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At this point many RISC purists will undoubtedly claim that this is not a RISC design.. . This 
second generation RISC design, representing a reasonable melding of RISC and CISC concepts 
is likely to be the direction for many futurc RISC designs. 

P. Hestcr, RISC System/6000 Hrirtiwczre Buckgroiriid nnrl Philosophies 

We reapplied the principles of RISC to processor design to get maximum clock speed. 
R. Sites, RISC Ei7ters n New Generation -An li~.sider's Look 
at the Developnzent o f 'DEC's  AIphri CPU 

Both PowerPC and 
Alpha are RISC 

architectures, but they 
have little in common 

beyond that. The 
design philosophy of 

one emphasizes 
powerful instructions, 
the other simplicity. 

V irtually all microprocessor architectures developed in the past 10 years have 
followed the RISC (reduced instruction set computer) principles articu- 
lated by Patterson in 1985.' And. not surprisingly, the first-generation RISC 

implementations developed in the 1980s tended to look alike, with simple, five-stage 
instruction pipelines (see sidebar). In recent years, however, with more experience 
and more transistors at their disposal. designers have begun exploring a richly diverse 
set of architectures and implementations. 

Nowhere is this diversity more apparent than in the recent RISC implementations 
from Digital Equipment Corporation, the Alpha 21064, and from IBM/Motorola/Ap- 
ple, the PowerPC 601. Both are superscalar implementations; that is, they can sustain 
execution of two or more instructions per clock cycle. Otherwise, these two imple- 
mentations present vastly different philosophies for achieving high performance. The 
PowerPC 6012-5 focuses on powerful instructions and great flexibility in processing or- 
der, while the Alpha 21064h-y depends on a very fast clock, with simpler instructions 
and a more streamlined implementation structure. These two RISC microprocessors 
exemplify contrasting, but equally valid. implementation philosophies. 

The next section, an overview of the instruction sets, emphasizes the differences in 
design: PowerPC uses powerful instructions so that fewer are needed to get the job 
done; Alpha uses simple instructions so that the hardware can be kept simpler and 
faster. The remainder of the article discusses the pipelined implementations of the two 
architectures: again, the contrast is between powerful and simple. 

Architecture overview 
Two PowerPC features - floating-point multiply-add instructions and update 

load/stores - illustrate the powerful-versus-simple approach of the two architectures, 
as do the differences in the way their instruction sets handle unaligned data, byte string 
operations. and branch instructions. There are other interesting differences, for exam- 
ple. the memory addressing architectures, but we focus only on those central to the 
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“powerful” and “simple“ philosophies. 
Both the PowerPC and the Alpha are 

loadlstore architectures. That is, all in- 
structions that access memory are either 
loads or stores, and all operate instruc- 
tions are from register to register. They 
both have 32-bit fixed-length instructions 
and 32 integer and 32 floating-point reg- 
isters. But they have little in common be- 
yond these basic properties (see Table l). 

To describe the two architectures, we 
use notation and naming conventions 
that are mostly consistent with the Pow- 
erPC 601. For uniformity, we label bits 
beginning with 0 at the most significant 
bit in the left-to-right direction as defined 
in the PowerPC (and unlike the usual Al- 
pha notation.) Doubleword. word, and 
halfword are also as defined in the Pow- 
erPC, that is. eight. four, and two bytes, 

I 

Table 1. Summary of architectural characteristics. 

PowerPC 601 Alpha 21064 

Basic architecture Loadistore Loadlstore 
Instruction length 32 bit 32 bit 
Byte/halfword load and store Yes No 
Condition codes Yes No 
Conditional moves No Yes 
Integer registers 32 32 
Integer register size 32/64 bit 64 bit 
Floating point registers 32 32 
Floating register size 64 bit 64 bit 
Floating point format 
Virtual address 52-80 bit 43-64 bit 
32/64 mode bit Yes No 
Segmentation Yes No 
Page size 4 Kbytes Implementation specific 

IEEE 32bit, 64bit IEEE, VAX 32bit, 64bit 

The “classic” five-stage RISC pipeline 

- IF - ID - EX - ME p WB - 
instruction instruction memory write 

fetch decode execute access back 
L A L L - - - * 

- 6 - i - 

ClockCycle: 0 1 2 3 4 5 6 7 

Instruction 1 IF ID EX ME WB 
Instruction 2 IF ID EX ME WB 
Instruction 3 IF ID EX ME WB 
Instruction 4 IF ID EX MEWB 



respectively. For examples, we use an as- 
sembly language very similar to that 
which the IBM RS/6000 C compiler pro- 
duces when a flag is set to generate as- 
sembly output. This specific language was 
chosen for its readability. 

Alpha 

Instruction sets. Figures 1 and 2 show 
the major PowerPC and Alpha instruc- 
tion formats. (For additional PowerPC 
instruction formats, see Reference 3.)  As 
you’d expect, since the two architectures 
have the same RISC underpinnings, the 
instruction formats are quite similar. The 
instructions themselves are also similar, 
but as we are about to see, they differ in 
“power.” 

opcode I dest I srcA I displacement 

Loadstore instructions. The PowerPC 
architecture has two primary addressing 
modes: register plus displacement and 
register plus register. Furthermore, the 
load and store instructions may auto- 
matically update the index register as a 
byproduct of their execution. That is, the 
instruction not only performs a simple 
load or store, as in most RISCs, but also 
modifies the index register by placing the 
just-computed effective address in it. 

The Alpha architecture has only one 
primary addressing mode, register plus 
displacement. As we’ll see in the imple- 
mentation section, this simplifies the reg- 
ister file design. In Alpha, loads and 
stores do not update the index register. 

Floating-point multiply-add instruc- 
tions. The PowerPC includes multiply- 
add instructions that take three input 
operands, A, B, and C, and form the re- 
sult, A x C + B or A x C -  B. With these 
powerful instructions, one instruction 
passing through the pipeline can do the 
work of two, and instruction pipeline re- 
sources are used more efficiently. Merg- 
ing the operations also reduces the la- 
tency, that is, the total time taken by a 
dependent multiply and add. And float- 
ing point accuracy can be increased by 
eliminating the rounding step between 
the multiply and the add. 

