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Performance and Cost - Roadmap

• Performance metrics

• Benchmarks and benchmarking

• Averaging

• Iron law of performance

• Amdahl’s law

• Balance and bursty behavior
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A is Faster than B means:

Machine A is n times faster than machine B iff: 

Machine A is X% faster than machine B iff:

EXAMPLE: A 10 sec, B 15 sec

• 15/10 = 1.5 => A is 1.5 times faster than B

Perf A( )
Perf B( )
---------------------

1
Time A( )
-----------------------

1
Time B( )
-----------------------
------------------- Time B( )

Time A( )
----------------------- n= = =

Perf A( )
Perf B( )
--------------------- Time B( )

Time A( )
----------------------- 1 X

100
---------+= =
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A is Faster than B cont.

BUT: There are two parameters TIME and TASK:

What is Time?

What is is the TASK we measure?
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Performance Metrics: Latency vs. Bandwidth

“Computer A is FASTER than Computer B?

Time  or Latency: How long it takes to do something

• Elapsed time: real time

• Processor time: computation component

Rate  or Bandwidth: How much work done per time. 

Rate = Work per time

Your goals dictate which one is the appropiate one for you.

Example: User vs. Data processing center.

Our Emphasis will be on Processor Time or Elapsed Time

1 secA

B ETA = 3

PTA = 2
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A is Faster Than B? On What?

• Cars: Car A goes from 0 to 100 mph in 10 secs.

Task is important.

• How do we define meaningful tasks for comparing Computers?

• Let’s look at some unsuccessful attemps:

MIPS

MFLOPS
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Frequency

• Mhz or Ghz:

• Hope is that:

— if GHz(A) > GHz (B) then Perf(A) > Perf(B)

— if Ghz(A) = a x GHz(B) then Perf(A) ~ a x Perf(B)

Meaningless, frequency has little to do with amount of work 
produced per unit of time

This is true even if the ISA is the same
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MIPS and what’s wrong with them

Million Instructions Per Second

MIPS =  = 

Intention: if MIPSA > MIPSB then A faster/better than B

• Instruction sets are not equivalent: add [bx+10], ax

• Different programs use different instruction mix

• Instruction count is not a reliable indicator of work

• some optimizations add/remove instructions

• instructions may have varying work: rep movs

InstructionCount

ExecutionTime 106×
------------------------------------------------------------ ClockRate

ClocksPerInstruction 106×
------------------------------------------------------------------------------
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MFLOPS

MFLOPS = 

• Program must be floating-point intensive

• Ignores other instructions (e.g., loads and stores)

• In the extreme, some programs have no FP ops

            Safe interpretation of Peak MFLOPS: 

What the manufacturer guarantees not to be able to exceed

FloatingPointOPS

Time 106×
-----------------------------------------------------
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Normalized MFLOPS

Normalized FP: assign a canonical # FP ops to a HLL program

Normalized MFLOPS = {# canonical FP ops / time} x 10-6

Not all machines implement the same FP ops

• Cray does not implement divide

• Motorola has SQRT, SIN, and COS

Not all FP ops are same work

• adds usually faster than divide
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Relative MIPS
relative MIPS = (timeref / timenew) x MIPSref

• e.g., VAX MIPS

• Somewhat better than absolute MIPS

• Sensitive to reference machine

- amplifies programs where the ref. machine is weak

- makes other programs less important

- same applies to machine features

Compiler, ISA, OS have an impact
Still, maybe useful for same ISA, compiler, OS and workload
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Benchmarks and Benchmarking

• In lack of a universal task pick some programs that represent 
common tasks

• Use these programs to compare performance of systems:

Compilers
Compression

Weather Simulation

CAUTION: 

Comparisons are as good as the benchmarks are in representing 
your real workload.

Many parameters affect measured performance
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Benchmark Types

Real programs

• representative of real workload

• best way to characterize performance

• requires considerable work

Kernels

• “representative” program fragments

• good for focussing on individual features - not big picture 

Mixes

• instruction frequency
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 Benchmark Types

Toy benchmarks

• e.g., fibonacci, prime number, towers of Hanoi

• little value

Synthetic benchmarks

• programs intended to give specific mix

• worse than toy?

