
Appears in the Proceedings of the 34th International Symposium on Computer Architecture (ISCA-34), June 2007

Matrix Scheduler Reloaded

Peter G. Sassone Jeff Rupley II Edward Brekelbaum Gabriel H. Lohy Bryan Black

Intel Microarchitecture Research Lab (MRL), Austin TXyCollege of Computing, Georgia Inst of Technology, Atlanta GA
peter.g.sassone@intel.com

ABSTRACT
From multiprocessor scale-up to cache sizes to the number of
reorder-buffer entries, microarchitects wish to reap the benefits of
more computing resources while staying within power and latency
bounds. This tension is quite evident in schedulers, which need to
be large and single-cycle for maximum performance on out-of-order
cores. In this work we present two straightforward modifications
to a matrix scheduler implementation which greatly strengthen its
scalability. Both are based on the simple observation that the
wakeup and picker matrices are sparse, even at small sizes; thus
small indirection tables can be used to greatly reduce theirwidth
and latency. This technique can be used to create quicker iso-
performance schedulers (17-58% reduced critical path) or larger iso-
timing schedulers (7-26% IPC increase). Importantly, the power and
area requirements of the additional hardware are likely offset by the
greatly reduced matrix sizes and subsuming the functionality of the
power-hungry allocation CAMs.

Categories and Subject Descriptors. C.1.0 [Processor Architec-
tures]: [Single Data Stream Architectures]

General Terms. Algorithms, Performance, Design

Keywords. Microarchitecture, Matrix, Scheduler, Wakeup, Picker

1. INTRODUCTION
To the consternation of microarchitects, process scaling has

provided the vast majority of the speedup seen in processorsover
the last 40 years. In fact, microarchitecture is increasingly hampered
by process constraints such as the relative growth of wire delays
each generation. Though the maximum speeds can be tweaked
through sizing and repeaters, wires still limit the dimension of
many structures in a modern processor design. A quintessential
example is the scheduler. Increasing the selection of instructions
which can issue on a given cycle is an effective method for
increasing performance in a simulator — moving from a 16-entry
to a 64-entry scheduler creates a speedup of 39% in our simulator.
Yet, the physical design of such large schedulers continuesto be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’07,June 9–13, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-706-3/07/0006 ...$5.00.

prohibitive for real commercial designs — the latest Intel and AMD
desktop/server cores only have integer scheduler sizes of 24 to 32
entries [1, 17] primarily for latency reasons. The fundamental issue
is that the delay of the scheduler loop is proportional (or worse) to
the number of entries. This is true on both sides of a traditional
scheduler: the wakeup side responsible for dataflow ordering, and
the picker side responsible for resource allocation and agetracking.

To address scalability on the wakeup side, we present a straight-
forward modification to wakeup matrices to enable much larger
and/or faster instruction windows than traditional methods. The
key idea is the subscription of wakeup matrix columns (broadcast-
to-wakeup communication channels) by consuming operations only
on-demand. Instead of supporting the maximum number of operands
to be waited on — a worst-case assumption which condemns
traditional schedulers to poor scalability, we can supporta small
number and still achieve excellent performance. In our experiments,
we only need to track 12 to 16 broadcasts for typical scheduler sizes,
and only about 20 for very large schedulers.

Similarly for the picker side, we introduce an indirection tech-
nique which greatly reduces the picker matrix size to cover the
same issue window. The key observation here is that the picker’s
primary complexity, maintaining all-to-all ordering resolution, is a
significant over-design. Very similar performance can be achieved
by tracking groups of 12 instructions rather than every instruction.
This ordering approximation can reduce the size of the picker matrix
by 60-90%, shortening the critical path latency significantly.

Together these techniques produce a new type of matrix scheduler
which is far more efficient than traditional square designs.For
architects wishing to hold IPC constant, our estimates showthat the
combined techniques can reduce the schedule-loop delay by 17-58%
over a traditional matrix holding the same number of instructions. If
we hold delay constant from a traditional design, the thin matrix
design can capture a larger issue window, increasing IPC by 7-26%.

This paper is organized as follows. In Section 2 we discuss
the wakeup side of the scheduler, including background, related
work, and our proposal for increasing the efficiency of the matrix
structure. Section 3 follows the same outline for the pickerside.
Section 4 discusses simulation methodology and then evaluates both
enhancements separately and combined. Section 5 concludeswith
discussion of on-going work.

2. WAKEUP
In this section we address the first half of a traditional scheduler,

the wakeup logic. Before we discuss our proposal for increasing the
efficiency of a wakeup matrix by allocating columns conservatively,
we briefly review background on the functionality of the wakeup
logic and the root of the scalability issues.

��
���������� 	
������ �����

�� ��������
�������� �������� ������� ������

��������
���� ������

������ �! ""#	$%

Figure 1: The wakeup and picker portions of the scheduler and
their relation to a typical out-of-order core.

&'() *
&'() +, ,,, -./, ,,, 01&)23456

, ,,, -./, ,,, 01&)23456
777

23&8'))49 :8&3&;<2(= >0?@32A
&2?+23456B&2?*23456B
&2?+23456B&2?*23456B

Figure 2: Illustration of a CAM-based scheduler with the
multitude of needed comparators.

2.1 Background
The wakeup portion of the scheduler is very similar to the wait-

match unit of a dataflow machine [20]. The purpose is to observe
results being generated in order to identify instructions that are
now ready for execution. Figure 1 shows the relation of wakeup
to the rest of a conventional processor core. The dependency
cycle formed between the wakeup logic which identifies ready
instructions, and the picker logic which selects a set of ready
instructions for execution, forms a tight loop which is wellknown
as critical to performance [2].

There are two conventional methods to implement the matching
algorithm in modern schedulers: (a) content addressable memories
(CAMs) and (b) dependency matrices. Despite its disadvantages,
content addressable memories are how most commercial schedulers
are implemented. The result tags (typically just the physical register
number) of selected instructions are broadcasted on a set ofresult
buses, one for each functional unit with a writeback port. Each set
of result buses is connected to comparators (XNOR gates) at each
entry to allow instructions to match their sources against those being
generated. When both of the instruction’s sources are ready, the

C D EFGHID FJGKLC MM N EFGHIN FJGKLC CC O EFGHIO FJGKLM M
D PFQGKRGSI N PFQGKRGSI O PFQGKRGSI

TUVW X YV UZ[ZU\]^ _`YWYU\ZU YUVW a

TUVW a YV\^`UW]b

TUVW X cYbVdZ^]e]fgWYZU
Figure 3: Illustration of matrix wakeup with the critical pa th
shaded.

instruction as a whole is ready and bids for execution. An illustration
of this hardware is shown in Figure 2.

Unfortunately, the most basic implementation of a CAM-based
scheduler requires one comparator for each source on each write-
back port. Thus a scheduler for 32 two-source instructions on a
machine with four writeback ports needs a whopping 32x2x4=256
comparators! The frequent switching of these comparators plus the
long lengths and load capacitance of the result buses creates clear
power and timing concerns.