Example. Figure 2 illustrates the two 
instruction sets in general and the value of 
the update loadktore and multiply-add 
instructions in particular. By design, this 
example plays into a strength of the Pow- 
erPC architecture, so it’s not intended to 
indicate performance. The figure shows 
a simple C loop that operates on arrays 
of data and its compilation into PowerPC 
and Alpha instructions. Because the 601 

0 6 11 16 31 
PowerPC opcode I dst I srcA I immed 

27 31 0 6 11 19 20 
Alpha opcode I srcA I immed 111 ext.op. I dst 

(a) Both architectures have instructions that take a source register (src A) and 
an immediate field to produce a result in a destination register (dst). The Al- 
pha’s immediate field is a little shorter because it has an extended opcode field 
(ext. op.). The immediate operand is a signed integer in PowerPC and a posi- 
tive integer in Alpha. 

0 6 11 16 21 31 
PowerPC I opcode I dst I srcA I src B I ext. OD. lRci 

0 6 11 16 19 20 27 31 
Alpha opcode I srcA I src B lunusedOI ext. op. I dst 

(b) Except for the locations of the fields, the instructions with two source regis- 
ters (src A and src B) are similar. The PowerPC has a longer extended opcode 
field. The record bit (Rc) in the PowerPC instructions is to enable explicit 
updating of condition code flags. 

0 6 11 16 21 26 31 
PowerPC opcode I dst I s r c ~  I src B I src c lext. o p . 1 ~ ~  

0 6 11 16 27 31 
Alpha I opcode I srcA I src B I ext. op. I dst 

(c) The floating point versions of register-register operate instructions are also 
similar to the integer version except the PowerPC has three source registers to 
support a combined floating point multiply-add instruction. 

0 6 11 16 31 
PowerPC opcode I dest I srcA I displacement 

(d) The memory instructions for register + displacement addressing are virtu- 
ally identical. 

0 6 11 16 21 31 
PowerPC opcode I dest I srcA I src B I extop. [ R C  

(e) Only the PowerPC has a register + register addressing format for loads and 
stores. 

Figure 1. Operate and Memory instruction formats. 

floating-point pipeline is essentially a sin- 
gle-precision pipeline, which requires an 
extra pass for double precision computa- 
tions, the PowerPC code in Figure 2b uses 
single-precision data. The PowerPC 620, 
currently under development, will be the 
first 64-bit PowerPC implementation. 

In the PowerPC code in Figure 2b, the 
load with update at the top of the loop 

and the store with update near the end 
of the loop maintain the y and x array 
pointers, respectively. The PowerPC ver- 
sion needs only two floating point in- 
structions: a multiply and a multiply-add. 

The Alpha code in Figure 2c uses dou- 
ble precision. Because the Alpha does 
not have a register-plus-register address- 
ing mode, pointers to the arrays are indi- 
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for (k = 0; k < 512; k++) 
x[k] = r * x[k] + t * y[k]; 

(a) C code. 

# r3 + 4 points to x. 
# r4 + 4 points to y. 
# fpl contains t, 
# fp3 contains r, and 
# CTR contains the loop count (512). 

PO = y(r4 = r4 + 4) # load floating single with update. LOOP lfsu 
fmuls fp0 = fp0,fpl #floating multiply. 
Ifs fp2 = x(r3,4) # load floating single. 
fmadds fp0 = fpO,fp2,fp3 
stfsu x(r3 = r3 + 4) = fp0 # store floating single with update. 
bc LOOP,CTR # 0 

# floating multiply-add single. 

# decrement CTR, then branch if CTR f 0. 

(b) PowerPC code. 

LOOP: ldt 
ldt 
mult 
addq 
mult 
subq 
addt 
stt 
addq 
bne 

fp3 = y(r2,O) 
fpl = x(r1,O) 
fp3 = fp3,fp2 
r2 = r2,8 
fpl = fpl,fp4 
r4 = r 2 ~ 6  

x(r1,O) = fpl 
r l  = r1,8 
r4,LOOP 

fpl = fp3,fpl 

# r l  points to x. 
# r2 points to y. 
# r6 points to the end y. 
# fp2 contains t. 
# fp4 contains r. 
# r5 contains the constant 1. 
# load floating double. 
# load floating double. 
# floating multiply double t * y. 
#bumpy pointer. 
# floating multiply double, r * x. 
# subtract y end from current pointer. 
# floating add double, r * x + t * z. 
# store floating double to x[k]. 
#bump x pointer. 
# branch on r4 # 0. 

(c) Alpha code (using the PowerPC syntax). 

Figure 2. Example of PowerPC and Alpha instructions. 

vidually incremented each time through 
the loop. The pointer to array y also 
tracks the loop count; subtracting the 
pointer from the address of the end of ar- 
ray y generates the value tested by the 
loop-closing branch. The Alpha version 
of the loop uses 10 instructions, four 
more than the PowerPC. 

Data alignment. Many RISC imple- 
mentations simplify their memory load 
path by optimizing data alignment on 
natural boundaries. That is, doubleword 
8-byte data must align on an address that 
is a multiple of 8; word data must be on an 
address that is a multiple of 4, and so on. 
If a load or store uses an address with an 
improper multiple, some RISC imple- 
mentations trap to a trap handler that 
uses multiple instructions to implement 

the required memory operation. Not so 
in the PowerPC 601, which handles un- 
aligned data entirely in hardware. It oc- 
casionally requires a second cache access 
when data crosses a four-word boundary, 
but this is a property of the cache imple- 
mentation. 

The Alpha architecture handles un- 
aligned data in one of two ways, depend- 
ing on how often it is actually unaligned. 
If the data is usually aligned, the compiler 
can use aligned versions of loads and 
stores. These will trap if an address 
should happen to be unaligned, and the 
trap handler takes care of the unaligned 
access. If the data is likely to be un- 
aligned, then multiple instruction se- 
quences of unaligned loads and stores can 
be combined with insert, mask, and ex- 
tract instructions to get the job done. 

Byte-string operations. The two ar- 
chitectures’ handling of byte operations 
is strikingly different. The PowerPC has 
byte load-and-store instructions. An Al- 
pha characteristic is that load and store 
instructions transfer only 32- or 64-bit 
data between a register and memory; 
there are no instructions that load or 
store 8-bit or 16-bit quantities. The Al- 
pha architecture does include a set of in- 
structions to extract and manipulate 
bytes from registers. (The significance 
of not having to do select and alignment 
operations in the memory load path will 
be made apparent in the data cache im- 
plementation section.) 

Branch instructions. There are signif- 
icant differences in the way the two ar- 
chitectures handle branches. Figure 3 
compares the format of conditional and 
unconditional branches. In both archi- 
tectures, branch target addresses are 
usually determined by adding a dis- 
placement to the program counter (PC 
relative). 

