%
Scoreboard, Select-2 2.09 7.0% 9.1%
Scoreboard, Select-4 2.15 4.3% 5.3%
Squash Dep, Select-1 2.02 9.2% n/a
Squash Dep, Select-1, PAW | 2.07 4.4% n/a
Squash Dep, Select-2 2.12 6.4% n/a
Squash Dep, Select-4 2.16 9.2% n/a
Ideal, Select-1 2.11 n/a n/a
Ideal, Select-2 2.15 n/a n/a
Ideal, Select-4 2.17 n/a n/a

Table 3. Fraction of Retired Instructions that
are Collision Victims or Pileup Victims

the wakeup and select logic depends on the type of pro-
cessor you want to design. If you want narrow-issue and
high-frequency, the aggressive pipelining allows you to
build deep pipelines. If you want wide-issue and low-
frequency, the aggressive pipelining allows you to build
a large scheduling window. If you want low-power, the
aggressive pipelining allows you to build your scheduling
window out of slower, lower-power transistors. And, if
you want wide-issue and high-frequency and low-power
(Good Luck!), the aggressive pipelining allows you to build
a deeply pipelined processor with a large scheduling win-
dow built from low-power transistors.
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