Appears in the Proceedings of the 34th International Sympoen Computer Architecture (ISCA-34), June 2007

Matrix Scheduler Reloaded

Peter G. Sassone Jeff Rupley Il

Edward Brekelbaum Gabriel H. Loht

Bryan Black

Intel Microarchitecture Research Lab (MRL), Austin TX
+College of Computing, Georgia Inst of Technology, Atlanta GA
peter.g.sassone@intel.com

ABSTRACT

prohibitive for real commercial designs — the latest Inted AMD

From multiprocessor scale-up to cache sizes to the number ofdeSKtop/server cores only have integer scheduler sized & 32

reorder-buffer entries, microarchitects wish to reap thedfits of
more computing resources while staying within power aneney
bounds. This tension is quite evident in schedulers, whegdrto
be large and single-cycle for maximum performance on owgrdér
cores. In this work we present two straightforward modifara
to a matrix scheduler implementation which greatly streagtits
scalability. Both are based on the simple observation that t
wakeup and picker matrices are sparse, even at small stnes; t
small indirection tables can be used to greatly reduce thigith
and latency. This technique can be used to create quicker iso
performance schedulers (17-58% reduced critical pattgrget iso-
timing schedulers (7-26% IPC increase). Importantly, thegr and
area requirements of the additional hardware are likelsedfby the
greatly reduced matrix sizes and subsuming the functiynafithe
power-hungry allocation CAMs.

Categories and Subject Descriptors C.1.0 [Processor Architec-
tures]: [Single Data Stream Architectures]

General Terms. Algorithms, Performance, Design
Keywords. Microarchitecture, Matrix, Scheduler, Wakeup, Picker

1. INTRODUCTION

To the consternation of microarchitects, process scaliag h
provided the vast majority of the speedup seen in procesa@is
the last 40 years. In fact, microarchitecture is incredgingmpered
by process constraints such as the relative growth of witayde

entries [1, 17] primarily for latency reasons. The fundatakissue
is that the delay of the scheduler loop is proportional (orsepto
the number of entries. This is true on both sides of a traufifio
scheduler: the wakeup side responsible for dataflow orgeend
the picker side responsible for resource allocation andrag&ing.

To address scalability on the wakeup side, we present @lstrai
forward modification to wakeup matrices to enable much large
and/or faster instruction windows than traditional methodlhe
key idea is the subscription of wakeup matrix columns (bcaatt
to-wakeup communication channels) by consuming operataity
on-demand. Instead of supporting the maximum number ofmylsr
to be waited on — a worst-case assumption which condemns
traditional schedulers to poor scalability, we can suppogmall
number and still achieve excellent performance. In our expnts,
we only need to track 12 to 16 broadcasts for typical schedites,
and only about 20 for very large schedulers.

Similarly for the picker side, we introduce an indirecti@ch-
nigue which greatly reduces the picker matrix size to coner t
same issue window. The key observation here is that the f8cke
primary complexity, maintaining all-to-all ordering réstion, is a
significant over-design. Very similar performance can beeed
by tracking groups of 12 instructions rather than everyricdton.
This ordering approximation can reduce the size of the piciarix
by 60-90%, shortening the critical path latency signifitant

Together these techniques produce a new type of matrix stedred
which is far more efficient than traditional square desigrior
architects wishing to hold IPC constant, our estimates ghawthe
combined techniques can reduce the schedule-loop delag-b§%
over a traditional matrix holding the same number of ingtams. If

each generation. Though the maximum speeds can be tweaked"® hold delay constant from a traditional design, the thirrixa

through sizing and repeaters, wires still limit the dimensiof
many structures in a modern processor design. A quintéakent
example is the scheduler. Increasing the selection oftuiastins
which can issue on a given cycle is an effective method for
increasing performance in a simulator — moving from a 16yent
to a 64-entry scheduler creates a speedup of 39% in our swnula
Yet, the physical design of such large schedulers contitwdze

Permission to make digital or hard copies of all or part o$ tiwork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toycogherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ISCA'07,June 9-13, 2007, San Diego, California, USA.

