
PowerPC 601 and Alpha
21064: A Tale of Two RISCs
James E. Smith, Cray Research, and Shlomo Weiss, Tel Aviv University

At this point many RISC purists will undoubtedly claim that this is not a RISC design.. . This
second generation RISC design, representing a reasonable melding of RISC and CISC concepts
is likely to be the direction for many futurc RISC designs.

P. Hestcr, RISC System/6000 Hrirtiwczre Buckgroiriid nnrl Philosophies

We reapplied the principles of RISC to processor design to get maximum clock speed.
R. Sites, RISC Ei7ters n New Generation -An li~.sider's Look
at the Developnzent o f 'DEC's AIphri CPU

Both PowerPC and
Alpha are RISC

architectures, but they
have little in common

beyond that. The
design philosophy of

one emphasizes
powerful instructions,
the other simplicity.

V irtually all microprocessor architectures developed in the past 10 years have
followed the RISC (reduced instruction set computer) principles articu-
lated by Patterson in 1985.' And. not surprisingly, the first-generation RISC

implementations developed in the 1980s tended to look alike, with simple, five-stage
instruction pipelines (see sidebar). In recent years, however, with more experience
and more transistors at their disposal. designers have begun exploring a richly diverse
set of architectures and implementations.

Nowhere is this diversity more apparent than in the recent RISC implementations
from Digital Equipment Corporation, the Alpha 21064, and from IBM/Motorola/Ap-
ple, the PowerPC 601. Both are superscalar implementations; that is, they can sustain
execution of two or more instructions per clock cycle. Otherwise, these two imple-
mentations present vastly different philosophies for achieving high performance. The
PowerPC 6012-5 focuses on powerful instructions and great flexibility in processing or-
der, while the Alpha 21064h-y depends on a very fast clock, with simpler instructions
and a more streamlined implementation structure. These two RISC microprocessors
exemplify contrasting, but equally valid. implementation philosophies.

The next section, an overview of the instruction sets, emphasizes the differences in
design: PowerPC uses powerful instructions so that fewer are needed to get the job
done; Alpha uses simple instructions so that the hardware can be kept simpler and
faster. The remainder of the article discusses the pipelined implementations of the two
architectures: again, the contrast is between powerful and simple.

Architecture overview
Two PowerPC features - floating-point multiply-add instructions and update

load/stores - illustrate the powerful-versus-simple approach of the two architectures,
as do the differences in the way their instruction sets handle unaligned data, byte string
operations. and branch instructions. There are other interesting differences, for exam-
ple. the memory addressing architectures, but we focus only on those central to the

COMPUTER O O I X YIhZ/Y4/$400O 1 Y Y 1 IEEE

“powerful” and “simple“ philosophies.
Both the PowerPC and the Alpha are

loadlstore architectures. That is, all in-
structions that access memory are either
loads or stores, and all operate instruc-
tions are from register to register. They
both have 32-bit fixed-length instructions
and 32 integer and 32 floating-point reg-
isters. But they have little in common be-
yond these basic properties (see Table l).

To describe the two architectures, we
use notation and naming conventions
that are mostly consistent with the Pow-
erPC 601. For uniformity, we label bits
beginning with 0 at the most significant
bit in the left-to-right direction as defined
in the PowerPC (and unlike the usual Al-
pha notation.) Doubleword. word, and
halfword are also as defined in the Pow-
erPC, that is. eight. four, and two bytes,

I

Table 1. Summary of architectural characteristics.

PowerPC 601 Alpha 21064

Basic architecture Loadistore Loadlstore
Instruction length 32 bit 32 bit
Byte/halfword load and store Yes No
Condition codes Yes No
Conditional moves No Yes
Integer registers 32 32
Integer register size 32/64 bit 64 bit
Floating point registers 32 32
Floating register size 64 bit 64 bit
Floating point format
Virtual address 52-80 bit 43-64 bit
32/64 mode bit Yes No
Segmentation Yes No
Page size 4 Kbytes Implementation specific

IEEE 32bit, 64bit IEEE, VAX 32bit, 64bit

The “classic” five-stage RISC pipeline

- IF - ID - EX - ME p WB -
instruction instruction memory write

fetch decode execute access back
L A L L - - - *

- 6 - i -

ClockCycle: 0 1 2 3 4 5 6 7

Instruction 1 IF ID EX ME WB
Instruction 2 IF ID EX ME WB
Instruction 3 IF ID EX ME WB
Instruction 4 IF ID EX MEWB

respectively. For examples, we use an as-
sembly language very similar to that
which the IBM RS/6000 C compiler pro-
duces when a flag is set to generate as-
sembly output. This specific language was
chosen for its readability.

Alpha

Instruction sets. Figures 1 and 2 show
the major PowerPC and Alpha instruc-
tion formats. (For additional PowerPC
instruction formats, see Reference 3.) As
you’d expect, since the two architectures
have the same RISC underpinnings, the
instruction formats are quite similar. The
instructions themselves are also similar,
but as we are about to see, they differ in
“power.”

opcode I dest I srcA I displacement

Loadstore instructions. The PowerPC
architecture has two primary addressing
modes: register plus displacement and
register plus register. Furthermore, the
load and store instructions may auto-
matically update the index register as a
byproduct of their execution. That is, the
instruction not only performs a simple
load or store, as in most RISCs, but also
modifies the index register by placing the
just-computed effective address in it.

The Alpha architecture has only one
primary addressing mode, register plus
displacement. As we’ll see in the imple-
mentation section, this simplifies the reg-
ister file design. In Alpha, loads and
stores do not update the index register.

Floating-point multiply-add instruc-
tions. The PowerPC includes multiply-
add instructions that take three input
operands, A, B, and C, and form the re-
sult, A x C + B or A x C - B. With these
powerful instructions, one instruction
passing through the pipeline can do the
work of two, and instruction pipeline re-
sources are used more efficiently. Merg-
ing the operations also reduces the la-
tency, that is, the total time taken by a
dependent multiply and add. And float-
ing point accuracy can be increased by
eliminating the rounding step between
the multiply and the add.

Example. Figure 2 illustrates the two
instruction sets in general and the value of
the update loadktore and multiply-add
instructions in particular. By design, this
example plays into a strength of the Pow-
erPC architecture, so it’s not intended to
indicate performance. The figure shows
a simple C loop that operates on arrays
of data and its compilation into PowerPC
and Alpha instructions. Because the 601

0 6 11 16 31
PowerPC opcode I dst I srcA I immed

27 31 0 6 11 19 20
Alpha opcode I srcA I immed 111 ext.op. I dst

(a) Both architectures have instructions that take a source register (src A) and
an immediate field to produce a result in a destination register (dst). The Al-
pha’s immediate field is a little shorter because it has an extended opcode field
(ext. op.). The immediate operand is a signed integer in PowerPC and a posi-
tive integer in Alpha.