In response to these concerns, a dependency matrix was proposed
to implement this wait-match function instead [14]. An illustration
of this approach is shown in Figure 3. This wakeup matrix has
one row and one column for every instruction in the scheduler.
Each cell holds one bit of state representing whether the instruction
assigned to this row is waiting on a dependency from the instruction
assigned to this column. These wakeup vectors are set via allocation
comparators which put a 1 in the vector if the corresponding
column will be producing this result tag. These comparatorsare
unfortunately quite cumbersome, both in area and power, given
the throughput of comparisons that must be made per cycle. As
instructions become ready, they clear their respective column (i.e.,
set all bits in the column to 0). When a row is entirely clear of
dependencies (all 0), a wired-or across the row produces a ready
bit for the instruction as a whole. These row and column-based
functions are faster and lower power to implement than CAM-based
matching, but theN2 nature of the matrix makes larger schedulers
still difficult to implement.

Academic researchers have proposed dataflow prescheduling[5,
8, 21, 22] and dependence collapsing [3, 24, 25], both of which use
dataflow information to reduce or eliminate the need for wait-match
in the schedule loop. However, both techniques require complex
power-hungry analysis of the program to work. This analysiscan
be in the processor front-end which will likely increase thebranch
penalty, or in the back-end which will likely require additional
metadata storage. An interesting approach applicable onlyto CAM-
based schedulers is tag elimination [7, 16]. These researchers

28%

28%

28%

29%

30%

41%

41%

41%

41%

40%

30%

30%

30%

30%

30%

0% 20% 40% 60% 80% 100%

128ent

96ent

64ent

32ent

16ent

broadcast heard broadcast wasted no broadcast

`

Figure 4: Distribution of tag broadcasts across scheduler sizes.

observe that the worst-case design of two comparators per port per
instruction is overkill — only 10-20% of instructions require two
source wakeups for most benchmarks. As such, a design which
manages an average-case number of comparators is more efficient
and sacrifices only minor slowdown. Unfortunately, the nature
of these approaches are specific to CAM-based wakeup, which is
inherently slower and less efficient than matrix wakeup evenwith
these enhancements [14].

2.2 Wasted Broadcasts
Despite the speed of matrices, they have incredibly low informa-

tion density. A typical snapshot of a wakeup matrix during execution
shows very few dependenices represented — commonly only 10-
20. Indeed, this confirms the intuition behind tag elimination: the
number of live sources in the scheduler is quite low at any given
time. Unlike in a CAM-based scheduler, however, sources in a
wakeup matrix are physically free. Removing a subset of matrix
intersections (source matches) might reduce power slightly but does
not change the lengths of the dominant ready, broadcast, andgrant
lines. On the other hand, reducing the number of broadcast channels
(columns) greatly reduces the width of the matrix and these wires.

If previous authors observed that few wakeup tag comparators
are needed for near-ideal performance, it is likely that fewtag
broadcasts are also needed. To test this theory, we run our simulator
across our benchmark suite (simulation and benchmark details in
Section 4) and classify all scheduled dynamic instructionsinto three
categories. The first category isbroadcast heard. This is the
textbook case where the instruction generates a broadcast and there
is at least one consumer in the scheduler which is listening for
it. The second category isbroadcast wastedwhere the instruction
generates a broadcast, but there are no consumers in the scheduler.
A consumer might eventually arrive in the scheduler, but it will be
told during allocation that this value is waiting in physical register
storage; the broadcast here is wasted. The final category isno
broadcast, which means the instruction does not generate a renamed
destination. This could be a branch, a store, or a control instruction
whose result is not renamed.

We plot the distribution of these broadcast states for various
scheduler sizes in Figure 4. The latter two categories,wasted
broadcastandno broadcast, combine for a total of 70-71% across
all scheduler sizes, confirming our hypothesis that most instructions
do not need the functionality of tag broadcast regardless ofthe
scheduler size. Combined with the fact that big schedulers are
rarely full of producers (often still refilling from a pipeline flush),
we can see that the number of broadcast-to-wakeup communication
channels needed at any given time is low.

2.3 Hardware Modifications
In order to exploit the scarcity of needed result tag broadcasts, we

modify the allocation and wakeup portions of the microarchitecture
to support tag broadcast on only a subset of the scheduler entries.
Figure 5 shows the hardware changes we implemented for wakeup
subscriptions, with new hardware shaded in gray. We begin with
a wakeup matrix as our baseline design. A traditional matrix,
as discussed in the previous section, supports all-to-all broadcast
by having as many columns (broadcast channels) as it has rows
(ready generation channels). Our matrix, however, need notsupport
total broadcast so we will construct it with fewer columns than the
maximum. Our later results will show this width need only be
around 12-16 to show very favorable performance, even for high-
capacity schedulers. To manage the subscription of columns, we
also add a small table called the Wakeup Allocation Table (WAT)
which maps architectural registers to column numbers. Thistable is
accessed in parallel to the Rename Alias Table (RAT).

Each WAT entry can be in one of three states. First isunallocated,
which indicates the WAT entry data field is a pointer to the scheduler
entry of the last instruction which produced this register.For
instance, an instruction sourcing R4 might see the WAT entry
for R4 as “unallocated, 20”, meaning that this register willbe
produced by the instruction at scheduler entry 20. As this consumer
instruction will need to observe when the result for R4 is ready,
we establish a communication channel between the producer and
consumer, i.e. a matrix column. Thus the allocation logic requests
a column number from the Wakeup Free List, a structure similar to
other microarchitectural free-lists, which holds unallocated wakeup
columns. This column number is assigned to the consumer by
setting the appropriate bit in the dependency vector. The column
number is also sent to the producer instruction. Thus, in our
example, the producer at entry 20 will be told to broadcast (raise
the broadcast line) on this column. This column is then assigned
to this WAT entry (R4 in our example), and the state is changedto
allocated. We have now subscribed this register to a column.

The allocatedstate means this architectural register is currently
mapped to a matrix column, and the data field in the WAT indicates
that column number. In our example, if a subsequent consumerof
R4 allocates, the WAT lookup might return “allocated, 3”, which
means this register is assigned to matrix column 3. The column
number is read and used to set this instruction’s dependencyvector
appropriately. As the producer already knows to broadcast on this
column, no notification of the producer is needed in this condition.

When the producer is eventually granted execution, it will fire a
broadcast along column 3 and wakeup will proceed as in a traditional
matrix. We tell the WAT that this register is now ready so thatfuture
consumers do not set their dependency vectors or notify a producer.
We do this by changing the WAT state of the destination register to
the third and final state,ready. We must remember, however, that
the WAT is indexed by architectural register and is thus updated like
a future file [28]. Sequence numbers, shift registers, or a similar
system are used to restrict WAT updates to the last-allocated writer;
otherwise an older instruction could overwrite newer information
about the state of R4.

The wakeup column is freed if one or both of the following
two conditions is met: (1) the producer of the column has leftthe
scheduler and/or (2) all of the consumers of the column have left
the scheduler. The second condition is an optimization for when a
pipeline flush occurs between a register’s producer and consumer(s).
Even if the producer remains in the scheduler, we can safely revert
the register state todeallocatedand return the column to the free list.
Regardless of why the column is freed, a pointer to it is returned to
the Wakeup Free List for future use.

hij kilmh

nopqrksltuvknipw upjslivknipwxyyz{|}~����
�z����

h�tijlj��tvqhuhijh�ilv��l��u�hnh��i �knli���kjjlhh �lu �ljn�i�lu �ljn�ipqhn hp��
�u� hij� �hn

�lhn kilm ����rksltuk���jknp�q nk��l� tu�knlh�i�vphhtlpqhnui��tjli
tu�knlh�i�vj�vvpn

�jkhn �ljn�i�jkhn �ljn�i

joljsu�pqnhjoljsu�pqnh �ksltu�ill �phn���

Figure 5: Hardware modifications needed for matrix columns subscriptions (not to scale).