Copyright 2007 ACM 978-1-59593-706-3/07/000655.00.

design can capture a larger issue window, increasing IPG28#£74.
This paper is organized as follows. In Section 2 we discuss

the wakeup side of the scheduler, including backgroundtedl
work, and our proposal for increasing the efficiency of therina
structure. Section 3 follows the same outline for the pickiee.
Section 4 discusses simulation methodology and then eealbath
enhancements separately and combined. Section 5 conahitties
discussion of on-going work.

2. WAKEUP

In this section we address the first half of a traditional dcifer,
the wakeup logic. Before we discuss our proposal for inéngathie
efficiency of a wakeup matrix by allocating columns constivedy,
we briefly review background on the functionality of the waje
logic and the root of the scalability issues.

from decode

'

allocation - >

RAT |«

A

-
-
-

inst N
) wakeup |y picker ROB
silo O >
&
‘ 2
I I \
physical register file
and bypass
A
FU FU FU
\
> commit -

Figure 1: The wakeup and picker portions of the scheduler and
their relation to a typical out-of-order core.

result tag buses

(from picker)
L T1T]
N srcl
ol | ready?
[AND)| inst
T src2 ready
e L1
[ready? slot 1
L T1T]
N srcl
ol | ready?)
AND | inst
v ready
| 1] src2
-] — ready?
[slot 2
Figure 2: |lllustration of a CAM-based scheduler with the

multitude of needed comparators.

2.1 Background

The wakeup portion of the scheduler is very similar to thetwai
match unit of a dataflow machine [20]. The purpose is to oleserv
results being generated in order to identify instructiohat tare
now ready for execution. Figure 1 shows the relation of wakeu
to the rest of a conventional processor core.

O InstAis
granted

A broadcast B broadcast C broadcast

A grant

D A ready

p | — Bgrant

; P B ready

p—— Cgrant

C ready

® Inst C is no
longer waiting
oninst A

© Inst C bids
for execution

Figure 3: lllustration of matrix wakeup with the critical pa th
shaded.

instruction as a whole is ready and bids for execution. Arsthation
of this hardware is shown in Figure 2.

Unfortunately, the most basic implementation of a CAM-lshse
scheduler requires one comparator for each source on edieh wr
back port. Thus a scheduler for 32 two-source instructiams o
machine with four writeback ports needs a whopping 32x2%6=2
comparators! The frequent switching of these comparatosthe
long lengths and load capacitance of the result buses srekar
power and timing concerns.

In response to these concerns, a dependency matrix wassgpo
to implement this wait-match function instead [14]. An dtration
of this approach is shown in Figure 3. This wakeup matrix has
one row and one column for every instruction in the scheduler
Each cell holds one bit of state representing whether theuictson
assigned to this row is waiting on a dependency from thelingtn
assigned to this column. These wakeup vectors are set gizatithn
comparators which put a 1 in the vector if the corresponding
column will be producing this result tag. These comparatoes
unfortunately quite cumbersome, both in area and poweengiv
the throughput of comparisons that must be made per cycle. As
instructions become ready, they clear their respectivansol(i.e.,

The dependencyset all bits in the column to 0). When a row is entirely clear of

cycle formed between the wakeup logic which identifies ready dependencies (all 0), a wired-or across the row producesdyre

instructions, and the picker logic which selects a set oflyea
instructions for execution, forms a tight loop which is wialiown
as critical to performance [2].

There are two conventional methods to implement the magchin
algorithm in modern schedulers: (a) content addressabiheames
(CAMs) and (b) dependency matrices. Despite its disadgasta
content addressable memories are how most commercialidehed
are implemented. The result tags (typically just the prajisiegister
number) of selected instructions are broadcasted on a setolt
buses, one for each functional unit with a writeback portctEset
of result buses is connected to comparators (XNOR gatesjchit e
entry to allow instructions to match their sources agaimss¢ being
generated. When both of the instruction’s sources are rehdy

bit for the instruction as a whole. These row and column-thase
functions are faster and lower power to implement than C/Addda
matching, but theV? nature of the matrix makes larger schedulers
still difficult to implement.