• Representative of what?

• Some value if carefully chosen
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Benchmarking Process

1. Define workload: 

What applications to use

2. Extract benchmarks from applications: 

Convert into self-contained, non-interactive programs.

3. Choose metric:

How to summarize performance

4. Execute programs, collect measurements and report 
performance

Source: J. Smith
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SPEC95 CPU Benchmark

Integer

• go                 plays a game of go

• m88ksim      motorola 88000 CPU simulator

• gcc               compiler

• compress      data compress/decompress

• li                    lisp interpreter

• jpeg              graphics jpeg compression/decompression

• perl               perl language interpreter

• vortex           object-oriented database system
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SPEC CPU is CPU Bound

• Assumption:

program spends most of its time in user space 

does very little I/O

• Good for measuring CPU/memory system performance

• “Not good” for other application domains, e.g., databases, 
graphics

Provides only a hint

• Integer & Floating Point benchmarks
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SPEC95 Benchmark

Floating point
• tomcatv    vectorized mesh generation
• swim         shallow water model - finite differences
• su2cor      quantum physics
• hydro2d    galactic jets - navier stokes
• mgrid        multigrid solver for 3d field
• applu        partial differential equations
• turb3d      simulation of turbulence in a cube
• apsi          temperature and wind velocity
• fppp      quantum chemistry
• wave5   n-body Maxwell’s
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SPEC CPU2000 Benchmark

NAME REF Time Description

164.gzip 1400 Data compression utility 

175.vpr 1400 FPGA circuit placement and routing

176.gcc 1100 C compiler 

181.mcf 1800 Minimum cost network flow solver 

186.crafty 1000 Chess program 

197.parser 1800 Natural language processing 

252.eon 1300 Ray tracing 

253.perlbmk 1800 Perl 

254.gap 1100 Computational group theory 

255.vortex 1900 Object Oriented Database 

256.bzip2 1500 Data compression utility 

300.twolf 3000 Place and route simulator 
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SPEC CPU2000 Benchmark
SpecCPU FP

168.wupwise 1600 Quantum chromodynamics 
171.swim 3100 Shallow water modeling 
172.mgrid 1800 Multi-grid solver in 3D potential field 
173.applu 2100 Parabolic/elliptic partial differential equations 
177.mesa 1400 3D Graphics library 
178.galgel 2900 Fluid dynamics: analysis of oscillatory instability 
179.art 2600 Neural network simulation; adaptive resonance theory 
183.equake 1300 Finite element simulation; earthquake modeling 
187.facerec 1900 Computer vision: recognizes faces 
188.ammp 2200 Computational chemistry 
189.lucas 2000 Number theory: primality testing 
191.fma3d 2100 Finite element crash simulation 
200.sixtrack 1100 Particle accelerator model 
301.apsi 2600 Solves problems regarding temperature, wind, velocity and 
distribution of pollutants 

CHECK WWW.SPEC.ORG for more info
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SPEC CPU 2006

400.perlbench C PERL Programming Language 

401.bzip2 C Compression 

403.gcc C C Compiler 

429.mcf C Combinatorial Optimization 

445.gobmk C Artificial Intelligence: go

456.hmmer C Search Gene Sequence

458.sjeng C Artificial Intelligence: chess

462.libquantum C Physics: Quantum Computing 

464.h264ref C Video Compression

471.omnetpp C++ Discrete Event Simulation 

473.astar C++ Path-finding Algorithms 

483.xalancbmk C++ XML Processing 
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SPEC CPU 2006 contd.
410.bwaves Fortran Fluid Dynamics 

416.gamess Fortran Quantum Chemistry 

433.milc C Physics: Quantum Chromodynamics

434.zeusmp Fortran Physics / CFD

435.gromacs C/Fortran Biochemistry/Molecular Dynamics 

436.cactusADM C/Fortran Physics / General Relativity 

437.leslie3d Fortran Fluid Dynamics 

444.namd C++ Biology / Molecular Dynamics 

447.dealII C++ Finite Element Analysis 

450.soplex C++ Linear Programming, Optimization 

453.povray C++ Image Ray-tracing 

454.calculix C/Fortran Structural Mechanics 

459.GemsFDTD Fortran Computational Electromagnetics 

465.tonto Fortran Quantum Chemistry 

470.lbm C Fluid Dynamics 

481.wrf C/Fortran Weather Prediction 

482.sphinx3 C Speech recognition 
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Why A New Version?