PowerPC includes a special set of reg- 
isters architected for holding, operating 
on, and testing conditions. Conditional 
branches may test fields in the condition 
code register and the contents of a spe- 
cial register, the count register (CTR). 
Again using the theme of more powerful 
instructions, a single branch instruction 
can implement a loop-closing branch by 
decrementing the CTR, testing its value. 
and branching if it is nonzero. The code 
example in Figure 2b does this. Com- 

parison instructions set fields of the con- 
dition code register explicitly, and most 
arithmetic and logical instructions may 
optionally set a condition field by using 
the record (Rc) bit. 

In the Alpha architecture, conditional 
branches test a general-purpose register 
relative to zero or by oddleven register 
contents. (The oddleven tests allow for 
compilers that use the low-order bit to 
denote true or false logical values.) Thus, 
results of most instructions can be used 
directly by conditional branch instruc- 
tions, as long as they are tested against 
zero (or oddleven). When needed, com- 
parison instructions leave their result in a 
general-purpose register. 

Certain control transfer instructions 
save the updated program counter to be 
used as a subroutine return address. In 
Alpha, these are special jump instruc- 
tions that save the return address in a 
general-purpose register. The PowerPC 
does this in any branch by setting the link 
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0 6 11 16 30 31 
Powerpcl omode I option I bit I displacement I AA/ LKI 

0 6 11 31 
AlDha I oDcode I srcA I displacement 

(a) Conditional branches. Word addresses are concatenated with 00 to form 
byte addresses. In PowerPC, the option and bit 6eMs indicate the test and 
condition code flag to be tested. AA indicates absolnte addressing and LK 
specifies if the link register is to receive a return address. In Alpha, src A 
designates the register tested to determine the branch ontcome. 

0 6 30 31 
PowerPC opcode I displacement I AAI LK 

0 6 11 31 
Alpha opcode I srcA I displacement 

(b) Unconditional branches. Word addresses are concatenated with 00 to 
form byte addresses. In Alpha, the updated program counter is written into 
register src A to be esed as the return address if this is a subrout& call. 

Tigure 3. Branch instructions. 

(LK) bit to one. The return address is 
saved in the link register. 

Implementations 
To compare the PowerPC 601 and Al- 

pha 21064 implementations, we focus first 
on the overall pipelined implementations. 
Next, we describe critical areas: instruc- 
tion fetching, branch processing, instruc- 
tion dispatching, register files, and data 
caches. We illustrate important features 
with pipeline flow diagrams and conclude 
with a discussion of imprecise interrupts. 

Table 2 compares the initial imple- 
mentations of the PowerPC 601 and Al- 
pha 21064 chips (faster versions using im- 
proved process technologies are on the 
way). Performance comparisons using 
the SPEC benchmarks (see sidebar) are 

included for completeness, but our pri- 
mary interest is the contrasting styles in 
instruction sets and implementations. 

Both the PowerPC 601 and Alpha 
21064 use sophisticated pipelined imple- 
mentations. The PowerPC 601 pipelines 
are relatively short with more buffering; 
the Alpha 21064 has deeper pipelines 
with less internal buffering and a much 
faster clock (by a factor of about three). 
The two implementations also use con- 
trasting cache memory designs. The 601 
has a unified 32-Kbyte cache; that is, in- 
structions and data reside in the same 
cache. The 21064 has split data and in- 
struction caches of 8 Kbytes each. 

PowerPC 601 pipelines. As Figure 4 
shows, the PowerPC 601 has three units, 
each implemented as a pipeline: the 
branch unit (BU), the fixed-point unit 

Table 2. Summary of implementation characteristics. 

PowerPC 601 

Technology 
Levels of metal 
Die size 
Transistor count 
Total cache (instructions + data) 
Package 
Clock frequency 
Performance: 

SPECint92 
SPECfp92 

0.6-micron CMOS 
4 
1.09 cm square 
2.8 million 
32 Kbyte 
304-pin QFP 
50 and 66 Mhz 

63 @ 66 Mhz 
72 @ 66 Mhz 

Alpha 21064 

0.75-micron CMOS 
3 
2.33 cm square 
1.68 million 
16 Kbyte 
431-pin PGA 
150 to 200 Mhz 

117 @ 200 MHz 
194 @ 200 Mhz 
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(FXU), and the floating-point unit (FPU). 
The BU fetches instructions, executes 
branches, and dispatches other instruc- 
tions to the FXU and FPU. The FXU and 
FPU handle fixed-point and floating- 
point instructions, respectively, except 
that the FXU also decodes and executes 
floating memory instructions. Therefore, 
in addition to processing fixed-point in- 
structions as its name implies, the FXU 
functions as a loadlstore unit. 

Here are the pipeline stages. 

F, instruction fetch: The unified 
cache is accessed, and up to eight in- 
structions are fetched into the in- 
struction buffer. 
S, dispatch: Instructions are dis- 
patched to the FXU and FPU. 
D, decode: Instructions are decoded. 
Source registers are read in this stage. 
Note that instructions going to the 
FXU may be dispatched and decoded 
in the same pipeline stage (labeled D). 
E, execute: Two different stages have 
this label. Branches execute in the 
one in the BU. The other E stage, in 
the FXU, is where fixed-point in- 
structions execute and load/store in- 
structions do their address process- 
ing and cache lookup. 

*C,  cache access: The cache is ac- 
cessed, and fixed-point operands are 
sent directly to the FXU, floating- 
point operands to the FPU. 
W, write: Results are written to the 
register file. 
M, multiply: floating-point multiply. 
A, add: floating-point add. 

The PowerPC 601 contains several 
buffers at strategic points in the pipelines: 
after fetching instructions and after dis- 
patching. Instructions may be dispatched 
to the BU and FPU out of order relative 
to the program sequence. By getting in- 
structions out of the instruction buffers 
even when a pipeline is blocked, instruc- 
tion dispatching can continue to non- 
blocked units. 

Alpha 21064 pipelines. Figure 5 illus- 
trates the 21064 structure of three paral- 
lel pipelines: a fixed-point pipe, a float- 
ing-point pipe, and a loadlstore pipe. 
These relatively deep pipelines have 10 
stages for floating point instructions and 
seven stages for integer and loadlstore in- 
structions. 

We describe the integer and loadlstore 
pipelines together. 
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F, instruction fetch: The instruction 
cache is accessed, and two instruc- 
tions are fetched. 