Academic researchers have proposed dataflow preschedbling
8, 21, 22] and dependence collapsing [3, 24, 25], both of whie
dataflow information to reduce or eliminate the need for wzéitch
in the schedule loop. However, both techniques require tamp
power-hungry analysis of the program to work. This analgsis
be in the processor front-end which will likely increase branch
penalty, or in the back-end which will likely require additial
metadata storage. An interesting approach applicabletor®AM-
based schedulers is tag elimination [7, 16]. These rese@rch

16ent 40%

32ent 41%
64ent 241%

96ent 41%

128ent 41%

0% 20% 40% 60% 80% 100%

M broadcast heard broadcast wasted M no broadcast

Figure 4: Distribution of tag broadcasts across scheduleriges.

observe that the worst-case design of two comparators pepeo
instruction is overkill — only 10-20% of instructions regaitwo

2.3 Hardware Modifications

In order to exploit the scarcity of needed result tag brostdcave
modify the allocation and wakeup portions of the microaestture
to support tag broadcast on only a subset of the scheduleegnt
Figure 5 shows the hardware changes we implemented for wakeu
subscriptions, with new hardware shaded in gray. We begih wi
a wakeup matrix as our baseline design. A traditional matrix
as discussed in the previous section, supports all-toralidrast
by having as many columns (broadcast channels) as it has rows
(ready generation channels). Our matrix, however, needupyort
total broadcast so we will construct it with fewer columnartithe
maximum. Our later results will show this width need only be
around 12-16 to show very favorable performance, even fgin-hi
capacity schedulers. To manage the subscription of columas
also add a small table called the Wakeup Allocation Table TWA
which maps architectural registers to column numbers. fHhi® is
accessed in parallel to the Rename Alias Table (RAT).

Each WAT entry can be in one of three states. Firahiallocated
which indicates the WAT entry data field is a pointer to theestther

source wakeups for most benchmarks. As such, a design whichgniry of the last instruction which produced this registefor

manages an average-case number of comparators is morergffici
and sacrifices only minor slowdown. Unfortunately, the ratu

of these approaches are specific to CAM-based wakeup, which i

inherently slower and less efficient than matrix wakeup ewéh
these enhancements [14].

2.2 Wasted Broadcasts

Despite the speed of matrices, they have incredibly lowrmée
tion density. A typical snapshot of a wakeup matrix during@xion

instance, an instruction sourcing R4 might see the WAT entry
for R4 as “unallocated, 20", meaning that this register Vo
produced by the instruction at scheduler entry 20. As thisamer
instruction will need to observe when the result for R4 isdygea
we establish a communication channel between the produnckr a
consumer, i.e. a matrix column. Thus the allocation logopests

a column number from the Wakeup Free List, a structure sirtola
other microarchitectural free-lists, which holds unaditexl wakeup
columns. This column number is assigned to the consumer by

shows very few dependenices represented — commonly only 10- Setting the appropriate bit in the dependency vector. Thenuo

20. Indeed, this confirms the intuition behind tag elimioati the
number of live sources in the scheduler is quite low at angrgiv

number is also sent to the producer instruction. Thus, in our
example, the producer at entry 20 will be told to broadcaaitér

time. Unlike in a CAM-based scheduler, however, sources in a the broadcast line) on this column. This column is then assig

wakeup matrix are physically free. Removing a subset of imatr
intersections (source matches) might reduce power sjihtl does
not change the lengths of the dominant ready, broadcastyramd
lines. On the other hand, reducing the number of broadcasings
(columns) greatly reduces the width of the matrix and theisesw

to this WAT entry (R4 in our example), and the state is chartged
allocated We have now subscribed this register to a column.