• Programs evolve

• Benchmarks become obsolete

New Applications Appear

Existing Applications may Scale

Compilers/Architectures are tuned to existing ones
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Other SPEC Benchmarks

• SPEC started with the CPU benchmarks

• Other benchmarks available

- Parallel Programs

- Graphics

- Filesystem

check www.spec.org
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MediaBench

Developed at UCLA
Collection of Media-Oriented Applications
IJPEG Image Compression/Decompression
MPEG Movie Compression/Decompression
GSM Audio Encoding/Decoding 8Khz 13-bit samples
ADPCM Speech Encoding/Decoding
G.721 Guess....
PGP Public Key-based Cryptography
PEGWIT Ditto
Ghostscript Postscript Interpreter
Mesa 3D Graphics Library (API)
SPEECH Speech Processing Library
RASTA Speech Recognition Components
EPIC Image Compression
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SPLASH II

• Multiprocessor benchmark

• Developed at Stanford

• Scientific applications and kernels

• Our focus is on uni-processor architecture

• Can be run in uniprocessor mode
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Kernel Example

inner product

DO 3 L = 1, LP

      Q = 0.0

DO 3 K = 1,N

     Q = Q + Z(K)*X(K)
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Synthetic Benchmark Example

Dhrystone, 
Whetstone

X = 1.0

Y = 1.0

Z = 1.0

DO 88 I = 1, N8, 1

    CALL P3(X,Y,Z)

SUBROUTINE P3(X,Y,Z)

COMMON T, T2

X1 = X

Y1 = Y

X1 = T * (X1 - Y1)

Y1 = T * (X1 + Y1)

Z  = (X1 + Y1)/T2

RETURN
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Mix Example

Gibson Mix - developed in 1950’s at IBM

• load/store       31%        branches      17%

• fixed add/sub  6%         compare        4%

• float add/sub   7%         float mult        4%

• float div            2%         fixed mul        1%

• fixed div          <1%        shifts               4%

• logical              2%

generally speaking, these numbers are still valid today
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Summarizing Performance

Consider:

• Can answer: X is faster than Y for program Z

• But which is faster overall?

“Need” a way of summarizing performance

Computer A Computer B Computer C
Program P1 1 10 20
Program P2 1000 100 20
Program P3 1001 110 40
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Total Execution Time

• Given Time(X)i the time it takes to run program i on computer X, 
measure:

In our previous example: B is 9.1 times faster than A

+ Consistent Summary Metric

if this your exact workload

- Longer running programs dominate

Over-emphasizes their importance

Perf A( )
Perf B( )
---------------------

Time B( )i∑
Time A( )i∑

----------------------------=
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Arithmetic Mean

• Use (n is the number of benchmarks):

• In our previous example: 

Time(A) = (1 + 1000 + 1001) / 3 = 677.33

Time(B) = (10 + 100 + 110) / 3 = 73.33 

B is 9.1 times faster than A

Same as time ratio

Time A( ) 1
n
--- Time A( )i∑=
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Weighted Arithmetic Mean

• Assign Weight to each benchmark that better represents an 
unequal mix:

• Could be used to give equal importance to each benchmark

• But really we are playing with numbers

Good only when we know the exact mix (embedded 
systems?)

Time A( ) Weighti ActualTime A( )×
i∑=
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How about Rates?

• What if we are given performance as a rate, e.g.,  IPC

• Can we use AM? Let’s see. Consider speed:

30 mph for first 10 miles

90 mph for next 10 miles. average speed?