* S ,  swap: Two instructions are in- 
spected to see if they require the in- 
teger or floating-point pipelines. The 
instructions are directed to the cor- 
rect pipeline; this might involve 
swapping their positions. Branch in- 
structions are predicted in this stage. 
D, decode: Instructions are decoded 
in preparation for instruction issue; 
the opcode is inspected to determine 
the instruction’s register and resource 
requirements. Unlike the 601, regis- 
ters are not read during the decode 
stage. 
I, issue: Instructions are issued, and 
operands are read from the registers. 
Issue consists of checking register and 
resource dependencies to determine 
if the instruction should begin execu- 
tion or be held back. Once they have 
passed the issue stage, instructions are 
no longer blocked in the pipelines; 
they flow through to completion. 

write 
f dispatch decode mult. add back 

........................................... . 
instnrction i BU A - - * - - - 
F -  

buffers j f 
(8) i i i i  - 

f FPU decode 
buffers 

I 
f 

b i  

C w 
cache write 

address acdess back . .  condition I . .  : w * - - . .  . .  
updates register . .  . .  . . eiecute 

........................................... 
. .  . .  . .  

; : : - 
U 

ALU result 
i ................................................................................... .. 

- i  
i 
f 

* i  

- -  

Figure 4. PowerPC 601 pipeline structure. 

To provide an overall picture of the Pow- 
erPC and Alpha product lines, the table 
contains SPEC benchmark performance 
for the 21 064, the 21 064A, a follow-on in a 

* A ,  ALU stage 1: Integer adds, logi- ately bypassed back, so they appear 
cals, and short-length shifts are exe- to be single-cycle instructions. 
cuted. Their results can be immedi- Longer length shifts are initiated in 

PowerPC 601 66 MHz 2Q93 63 72 
PowerPC 601 + 100 MHz 4Q94 105 (est.) 125 (est.) 

4Q94 160 (est.) 165 (est.) PowerPC ‘04 O0 MHz 

The tale of the tape: SPEC benchmarks 

SPEC (Standard Performance Evaluation Corporation) 
was founded in 1988 by a number of computer companies 
with the goal of providing a representative set of benchmarks 
by which their products could be measured. Currently, there 
are two sets of benchmarks: one consisting of six integer 
programs and the other consisting of fourteen floating point 
benchmarks. These benchmarks are often distilled to two 
performance numbers SPECint92 and SPECfp92,1992 
being the year the benchmarks were introduced. The perfor- 
mance of each benchmark is given as the speedup versus a 
VAX 1 lU80 (primarily for historical reasons). SPECfp92 and 
SPECint92 are the geometric mean of these speedups 
(found by multiplying speedups on n benchmarks and taking 
the nth root of the product). 

We give these numbers with a note of cau- 
tion. Our article discusses processors and 
the design philosophies that went into them. 
The specific processor implementations 
discussed -the PowerPC 601 and the 
Alpha 21064 -are directed at systems 
covering different price ranges; there also 
may be differences in low-level implementa- 
tion techniques and circuit design, compiler 
quality, and the system environment (for 
example, external cache characteristics) in 
which benchmarks are run. 

new process technology, and the 21066, a version with an 
integrated PCI bus interface. For PowerPC, we include 
performance for the 66-MHz 601, estimated performance for 
a 1 00-MHz 601 +, using a new process technology, and the 
PowerPC 604, a recently announced processor that uses a 
more aggressive implementation intended for higher perfor- 
mance products. 

The table shows that the 21 064 appears to be ahead in the 
performance race, as measured by the SPEC benchmarks. It 
also shows that while the PowerPC has a slower clock pe- 
riod, the performance results are closer than the clock period 
alone would suggest. This is consistent with the “more work 
per clock period philosophy used in the PowerPC designs. 

SPEC performance for a sample of PowerPC and Alpha processors. 
(Source: MiCrOtJrOCeSSOr RetJorf) 

Clock 
Processor frequency Availability SPECint92 SPECfp92 

Alpha 21066 166 MHz 4Q93 70 105 
Alpha 21064 150 MHz 2Q92 84 128 
Alpha 21064 200 MHz 2Q93 117 194 
Alpha 21064A 275 MHz 3Q94 170 (est.) 290 (est.) 
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Figure 5. The 21064 pipeline complex. Only a small subset of the bypasses are shown. 

Out-of-order 
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Instruction buffers 
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~ 

Figure 6. PowerPC 601 instruction dispatching. 

this stage. Loads and stores do their 
effective address add in this stage. 
B, ALU stage 2: Longer length shifts 
complete in this stage; their results 
are bypassed back to ALU 1, so these 
are two-cycle instructions. For loads 
and stores, the data cache tags are 
read. Loads also read cache data. 
W, write: Results are written into the 
register file. Cache hit/miss is deter- 
mined. Store instructions that hit 
have their data stored in a buffer. The 
buffer contents will be written into 
the cache during a following cycle 
when there is no load. 
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The 21064 integer pipeline relies on 
many bypasses for high performance. 
These are important in a deep pipeline 
to reduce apparent latencies. Figure 5 
shows a few of the bypasses; there are a 
total of 38 separate bypass paths. 

Referring again to Figure 5, floating- 
point instructions pass through F, S, D, 
and I stages just like the integer instruc- 
tions. There are then five stages (F  
through K) where floating-point multi- 
ply and add instructions are performed. 
(Note that there are two pipeline stages 
labeled F instruction fetch, and the first 
floating-point stage. We do this because in 

both cases, F provides the easiest way to 
remember the pipeline stage. Because the 
stages are so far apart, this shouldn’t lead 
to any confusion in our diagrams.) The 
floating-point divide takes 31 or 61 cycles, 
depending on single or double precision. 

The following subsections focus on dif- 
ferent stages of instruction processing, 
proceeding in roughly the same order as 
instructions are processed. 

Instruction fetching. Instruction fetch- 
ing in the Alpha is very straightforward. 
Instructions are read from the instruction 
cache at the rate of two per cycle and are 
placed in the dual decode registers. In the 
PowerPC 601, however, the story is much 
longer. Instructions are fetched from the 
cache at a rate of up to eight instructions 
per clock cycle and held in an eight-slot 
instruction buffer (see Figure 6). 

Unlike many RISC implementations, 
the PowerPC 601 uses a single, unified 
cache for both instructions and data. In- 
struction fetching and data accesses must 
contend for the cache resource. The uni- 
fied cache has its lines divided into two 
32-byte sectors. The sectors share the 
same address tag, but only one sector at 
a time is brought into the cache on a miss. 
This means that occasionally a line will 
have an invalid sector that holds no use- 
ful instructions or data. 

Because the PowerPC cache is unified, 
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there is cache contention and arbitration 
between instruction and data accesses. 
Contention for the cache, with instruc- 
tions having a lower priority than data, 
provides the reason for fetching up to 
eight instructions at a time, even though 
the absolute maximum processing rate is 
three per clock cycle. When the instruc- 
tion fetch unit has a chance to fetch, i t  
ferches! ( I t  might not have another 
chance for a while.) 