0 6 11 16 21 31
PowerPC I opcode I dst I srcA I src B I ext. OD. lRci

0 6 11 16 19 20 27 31
Alpha opcode I srcA I src B lunusedOI ext. op. I dst

(b) Except for the locations of the fields, the instructions with two source regis-
ters (src A and src B) are similar. The PowerPC has a longer extended opcode
field. The record bit (Rc) in the PowerPC instructions is to enable explicit
updating of condition code flags.

0 6 11 16 21 26 31
PowerPC opcode I dst I s r c ~ I src B I src c lext. o p . 1 ~ ~

0 6 11 16 27 31
Alpha I opcode I srcA I src B I ext. op. I dst

(c) The floating point versions of register-register operate instructions are also
similar to the integer version except the PowerPC has three source registers to
support a combined floating point multiply-add instruction.

0 6 11 16 31
PowerPC opcode I dest I srcA I displacement

(d) The memory instructions for register + displacement addressing are virtu-
ally identical.

0 6 11 16 21 31
PowerPC opcode I dest I srcA I src B I extop. [R C

(e) Only the PowerPC has a register + register addressing format for loads and
stores.

Figure 1. Operate and Memory instruction formats.

floating-point pipeline is essentially a sin-
gle-precision pipeline, which requires an
extra pass for double precision computa-
tions, the PowerPC code in Figure 2b uses
single-precision data. The PowerPC 620,
currently under development, will be the
first 64-bit PowerPC implementation.

In the PowerPC code in Figure 2b, the
load with update at the top of the loop

and the store with update near the end
of the loop maintain the y and x array
pointers, respectively. The PowerPC ver-
sion needs only two floating point in-
structions: a multiply and a multiply-add.

The Alpha code in Figure 2c uses dou-
ble precision. Because the Alpha does
not have a register-plus-register address-
ing mode, pointers to the arrays are indi-

48 COMPUTER

for (k = 0; k < 512; k++)
x[k] = r * x[k] + t * y[k];

(a) C code.

r3 + 4 points to x.
r4 + 4 points to y.
fpl contains t,
fp3 contains r, and
CTR contains the loop count (512).

PO = y(r4 = r4 + 4) # load floating single with update. LOOP lfsu
fmuls fp0 = fp0,fpl #floating multiply.
Ifs fp2 = x(r3,4) # load floating single.
fmadds fp0 = fpO,fp2,fp3
stfsu x(r3 = r3 + 4) = fp0 # store floating single with update.
bc LOOP,CTR # 0

floating multiply-add single.

decrement CTR, then branch if CTR f 0.

(b) PowerPC code.

LOOP: ldt
ldt
mult
addq
mult
subq
addt
stt
addq
bne

fp3 = y(r2,O)
fpl = x(r1,O)
fp3 = fp3,fp2
r2 = r2,8
fpl = fpl,fp4
r4 = r 2 ~ 6

x(r1,O) = fpl
r l = r1,8
r4,LOOP

fpl = fp3,fpl

r l points to x.
r2 points to y.
r6 points to the end y.
fp2 contains t.
fp4 contains r.
r5 contains the constant 1.
load floating double.
load floating double.
floating multiply double t * y.
#bumpy pointer.
floating multiply double, r * x.
subtract y end from current pointer.
floating add double, r * x + t * z.
store floating double to x[k].
#bump x pointer.
branch on r4 # 0.

(c) Alpha code (using the PowerPC syntax).

Figure 2. Example of PowerPC and Alpha instructions.

vidually incremented each time through
the loop. The pointer to array y also
tracks the loop count; subtracting the
pointer from the address of the end of ar-
ray y generates the value tested by the
loop-closing branch. The Alpha version
of the loop uses 10 instructions, four
more than the PowerPC.

Data alignment. Many RISC imple-
mentations simplify their memory load
path by optimizing data alignment on
natural boundaries. That is, doubleword
8-byte data must align on an address that
is a multiple of 8; word data must be on an
address that is a multiple of 4, and so on.
If a load or store uses an address with an
improper multiple, some RISC imple-
mentations trap to a trap handler that
uses multiple instructions to implement

the required memory operation. Not so
in the PowerPC 601, which handles un-
aligned data entirely in hardware. It oc-
casionally requires a second cache access
when data crosses a four-word boundary,
but this is a property of the cache imple-
mentation.

The Alpha architecture handles un-
aligned data in one of two ways, depend-
ing on how often it is actually unaligned.
If the data is usually aligned, the compiler
can use aligned versions of loads and
stores. These will trap if an address
should happen to be unaligned, and the
trap handler takes care of the unaligned
access. If the data is likely to be un-
aligned, then multiple instruction se-
quences of unaligned loads and stores can
be combined with insert, mask, and ex-
tract instructions to get the job done.

Byte-string operations. The two ar-
chitectures’ handling of byte operations
is strikingly different. The PowerPC has
byte load-and-store instructions. An Al-
pha characteristic is that load and store
instructions transfer only 32- or 64-bit
data between a register and memory;
there are no instructions that load or
store 8-bit or 16-bit quantities. The Al-
pha architecture does include a set of in-
structions to extract and manipulate
bytes from registers. (The significance
of not having to do select and alignment
operations in the memory load path will
be made apparent in the data cache im-
plementation section.)

Branch instructions. There are signif-
icant differences in the way the two ar-
chitectures handle branches. Figure 3
compares the format of conditional and
unconditional branches. In both archi-
tectures, branch target addresses are
usually determined by adding a dis-
placement to the program counter (PC
relative).

PowerPC includes a special set of reg-
isters architected for holding, operating
on, and testing conditions. Conditional
branches may test fields in the condition
code register and the contents of a spe-
cial register, the count register (CTR).
Again using the theme of more powerful
instructions, a single branch instruction
can implement a loop-closing branch by
decrementing the CTR, testing its value.
and branching if it is nonzero. The code
example in Figure 2b does this. Com-

parison instructions set fields of the con-
dition code register explicitly, and most
arithmetic and logical instructions may
optionally set a condition field by using
the record (Rc) bit.

In the Alpha architecture, conditional
branches test a general-purpose register
relative to zero or by oddleven register
contents. (The oddleven tests allow for
compilers that use the low-order bit to
denote true or false logical values.) Thus,
results of most instructions can be used
directly by conditional branch instruc-
tions, as long as they are tested against
zero (or oddleven). When needed, com-
parison instructions leave their result in a
general-purpose register.