Average speed = (30+90)/2    WRONG

Average speed = total distance / total time

• (20 / (10/30+10/90)) = 45 mph

This is the HARMONIC MEAN
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Harmonic Mean

Harmonic mean of rates  =                    

            Use HM if forced to start and end with rates

n

1
rate i( )
-----------------

1

n

∑
⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫
----------------------------
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Dealing with ratios
Performance is often reported normalized to a reference machine

This is what SPEC does.

Can we use AM? NO. Example: 

Machine A Machine B

TIME /A /B TIME /A /B

Program 1 1 1 0.1 10 10 1

Program 2 1000 1 10 100 0.1 1

AM 500.5 1 5.5 55 5.5 1

Total Time 1001 2 10.1 110 10.1 1.0



ECE 1773, ECE Toronto Lecture Notes: Chapter 1 36© 2002 Moshovos, some 
material based on slides by 
Hill, Wood, Smith and Sohi

Dealing with ratios

0

2

4

6

8

10

12

prog1 prog2 AVG(AM)

A/A

B/A

0

2

4

6

8

10

12

prog1 prog2 AVG(AM)

A/B

B/B

Normalized over BNormalized over A

Conclusion B is betterConclusion A is better



ECE 1773, ECE Toronto Lecture Notes: Chapter 1 37© 2002 Moshovos, some 
material based on slides by 
Hill, Wood, Smith and Sohi

Dealing with ratios
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Spec Uses Geometric Mean

• Geometric Mean:

• Independent of the particular running times.

• All benchmarks are equal

• But does not predict execution time

In our Example GM says A = B

• It over-emphasizes the easy cases

Generally, GM will mispredict for three or more machines

ExecutionTimeRatioi∏n
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SPEC Benchmarking Process

steps:

• for each benchmark i,  look up Tbase, i

• foreach benchmark i, run target machine to get  Tnew, i

• compute geometric mean:      
Tbase i,
Tnew i,
----------------------

1

n

∏n
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SPEC Benchmarking Process

Steps:

• extract bechmarks from applications

• choose performance metric

• execute benchmarks on candidate machines

• project performance in new machine
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Means Compared

• Gmean gives equal reward for speeding up all benchmarks

- the already fast programs get faster

• Hmean gives greater reward for speeding up the slow 
benchmarks

- Consistent with Amdahl’s law

• Arithmetic mean gives greater reward for speeding up already 
fast benchmark
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Reward for Speeding Up Slow Benchmark  

(Gmean)
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Reward for Speeding Up Slow Benchmark  

(Hmean)
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Reward for Speeding Up Slow Benchmark  

(Amean)
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Summary of Summarizing Peformance

• Absolute time: Use AM

• Ratios, e.g., IPC: Use HM

• Speedups/relative performance: Use GM

I suggest reporting detailed results so one can decide what 
is important for their target application
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Pitfalls
Choosing benchmarks from the wrong application space

• e.g., for 3d gaming, choosing Microsoft Word

 Choosing benchmarks from no application space

• e.g., synthetic workloads

Using toy benchmarks

• e.g., used to prove the value of RISC in early 80’s

Mismatch of benchmark properties with scale of features 
studied

• e.g., using SPEC for large cache studies
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Pitfalls

Carelessly scaling benchmarks

• truncating benchmarks
• using only first few million instructions
• reducing program data size

Carelessly extracting or constructing benchmarks

• Ghostscipt in Mediabench
• Output is written in a file in ASCII (one char per bit)

Too many easy cases

• may not show value of a feature
Too few easy cases

• may exaggerate importance of a feature
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Fallacies

The relative performance of two processors with the same 
ISA can be judged by clock rate or by the performance of a 
single benchmark suite.

F

P4 1.7GHz 
performance over P3 

1Ghz
Not linear with respect 

to frequency 
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Fallacies

The best design for a computer is the one that optimizes the 
primary objective without considering implementation.

Time-to-market (completion). Probability of design errors.

Neglecting the cost of software in either evaluating a system 
or examining cost-performance.

Software can be a big part of the total cost.
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Simulation

• Cannot afford to build every interesting configuration

• Often, mechanism implementation does not exist:

• Q? of the type “what if we could do this...what performance 
we could expect?