The allocated state means this architectural register is currently
mapped to a matrix column, and the data field in the WAT inéisat
that column number. In our example, if a subsequent consomer

If previous authors observed that few wakeup tag comparator R4 allocates, the WAT lookup might return “allocated, 3", ieth

are needed for near-ideal performance, it is likely that fewy
broadcasts are also needed. To test this theory, we runroufesor
across our benchmark suite (simulation and benchmarklslétai
Section 4) and classify all scheduled dynamic instructiotesthree
categories. The first category oadcast heard This is the
textbook case where the instruction generates a broaduvdshere
is at least one consumer in the scheduler which is listenimg f
it. The second category lwoadcast wasteavhere the instruction
generates a broadcast, but there are no consumers in troukarhe
A consumer might eventually arrive in the scheduler, butilk be
told during allocation that this value is waiting in phydicegister
storage; the broadcast here is wasted. The final categang is

means this register is assigned to matrix column 3. The aolum
number is read and used to set this instruction’s dependesatpr
appropriately. As the producer already knows to broadcashis
column, no notification of the producer is needed in this doord
When the producer is eventually granted execution, it widl &
broadcast along column 3 and wakeup will proceed as in diwadli
matrix. We tell the WAT that this register is now ready so fdtre
consumers do not set their dependency vectors or notifyGupes.
We do this by changing the WAT state of the destination regist
the third and final stateeady. We must remember, however, that
the WAT is indexed by architectural register and is thus tguléike
a future file [28]. Sequence numbers, shift registers, omalai

broadcasfwhich means the instruction does not generate a renamedSystem are used to restrict WAT updates to the last-alldaatier;

destination. This could be a branch, a store, or a contrailicison
whose result is not renamed.

We plot the distribution of these broadcast states for wario
scheduler sizes in Figure 4. The latter two categorieasted
broadcastandno broadcastcombine for a total of 70-71% across
all scheduler sizes, confirming our hypothesis that mostuogons
do not need the functionality of tag broadcast regardlesthef
scheduler size. Combined with the fact that big schedulezs a
rarely full of producers (often still refilling from a pipelé flush),
we can see that the number of broadcast-to-wakeup comntiamica
channels needed at any given time is low.

otherwise an older instruction could overwrite newer infation
about the state of R4.

The wakeup column is freed if one or both of the following
two conditions is met: (1) the producer of the column hasthedt
scheduler and/or (2) all of the consumers of the column heite |
the scheduler. The second condition is an optimization foemwa
pipeline flush occurs between a register’s producer anducoass).
Even if the producer remains in the scheduler, we can sadebrt
the register state teallocatedand return the column to the free list.
Regardless of why the column is freed, a pointer to it is retdrto
the Wakeup Free List for future use.

‘ Src aregs

dest areg
checkpoints

checkpoints

WAT
RAT (wakeup - ::IVakeLg;)t
allocation table) ree Lis
updates 4| A
from dit
B B I g
\ lumns
PRF (removed) co issue
access
”aé’ri’\i’e’éfb’r" -
bcast vector —_—
= | depvector y=—=2 =
S R A - beastvector’ T——i
< - -
s il - > icker
inst silo 8 wakeup =—> rr;atrix
© matrix e >

Figure 5: Hardware modifications needed for matrix columns sibscriptions (not to scale).

The reader should note that we do not free the column when
the producer broadcasts on it. Though this would be safe myma
machines, the use of speculative scheduling in our processdel
makes this hazardous. Speculative scheduling means timirmers
of a load are granted execution assuming the load will hihénlt1
data cache. If the load actually misses, the consumer witebet
in the scheduler and await a second broadcast from the load ivh
hits. Thus one instruction can broadcast multiple timeshersaame
column, so we cannot assume finality after the first broadCasly
after the producer leaves the scheduler can we be assurtedotha
further broadcast of this column will take place.

The primary goal of our proposal is to shorten the criticahpa
through the wakeup matrix. Figure 6 shows the necessarygelsan

with new hardware shaded in gray. The reader should note this

cell is designed using active-low dynamic logic, as is commith
high-speed commercial implementations. The specific desfighe
matrix cell is not particularly relevant, however, as thare other
reasonable ways of achieving the same functionality. Otpgae is

to simply show a working example, and how minor the changes to
the wakeup matrix cell are.

In our baseline example, picker grants enter from the righich
become vertical broadcast signals at the transpose coluow (
equals column). The broadcast bit clears any dependencibssi
column, which is stored in a 1-bit SRAM cell labelddtadep If the
cell still has a dependency, it will pull down tliew-readysignal,
indicating this instruction is not ready to bid yet. If notingtions
pull down row-ready the line will stay high and the picker will
interpret that signal as a bid. We will discuss the pickee sid
this circuit loop in the next section.