Certain control transfer instructions
save the updated program counter to be
used as a subroutine return address. In
Alpha, these are special jump instruc-
tions that save the return address in a
general-purpose register. The PowerPC
does this in any branch by setting the link

June 1994 49

0 6 11 16 30 31
Powerpcl omode I option I bit I displacement I AA/ LKI

0 6 11 31
AlDha I oDcode I srcA I displacement

(a) Conditional branches. Word addresses are concatenated with 00 to form
byte addresses. In PowerPC, the option and bit 6eMs indicate the test and
condition code flag to be tested. AA indicates absolnte addressing and LK
specifies if the link register is to receive a return address. In Alpha, src A
designates the register tested to determine the branch ontcome.

0 6 30 31
PowerPC opcode I displacement I AAI LK

0 6 11 31
Alpha opcode I srcA I displacement

(b) Unconditional branches. Word addresses are concatenated with 00 to
form byte addresses. In Alpha, the updated program counter is written into
register src A to be esed as the return address if this is a subrout& call.

Tigure 3. Branch instructions.

(LK) bit to one. The return address is
saved in the link register.

Implementations
To compare the PowerPC 601 and Al-

pha 21064 implementations, we focus first
on the overall pipelined implementations.
Next, we describe critical areas: instruc-
tion fetching, branch processing, instruc-
tion dispatching, register files, and data
caches. We illustrate important features
with pipeline flow diagrams and conclude
with a discussion of imprecise interrupts.

Table 2 compares the initial imple-
mentations of the PowerPC 601 and Al-
pha 21064 chips (faster versions using im-
proved process technologies are on the
way). Performance comparisons using
the SPEC benchmarks (see sidebar) are

included for completeness, but our pri-
mary interest is the contrasting styles in
instruction sets and implementations.

Both the PowerPC 601 and Alpha
21064 use sophisticated pipelined imple-
mentations. The PowerPC 601 pipelines
are relatively short with more buffering;
the Alpha 21064 has deeper pipelines
with less internal buffering and a much
faster clock (by a factor of about three).
The two implementations also use con-
trasting cache memory designs. The 601
has a unified 32-Kbyte cache; that is, in-
structions and data reside in the same
cache. The 21064 has split data and in-
struction caches of 8 Kbytes each.

PowerPC 601 pipelines. As Figure 4
shows, the PowerPC 601 has three units,
each implemented as a pipeline: the
branch unit (BU), the fixed-point unit

Table 2. Summary of implementation characteristics.

PowerPC 601

Technology
Levels of metal
Die size
Transistor count
Total cache (instructions + data)
Package
Clock frequency
Performance:

SPECint92
SPECfp92

0.6-micron CMOS
4
1.09 cm square
2.8 million
32 Kbyte
304-pin QFP
50 and 66 Mhz

63 @ 66 Mhz
72 @ 66 Mhz

Alpha 21064

0.75-micron CMOS
3
2.33 cm square
1.68 million
16 Kbyte
431-pin PGA
150 to 200 Mhz

117 @ 200 MHz
194 @ 200 Mhz

50

(FXU), and the floating-point unit (FPU).
The BU fetches instructions, executes
branches, and dispatches other instruc-
tions to the FXU and FPU. The FXU and
FPU handle fixed-point and floating-
point instructions, respectively, except
that the FXU also decodes and executes
floating memory instructions. Therefore,
in addition to processing fixed-point in-
structions as its name implies, the FXU
functions as a loadlstore unit.

Here are the pipeline stages.

F, instruction fetch: The unified
cache is accessed, and up to eight in-
structions are fetched into the in-
struction buffer.
S, dispatch: Instructions are dis-
patched to the FXU and FPU.
D, decode: Instructions are decoded.
Source registers are read in this stage.
Note that instructions going to the
FXU may be dispatched and decoded
in the same pipeline stage (labeled D).
E, execute: Two different stages have
this label. Branches execute in the
one in the BU. The other E stage, in
the FXU, is where fixed-point in-
structions execute and load/store in-
structions do their address process-
ing and cache lookup.

*C, cache access: The cache is ac-
cessed, and fixed-point operands are
sent directly to the FXU, floating-
point operands to the FPU.
W, write: Results are written to the
register file.
M, multiply: floating-point multiply.
A, add: floating-point add.

The PowerPC 601 contains several
buffers at strategic points in the pipelines:
after fetching instructions and after dis-
patching. Instructions may be dispatched
to the BU and FPU out of order relative
to the program sequence. By getting in-
structions out of the instruction buffers
even when a pipeline is blocked, instruc-
tion dispatching can continue to non-
blocked units.

Alpha 21064 pipelines. Figure 5 illus-
trates the 21064 structure of three paral-
lel pipelines: a fixed-point pipe, a float-
ing-point pipe, and a loadlstore pipe.
These relatively deep pipelines have 10
stages for floating point instructions and
seven stages for integer and loadlstore in-
structions.

We describe the integer and loadlstore
pipelines together.

COMPUTER

F, instruction fetch: The instruction
cache is accessed, and two instruc-
tions are fetched.

* S , swap: Two instructions are in-
spected to see if they require the in-
teger or floating-point pipelines. The
instructions are directed to the cor-
rect pipeline; this might involve
swapping their positions. Branch in-
structions are predicted in this stage.
D, decode: Instructions are decoded
in preparation for instruction issue;
the opcode is inspected to determine
the instruction’s register and resource
requirements. Unlike the 601, regis-
ters are not read during the decode
stage.
I, issue: Instructions are issued, and
operands are read from the registers.
Issue consists of checking register and
resource dependencies to determine
if the instruction should begin execu-
tion or be held back. Once they have
passed the issue stage, instructions are
no longer blocked in the pipelines;
they flow through to completion.

write
f dispatch decode mult. add back

... .
instnrction i BU A - - * - - -
F -

buffers j f
(8) i i i i -

f FPU decode
buffers

I
f

b i

C w
cache write

address acdess back . . condition I . . : w * - -
updates register eiecute

...
.

; : : -
U

ALU result
i

- i
i
f

* i

- -

Figure 4. PowerPC 601 pipeline structure.

To provide an overall picture of the Pow-
erPC and Alpha product lines, the table
contains SPEC benchmark performance
for the 21 064, the 21 064A, a follow-on in a

* A , ALU stage 1: Integer adds, logi- ately bypassed back, so they appear
cals, and short-length shifts are exe- to be single-cycle instructions.
cuted. Their results can be immedi- Longer length shifts are initiated in

PowerPC 601 66 MHz 2Q93 63 72
PowerPC 601 + 100 MHz 4Q94 105 (est.) 125 (est.)