• Simulate to estimate performance
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Simulator Models

• Trace vs. Execution driven

• Functional vs. Timing

• Execution Driven:

- Must emulate system calls: map to host/use pre-recorded 
results

- Not absolute time: only cycles

- Results only as good as your model/benchmarks

- Validation should be done



ECE 1773, ECE Toronto Lecture Notes: Chapter 1 52© 2002 Moshovos, some 
material based on slides by 
Hill, Wood, Smith and Sohi

Iron Law of Performance

CPUtime =             

IC = Instruction Count

• instrs executed NOT static code

• mostly determined by program, compiler, ISA

CPI = Clocks Per Instruction

• mostly determined by ISA and CPU organization

• overlap among instructions makes this smaller

ClockCycleTime:

• mostly determined by technology and CPU organization

IC CPI ClockCycleTime××
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CPU Performance contd.

CPU Time =

Where ICi and CPIi refer to specific instructions or categories of 
instructions

ClockCycleTime ICi CPIi×
i
∑×
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 Example

Assume  stores can execute in 1 cycle by slowing clock 15%

Should this be implemented?

Op Frequency Cycle 
count

ALU ops 43%  1

Loads 21% 1

Stores 12% 2

Branches 24% 2
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Example, contd.

Old CPI = 0.43 + 0.21 + 0.12 x 2 + 0.24 x 2 = 1.36

New CPI = 0.43 + 0.21 + 0.12 + 0.24 x 2 = 1.24

Speedup = old time/new time 

= {P x old CPI x T}/{P x new CPI x 1.15 T}

= 1.36 / (1.24 x 1.15) = 0.95

Answer: Don’t make the change
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Iron Law, contd.

• Clock Cycle Time: hardware technology and organization

• CPI: Organization and instruction set architecture

• Instruction Count: Instruction Set Architecture and Compiler
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Amdahl’s Law: Making the Common Case Fast

Performance impact of optimizing part of a program: 

Let an optimization speed f fraction of time by a factor of s:

s > 1.0 for speedup, f <= 1.0 as it is a fraction :-)

Speedup OldTime
NewTime
--------------------------- NewRate

OldRate
--------------------------= =

NewTime OldTime 1 f–( ) 1× f
1
s
---×+×=

Speedup OldTime

OldTime 1 f–( ) f
s
---+×

-------------------------------------------------------------- 1

1 f– f
s
---+

--------------------= =
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Amdhal’s Law

f

1-f

= s

Old Time New Time
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Amdahl’s Law - Example
f = 95% and s = 1.10 - speedup common case

SPEEDUP = 1/((1-0.95) + (0.95/1.10)) = 1.094, or 9.4%

f = 5% and s = 10.00 - speedup uncommon case

SPEEDUP = 1/((1-0.05) + (0.05/10)) = 1.047, or 4.7%

f = 5% and s   - Limit of speeding up uncommon case

SPEEDUP = 1/((1-0.05) + (0.05/ )) = 1.052, or 5.2%

f = 95% and s   - Limit of speeding up common case

SPEEDUP = 1/((1-0.95) + (0.95/ )) = 20, or 2000%

What should we go after? Common or Uncommon case?

∞

∞

∞

∞
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Amdahl’s Law

 =  => Make common case fast
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Amdahl’s Law
Recall “COMMON” is relative and it MAY CHANGE once you 

optimize

Common

Common

Uncommon

UncommonSpeedup by 10
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Example - Parallel Processing

Amdahl was talking about a parallel processor with large 
speedup. 

At some point you have to pay attention to the serial part

Another example: Vector processing

Serial

Can be
Parallel
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Example Cont.
Assume f = 90%

Instead of using the last 9000 processors we should have 
speedup the serial part

S Speedup

1 1.0

2 1.8

10 5.3

100 9.2

1000 9.9

10000 9.99
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Amdahl’s Law Example

Assume Fsqrt accounts for 20% of execution time in a GPU. FP 
account for 50% of overall execution time.

Option A: Improve Fsqrt performance by 10

Option  B: Improve all FP ops by 1.6

Which is better?