To enable our column subscription technique, we modify #ik ¢
with an additional bit of informationwritecol, which indicates if
this row (producer) is assigned to broadcast on this coluifime
writecol bit is assigned by the WAT during allocation of the first
consumer, and it is guaranteed that there is only one bitesetopy
and per column. This bitis now ANDed with the existing gramtit
to determine the broadcast this cycle. This adds one gaty tiel

the ready output path of this cell, but as all cells compugér tteady
in parallel, the total row-ready critical path is only inased by one
gate. We believe this minor impact is strongly outweighedhsy
reduction in critical wiring path through the thinner matri

2.4 Hardware Considerations

There are many considerations in our approach deservimg bri
discussion. Most important is that an instruction’s depemsgt
vector is now set entirely by the WAT. This subsumes the fonet
ality of the allocation comparators in a traditional wakeugtrix.
Though the WAT is heavily ported and the accompanying loglic i
not negligible, the removal of these comparators should pmg
way toward offsetting the power and area costs.

Also of interest is that producer notification of broadcastimns
can create a “ships passing in the night” scenario. If thelyer is
granted execution at the same time it is assigned a broactdastn,
care must be taken that the dependency vector of the conssisetr
properly. Otherwise deadlock could occur as the consumits foa
a column broadcast that will never come. Ships-passing lsgiot
intractable, however, and it is handled cleanly for otheppses in
many existing scheduler designs.

Finally, we should note that the WAT is, by its very nature, a
speculative structure. It will invariably track mappingswah the
wrong path and will need to be restored to a correct stateigur&5
we show checkpoints as a possible solution, but there arermus
equally valid methods for state restoration. A detailedysis of
all solutions is beyond the scope of this work, but the mostals
solution is to use the same method as used for the RAT. Alarggeth
lines, it is conceivable that the WAT information could sisnpe
incorporated into the RAT. Both the RAT and WAT are indexed
by architectural register number and are accessed durengaime
phase of allocation. This merging is not ideal, howevegesMWAT
reads are only performed for instruction’s sources, ant\AE will
be updated at both execute and dispatch. Additionally, wkitfés
generally simpler to architect new structures than modifigtang
verified structures.

A
&- /1
row-ready
LT 4> kill my ready
| ‘ -
:}% clock = clock clear dependency
A A ‘ from broadcast
| NP row-ready get dependency
- 1 grant from alloc g
data_dep L,—i
NN row-ready
- | grant .
alloc valid
= }rclock
\ m row-ready
- grant
f_l L L
get write_col ==
» -read rom a ;
_ » row-ready from alloc write grant clock
- grant writecol =] this
v i —’— column broadcast
tag tag alloc
broadcast broadcast lid broadcast
el generation
D A grant
\

Figure 6: Example 4x2 wakeup matrix (left) and matrix cell circuit (right) with new circuits shaded in grey.

3. PICKER

The other half of the schedule loop is the picker, sometiraed
the select logic. Figure 1 shows the relation of the picketht®
wakeup logic and the rest of the out-of-order pipeline. Ashwi
the previous section, we will first briefly review pickers atieir
scalability issues before discussing our modifications.

3.1 Background

At its most basic level, the picker is an arbitrator which de-
termines which instructions are permitted to dispatch tactvh
execution resources. The pickers in modern microprocedsre
several different factors to weigh in their selection pssce

Instruction Readiness Not all instructions in the scheduler are
arbitrating for execution — only those that have been no-
tified via the wakeup logic that their inputs are ready offer
themselves to the picker via a bid signal. In the worst case,
however, all instructions in the scheduler might be ready an
bidding?

Candidate Resource List This is a list of possible execution-
resources for an instruction type. For instanaed instruc-
tions might be executable on three different integer ALUs,
andfpdiv instructions might only be executable on the single
floating-point divider. The picker must assure that ingiamns
are only dispatched to appropriate execution units.

Resource AvailabilityThe picker must also understand execution
resource availability and avoid conflicts. This is espégial
tricky for resources with variable latencies, such as a load
unit or divider. Additionally, the picker must often undtnsd
the availability of (often complex) bypass paths and phaisic
register read ports.