4Q94 160 (est.) 165 (est.) PowerPC ‘04 O0 MHz

The tale of the tape: SPEC benchmarks

SPEC (Standard Performance Evaluation Corporation)
was founded in 1988 by a number of computer companies
with the goal of providing a representative set of benchmarks
by which their products could be measured. Currently, there
are two sets of benchmarks: one consisting of six integer
programs and the other consisting of fourteen floating point
benchmarks. These benchmarks are often distilled to two
performance numbers SPECint92 and SPECfp92,1992
being the year the benchmarks were introduced. The perfor-
mance of each benchmark is given as the speedup versus a
VAX 1 lU80 (primarily for historical reasons). SPECfp92 and
SPECint92 are the geometric mean of these speedups
(found by multiplying speedups on n benchmarks and taking
the nth root of the product).

We give these numbers with a note of cau-
tion. Our article discusses processors and
the design philosophies that went into them.
The specific processor implementations
discussed -the PowerPC 601 and the
Alpha 21064 -are directed at systems
covering different price ranges; there also
may be differences in low-level implementa-
tion techniques and circuit design, compiler
quality, and the system environment (for
example, external cache characteristics) in
which benchmarks are run.

new process technology, and the 21066, a version with an
integrated PCI bus interface. For PowerPC, we include
performance for the 66-MHz 601, estimated performance for
a 1 00-MHz 601 +, using a new process technology, and the
PowerPC 604, a recently announced processor that uses a
more aggressive implementation intended for higher perfor-
mance products.

The table shows that the 21 064 appears to be ahead in the
performance race, as measured by the SPEC benchmarks. It
also shows that while the PowerPC has a slower clock pe-
riod, the performance results are closer than the clock period
alone would suggest. This is consistent with the “more work
per clock period philosophy used in the PowerPC designs.

SPEC performance for a sample of PowerPC and Alpha processors.
(Source: MiCrOtJrOCeSSOr RetJorf)

Clock
Processor frequency Availability SPECint92 SPECfp92

Alpha 21066 166 MHz 4Q93 70 105
Alpha 21064 150 MHz 2Q92 84 128
Alpha 21064 200 MHz 2Q93 117 194
Alpha 21064A 275 MHz 3Q94 170 (est.) 290 (est.)

Bypasses

-0 Integer
instructions

Figure 5. The 21064 pipeline complex. Only a small subset of the bypasses are shown.

Out-of-order
instruction
dispatch to FPU

Instruction buffers

from I-cache

to FXU

~

Figure 6. PowerPC 601 instruction dispatching.

this stage. Loads and stores do their
effective address add in this stage.
B, ALU stage 2: Longer length shifts
complete in this stage; their results
are bypassed back to ALU 1, so these
are two-cycle instructions. For loads
and stores, the data cache tags are
read. Loads also read cache data.
W, write: Results are written into the
register file. Cache hit/miss is deter-
mined. Store instructions that hit
have their data stored in a buffer. The
buffer contents will be written into
the cache during a following cycle
when there is no load.

52

The 21064 integer pipeline relies on
many bypasses for high performance.
These are important in a deep pipeline
to reduce apparent latencies. Figure 5
shows a few of the bypasses; there are a
total of 38 separate bypass paths.

Referring again to Figure 5, floating-
point instructions pass through F, S, D,
and I stages just like the integer instruc-
tions. There are then five stages (F
through K) where floating-point multi-
ply and add instructions are performed.
(Note that there are two pipeline stages
labeled F instruction fetch, and the first
floating-point stage. We do this because in

both cases, F provides the easiest way to
remember the pipeline stage. Because the
stages are so far apart, this shouldn’t lead
to any confusion in our diagrams.) The
floating-point divide takes 31 or 61 cycles,
depending on single or double precision.

The following subsections focus on dif-
ferent stages of instruction processing,
proceeding in roughly the same order as
instructions are processed.

Instruction fetching. Instruction fetch-
ing in the Alpha is very straightforward.
Instructions are read from the instruction
cache at the rate of two per cycle and are
placed in the dual decode registers. In the
PowerPC 601, however, the story is much
longer. Instructions are fetched from the
cache at a rate of up to eight instructions
per clock cycle and held in an eight-slot
instruction buffer (see Figure 6).

Unlike many RISC implementations,
the PowerPC 601 uses a single, unified
cache for both instructions and data. In-
struction fetching and data accesses must
contend for the cache resource. The uni-
fied cache has its lines divided into two
32-byte sectors. The sectors share the
same address tag, but only one sector at
a time is brought into the cache on a miss.
This means that occasionally a line will
have an invalid sector that holds no use-
ful instructions or data.

Because the PowerPC cache is unified,

COMPUTER

there is cache contention and arbitration
between instruction and data accesses.
Contention for the cache, with instruc-
tions having a lower priority than data,
provides the reason for fetching up to
eight instructions at a time, even though
the absolute maximum processing rate is
three per clock cycle. When the instruc-
tion fetch unit has a chance to fetch, i t
ferches! (I t might not have another
chance for a while.)

Branch prediction. Both processors
predict branches in an effort to reduce
pipeline bubbles. The PowerPC 601 uses
a static branch prediction made by the
compiler. The prediction is conveyed to
the hardware by a bit in the branch in-
struction, which indicates whether the
branch is expected to be taken or not.
Also, as a hedge against a wrong predic-
tion, the 601 saves (for a while) the con-
tents of the instruction buffer following a
branch-taken prediction; these instruc-
tions on the not-taken path are available
immediately if a miss prediction is de-
tected. The instruction buffer contents
are kept until instructions from the taken
path are delivered from memory.

The Alpha 21064 implements dynamic
branch prediction with a 2048 entry table;
one entry is associated with each instruc-
tion in the instruction cache. The predic-
tion table is updated as a program runs.
This table contains the outcome of the
most recent execution of each branch.
This predictor is based on the observation
that most branches are decided the same
way as on their previous execution. This is
especially true for loop-closing branches.

This type of prediction does not always
work well for subroutine returns, how-
ever, because a subroutine may be called
from a number of places, and the return
jump is not necessarily to the same ad-
dress on two consecutive executions. Al-
pha takes this into account by having spe-
cial hardware for predicting the target
address for return-from-subroutine
jumps. When the jump-to-subroutine in-
struction is executed, the return address
is pushed on a four-entry prediction
stack, so return addresses can be held for
subroutines nested four deep. The stack
is popped prior to returning from the sub-
routine, and the return address is used to
prefetch instructions from the cache.