The reader should note that we do not free the column when
the producer broadcasts on it. Though this would be safe in many
machines, the use of speculative scheduling in our processor model
makes this hazardous. Speculative scheduling means that consumers
of a load are granted execution assuming the load will hit in the L1
data cache. If the load actually misses, the consumer will bereset
in the scheduler and await a second broadcast from the load when it
hits. Thus one instruction can broadcast multiple times on the same
column, so we cannot assume finality after the first broadcast. Only
after the producer leaves the scheduler can we be assured that no
further broadcast of this column will take place.

The primary goal of our proposal is to shorten the critical path
through the wakeup matrix. Figure 6 shows the necessary changes,
with new hardware shaded in gray. The reader should note this
cell is designed using active-low dynamic logic, as is common with
high-speed commercial implementations. The specific design of the
matrix cell is not particularly relevant, however, as thereare other
reasonable ways of achieving the same functionality. Our purpose is
to simply show a working example, and how minor the changes to
the wakeup matrix cell are.

In our baseline example, picker grants enter from the right,which
become vertical broadcast signals at the transpose column (row
equals column). The broadcast bit clears any dependencies in this
column, which is stored in a 1-bit SRAM cell labeleddatadep. If the
cell still has a dependency, it will pull down therow-readysignal,
indicating this instruction is not ready to bid yet. If no instructions
pull down row-ready, the line will stay high and the picker will
interpret that signal as a bid. We will discuss the picker side of
this circuit loop in the next section.

To enable our column subscription technique, we modify the cell
with an additional bit of information,writecol, which indicates if
this row (producer) is assigned to broadcast on this column.The
writecol bit is assigned by the WAT during allocation of the first
consumer, and it is guaranteed that there is only one bit set per row
and per column. This bit is now ANDed with the existing grant input
to determine the broadcast this cycle. This adds one gate delay to

the ready output path of this cell, but as all cells compute their ready
in parallel, the total row-ready critical path is only increased by one
gate. We believe this minor impact is strongly outweighed bythe
reduction in critical wiring path through the thinner matrix.

2.4 Hardware Considerations
There are many considerations in our approach deserving brief

discussion. Most important is that an instruction’s dependency
vector is now set entirely by the WAT. This subsumes the function-
ality of the allocation comparators in a traditional wakeupmatrix.
Though the WAT is heavily ported and the accompanying logic is
not negligible, the removal of these comparators should go along
way toward offsetting the power and area costs.

Also of interest is that producer notification of broadcast columns
can create a “ships passing in the night” scenario. If the producer is
granted execution at the same time it is assigned a broadcastcolumn,
care must be taken that the dependency vector of the consumeris set
properly. Otherwise deadlock could occur as the consumer waits for
a column broadcast that will never come. Ships-passing logic is not
intractable, however, and it is handled cleanly for other purposes in
many existing scheduler designs.

Finally, we should note that the WAT is, by its very nature, a
speculative structure. It will invariably track mappings down the
wrong path and will need to be restored to a correct state. In Figure 5
we show checkpoints as a possible solution, but there are numerous
equally valid methods for state restoration. A detailed analysis of
all solutions is beyond the scope of this work, but the most obvious
solution is to use the same method as used for the RAT. Along those
lines, it is conceivable that the WAT information could simply be
incorporated into the RAT. Both the RAT and WAT are indexed
by architectural register number and are accessed during the same
phase of allocation. This merging is not ideal, however, since WAT
reads are only performed for instruction’s sources, and theWAT will
be updated at both execute and dispatch. Additionally, we feel it is
generally simpler to architect new structures than modify existing
verified structures.

������������ �
�¡¢¡ �¡ �£

��¤¥�¡��¦
�§§�� ¨�§©�

�§§��¨�§©�
����ª�¡¢

¤�©�¡��§
�§��«

�§��«����������¡ ¡���©�

�§��«��¤¥�¡��¦��� ���� ���� �������������
�§��«�¡� �¡¢¡ �¡ �¦¬���§§��

�¡� ¤�©�¡ª��§¬�� �§§����� ������������� ��� �

�§¡�� �¡¢¡ �¡ �¦¬�� ���������
¤�©�¡�®©���§¯

�§��«
«©§§ ¦ �¡��¦

��¤¥�¡��¦��¤¥�¡��¦��¤¥�¡��¦
Figure 6: Example 4x2 wakeup matrix (left) and matrix cell circuit (right) with new circuits shaded in grey.

3. PICKER
The other half of the schedule loop is the picker, sometimes called

the select logic. Figure 1 shows the relation of the picker tothe
wakeup logic and the rest of the out-of-order pipeline. As with
the previous section, we will first briefly review pickers andtheir
scalability issues before discussing our modifications.

3.1 Background
At its most basic level, the picker is an arbitrator which de-

termines which instructions are permitted to dispatch to which
execution resources. The pickers in modern microprocessors have
several different factors to weigh in their selection process:

Instruction Readiness. Not all instructions in the scheduler are
arbitrating for execution — only those that have been no-
tified via the wakeup logic that their inputs are ready offer
themselves to the picker via a bid signal. In the worst case,
however, all instructions in the scheduler might be ready and
bidding.1

Candidate Resource List. This is a list of possible execution-
resources for an instruction type. For instance,add instruc-
tions might be executable on three different integer ALUs,
andfpdiv instructions might only be executable on the single
floating-point divider. The picker must assure that instructions
are only dispatched to appropriate execution units.

Resource Availability.The picker must also understand execution
resource availability and avoid conflicts. This is especially
tricky for resources with variable latencies, such as a load
unit or divider. Additionally, the picker must often understand
the availability of (often complex) bypass paths and physical
register read ports.

1In reality, one entry would contain the producer instruction which
readied all the others, so notall entries can bid at once.

Conflict Resolution Data. This category includes all the informa-
tion provided by the bidding instructions to resolve resource
conflicts. For instance, if there is only one FP multiplier and
there are two FP multiplies ready to execute, the picker can
use additional information from the instruction (such as its
age or priority) to decide which is granted and which must
wait.

In a traditional picker, all of this information is combinedto form
a set of grant signals, which are used to communicate which of
the bidding instructions are selected for execution and on which
resources. These granted instructions then broadcast their desti-
nation register tags to the other entries in the scheduler. When an
instruction has heard all of its sources broadcasted (the ones that
weren’t already ready upon entering the scheduler), it can safely
raise its bid line to the picker and the scheduler loop is closed.

The most complicated aspect of the picker is the conflict resolu-
tion, most often done with age as the tie breaker — older instructions
go before younger ones. Other restrictions (i.e., resourceconflicts)
can generally be handled by fast cancellation logic which easily
finish “underneath” the age comparison. A straightforward way
to perform age ordering is an age matrix, shown in Figure 7.
The age matrix has one row and one column per instruction in
the scheduler, where the column number equals the row number.
The cell holds one bit which represents an age conflict bit; itis
set to 1 if the instruction at this row is older than the instruction
corresponding to this column, 0 if the row instruction is younger.
An instruction allocates with all conflict bits set (it is younger than
every other instruction). As other instructions enter the scheduler,
the corresponding columns are zeroed indicating that they are now
older than the instructions using those columns. Superscalar allocate
follows the same algorithm, but shortcuts might be taken in setting
the age-bits appropriately between the instructions in theallocate
group. It should also be noted the bits along the diagonal arenot
used since an instruction cannot be older or younger than itself.