Branch prediction. Both processors 
predict branches in an effort to reduce 
pipeline bubbles. The PowerPC 601 uses 
a static branch prediction made by the 
compiler. The prediction is conveyed to 
the hardware by a bit in the branch in- 
struction, which indicates whether the 
branch is expected to be taken or not. 
Also, as a hedge against a wrong predic- 
tion, the 601 saves (for a while) the con- 
tents of the instruction buffer following a 
branch-taken prediction; these instruc- 
tions on the not-taken path are available 
immediately if a miss prediction is de- 
tected. The instruction buffer contents 
are kept until instructions from the taken 
path are delivered from memory. 

The Alpha 21064 implements dynamic 
branch prediction with a 2048 entry table; 
one entry is associated with each instruc- 
tion in the instruction cache. The predic- 
tion table is updated as a program runs. 
This table contains the outcome of the 
most recent execution of each branch. 
This predictor is based on the observation 
that most branches are decided the same 
way as on their previous execution. This is 
especially true for loop-closing branches. 

This type of prediction does not always 
work well for subroutine returns, how- 
ever, because a subroutine may be called 
from a number of places, and the return 
jump is not necessarily to the same ad- 
dress on two consecutive executions. Al- 
pha takes this into account by having spe- 
cial hardware for predicting the target 
address for return-from-subroutine 
jumps. When the jump-to-subroutine in- 
struction is executed, the return address 
is pushed on a four-entry prediction 
stack, so return addresses can be held for 
subroutines nested four deep. The stack 
is popped prior to returning from the sub- 
routine, and the return address is used to 
prefetch instructions from the cache. 

Branch processing. We are now ready 
to step through the pipeline flow for con- 
ditional branches; refer to Figure 7 for a 
PowerPC 601 example. Figure 7a as- 
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Clock period 
0 1 2  3 4 5  

Compare F D E  W 
Branch F E  
Instruction B F .  D E W  
Instruction C F .  D E W  

(a) Instruction flow for correct branch prediction. 

Clock period 
0 1 2  3 4 5  

F 

F .  
F .  x x x  

Compare 
Branch 
Instruction B 
Instruction C 

6 7  

6 7  

Instruction T 
Instruction U 

redirect i-fetch 

F D E  
F .  D 

(b) Instruction flow for incorrect branch prediction. 

W 
E W  

Figure 7. Timing for conditional branches in the PowerPC 601. X means instruc- 
tion is flushed as a result of branch misprediction. 

sumes the branch was predicted not 
taken and the prediction was correct. In- 
structions are dispatched conditionally. 
The branch is resolved at time 2 after the 
compare executes, and the conditional 
instructions (B and C) are allowed to 
complete. The zero-cycle branch does not 
disrupt the instruction flow. The timing is 
similar for a correctly predicted taken 
branch, provided instructions are fetched 
immediately from the cache. 

In Figure 7b the branch was predicted 
not taken, and the prediction was incor- 
rect. Instructions B and C must be 
flushed. and instructions T and U are 
fetched from the branch target at time 3. 
There is a two-cycle bubble that some- 
times can be reduced or entirely elimi- 
nated by moving the compare instruction 
earlier in the code sequence. 

Regarding Alpha, Figure 8a is one (of 
several) cases where the branch predic- 
tion is correct: Figure 8b is a case where 
the prediction is wrong. The swap stage 
of the pipeline examines instructions in 
pairs. After the branch instruction is de- 
tected and predicted, it takes one clock 
cycle to compute the target address and 
begin fetching. This may lead to a one- 
cycle bubble in the pipeline. The 
pipeline is designed to allow “squash- 

ing” of this bubble. That is, if the in- 
struction ahead of the bubble blocks and 
the instruction behind proceeds, the 
bubble is squashed between the two and 
eliminated. In some cases, when there is 
a simultaneous dispatch conflict, as in 
Figure 8a, the instruction preceding the 
branch must be split from it anyway. In 
this case, the branch instruction waits a 
cycle and naturally fills in the bubble (in 
effect, the branch fills its own bubble!). 
In other cases, if the pipeline stalls ahead 
of the branch, the bubble can be 
squashed by having an instruction be- 
hind the branch move up in the pipe 
(this happens later in Figure 11). If the 
bubble is squashed and the prediction is 
correct, the branch effectively becomes 
a zero-cycle branch. 

Figure 8b shows the incorrect predic- 
tion case. The branch instruction has its 
registers read during issue stage. During 
the A stage, the register can be tested, 
and the correctness of the prediction can 
be determined. This is done quickly 
enough that if there is a misprediction, 
the instruction fetch stage can be noti- 
fied while the branch is still in the A 
stage. Then, fetching the correct path can 
begin the next cycle. As a result, four 
stages of the pipeline must be flushed 
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Clock period 
0 1 2 3  4 5 6 7 8 9 1 0 1 1 1 2 1 3  

Compare F S D I  A B W  
Branch F . S D I A  
Instruction B F S  D I  A B W  
Instruction C F .  S D I  A B W  

(a) Instruction flow for correct branch prediction. 

Clock period 

0 1 2 3  4 5 6 7 8 9 1 0 1 1 1 2 1 3  

Compare F S D I  A B W  
Branch F .  S D I 
Instruction B 
Instruction C 

flush 

redirect i-fetch 

Instruction T F S D I  A B  W 
Instruction U F .  S D I  A B W  

@) Instruction flow for incorrect branch prediction. 

I I 

Figure 8. Timing for conditional branches in the Alpha 21064. X means instruction 
is flushed as a result of branch misprediction. 

Table 3. Branch penalties. In the Alpha 21064, the penalty is generally indepen- 
dent of the distance between the compare and the branch. In the PowerPC 601, 
the penalty may be one cycle shorter (1 instead of 2, for example) when instruc- 
tions are still in the buffer and the fetch cycle is saved. 

Distance from Alpha 21064 PowerPC 601 
Compare to Branch Correct Incorrect Correct Incorrect 

O t o l  4 0 2 or 1 
O t o l  4 0 l o r 0  
O t o l  4 0 0 

when the prediction is found to be in- 
correct. For the jump-to-subroutine in- 
struction, the penalty for a misprediction 
is five cycles. 