Branch processing. We are now ready
to step through the pipeline flow for con-
ditional branches; refer to Figure 7 for a
PowerPC 601 example. Figure 7a as-

June 1994

Clock period
0 1 2 3 4 5

Compare F D E W
Branch F E
Instruction B F . D E W
Instruction C F . D E W

(a) Instruction flow for correct branch prediction.

Clock period
0 1 2 3 4 5

F

F .
F . x x x

Compare
Branch
Instruction B
Instruction C

6 7

6 7

Instruction T
Instruction U

redirect i-fetch

F D E
F . D

(b) Instruction flow for incorrect branch prediction.

W
E W

Figure 7. Timing for conditional branches in the PowerPC 601. X means instruc-
tion is flushed as a result of branch misprediction.

sumes the branch was predicted not
taken and the prediction was correct. In-
structions are dispatched conditionally.
The branch is resolved at time 2 after the
compare executes, and the conditional
instructions (B and C) are allowed to
complete. The zero-cycle branch does not
disrupt the instruction flow. The timing is
similar for a correctly predicted taken
branch, provided instructions are fetched
immediately from the cache.

In Figure 7b the branch was predicted
not taken, and the prediction was incor-
rect. Instructions B and C must be
flushed. and instructions T and U are
fetched from the branch target at time 3.
There is a two-cycle bubble that some-
times can be reduced or entirely elimi-
nated by moving the compare instruction
earlier in the code sequence.

Regarding Alpha, Figure 8a is one (of
several) cases where the branch predic-
tion is correct: Figure 8b is a case where
the prediction is wrong. The swap stage
of the pipeline examines instructions in
pairs. After the branch instruction is de-
tected and predicted, it takes one clock
cycle to compute the target address and
begin fetching. This may lead to a one-
cycle bubble in the pipeline. The
pipeline is designed to allow “squash-

ing” of this bubble. That is, if the in-
struction ahead of the bubble blocks and
the instruction behind proceeds, the
bubble is squashed between the two and
eliminated. In some cases, when there is
a simultaneous dispatch conflict, as in
Figure 8a, the instruction preceding the
branch must be split from it anyway. In
this case, the branch instruction waits a
cycle and naturally fills in the bubble (in
effect, the branch fills its own bubble!).
In other cases, if the pipeline stalls ahead
of the branch, the bubble can be
squashed by having an instruction be-
hind the branch move up in the pipe
(this happens later in Figure 11). If the
bubble is squashed and the prediction is
correct, the branch effectively becomes
a zero-cycle branch.

Figure 8b shows the incorrect predic-
tion case. The branch instruction has its
registers read during issue stage. During
the A stage, the register can be tested,
and the correctness of the prediction can
be determined. This is done quickly
enough that if there is a misprediction,
the instruction fetch stage can be noti-
fied while the branch is still in the A
stage. Then, fetching the correct path can
begin the next cycle. As a result, four
stages of the pipeline must be flushed

53

Clock period
0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3

Compare F S D I A B W
Branch F . S D I A
Instruction B F S D I A B W
Instruction C F . S D I A B W

(a) Instruction flow for correct branch prediction.

Clock period

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3

Compare F S D I A B W
Branch F . S D I
Instruction B
Instruction C

flush

redirect i-fetch

Instruction T F S D I A B W
Instruction U F . S D I A B W

@) Instruction flow for incorrect branch prediction.

I I

Figure 8. Timing for conditional branches in the Alpha 21064. X means instruction
is flushed as a result of branch misprediction.

Table 3. Branch penalties. In the Alpha 21064, the penalty is generally indepen-
dent of the distance between the compare and the branch. In the PowerPC 601,
the penalty may be one cycle shorter (1 instead of 2, for example) when instruc-
tions are still in the buffer and the fetch cycle is saved.

Distance from Alpha 21064 PowerPC 601
Compare to Branch Correct Incorrect Correct Incorrect

O t o l 4 0 2 or 1
O t o l 4 0 l o r 0
O t o l 4 0 0

when the prediction is found to be in-
correct. For the jump-to-subroutine in-
struction, the penalty for a misprediction
is five cycles.

For branches, the biggest architectural
difference between the Alpha and
PowerPC is that the Alpha uses general-
purpose registers for testing and subrou-
tine linkage. The PowerPC uses special-
purpose registers held in the branch unit.
This means the PowerPC can execute
branch instructions in the branch unit, im-
mediately after instructions are fetched.
In fact, it looks back in the instruction
buffer so that it can essentially execute,
or at least predict, branches prior to dis-
patch. The Alpha 21064 implementation,
on the other hand, must treat branch in-
structions like the other instructions. They
decode in the D pipeline stage, read reg-
isters in I, and execute in A.

Table 3 compares the approximate
branch penalties for integer conditional
branches (far more common than float-
ing-point branches). The penalties are ex-
pressed as a function of (1) the number of
instructions separating the condition-
determining instruction (for example, a
compare) and the branch and (2) the cor-
rectness of the prediction. Instruction
cache hits are assumed.

In summary, both the PowerPC 601
and Alpha 21064 dedicate special hard-
ware to minimize the branch penalty. In
the 601, the extra hardware is in the form
of the PowerPC’s special-purpose branch
registers. These registers reduce the num-
ber of branches that must be predicted in
the first place (see Table 4). In the 601,
loop-closing branches that use the CTR
register do not have to be predicted; in
the Alpha, these are ordinary conditional
branches, although loop-closing branches
are easily predictable. In the PowerPC,
return jumps can be executed immedi-
ately in the branch unit; there is no need
for prediction. In Alpha, a subroutine re-
turn jump must read a general-purpose
integer register, so these branches are I Table 4. Predic-

Alpha 21064 PowerPC 601

Conditional Dynamic Static
branches prediction prediction

Loop-closing Dynamic Always
branches prediction zero-cycle

Subroutine Stack Always
returns prediction zero-cycle

tion method ver-
sus branch type.

predicted via the return stack.
In the 21064, the hardware resources

are directed at improving branch pre-
diction accuracy - history bits and the
subroutine return stack. Not only does
the 21064 have to predict more of the
branches, the penalties (as measured in
clock periods, not in absolute time) tend
to be higher when it is wrong. As we have
pointed out before, however, making
performance comparisons based solely
on clock periods does not give the 21064
proper credit. Its simple philosophy and

54 COMPUTER

deeper pipelining leads to a clock that is
about three times faster than the 601’s.