Figure 7 also shows an example of resolution between instructions
A and C. Bids from these instructions enter from the left and by

° ±²³° ´µ¶·¸ ¹ ºº» ±²³» ´µ¶·¸ ¹¹¼ ±²³¼ ´µ¶·¸ º
° ½¾·¿À²½¸ » ½¾·¿À²½̧ ¼ ½¾·¿À²½¸ ÁÂÃÄ Å ÆÃ ÇÈÉÊÉË ÌÂ ÁÂÃÄ ÍÎ ÃÌÏÌÐÑÒÂ Í ÏÇÂÏÉÐÃÄÓÉ ÈÔÇÂÄÁÂÃÄ Å ÇÂÊÁÂÃÄ Í ÕÌÄÓ ÕÆÊ

ÖÌ ÏÌÐÑÒÂÏÇÂÏÉÐÃ ÄÓÉÈÔÇÂÄ Ì× ÁÂÃÄ Í
Ø ÙÓÉ ÕÆÊ Ì× ÁÂÃÄÍ ÕÉÏÌÒÉÃ ÇÏÌÂ×ÐÆÏÄ ÌÂ ÆÄÃÏÌÐÑÒÂÚ

Figure 7: An illustration of an age matrix with an example conflict resolution between younger instruction A and older C.

default result in a grant back to that instruction. This is illustrated
with the loop-back from bid to grant at the far right of each row.
Each cell in the row, though, must cancel the outgoing grant if
two conditions are met. The first is that another bidding instruction
broadcasts a conflict. This conflict is directly connected tothe bid
on the transpose row. So if the instruction on row 9 bids, there will
be a conflict broadcast on column 9. The other condition is that
the age-conflict bit in this cell is set. Thus if the other instruction
bids and it is older, the grant for the current instruction iscanceled.
If no conflicts occur, the tentative grant will continue unimpeded
out of the age matrix and become an actual grant to the instruction
on this row. The logic and wiring is slightly more complicated
when multiple execution resources are being arbitrated, but the basic
design holds.

The scalability of the age matrix, however, is limited. Its size
grows quadratically as more scheduler entries are added, and the
critical path, where the bottom-most instruction must cancel the top-
most instruction, increases at a three-fold rate. These factors make
the picker matrix difficult to meet tight power and timing constraints
for large schedulers. However, it stands to reason that all-to-all
ordering information shouldn’t be necessary, especially as scheduler
size grows. The conflict resolution logic is only needed whenthere
are resource conflicts — and modern cores have far more resources
than their average throughput (instructions per cycle, or IPC) utilizes
in traditional benchmarks.

3.2 Age Tracking
In order to quantify the importance of age-based ordering within

a picker, we add a pseudo-random picker algorithm in our simulator.
In other words, every time multiple instructions are bidding for the
same resource on the same cycle, the picker chooses a pseudo-
random one. To make our experiments deterministic, the algorithm
is actually choosing the instruction most towards the top ofthe
scheduler to win the conflict. After a very short startup phase,
the scheduler’s out-of-order insertion and removal makes this a
sufficiently random choice in terms of relative instructionage. It
is important to note that randomly picking, or any picking algorithm
for that matter, is not at risk of incorrectness. Only ready instructions
are eligible for picking, and eventually the oldest instruction will
have to get picked when it is the only ready instruction in the
window. Thus, poor picker heuristics cannot cause deadlock.

Figure 8 plots the relative performance difference betweenthe
perfect and pseudo-random picker (both the benchmarks and simu-
lator are described in further detail in Section 4). The figure shows

that across the benchmark suites scheduler size is a very strong
component of age sensitivity. For small schedulers, such asthe
16-entry configuration, randomly picking ready instructions only
results in a 1% slowdown. A reasonable case could be made for
removing age-tracking altogether in a small design such as this.
The larger windows, though, show up to 10% average performance
loss with a random picker, with larger effects in high-parallelism
applications. In scheduler sizes or applications where more ready
instructions bid for execution, the odds of randomly choosing a
non-critical instruction becomes more likely. With very large
schedulers (128 entries) age-criticality can drop somewhat because
the perfect-age performance has saturated; however, the random-
age performance continues to creep up slowly since its poor picks
make it behave like a smaller scheduler. Regardless, considering the
evolution of desktop microprocessors towards larger windows and
the complexity of tracking a large number of ages, a solutionfor
scalable age tracking is clearly indicated.

3.3 Related Work
Early in the era of out-of-order execution, Butler and Patt [6]

studied the efficacy of different picker criteria such as number of
dependents, whether the instruction feeds a branch, the dataflow-
chain length, and others. They concluded that performance was
largely independent of the heuristic used, and simpler was thus
better for real designs. Our results from the previous subsection
show that less aggressive machines like the kind studied by Butler
have little sensitivity to picker heuristic. However, we have also
shown that more aggressive machines with larger issue windows
need some form of picker ordering.

However, determined industry and academic researchers have
attempted to address the monolithic complexity of the picker. The
most commonly published approach is to split up the picker and
thereby divide and conquer the problem. Partitions can be created
by several different heuristics [1, 22, 23, 26, 27], though the most
common in industry is by execution resource. The cost of any
partitioning technique, however, is the inevitable loss ofefficiency,
shown in Figure 9 (simulation and benchmark parameters detailed
later in Section 4). The baseline curve shows our default machine
which has a unified issue queue serving six functional units.The
6-way partitioned curve shows the same machine, except where
the total scheduler size has been hard-divided equally among our
6 functional units. Instructions are assigned to partitions based
solely on their assigned unit, with a load-balancing algorithm used
to steer instructions with multiple entries in their candidate resource

0%

2%

4%

6%

8%

10%

12%

14%

server fspec'00 ispec'00 spec'06c dig-home games multimedia office wkstation average

ag
e

co
nf

ic
t s

en
si

tiv
ity

16ent

32ent

64ent

96ent

128ent

Figure 8: Impact of age-based conflict resolution across scheduler sizes and benchmark categories.

-

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0 20 40 60 80 100 120 140

scheduler entries

m
ic

ro
 o

ps
 p

er
 c

yc
le

baseline

3-way partitioned

6-way-partitioned

Figure 9: Scheduler scaling curves for a unified scheduler, 3-way
partitioned, and 6-way partitioned.

list. The 3-way partitioned curve is similar, except we divide the
total scheduler size into three equal segments, where each segment
serves two functional units each. The figure shows that partitioned
schedulers require several more total entries for an equivalent per-
cycle performance against a unified design. For instance, a perfor-
mance target of 1.60 micro-ops per cycle in our simulator would
require about 27 unified entries, 48 three-way partitioned entries, or
60 six-way partitioned entries. Multilevel partitioning techniques
[4, 18] are a related approach which resemble cache hierarchies by
using a small, fast wait-match buffer backed by larger, slower buffer.
Thus the critical scheduler loop can be tighter while allowing far-
flung parallelism to be eventually discovered. Importantly, these
techniques do not directly address wakeup scalability — we still
need a way of communicating operand readiness between partitions.