For branches, the biggest architectural 
difference between the Alpha and 
PowerPC is that the Alpha uses general- 
purpose registers for testing and subrou- 
tine linkage. The PowerPC uses special- 
purpose registers held in the branch unit. 
This means the PowerPC can execute 
branch instructions in the branch unit, im- 
mediately after instructions are fetched. 
In fact, it looks back in the instruction 
buffer so that it can essentially execute, 
or at least predict, branches prior to dis- 
patch. The Alpha 21064 implementation, 
on the other hand, must treat branch in- 
structions like the other instructions. They 
decode in the D pipeline stage, read reg- 
isters in I, and execute in A. 

Table 3 compares the approximate 
branch penalties for integer conditional 
branches (far more common than float- 
ing-point branches). The penalties are ex- 
pressed as a function of (1) the number of 
instructions separating the condition- 
determining instruction (for example, a 
compare) and the branch and (2) the cor- 
rectness of the prediction. Instruction 
cache hits are assumed. 

In summary, both the PowerPC 601 
and Alpha 21064 dedicate special hard- 
ware to minimize the branch penalty. In 
the 601, the extra hardware is in the form 
of the PowerPC’s special-purpose branch 
registers. These registers reduce the num- 
ber of branches that must be predicted in 
the first place (see Table 4). In the 601, 
loop-closing branches that use the CTR 
register do not have to be predicted; in 
the Alpha, these are ordinary conditional 
branches, although loop-closing branches 
are easily predictable. In the PowerPC, 
return jumps can be executed immedi- 
ately in the branch unit; there is no need 
for prediction. In Alpha, a subroutine re- 
turn jump must read a general-purpose 
integer register, so these branches are I Table 4. Predic- 

Alpha 21064 PowerPC 601 

Conditional Dynamic Static 
branches prediction prediction 

Loop-closing Dynamic Always 
branches prediction zero-cycle 

Subroutine Stack Always 
returns prediction zero-cycle 

tion method ver- 
sus branch type. 

predicted via the return stack. 
In the 21064, the hardware resources 

are directed at improving branch pre- 
diction accuracy - history bits and the 
subroutine return stack. Not only does 
the 21064 have to predict more of the 
branches, the penalties (as measured in 
clock periods, not in absolute time) tend 
to be higher when it is wrong. As we have 
pointed out before, however, making 
performance comparisons based solely 
on clock periods does not give the 21064 
proper credit. Its simple philosophy and 
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deeper pipelining leads to a clock that is 
about three times faster than the 601’s. 

Table 5. PowerPC 601 instruction dispatch rules. Three mutually compatible 
instructions (marked with x) may issue simultaneously. 

Dispatch rules. Simultaneous dispatch 
rules are an important defining feature of 
superscalar architecture implementation. 

The dispatch rules in the 601 are quite 
simple. The architecture has three units, 
integer (or fixed point), floating, and 
branch, and three instructions may issue 
simultaneously as long as all three go to 
different units. Integer operate instructions 
and all loads and stores go to the same 
pipeline (FXU), and only one instruction 
of this category may issue per clock cycle. 

In the 21064, dispatch (in the 601 
sense) occurs in the swap pipeline stage. 
Instructions issue two stages later. In the 
21064, issue significantly affects dispatch 
because instructions must issue in their 
original program order, and dispatch 
(that is, the swap stage) helps enforce this 
order. A pair of instructions belonging to 
the same aligned doubleword (quadword 
in DEC parlance) can simultaneously is- 
sue. Consecutive instructions in different 
doublewords may not dual issue, and if 
two instructions in the same doubleword 
cannot simultaneously issue, the first in 
program sequence must issue first. 

The 21064 implements separate inte- 
ger and loadlstore pipelines, and several 
combinations of these instructions may 
be dual-issued, with the exception of in- 
teger operatelfloating store and floating 
operatelinteger store. These exceptions 
are due to a conflict in instruction paths, 
not shown in Figure 5. The loadlstore 
ports are shared with the branch unit. As 
a consequence, branches may not be si- 
multaneously issued with any load or 
store instruction. 

Tables 5 and 6 summarize the dispatch 
rules for both processors. In the PowerPC 
601 table, two instructions can simulta- 
neously issue if there is an X in the table’s 
corresponding rowlcolumn. For three in- 
structions, all three pairs must have X’s. 
In the 21064 table, two instructions can si- 
multaneously issue if there is an X in the 
table entry. 

The ability of the 21064 to dual issue a 
load and an integer operate instruction 
is a definite strength with respect to the 
601. Many applications (not to mention 
the operating system) use very little float- 
ing-point arithmetic, and the 21064 can 
execute these codes with high efficiency. 
For non-floating-point applications, the 
601’s floating-point unit sits idle while in- 
teger instructions dispatch at the rate of 
only one per clock cycle. 
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Integer: Floating: Branch 
Load Store Operate Load Store Operate 

Integer load 
Integer store 
Integer operate 

X X 

X X 

X X 

Floating load X X 

Floating store X X 

Floating operate x X X x x  X 

Branch X X X x x  X 

Table 6. Alpha 21064 instruction dispatch rules. Two compatible instructions 
(marked with x) may issue simultaneously. Integer branches depend on an 
integer register; floating branches depend on a floating register. 

Integer: Floating: Branch: 
Load Store Operate Load Store Operate Integer Floating 

Integer load 
Integer store 
Integer operate 

Floating load 
Floating store 
Floating operate 

Integer branch 
Floating branch 

X X 

X 

x x  X X X 

X X 

X 

X X x x  

X 

X 

X 

Register fdes. It is interesting that quite 
different considerations in the two im- 
plementations led to register files that 
have almost the same number of ports 
(see Table 7). 

A key aspect of the 21064 register file 
design is that integer register ports are ju- 
diciously allocated so that it can issue two 
integer instructions simultaneously. In the 
21064, one write and two read ports are 
required to pipeline operate instructions, 
and there is a pair of readlwrite ports for 
load/store unit data. Branches share the 
load/store register ports. This brings the 
count up to 3W2W for both integer and 
floating register files. A fourth integer 
read port is needed to get the address 
value for stores, and it is also used for load 
addresses. This fourth read port enables 
doing an integer store in parallel with an 
integer operate instruction. Finally, not 
allowing a register-plus-register address- 
ing mode (see Figure le) eliminates the 

Table 7. Register file ports. 