Table 5. PowerPC 601 instruction dispatch rules. Three mutually compatible
instructions (marked with x) may issue simultaneously.

Dispatch rules. Simultaneous dispatch
rules are an important defining feature of
superscalar architecture implementation.

The dispatch rules in the 601 are quite
simple. The architecture has three units,
integer (or fixed point), floating, and
branch, and three instructions may issue
simultaneously as long as all three go to
different units. Integer operate instructions
and all loads and stores go to the same
pipeline (FXU), and only one instruction
of this category may issue per clock cycle.

In the 21064, dispatch (in the 601
sense) occurs in the swap pipeline stage.
Instructions issue two stages later. In the
21064, issue significantly affects dispatch
because instructions must issue in their
original program order, and dispatch
(that is, the swap stage) helps enforce this
order. A pair of instructions belonging to
the same aligned doubleword (quadword
in DEC parlance) can simultaneously is-
sue. Consecutive instructions in different
doublewords may not dual issue, and if
two instructions in the same doubleword
cannot simultaneously issue, the first in
program sequence must issue first.

The 21064 implements separate inte-
ger and loadlstore pipelines, and several
combinations of these instructions may
be dual-issued, with the exception of in-
teger operatelfloating store and floating
operatelinteger store. These exceptions
are due to a conflict in instruction paths,
not shown in Figure 5. The loadlstore
ports are shared with the branch unit. As
a consequence, branches may not be si-
multaneously issued with any load or
store instruction.

Tables 5 and 6 summarize the dispatch
rules for both processors. In the PowerPC
601 table, two instructions can simulta-
neously issue if there is an X in the table’s
corresponding rowlcolumn. For three in-
structions, all three pairs must have X’s.
In the 21064 table, two instructions can si-
multaneously issue if there is an X in the
table entry.

The ability of the 21064 to dual issue a
load and an integer operate instruction
is a definite strength with respect to the
601. Many applications (not to mention
the operating system) use very little float-
ing-point arithmetic, and the 21064 can
execute these codes with high efficiency.
For non-floating-point applications, the
601’s floating-point unit sits idle while in-
teger instructions dispatch at the rate of
only one per clock cycle.

June 1994

Integer: Floating: Branch
Load Store Operate Load Store Operate

Integer load
Integer store
Integer operate

X X

X X

X X

Floating load X X

Floating store X X

Floating operate x X X x x X

Branch X X X x x X

Table 6. Alpha 21064 instruction dispatch rules. Two compatible instructions
(marked with x) may issue simultaneously. Integer branches depend on an
integer register; floating branches depend on a floating register.

Integer: Floating: Branch:
Load Store Operate Load Store Operate Integer Floating

Integer load
Integer store
Integer operate

Floating load
Floating store
Floating operate

Integer branch
Floating branch

X X

X

x x X X X

X X

X

X X x x

X

X

X

Register fdes. It is interesting that quite
different considerations in the two im-
plementations led to register files that
have almost the same number of ports
(see Table 7).

A key aspect of the 21064 register file
design is that integer register ports are ju-
diciously allocated so that it can issue two
integer instructions simultaneously. In the
21064, one write and two read ports are
required to pipeline operate instructions,
and there is a pair of readlwrite ports for
load/store unit data. Branches share the
load/store register ports. This brings the
count up to 3W2W for both integer and
floating register files. A fourth integer
read port is needed to get the address
value for stores, and it is also used for load
addresses. This fourth read port enables
doing an integer store in parallel with an
integer operate instruction. Finally, not
allowing a register-plus-register address-
ing mode (see Figure le) eliminates the

Table 7. Register file ports.

Alpha PowerPC
21064 601

Integer registers:
Read ports 4 3
Write ports 2 2

Floating registers:
Read ports 3 3
Write ports 2 2

need for a fifth integer register read port.
Looking at the 601, beginning again

with one write and two read ports for op-
erate instructions, a third integer read port
is provided for single-cycle processing of
the register-plus-register store indexed in-

55

Latch Latch
Data read

+ 8Kbytes

.) ~ Directory
lookup

TLB
lookup

-+ * - -

Latch . - Latch

I I , I I l.J-w+l lookup

check U 8 bytes

Kbytes
unified

Figure 9. The Alpha 21064 (a) and PowerPC 601 (b) cache access paths.

lfsu fpO=y(r4=r4+4) F D E C W
fmuls fp4=fpo,fpl F F . . D M A W
Ifs fp2 = x(r3,4) F . D E C W
fmaddsfp5=fp4,fp2,fp3 F . S : D M A W
stfsu x(r3=r3+4)=fp5 F . . . D E C
bc LOOP,CTR#O F . S
lfsu fp0 = y(r4 = r4 + 4) F D E C W
fmuls fp4 = fpo, fpl F . . S . D M A W
Ifs fp2 = x(r3,4) F . . . D E C W
fmadds fp5 = fp4,fp2,fp3 F . . . S D M A W
stfsu z(r3 = r3 + 4) = fp5 F D E , . C
bc LOOP,CTR#O F . . . S

Figure 10. PowerPC 601 pipelined processing example (two iterations of the
loop). The arithmetic instructions are dispatched to the FPU pipeline. The load
and store instructions are shown to go down the FXU pipe, but the store also
decodes in the FPU pipe (not shown) right after the multiply-add instruction.

structions, which read three registers (two
for the effective address, one for the re-
sult). The second integer write port allows
writing the result of an operate instruction
and data returned from the cache in the
same clock cycle. The same consideration
accounts for two write ports in the floating
register file. The three floating-point read
ports are needed by the combined floating
multiply-add instruction.

56

Data caches. Yet another interesting
contrast is the way the caches are imple-
mented. Figure 9 shows the flow through
the two data caches.

The 21064 uses separate instruction
and data caches; the data cache is shown
in Figure 9a. These are small (8 Kbyte),
direct-mapped data caches designed for
very fast access times. The address addi-
tion consumes one clock cycle. During

the next clock cycle, the cache data and
tag are read simultaneously. This is eas-
ily done with a direct-mapped cache
where only one tag must be read and the
data, if present, can only be in one place.
Simultaneously, the translation lookaside
buffer (TLB) is accessed for address
translation information. During the next
clock cycle, the TLB address translation
completes, and the tag is compared with
the upper address bits. A cache hit or
miss is determined about half way
through this clock cycle. The data is al-
ways delivered to the registers as an
aligned 8-byte doubleword. Any align-
ment, byte selecting, etc. must be done
with separate instructions.