There has also been academic work in attempting to reduce use
of the picker. Select-free instruction scheduling [5] and grandchild
scheduling [30] both move the picker into a separate pipeline stage
from wakeup. Similarly, cyclone [8] proposes to replace thepicker
logic with a dataflow prescheduler which places instructions into
timed execution queues. In all these works, execution becomes
dataflow speculative — the instruction may not be ready when
it is picked. Thus a recovery mechanism such as replay must
be present in these approaches to insure proper execution. Many
academic authors have implicitly addressed pickers in other related
areas. Work on critical path discovery and exploitation is especially
relevant to our discussion because it has shown that age is not
the optimal conflict-resolution heuristic [10, 11, 31]. Criticality
prediction, however, is quite complex and largely ineffective at
producing speedup.

There have also been several commercial techniques for picker
scaling. A generic technique found on many older out-of-order
microprocessors is age estimation, sometimes called pseudo-FIFO
in reference to cache replacement pseudo-FIFO techniques.Our
proposal can also be considered pseudo-FIFO because it estimates
age, but we believe it to be a fundamentally different approach than
what is likely used in commercial microprocessors.

Another commercial innovation in picker design is the compact-
ing scheduler, disclosed by the DEC Alpha 21264 architects [9, 19],
which provides an interesting alternative to expansive picker logic.
The concept is simple — always allocate scheduler entries atthe
top of the scheduler and constantly compact the instructions towards
the bottom into the deallocated slots. In this manner, the scheduler
stays physically ordered by age despite allowing arbitrarydispatch
and deallocation. Thus the age comparison in this design is replaced
with a simple priority arbiter (or tree of arbiters), which takes in
bids and returns one grant for the bottom-most (oldest) bid.The
advantage of the compacting scheduler is that it achieves anage-
based pick without just-in-time age comparisons or the inefficiencies
created by partitioning. On the negative side, constantly shuffling
instructions downward combined with the massive number of write
ports creates obvious energy issues, especially for large schedulers.

3.4 Hardware Modifications
Rather than try to maintain the order of every instruction against

every other, we instead seek to produce a loose ordering by grouping
instructions. We will track which groups are older than other groups,
but within a group the age will not be tracked. Figure 10 showsthe
hardware changes that we need to implement group ordering. The
approach uses an age matrix which allocates rows to every scheduler
entry as normal, but allocates columns to instruction groups. As later
results will show, the number of picker matrix columns needed for
group-age tracking can be 60-90% smaller than the baseline with
minimal performance impact.

The most minor hardware change is a group counter which
could be implemented anywhere from decode down to scheduler
allocation. This logic simply assigns a group number to each
instruction, changing after a fixed number of instructions.This
group number then indexes into a Picker Allocation Table (PAT),
somewhat similar to the Wakeup Allocation Table from the previous
section. The PAT uses the group number as an index to lookup
which age-matrix column this group is assigned to. If no column
is assigned to this group yet (first instruction from group),a column
is pulled from the Picker Free List and assigned to the instruction
and written into the PAT at that index. If the free-list is empty, the
allocation must stall until a column becomes free. The reader should
note the WAT and PAT are accessed in parallel to the numerous other

ÛÜÝÞßàáÜâãäå æãçßààäèÝÞãáÜâãäå
àäèÝÞãèçéßáêëèÜìâ íÞèâçãäêìâìäéç

îïðñàäèÝÞãÜééçèÜâäçêâÜëéÞò
äêìâ

èóÞèÝàçäêâì àäèÝÞãôãÞÞ éäìâõö÷øùú÷øûüýöþ÷õÿúäêìâãßèâäçê
ÜæÞ íÞèâçãçàèç�ÞÜééçèÜâäçê éçæäè

�ÞàÞê�ÞêèäÞì ÜæÞ íÞèâçã ßà�ÜâÞìôãçáäììßÞ
Figure 10: Hardware changes for a faster picker with group-age conflict resolution (not to scale).

checks that occur during the allocate stage(s) of the pipeline, so we
do not expect this logic to extend the critical path.

Though we could technically use the group ID (with rollover)as
the column ID and skip the translation logic, it is advantageous to
allow more live groups than columns. An illustrative example is that
column 1 is assigned to group 1, column 2 to group 2, etc., until all
columns are filled. The machine then stalls for lack of columns,
which is the correct behavior. Then suppose all the instructions
in groups other than group 1 issue. Intuitively we should have
several free columns to unstall allocation, but without group-to-
column translation, the allocator has wrapped around to group 1
and will remained stalled. In other words, the lack of indirection
between groups and columns forces columns to be allocated in-
order. This is unduly restrictive and causes large performance drops
in our simulations. Thus we use a simple group counter and map
table to allow columns to allocate out-of-order.

The picker matrix cells are also modified slightly. Figure 11
shows a possible dynamic circuit implementation of a pickermatrix
cell, with new additions shaded in grey. As with the wakeup matrix
diagram in Figure 6, there are several other equally valid ways
of implementing this logic; the example shown is only illustrative
of how minor the changes are. In the traditional square matrix
design, each entry is hard-coded to broadcast conflicts on its
transpose column (equal to the row number). For our group picking
functionality, however, we require each column to be connected to
every column’s conflict line. As such, we need to handle two cases:
(1) the cell is on a row assigned to the current column, and (2)the
cell is on a row assigned to a different column. Thus the circuit
shown has two pull-down paths for the two different cases. When
the cell is assigned to this column, we need to broadcast the conflict
up and down the vertical conflict line. We also need to kill the
outgoing grant if the arbiter (described below) indicates aconflict
in this column — another instruction in this group has priority. The
other case is the traditional case, where we kill the grant ifthe age
bit is set — this group is older than another bidding group. Overall,
we have added one SRAM cell indicating if this cell belongs to
this column, and three transistors gating the two differentbehaviors.
These changes only lengthen the critical path by only two transistors
for the entire matrix since all cells compute their kills in parallel.

However, the picker also needs an arbiter to make a random
choice when there is a conflict within a column. In the traditional
design this could never occur since only one instruction is assigned
per column. There are several ways to choose randomly, but we
choose the priority arbiter used in the compacting scheduler. This
logic tree is designed specifically to give a fast grant basedonly
on the physical location of the input bids. This is a convenient
circuit to use because, though the pick is ignorant of the critical
path, the determinism of the heuristic makes hardware debugging
tractable. Though this arbiter adds to the critical path along with the
two transistors above, we feel the deleterious impact is farless than
the dramatic shrinking of the horizontal ready and grant lines.

4. RESULTS
To evaluate our wakeup and picker techniques, we modify our

x86 platform simulation infrastructure to model our two proposals,
first separately and then together. The simulator thoroughly models
a microarchitecture of a hypothetical future microprocessor with
accompanying chipset and memory. Key parameters of the model
are shown in Table 1. The simulator executes Long Instruction
Traces (LITs) which are checkpoints of a complete machine state,
including memory, that can be used to initialize an execution-based
performance simulator. LITs also include the interrupt injections
observed by a real machine executing the application, thus our
simulation environment allows us to model user-mode and kernel-
mode instructions in the same manner that a real system does.
Similar to the SimPoint methodology [15], each LIT runs for a
characteristic portion of the application (on average, 6 million
instructions) after warming up the caches and branch predictors.
LITs are gathered from various categories, elaborated in Table 2
with a total of 604 LITs being studied.

4.1 Wakeup Side Results
In order to determine the efficacy of wakeup subscriptions, we

first analyze the number of wakeup columns we need for acceptable
performance across a sweep of scheduler sizes. This experiment
aims to verify the statistics from Section 2 that few instructions are
using broadcast channels at any given time.