Alpha PowerPC 
21064 601 

Integer registers: 
Read ports 4 3 
Write ports 2 2 

Floating registers: 
Read ports 3 3 
Write ports 2 2 

need for a fifth integer register read port. 
Looking at the 601, beginning again 

with one write and two read ports for op- 
erate instructions, a third integer read port 
is provided for single-cycle processing of 
the register-plus-register store indexed in- 
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Figure 9. The Alpha 21064 (a) and PowerPC 601 (b) cache access paths. 

lfsu fpO=y(r4=r4+4) F D E C W  
fmuls fp4=fpo,fpl F F . .  D M A W  
Ifs fp2 = x(r3,4) F .  D E C W  
fmaddsfp5=fp4,fp2,fp3 F .  S : .  . . . D M A W  
stfsu x( r3=r3+4)=fp5  F . . . D E .  . . . . . C 
bc LOOP,CTR#O F .  S 
lfsu fp0 = y(r4 = r4 + 4) F D E C W  
fmuls fp4 = fpo, fpl F . .  S .  D M A W  
Ifs fp2 = x(r3,4) F . .  . D E C W  
fmadds fp5 = fp4,fp2,fp3 F .  . . S .  . . . D M A W  
stfsu z(r3 = r3 + 4) = fp5 F . .  . . D E . .  . . , . C 
bc LOOP,CTR#O F . . . S  

Figure 10. PowerPC 601 pipelined processing example (two iterations of the 
loop). The arithmetic instructions are dispatched to the FPU pipeline. The load 
and store instructions are shown to go down the FXU pipe, but the store also 
decodes in the FPU pipe (not shown) right after the multiply-add instruction. 

structions, which read three registers (two 
for the effective address, one for the re- 
sult). The second integer write port allows 
writing the result of an operate instruction 
and data returned from the cache in the 
same clock cycle. The same consideration 
accounts for two write ports in the floating 
register file. The three floating-point read 
ports are needed by the combined floating 
multiply-add instruction. 
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Data caches. Yet another interesting 
contrast is the way the caches are imple- 
mented. Figure 9 shows the flow through 
the two data caches. 

The 21064 uses separate instruction 
and data caches; the data cache is shown 
in Figure 9a. These are small (8 Kbyte), 
direct-mapped data caches designed for 
very fast access times. The address addi- 
tion consumes one clock cycle. During 

the next clock cycle, the cache data and 
tag are read simultaneously. This is eas- 
ily done with a direct-mapped cache 
where only one tag must be read and the 
data, if present, can only be in one place. 
Simultaneously, the translation lookaside 
buffer (TLB) is accessed for address 
translation information. During the next 
clock cycle, the TLB address translation 
completes, and the tag is compared with 
the upper address bits. A cache hit or 
miss is determined about half way 
through this clock cycle. The data is al- 
ways delivered to the registers as an 
aligned 8-byte doubleword. Any align- 
ment, byte selecting, etc. must be done 
with separate instructions. 

This approach simplifies the cache in- 
terface, which does not have to include 
byte-level shift-and-mask logic in the 
cache access path. Clearly, the Alpha ar- 
chitects felt that the performance gained 
from shortening the cache load path was 
more important than the performance 
lost by using multiple instructions for 
byte loads and stores. 

In the PowerPC 601, the unified 
datalinstruction cache is much larger, 32 
Kbytes, and is eight-way set associative, 
so it can be expected to have a higher hit 
rate than the 21064. In Figure 9b we can 
clearly see how much more “work” the 
601 does in a clock cycle compared to the 
21064. It does an address add and the 
cache directory/TLB lookup in the same 
cycle (see Weiss and Smithlo for details). 
Then, during the next cycle, it accesses 
the 32-byte-wide data memory. During 
the same cycle, it selects and aligns the 
data field. 

To summarize, the 601 implements the 
following features to improve perfor- 
mance: (1) a larger cache, (2) a higher as- 
sociativity, and (3) automatic data align- 
ment in hardware. The 21064 improves 
performance by not implementing such 
features, contributing to its very fast 
clock. When measured in nanoseconds, 
the two clock cycles in Figure 9b take 
longer than the three cycles in Figure 9a. 

Example of pipeline flows. Figure 10 
shows the 601 pipeline processing the 
code example given earlier in Figure 2b. 
The example is useful for emphasizing 
the basic differences in the two designs, 
but again, we caution against reaching 
any general conclusions regarding per- 
formance based on this one example. To 
simplify the presentation, we assume in 
all the examples below that instruction 
and data references hit in the cache. 
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Specifically in the 601. we also assume 
that the code is aligned with the cache 
sector, which allows fetching eight in- 
structions. (Six instructions of the loop 
body are shown. the remaining two are 
irrelevant.) 

The 601 predicts branches. However, 
as shown in the example, occasionally in- 
structions cannot be fetched from the 
branch target address right after predict- 
ing the branch taken, because the unified 
cache is being accessed for data. 

Figure 11 is the Alpha pipeline flow for 
the same example (Figure 2c). In-order 
issue and dual issue only for aligned in- 
struction pairs is quite evident. The rela- 
tively long, six clock period, floating- 
point latency is also evident. We also 
observe that after the I stage, instructions 
are never blocked. 

Starting with the first two instructions, 
which cannot dual issue because both are 
loads, we see the role the swap stage plays 
in ordering instructions for issue. The sec- 
ond instruction is held a cycle while the 
first moves ahead. The first dual issue oc- 
curs for the first addq-mult pair. Because 
the mult is the first instruction in the dou- 
bleword, the addq must wait, even 

back. The sequence of dependent float- 
ing-point instructions paces instruction 
issue for most of the loop. Note that the 
floating store issues in anticipation of the 
floating point result. It does not wait six 
clock periods for the result. Rather, it 
waits only four, so it reaches the write 
stage just in time to have the floating 
point result bypassed to it. 

Following the predicted branch at the 
end of the loop there is a bubble. Because 
other instructions in the pipeline are 
blocked, however, the bubble is squashed 
by the time the ldt following the branch is 
ready to issue. 

Overall, the loop takes 16 clock peri- 
ods per iteration in steady state. (The first 
ldt passes through the I stage at time 4, 
and during the second iteration it issues 
at time 20.) On the other hand, the Pow- 
erPC 601 takes six clock periods for sin- 
gle precision data (Figure 10) and eight 
clock periods for the double-precision 
version of the example. (Double preci- 
sion takes longer because multiply and 
multiply-add instructions require two 
passes through the execute stages of the 
pipeline.) But don’t forget, the 21064 is 
running its clock about three times faster. 