This approach simplifies the cache in-
terface, which does not have to include
byte-level shift-and-mask logic in the
cache access path. Clearly, the Alpha ar-
chitects felt that the performance gained
from shortening the cache load path was
more important than the performance
lost by using multiple instructions for
byte loads and stores.

In the PowerPC 601, the unified
datalinstruction cache is much larger, 32
Kbytes, and is eight-way set associative,
so it can be expected to have a higher hit
rate than the 21064. In Figure 9b we can
clearly see how much more “work” the
601 does in a clock cycle compared to the
21064. It does an address add and the
cache directory/TLB lookup in the same
cycle (see Weiss and Smithlo for details).
Then, during the next cycle, it accesses
the 32-byte-wide data memory. During
the same cycle, it selects and aligns the
data field.

To summarize, the 601 implements the
following features to improve perfor-
mance: (1) a larger cache, (2) a higher as-
sociativity, and (3) automatic data align-
ment in hardware. The 21064 improves
performance by not implementing such
features, contributing to its very fast
clock. When measured in nanoseconds,
the two clock cycles in Figure 9b take
longer than the three cycles in Figure 9a.

Example of pipeline flows. Figure 10
shows the 601 pipeline processing the
code example given earlier in Figure 2b.
The example is useful for emphasizing
the basic differences in the two designs,
but again, we caution against reaching
any general conclusions regarding per-
formance based on this one example. To
simplify the presentation, we assume in
all the examples below that instruction
and data references hit in the cache.

COMPUTER

Specifically in the 601. we also assume
that the code is aligned with the cache
sector, which allows fetching eight in-
structions. (Six instructions of the loop
body are shown. the remaining two are
irrelevant.)

The 601 predicts branches. However,
as shown in the example, occasionally in-
structions cannot be fetched from the
branch target address right after predict-
ing the branch taken, because the unified
cache is being accessed for data.

Figure 11 is the Alpha pipeline flow for
the same example (Figure 2c). In-order
issue and dual issue only for aligned in-
struction pairs is quite evident. The rela-
tively long, six clock period, floating-
point latency is also evident. We also
observe that after the I stage, instructions
are never blocked.

Starting with the first two instructions,
which cannot dual issue because both are
loads, we see the role the swap stage plays
in ordering instructions for issue. The sec-
ond instruction is held a cycle while the
first moves ahead. The first dual issue oc-
curs for the first addq-mult pair. Because
the mult is the first instruction in the dou-
bleword, the addq must wait, even

back. The sequence of dependent float-
ing-point instructions paces instruction
issue for most of the loop. Note that the
floating store issues in anticipation of the
floating point result. It does not wait six
clock periods for the result. Rather, it
waits only four, so it reaches the write
stage just in time to have the floating
point result bypassed to it.

Following the predicted branch at the
end of the loop there is a bubble. Because
other instructions in the pipeline are
blocked, however, the bubble is squashed
by the time the ldt following the branch is
ready to issue.

Overall, the loop takes 16 clock peri-
ods per iteration in steady state. (The first
ldt passes through the I stage at time 4,
and during the second iteration it issues
at time 20.) On the other hand, the Pow-
erPC 601 takes six clock periods for sin-
gle precision data (Figure 10) and eight
clock periods for the double-precision
version of the example. (Double preci-
sion takes longer because multiply and
multiply-add instructions require two
passes through the execute stages of the
pipeline.) But don’t forget, the 21064 is
running its clock about three times faster.

The floating-point latencies are exposed
and lead to delays when the 21064 exe-
cutes this type of code. This is evident in

I though it has no dependencies holding it

the region of the
timing diagram be-

ldt
Idt
mult
addq
mult
subq
addt
stt
addq

Time
___+

fp3 = y(r2,O)
fpl = x(r1,O)
fp3 = fpe,fp2
r2 = r2,8
fpl = fpl,fp4

fpl = fp3,fpl
r4 = r 2 ~ 6

x(r1,O) = fpl
r l = f1,8

bne r4,lOOp
ldt fp3 = ~(1-2~0)
ldt fpl = x(r1,O)

1 1 1 1 1 1 1 1 1 1 2 2 2
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2

F S D I A B W
F . S D I A B W

F S D . I F G H J K W
F S D . I A B W

F S . D I F G H J K W
F S . D I A B W

F . S D I F G H J K W
F . S D I A B W

F S D I A B W
F S D I A . .

F S D I A B
F S D I A

Figure 11. Alpha 21064 pipelined processing example.

tween clock peri-
ods 9 and 18. Also,
because of in-order
issue, the loops
don’t “telescope”
like the 601’s - in
the 21064 there is

Iteration 2

Iteration 3 1 (b) Yl very little overlap
among consecutive
loop iterations. Fig-
ure 12 illustrates the
telescoping phe-
nomenon. In the fig-
ure, each parallelo-
gram the pipeline flow with a 601-like implementation.
general shape of the

Figure 12. Comparison of loop overlap: (a) general pipeline
flow with a 21064-like implementation; (b) “telescoped”

pipeline flow for a
single loop iteration.
In an in-order issue processor like the
21064, there is little overlap between loop
iterations, and branch prediction is a ma-
jor contributor to the small amount of
overlap that occurs.

In an implementation like the Pow-
erPC 601, however, the out-of-order dis-
patch along with multiple buffers placed
at key points allow the loop iterations to
be compressed, like a folding telescope.
Furthermore. with a branch processor as
in the 601, branch prediction is not
needed to achieve this effect.

Software techniques such as loop un-
rolling are likely to provide much better
performance for a deeply pipelined im-
plementation like the 21064. A loop is
unrolled by combining multiple loop it-

erations into a single, larger loop. This
not only gets rid of some loop closing
branches but also provides more oppor-
tunities for the compiler to rearrange the
instructions and increase overlap. The
DEC compilers unroll loops.

When the example loop from Figure
2a is unrolled four times, the 21064 iter-
ation takes 23 clock periods per unrolled
iteration, or about six clock periods per
original iteration - nearly a threefold
improvement. Also, the performance ad-
vantage of dual issue is much more evi-
dent than with the rolled version (in our
example, dual issue occurs in about a
third of the clock periods).

Loop unrolling also improves the per-
formance of the 601, but not nearly as

June 1994 57

much. The unrolled loop (four iterations)
takes 19 clock cycles, which corresponds to
about five clock cycles per loop iteration
(versus six clock periods in the rolled ver-
sion). Now, with an unrolled loop where
the deep pipelines can be used more effi-
ciently, the 21064’s clock period advan-
tage translates into about a two-and-one-
half-times performance advantage.