Figure 12 shows these results. The first bar is our baseline, an

���������	

��
�����������

�����

���������������

�������
������������������

����� �������� ����� �� ��������� ������!�����

�����
����������������

���� �������
��������" � �

�� ��� ��� ��!����� ��� ��������"� ������
��#��������" �������

��$ �����

������������" ��
������������"

Figure 11: Example picker matrix cell with new hardware
shaded in grey.

unaltered simulation using our default parameters. The remaining
three bars use our wakeup subscription algorithm with 16, 12, and
8 columns respectively. Per-cycle slowdown from the baseline
are shown at the top of each bar. It is clear we are taking
advantage of the low demand for broadcast-wakeup communication
channels shown in Figure 4, and thus very few columns are needed
even with very large schedulers. A wakeup matrix of only 12
columns produces less than a percent slowdown regardless of
scheduler size. Larger schedulers need more columns to maintain
a constant slowdown, but only slightly more are needed. Justas the
marginal gain of additional scheduler entries diminishes,so it is with
additional wakeup columns.

As each bar in Figure 12 is an average of approximately 600
benchmarks, much detail is abstracted away. So we break down
the 64-entry bars and plot the slowdown for each benchmark suite
in Figure 13. Here we can see a great deal of variation, especially in
the 8 wakeup column case, being hidden by the large averages in the
previous figure. Digital home benchmarks, with their high average
IPC (or micro-ops per cycle in our case), are highly susceptible to
anything that decreases the effective issue window size. FSPEC,
which also has a high IPC, has relatively few producer-consumer
relationships within the scheduler, thus making conservation of
wakeup columns less relevant to this suite.

Interestingly, the FSPEC00 suite speeds up from the use of
wakeup subscriptions. On the face this is counter-intuitive as
our algorithm can only add stalls, not remove them. However,
sometimes a larger scheduler combined with an idle and eagerload
unit will allow more errant loads to be issued, tying up important
memory subsystem resources (cache ports, miss status handling
registers, etc.) even after the mispredicted branch is exposed.
Usually this slowdown effect is most apparent with small changes in

Parameter Value

Front End Width 4 wide
Commit Width 4 wide
Execution Units 3 heterogeneous int/FP units [12]
Memory Units 2 load/store units
Reorder Buffer 256 entries
Load Queue 96 entries
Store Queue 64 entries
L1I Cache 32KB, 8 way, 64B line, 4 cycles
L1D Cache 32KB, 8 way, 64B line, 4 cycles
L1 TLB 128 entries, 4 way
L2 Cache 512KB, 8 way, 8 cycles
L2 TLB 512 entries, 4 way
L3 Cache 4096KB, 16 way, 20 cycles
Memory 32GB/s DDR2 timings
Branch History 2048 entries, 4 way
Branch Targets 4096 entries, 8 way

Table 1: Primary parameters for machine simulation model.

Benchmark Class Example Applications

Server SpecJBB, TPCC
FSPEC 2000 wupwise, ammp
ISPEC 2000 gzip, gcc
SPEC 2006 candidates gromacs, mysql
Digital Home video encode, decode
Games shooters, realtime strategy
Multimedia photo filter, raytracer
Office word processor, spreadsheet
Productivity file compression, doc rendering
Workstation CAD, compiler

Table 2: Benchmark suites used for performance analysis.

scheduler size, as large strides allow enough additional parallelism
to outweigh the errant load effect. This effect is at work in several
benchmarks across our suite, mostly concentrated in ISPEC00 and
FSPEC00. Wakeup subscriptions make the scheduler appear slightly
smaller when columns are in high demand, thus these benchmarks
profit from errant loads being excluded from the scheduler.

We also observe the effect of column reallocation on performance.
Often with a free-list approach, microarchitectural resources are
not available for reallocation on the cycle after they are freed.
Signal propagation delay, combined with careful bookkeeping to
avoid losing resources, means it might be a few cycles beforethis
resource is ready for allocation. Figure 14 shows the sensitivity
of our algorithm to delays between a wakeup column becoming
free (producer and/or consumers leave scheduler) and when it is
available for allocation to an incoming instruction. We evaluate this
on a 64-entry scheduler over a range of 0 to 3 reallocation cycles
for various column counts. Figure 14 shows that performancecan
drop noticeably if the number of reallocation cycles grows too large
with too few wakeup columns. As increasing the reallocationdelay
effectively reduces the effective number of wakeup columns, we can
compensate for additional delay with more columns. For example,
the data shows that 12 wakeup columns with 2 reallocation cycles is
equal performance with 16 columns with 3 reallocation cycles.

These small IPC losses shown are offsets against the reduced
critical path distance through the wakeup matrix. The critical path
for a wakeup matrix is a grant to the top-most entry, which sends a
broadcast on the first column down to a consumer at the bottom-most
entry, which then becomes ready and flips its row-ready line which
heads back to the picker. In other words it is a line around three
sides of the matrix perimeter, shown by the shaded line in Figure 3.

To quantify this value, we count the number of cell hops on
the critical path through the matrix with and without wakeup
subscriptions. This is clearly a crude metric, but the custom circuit,
floorplan, and process variations affecting scheduler designs make
more specific numbers hazardous. Figure 15 shows the result of

0.
0%

-0
.3

% -0
.4

%

-0
.4

%

-0
.4

%

0.
0%

-0
.5

% -0
.7

%

-0
.7

%

-0
.7

%

-0
.4

%

-1
.5

% -1
.9

%

-2
.0

%

-2
.0

%

1.00

1.20

1.40

1.60

1.80

2.00

2.20

16ent 32ent 64ent 96ent 128ent

m
ic

ro
-o

ps
 p

er
 c

yc
le

baseline
16 columns
12 columns
8 columns

Figure 12: Performance impact of various wakeup column
counts.

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

se
rv

er

fsp
ec

'00

isp
ec

'00

sp
ec

'06
c

dig
-h

om
e

ga
m

es

mult
im

ed
ia

off
ice

wks
ta

tio
n

av
er

ag
e

m
ic

ro
-o

ps
 p

er
 c

yc
le

baseline
16columns
12columns
8columns

Figure 13: Per suite performance slowdown for 64-entry
scheduler with 16 wakeup columns.

this critical path analysis for different scheduler sizes and wakeup
matrix widths. The top line is the baseline machine with a traditional
square wakeup matrix. The unscalability of the square design is
clear — the critical path increases proportionately with the number
of entries. It is difficult to justify this delay increase even with
the IPC improvements that larger schedulers afford. The remaining
lines show the critical paths of a rectangular matrix with various
widths. It is evident that these delays scale far better thanthe
traditional square matrix design. This allows us to design alarge
scheduler with the critical path delay of a much smaller one.For
instance, a 64-entry 12-column configuration has similar delay to
that of a traditional 32x32 configuration, yet it has a 7.5% higher
performance. Similarly a 32-entry 8-column configuration has a
similar delay to a traditional 16x16 but 26.5% higher performance.

4.2 Picker Side Results
The first step in evaluating the group picking technique is to

determine how to divide up our groups. Groups are the quantum
that will be ordered in our picker. If the groups are too big, the
selection will degrade to the random picker, which we have seen is
not acceptable. If the groups are too small, then we will needmore
columns to track all the instructions in the taller schedulers. Our
first intuition was to divide at basic block boundaries, but the high
variance in block size created fragmentation in our picker design,
dramatically reducing performance. So we instead cut groups after
a constant number of instructions, regardless of control boundaries.