SpeedupFsqrt=(1 / [(1 - 0.2) + 0.2 / 10]) = 1.22

SpeedupFPall=(1 / [(1 - 0.5) + 0.5 / 1.6]) = 1.23

Improving all FP is better
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Making the Common Case Fast

uniprocessor example: memory hierarchy

• keep recently referenced data/insts onchip (fast)

• exploit locality

Recall “must pay attention to technology”:

• on-chip faster than off-chip today

• SRAM faster than DRAM faster than disk

solution: memory hierarchy
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Memory Hierarchy Specs

Data for reg/L1 ignores multiporting in the register file and 
assumes single port for L1.

L1 may have 2 ports and a register file may have 12

type size speed bandwidth

reg < 3k 500ps 64GB/s

L1 8k-64k 1ns 32GB/s

L2 128k-8M 18ns 48GB/s

main mem 4G 80ns 3.2GB/s

disk 120G 14ms 48MB/s-
23MB/s
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Balance

At a system level, bandwidths and capacities should be balanced

Each level capable of demanding/supplying bandwidths

Refer to memory hierarchy figure

CPU Memory

Memory Should be able to provide data in the rate req. by the CPU

CPU should be able to consume as much data as Memory can provide
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Balance: Example

IPC = 1.5 (1/CPI)

30% loads and stores

90% data cache hit rate

95% icache hit rate

All cache misses require 32 bytes 

So, processor memory demand is:

1.5 * 1.0 * 0.05 * 32  + 1.5 * 0.3 * 0.10 * 32  = 3.8 bytes/clock 

To keep the processor busy memory needs to supply this 
bandwidth

CPU

$ $

Memory
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Balance

Given a resource: If demand bandwidth = supply bandwidth

then the computation is that resource-bound

e.g., if memory bandwidth = processor  demand for program P

then P is said to be  memory-bound

same for CPU-bound, disk-bound or I/O bound

GOAL: to be bound everywhere. 
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Memory Bandwidth

• copy: a[i] = b[i]       scale: a[i] = q*b[i]

• sum: a[i] = b[i] + c[i]    triad: a[i] = b[i] + q*c[i] (saxyp)

Problem Size
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Memory Bandwidth (uniprocessor)
Memory bandwidth of real systems (MB/s) 

(www.streambench.org)

System copy scale sum triad
Alpha ES45/1000 1946 1940 1978 1978

Cray T932 11341 10221 13014 13682
SUN UE 10k/400 364 215 287 296

Athlon 1333 941 592 727 685
PwrMac G4/867 629 615 609 680
PentiumIII/800 424 424 569 554
SparcClassic 57 48 48 43

AMD 386 7.4 5.7 7.7 6.4
Pentium4 1437 1431 1587 1575
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Balance (again)

Storage capacity and bandwidth requirements

• e.g., large cache => higher hit rate => lower demand

• Or large memory => less paging  => lower I/O demand

Amdahl’s rule:

• 1 MIPS <=> 1 MB memory <=> 1 Mbits/s I/O

• if corrected to 1 Mbytes/s of I/O, the rule is still good!
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Bursty Behavior

To get 2 IPC how many instructions should you -

• fetch per cycle? 

• issue per cycle?

• complete per cycle?

• Is the answer 2? 

instructions are not like sand where peaks and valleys are leveled
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An Example 
• A = B + C

• D = E + F
2-way issue:

0 load B load C

1 load E load F

2 add B, C

3 store A add E, F

4 store D

4-way issue:

0 load B load C load E load F

1

2 add B, C add E, F

3 store A store B

It takes a 4-way processor to get 2 IPC!

Design for higher PEAK rate to achieve a desired AVERAGE 
level of performance
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Bursty Behavior

Dependences will cause pipeline stalls (or bubbles or wait times)

So sometimes pipeline will be full and at other  only partially full

a higher PEAK level is need for a  desired AVERAGE level 
performance

loop1:

a[i] = a[i-1] + doo

loop 2:

a[i] = b[i] + c[i]

lo
o

p
1

lo
o

p
1

lo
o

p
1

lo
o

p
2

lo
o

p
2

time

IP
C