Imprecise interrupts. Both architec-
tures support high-performance imple-
mentations with multiple pipelines. In
such an implementation many instruc-
tions may be in the pipelines at any time,
and it’s difficult to precisely identify an
interrupt-causing instruction without
limiting the machine’s performance.1°
Instead, an imprecise interrupt is sig-
naled later, an arbitrary number of in-
structions after the interrupt-causing in-
struction.

A common problem occurs in the
floating-point pipeline: It is usually
longer than the integer pipe, so floating-
point instructions finish late. When a
floating-point interrupt is discovered,
fixed-point instructions logically follow-
ing the floating-point instruction may
have already completed and modified a
result register. This results in an impre-
cise state at the time of the interrupt. Al-
lowing this to happen, however, leads to
simpler implementations. Consequently,
both Alpha and PowerPC allow impre-
cise floating point interrupts in their nor-
mal operating mode.

With imprecise interrupts, user soft-
ware cannot “patch” an excepting float-
ing-point result and continue. Imprecise
interrup.ts can also make program de-
bugging more difficult. Consequently,
both architectures have provisions for
precise operation, but at degraded per-
formance. PowerPC does this in two
ways. First, a bit in the machine state reg-
ister may be set to make the machine en-
ter a mode in which instructions execute
serially and interrupts are precise. The
second solution uses a compiler flag that
inserts test code after each floating-point
instruction that may cause an interrupt.

For implementing precise floating-
point interrupts, Alpha has a trap barrier
instruction that stalls instruction issuing
until all prior instructions are executed
without any interrupts. This instruction
may be inserted after floating-point in-
structions to make floating-point inter-
rupts precise. Of course, performance is
degraded because the degree of instruc-
tion overlap is greatly reduced.

58

he PowerPC 601 and Alpha
21064 follow two remarkably
different philosophies for

achieving high performance implemen-
tations. The PowerPC architecture de-
fines powerful instructions, such as float-
ing-point multiply-add and update
loadlstores, that get more work done
with fewer instructions. The Alpha ar-
chitecture’s simplicity, on the other hand,
lends itself better to very high clock rate
implementations. An Alpha processor
can afford to execute more instructions if
it can issue them faster. A typical exam-
ple is load and store instructions that
transfer only 32- or 64-bit quantities. As
a result, Alpha implementations have a
shorter cache load path, and the cache
can be accessed with a faster clock.

The 601 uses independent pipelines,
buffering, out-of-order dispatching, and
it does a lot of computation in each pipe
stage. Advanced branch handling and
out-of-order dispatch lead to more effi-
cient use of the pipes and more overlap
among loop iterations. The 21064 has
tightly coupled pipelines, little buffering,
in-order issuing, and it does relatively less
work in each pipe stage. Then again, it has
a very fast clock. It also has fewer restric-
tions on multiple instruction dispatches,
especially when doing integer code.

The 601 gains performance by design
cleverness; the 21064 gains performance
by design simplicity. This trade-off is a
classic one, and the fact that both philoso-
phies lead to viable processors is proba-
bly an indication that either choice is sat-
isfactory as long as the implementation
is done well. W

Acknowledgment
We would like to thank the referees for their

many suggestions and comments and Rick
Kessler for a very helpful last-minute review.

References
1. D.A. Patterson, “Reduced Instruction Set

Computers,” Comm. ACM, Vol. 28, No.
1, Jan. 1985, pp. 8-21.

2. PowerPC 601 RISC User’s Manual, Mo-
torola, Pub. No. MPC601Um/Ad, 1992.

3. IBM Corp., The PowerPCArchitecture:A
Specification for the New Family of RISC
Processors, Morgan Kaufmann, San Fran-
cisco, 1994.

4. C.R. Moore, “The PowerPC 601 Micro-
processor,” Digest Compcon 93, IEEE CS
Press, Los Alamitos, Calif., Order No.
3400,1993, pp. 109-116.

5. G. Paap and E. Silha, PowerPC: A Per-
formance Architecture, Digest Compcon
93, IEEE CS Press, Los Alamitos, Calif.,
Order No. 3400,1993, pp. 104-108.

6. Alpha Architecture Handbook, Digital
Equipment Corporation, Maynard, Mass.,
1992.

7. D. Dobberpuh et al., “A 200-MHz 64-Bit
Dual-Issue CMOS Microprocessor,”
IEEE J. Solid State Circuits, Vol. 27, No.

8. R.L. Sites, “RISC Enters a New Genera-
tion,’’ Byte, Aug. 1992, pp. 141-148.

9. E. McLellan, “The Alpha AXP Architec-
ture and 21065 Processor,” IEEE Micro,
Vol. 13, No. 3, June 1993, pp. 36-47.

10. S. Weiss and J.E. Smith, Power and Pow-
erPC: Principles, Architecture, and Imple-
mentation, Morgan Kaufmann, San Fran-
cisco, 1994.

11, NOV. 1992, pp. 1555-1567.

James E. Smith is with Cray Research in
Chippewa Falls, Wisconsin, where he works
on the development and analysis of future su-
percomputer architectures. Earlier, while on
the faculty at the University of Wisconsin-
Madison, he took two leaves of absence to
work in industry on computer development
projects. At the Astronautics Corporation
Technology Center in Madison, he was prin-
cipal architect for the ZS-1, a scientific com-
puter employing a dynamically scheduled, su-
perscalar processor architecture. At Control
Data Corporation in Arden Hills, Minnesota,
he participated in the design of the Cyber
180/990. In the early 198Os, he conducted re-
search in high-performance processor imple-
mentations, including what are now referred to
as “superscalar” architectures.

Smith is a coauthor of Power and PowerPC:
Principles, Architecture, Implementation (Mor-
gan Kaufmann, 1994) and is a member of
IEEE and ACM.

Shlomo Weiss is a faculty member of the De-
partment of Electrical Engineering/Systems at
Tel Aviv University. He teaches computer ar-
chitecture and leads a group of students work-
ing on the analysis of high-performance pro-
cessor implementation alternatives and on
performance evaluation of new systems. Be-
fore that, he was with Daisy Systems Corpo-
ration, Mountain View, California, and with
the Microelectronics and Computer Technol-
ogy Corporation (MCC), Austin, Texas, where
he worked on database management systems
for VLSI CAD applications.

Weiss’s current research interests are in
computer architecture, with focus on the de-
sign of high-performance processors and
memory systems. He is a coauthor of Power
and PowerPC: Principles, Architecture, Im-
plementation (Morgan Kaufmann, 1994) and a
member of IEEE.

Readers can contact Smith at Cray Re-
search, Inc., 900 Lowater Rd., Chippewa Falls,
W154729.

COMPUTER