To determine the optimal number of instructions per group, we
need to observe the relationship between the number of picker
columns and the number of instructions per group. As an illustration

0.
0%

0.
0%

-0
.8

%

-0
.3

%

-1
.2

%

-3
.8

% -1
.0

%

-2
.4

%

-8
.5

%

1.40

1.50

1.60

1.70

1.80

1.90

2.00

8 columns 12 columns 16 columns
number of wakeup columns on a 64RS

m
ic

ro
-o

ps
 p

er
 c

yc
le

0 cycles

1 cycle

2 cycles

3 cycles

Figure 14: Sensitivity to wakeup column reallocation delayfor
a 64-entry scheduler.

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100 120 140

scheduler entries

m
at

rix
 c

rit
ic

al
 p

at
h

ho
ps

baseline

16 columns

12 columns

8 columns

6 columns

4 columns

Figure 15: Critical path hops through wakeup matrix for
various heights and widths.

we use a 64-entry scheduler, though other scheduler sizes follow
similarly. Figure 16 (top) plots the performance of variousgroup-
size and column-count configurations. This simulator has a baseline
wakeup matrix, but alters the picker so that groups are ordered but
instructions within a group are not. Figure 16 (bottom) shows this
same data as a surface map so we can more clearly see the sweet
spot for number of instructions per group. The reader shouldnote
this quantity is essentially a free-choice; that is, the size chosen
only affects the size of the group counter, a trivial concern. The
number of columns, however, is far more important. The objective
of group-based picking is to reduce the number of picker columns
while maintaining acceptable performance. The map in Figure 16
(bottom) shows us that we can use fewer columns if we choose
the proper number of instructions per group. Thus we should
choose the group size where the saddle of the white-shaded (highest
performance) area is, because that is where we need the fewest
number of columns for a given performance level.

Interestingly, the optimal number of instructions per group is
around 10-14 for all scheduler sizes in our simulations, thus we
choose 12 instructions per group for all our performance experi-
ments. Figure 17 shows these performance results across a variety
of scheduler sizes. The first bar in each group is the baseline
picker, a configuration with perfect age resolution. The remainder
of the bars show group picking with a reduced number of columns.
Configurations which do not allow the full capacity of the scheduler
to be reached are omitted. For instance, at 12 instructions per
group, 128 scheduler entries requires at least 11 columns totrack
all entries. Thus we do not include smaller column counts forthe
taller schedulers.

-0
.9

%

-0
.5

%

-0
.9

%

-1
.4

%

-2
.3

%

-1
.6

%

0.
0%

0.
2%

-0
.4

%

-0
.5

%

-2
.1

%

-1
.8

%

-2
.5

%

-3
.0

%

-4
.4

%

-2
.9

%

-1
.4

%

-1
.4

%

-0
.4

%

-1
.5

%

-1
.9

%

-1
.4

%

-2
.5

%

-3
.0

%

-4
.3

%

-3
.4

%

-2
.1

%

-0
.4

%

-0
.1

%

-1
.3

%

-2
.1

%

-2
.2

%

-2
.4

%

-3
.0

%

-4
.3

%

-3
.5

%

-2
.2

%

-0
.9

%

-0
.7

%

-1
.3

%

-2
.0

%

-1
.7

%

-2
.3

%

-2
.9

%

-4
.3

%

-3
.7

%

-2
.0

%

-0
.7

%

-0
.6

%

-1
.1

%

1

1.2

1.4

1.6

1.8

2

2.2

2.4

server fspec ispec spec06c dig-home games multimedia office wkstation average

m
ic

ro
-o

ps
 p

er
 c

yc
le

16ent (8W 8P)

32ent (12W 12P)

64ent (16W 16W)

96ent (16W 16P)

128ent (16W 16P)

Figure 18: Performance of wakeup and picker techniques combined for different benchmark suites.

1.68

1.70

1.72

1.74

1.76

1.78

1.80

1.82

8insns 12insns 16insns

m
ic

ro
-o

ps
 p

er
 c

yc
le

8col

12col

16col

8insns 12insns 16insns
8col

12col

16col

64RS1.775-1.8

1.75-1.775

1.725-1.75

1.7-1.725

sweet spot

Figure 16: Chart (top) and surface map (bottom) plotting the
performance (micro-ops per cycle) at different column counts
(col) and micro-ops per group (insns) for a 64-entry scheduler.

We can see from the results that group picking is highly effective
at reducing the amount of age tracking needed, though the ideal
number of columns is still related to scheduler size. A 16-entry
scheduler loses only 0.7% per cycle performance by trackingthe
relative age of only 4 groups of instructions rather than all16
individual instructions. The 128 entry scheduler loses only 1% by
tracking 16 group ages rather than all 128. For brevity we omit an
analysis of picker column reallocation delay, but the results are quite
similar to the wakeup side (see Figure 14): additional delayincurs
marginal performance costs but can be compensated for with an
extra couple of columns. Even with these additional columns, group
picking reduces the size and latency of the matrix significiantly from

-0
.9

%

-1
.0

%

-0
.9

%

-0
.4

%

-0
.4

%

-1
.6

%

-1
.5

%

-1
.0

%

-0
.9

%

-0
.4

%

-5
.2

%

-5
.0

%

-4
.0

%

-1
.1

%

-0
.4

%

-4
.6

%

-0
.5

%

-1
1.

5%

-0
.7

%
1.00

1.20

1.40

1.60

1.80

2.00

2.20

16ent 32ent 64ent 96ent 128ent

m
ic

ro
-o

ps
 p

er
 c

yc
le

group (16)

group (12)

group (8)

group (6)

group (4)

`

Figure 17: Performance of group picking across a range of
scheduler sizes. Group size is 12 instructions in all group-
picking configurations.

the baseline picker design. This latency reduction might allow looser
timing in the wakeup phase.

Alternatively, scheduler height can be added without significant
impact on the critical path through the picker. This path is similar
to the wakeup side path — a line across the bottom, up the farthest
side, and back across the top. Thus we can use the same matrix delay
estimates from in Figure 15 to track the number of hops through
the picker matrix. As with the wakeup matrix, cell hop counting
is a crude metric but is agnostic to process, floorplan, and circuit
variations. Given the need for only 8-16 columns, the data inFigure
15 indicates a similar improvement in delay on the picker side as on
the wakeup. For instance, a 64-entry 16-column picker has the same
number of hops as a 32-entry square picker, but has 7.3% higher
performance.

4.3 Combined Results
We have shown so far, separately, that the wakeup and picker

enhancements allow significant improvement in the scalability of
the two scheduler segments. In our final analysis, we combine
the techniques into a single scheduler configuration and compare
against our baseline matrix scheduler. Figure 18 plots the combined
performance numbers for various scheduler sizes. Error bars and
data labels indicate performance loss from our baseline scheduler
with complete wakeup and picker matrices, and the legend indicates
the number of wakeup and picker columns used for each scheduler

-33%
-42%

-50%
-56%

-58%

0

100

200

300

400

500

600

700

800

900

0 20 40 60 80 100 120 140

scheduler entries

m
at

rix
 c

rit
ic

al
 p

at
h

ho
ps

baseline

mtx reloaded

Figure 19: Critical path hops through total baseline matrix
scheduler and thin matrix scheduler for various scheduler
heights and widths.

height. The graph shows that most configurations have between
1 and 2% average performance loss from the baseline — the
equivalent of cutting the baseline scheduler by few entries.