The floating-point latencies are exposed 
and lead to delays when the 21064 exe- 
cutes this type of code. This is evident in 

I though it has no dependencies holding it 

the region of the 
timing diagram be- 

ldt 
Idt 
mult 
addq 
mult 
subq 
addt 
stt 
addq 

Time 
___+ 

fp3 = y(r2,O) 
fpl = x(r1,O) 
fp3 = fpe,fp2 
r2 = r2,8 
fpl = fpl,fp4 

fpl = fp3,fpl 
r4 = r 2 ~ 6  

x(r1,O) = fpl 
r l  = f1,8 

bne r4,lOOp 
ldt fp3 = ~(1-2~0)  
ldt fpl  = x(r1,O) 

1 1 1 1 1 1 1 1 1 1  2 2 2  
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9  0 1 2  

F S D I  A B W  
F .  S D I A B W  

F S D .  I F G H J K W  
F S D .  I A B W  

F S .  D I  F G H J  K W  
F S .  D I  A B W  

F .  S D . .  . . . I F G H J K W  
F . S D .  . . . . . . . .  I A B W  

F S .  . . . . . . . . D I  A B  W 
F S . .  . . . . . . . D I A .  . 

F . .  . . . . . . S D I  A B 
F . .  . . . . . . .  S D I  A 

Figure 11. Alpha 21064 pipelined processing example. 

tween clock peri- 
ods 9 and 18. Also, 
because of in-order 
issue, the loops 
don’t “telescope” 
like the 601’s - in 
the 21064 there is 

Iteration 2 

Iteration 3 1 (b) Yl very little overlap 
among consecutive 
loop iterations. Fig- 
ure 12 illustrates the 
telescoping phe- 
nomenon. In the fig- 
ure, each parallelo- 
gram the pipeline flow with a 601-like implementation. 
general shape of the 

Figure 12. Comparison of loop overlap: (a) general pipeline 
flow with a 21064-like implementation; (b) “telescoped” 

pipeline flow for a 
single loop iteration. 
In an in-order issue processor like the 
21064, there is little overlap between loop 
iterations, and branch prediction is a ma- 
jor contributor to the small amount of 
overlap that occurs. 

In an implementation like the Pow- 
erPC 601, however, the out-of-order dis- 
patch along with multiple buffers placed 
at key points allow the loop iterations to 
be compressed, like a folding telescope. 
Furthermore. with a branch processor as 
in the 601, branch prediction is not 
needed to achieve this effect. 

Software techniques such as loop un- 
rolling are likely to provide much better 
performance for a deeply pipelined im- 
plementation like the 21064. A loop is 
unrolled by combining multiple loop it- 

erations into a single, larger loop. This 
not only gets rid of some loop closing 
branches but also provides more oppor- 
tunities for the compiler to rearrange the 
instructions and increase overlap. The 
DEC compilers unroll loops. 

When the example loop from Figure 
2a is unrolled four times, the 21064 iter- 
ation takes 23 clock periods per unrolled 
iteration, or about six clock periods per 
original iteration - nearly a threefold 
improvement. Also, the performance ad- 
vantage of dual issue is much more evi- 
dent than with the rolled version (in our 
example, dual issue occurs in about a 
third of the clock periods). 

Loop unrolling also improves the per- 
formance of the 601, but not nearly as 
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much. The unrolled loop (four iterations) 
takes 19 clock cycles, which corresponds to 
about five clock cycles per loop iteration 
(versus six clock periods in the rolled ver- 
sion). Now, with an unrolled loop where 
the deep pipelines can be used more effi- 
ciently, the 21064’s clock period advan- 
tage translates into about a two-and-one- 
half-times performance advantage. 

Imprecise interrupts. Both architec- 
tures support high-performance imple- 
mentations with multiple pipelines. In 
such an implementation many instruc- 
tions may be in the pipelines at any time, 
and it’s difficult to precisely identify an 
interrupt-causing instruction without 
limiting the machine’s performance.1° 
Instead, an imprecise interrupt is sig- 
naled later, an arbitrary number of in- 
structions after the interrupt-causing in- 
struction. 

A common problem occurs in the 
floating-point pipeline: It is usually 
longer than the integer pipe, so floating- 
point instructions finish late. When a 
floating-point interrupt is discovered, 
fixed-point instructions logically follow- 
ing the floating-point instruction may 
have already completed and modified a 
result register. This results in an impre- 
cise state at the time of the interrupt. Al- 
lowing this to happen, however, leads to 
simpler implementations. Consequently, 
both Alpha and PowerPC allow impre- 
cise floating point interrupts in their nor- 
mal operating mode. 

With imprecise interrupts, user soft- 
ware cannot “patch” an excepting float- 
ing-point result and continue. Imprecise 
interrup.ts can also make program de- 
bugging more difficult. Consequently, 
both architectures have provisions for 
precise operation, but at degraded per- 
formance. PowerPC does this in two 
ways. First, a bit in the machine state reg- 
ister may be set to make the machine en- 
ter a mode in which instructions execute 
serially and interrupts are precise. The 
second solution uses a compiler flag that 
inserts test code after each floating-point 
instruction that may cause an interrupt. 

For implementing precise floating- 
point interrupts, Alpha has a trap barrier 
instruction that stalls instruction issuing 
until all prior instructions are executed 
without any interrupts. This instruction 
may be inserted after floating-point in- 
structions to make floating-point inter- 
rupts precise. Of course, performance is 
degraded because the degree of instruc- 
tion overlap is greatly reduced. 
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he PowerPC 601 and Alpha 
21064 follow two remarkably 
different philosophies for 

achieving high performance implemen- 
tations. The PowerPC architecture de- 
fines powerful instructions, such as float- 
ing-point multiply-add and update 
loadlstores, that get more work done 
with fewer instructions. The Alpha ar- 
chitecture’s simplicity, on the other hand, 
lends itself better to very high clock rate 
implementations. An Alpha processor 
can afford to execute more instructions if 
it can issue them faster. A typical exam- 
ple is load and store instructions that 
transfer only 32- or 64-bit quantities. As 
a result, Alpha implementations have a 
shorter cache load path, and the cache 
can be accessed with a faster clock. 

The 601 uses independent pipelines, 
buffering, out-of-order dispatching, and 
it does a lot of computation in each pipe 
stage. Advanced branch handling and 
out-of-order dispatch lead to more effi- 
cient use of the pipes and more overlap 
among loop iterations. The 21064 has 
tightly coupled pipelines, little buffering, 
in-order issuing, and it does relatively less 
work in each pipe stage. Then again, it has 
a very fast clock. It also has fewer restric- 
tions on multiple instruction dispatches, 
especially when doing integer code. 

The 601 gains performance by design 
cleverness; the 21064 gains performance 
by design simplicity. This trade-off is a 
classic one, and the fact that both philoso- 
phies lead to viable processors is proba- 
bly an indication that either choice is sat- 
isfactory as long as the implementation 
is done well. W 
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