However, Figure 19 shows that the wakeup and picker thinning
techniques decrease the scheduler loop latency much more than
dropping a few entries would. Our latency estimation metric,
cell hop count, decreases from 33% with a 16-entry schedulerto
58% with a 128-entry scheduler. Interestingly, the path delays
are nearly identical for a baseline 32-entry scheduler and a64-
entry scheduler with thin wakeup and picker matrices, a trade
producing an average 8.3% performance gain for similar timings.
Even accounting for slightly more complex cells in both matrices,
the efficiency improvement is clear.

5. CONCLUSION
Our goal in this work is to provide greater published under-

standing of matrix schedulers, to reveal their design advantages
and scalability weaknesses, and improve on the basic approach
through simple indirection techniques. On the wakeup side,we
have shown that the all-to-all tag broadcast in a traditional matrix
is over-design: only a handful of tags need broadcast, even in large
schedulers. By conservatively subscribing to broadcast channels
(wakeup columns) we can reduce the size and wire-delay through
the matrix significantly. An additional structure is required to map
registers to columns, but it likely amortizes its own cost byreducing
the matrix size and eliding the need for the large bank of traditional
allocation comparators. Similarly, we have shown that the picker
matrix is over-designed for providing full age resolution.Indeed,
some level of age tracking is needed, but ordering small groups of
instructions appears to be adequate. IPC drops by less than apercent
if the number of groups in-flight (picker columns) is kept reasonable.
By reducing the width of the both matrices by 60-90%, the total
critical path latency is greatly shortened and possible frequency and
power improvements can be realized.

It is important to note that, though the machine chosen for
our simulations represents a reasonable future core, both of these
approaches are already useful in current microprocessors.We do not
require large out-of-order monolithic pipelines to reap the benefits
of more scalable issue windows. If architects do wish to increase
machine width and depth, though, we hope that techniques such as
ours assure that schedulers do not become scalability bottlenecks. In

the opinion of the authors, a good use for such width and depthis
simultaneous multithreading, for which a large scheduler is clearly
useful. A study of our wakeup and picker techniques with SMT
workloads is on-going work.

6. REFERENCES
[1] AMD software optimization guide for AMD64 processors, pub 25112, rev 3.06,

www.amd.com.
[2] E. Borch, E. Tune, E. Manne, S. Emer, Loose loops sink chips, inProceedings of

HPCA-8, Feb. 2002.
[3] A. Bracy, A. Prahlad, P. Roth, Dataflow mini-graphs: Amplifying superscalar

capacity and bandwidth, inProceedings of MICRO-37, 2005.
[4] E. Brekelbaum, J. Rupley, C. Wilkerson, B. Black, Hierarchal scheduling

windows, inProceedings of MICRO-35, 2002.
[5] M. Brown, J. Stark, Y. Patt, Select-free instruction scheduling logic, in

Proceedings of MICRO-34, 2001.
[6] M. Butler, Y. Patt, An investigation of the performance of various dynamic

scheduling techniques, inProceedings of MICRO-25, 1992.
[7] D. Ernst, T. Austin, Efficient dynamic scheduling through tag elimination, in

Proceedings of ISCA-29, 2002.
[8] D. Ernst, A. Hamel, T. Austin, Cyclone: a broadcast free dynamic instruction

scheduler with selective replay, inProceedings of ISCA-30, 2003.
[9] J. Farrell, T. Fischer, Issue logic for a 600-Mhz out-of-order execution

microprocessor, inIEEE Journal of Solid State Circuits, Vol. 33, No. 5, May
1998.

[10] B. Fields, S. Rubin, R. Bodik, Focusing processor policies via critical-path
prediction, inProceedings of ISCA-28, 2001.

[11] B. Fields, R. Bodik, M. Hill, Slack: maximizing performance under
technological constraints, inProceedings of ISCA-29, 2002.

[12] A. Fog, The microarchitecture of Intel and AMD CPUs,
www.agner.org/optimize/microarchitecture.pdf, Aug 13 2006.

[13] A. Gonzales, M. Valero, Virtual Physical Registers, inProceedings of HPCA-4,
1998.

[14] M. Goshima, K. Nishino, Y. Nakashima, S. Mori, S. Tomita, A high-speed
dynamic instruction scheduling scheme for superscalar processors, in
Proceedings of MICRO-34, Dec 2001.

[15] G. Hamerly, E. Perelman, J. Lau, B. Calder, SimPoint 3.0: faster and more
flexible program analysis,Journal of Instruction Level Parallelism, Sep 2005.

[16] I. Kim, M. Lipasti, Half-price architecture, inProceedings of ISCA-30, 2003.
[17] K. Krewell, Intel Looks to Core for Success, inMicroprocessor Report, Mar 27

2006.
[18] A. Lebeck, J. Koppanalil, T. Li, J. Patwardhan, E. Rotenberg, A large, fast

instruction window for tolerating cache misses, inProceedings of ISCA-29, 2002.
[19] D. Leibholz, R. Razdan, The Alpha 21264: a 500MHz out-of-order execution

microprocessor, inProceedings of IEEE Compcon, 1997.
[20] E. Marques, C. Kirner, Design of the matching unit of a massively parallel

dataflow computing system, inProceedings of IEEE Conference on Massively
Parallel Computing Systems, May 1994.

[21] P. Michaud, A. Seznec, Data-flow prescheduling for large instruction windows in
out-of-order processors, inProceedings of HPCA-7, 2001.

[22] S. Palacharla, N. Jouppi, J. Smith, Complexity-effective superscalar processors,
in Proceedings of ISCA-24, 1997.

[23] J. Parcerisa, J. Sahuquillo, A. Gonzlez, J. Duato, On-chip interconnects and
instruction steering schemes for clustered microarchitectures,IEEE Transactions
on Parallel and Distributed Systems, Vol. 16, No. 2, Feb 2005.

[24] P. Sassone, D. Wills, Dynamic strands: collapsing speculative dependence chains
for reducing pipeline communication, inProceedings of MICRO-37, 2005.

[25] P. Sassone, D. Wills, G. Loh, Static strands: safely collapsing dependence chains
for increasing embedded power efficiency, inProceedings of the ACM
Conference on Languages, Compilers, and Tools for EmbeddedSystems, 2005.

[26] J. Shen, M. Lipasti,Modern Processor Design, McGraw Hill, 2003.
[27] B. Sinharoy, R. Kalla, J. Tendler, R. Eickemeyer, J. Joyner, ”POWER5 system

microarchitecture,” IBM Journal of Research and Development, Vol 49, No. 4/5,
July 2005.

[28] J. Smith, A. Pleszkun, Implementing precise interrupts in pipelined processors,
Proceedings of Computer Architecture, 1985.

[29] S. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, M. Upton, Continual flow
pipelines, inProceedings of ASPLOS-11, Oct 2004.

[30] J. Stark, M. Brown, Y. Patt, On pipelining dynamic instruction scheduling logic,
in Proceedings of MICRO-33, 2000.

[31] E. Tune, D. Liang, D. Tullsen, B. Calder, Dynamic prediction of critical path
instructions, inProceedings of HPCA-7, 2001.