1In reality, one entry would contain the producer instructighich
readied all the others, so nall entries can bid at once.

Conflict Resolution DataThis category includes all the informa-
tion provided by the bidding instructions to resolve reseur
conflicts. For instance, if there is only one FP multipliedan
there are two FP multiplies ready to execute, the picker can
use additional information from the instruction (such a&s it
age or priority) to decide which is granted and which must
wait.

In a traditional picker, all of this information is combineaform
a set of grant signals, which are used to communicate which of
the bidding instructions are selected for execution and bichv
resources. These granted instructions then broadcast désii-
nation register tags to the other entries in the scheduldren\an
instruction has heard all of its sources broadcasted (tles timat
weren't already ready upon entering the scheduler), it cdalys
raise its bid line to the picker and the scheduler loop isedlos

The most complicated aspect of the picker is the conflictloeso
tion, most often done with age as the tie breaker — oldeninsbns
go before younger ones. Other restrictions (i.e., resocoodicts)
can generally be handled by fast cancellation logic whickilga
finish “underneath” the age comparison. A straightforwamy w
to perform age ordering is an age matrix, shown in Figure 7.
The age matrix has one row and one column per instruction in
the scheduler, where the column number equals the row number
The cell holds one bit which represents an age conflict bits it
set to 1 if the instruction at this row is older than the instien
corresponding to this column, O if the row instruction is ggar.
An instruction allocates with all conflict bits set (it is yager than
every other instruction). As other instructions enter tbleesluler,
the corresponding columns are zeroed indicating that theyaw
older than the instructions using those columns. Supensalibcate
follows the same algorithm, but shortcuts might be takereitirgy
the age-bits appropriately between the instructions inaflacate
group. It should also be noted the bits along the diagonahate
used since an instruction cannot be older or younger thali.its

Figure 7 also shows an example of resolution between irtgins
A and C. Bids from these instructions enter from the left agd b

A conflict

A bid

B conflict

C conflict

9 Inst A is age

A grant

0 Inst A and

depon Inst C, so
column C cancels

B bid
B grant @

Inst C both bid

the grant

9 No column
cancels the
grant of Inst C

® The bid of Inst
C becomes a
conflict on its
column.

Figure 7: An illustration of an age matrix with an example corflict resolution between younger instruction A and older C.

default result in a grant back to that instruction. This ligsirated
with the loop-back from bid to grant at the far right of eackwvro
Each cell in the row, though, must cancel the outgoing grant i
two conditions are met. The first is that another biddingrircdton
broadcasts a conflict. This conflict is directly connectethwbid

on the transpose row. So if the instruction on row 9 bids el

be a conflict broadcast on column 9. The other condition is tha
the age-conflict bit in this cell is set. Thus if the other instion
bids and it is older, the grant for the current instructiondaceled.

If no conflicts occur, the tentative grant will continue upieded
out of the age matrix and become an actual grant to the ingtruc
on this row. The logic and wiring is slightly more complicdte
when multiple execution resources are being arbitratedhletbasic
design holds.

The scalability of the age matrix, however, is limited. Iiges
grows quadratically as more scheduler entries are addetthan
critical path, where the bottom-most instruction must ehttee top-
most instruction, increases at a three-fold rate. Thederlamake
the picker matrix difficult to meet tight power and timing cbraints
for large schedulers. However, it stands to reason thaballt
ordering information shouldn’t be necessary, especiallycheduler
size grows. The conflict resolution logic is only needed wttere
are resource conflicts — and modern cores have far more Esour
than their average throughput (instructions per cycleR@)lutilizes
in traditional benchmarks.

3.2 Age Tracking

In order to quantify the importance of age-based orderirthiwi
a picker, we add a pseudo-random picker algorithm in our lsitou
In other words, every time multiple instructions are bidgfor the

that across the benchmark suites scheduler size is a venygstr
component of age sensitivity. For small schedulers, sucthas
16-entry configuration, randomly picking ready instrunsoonly
results in a 1% slowdown. A reasonable case could be made for
removing age-tracking altogether in a small design suchhiss t
The larger windows, though, show up to 10% average perfotman
loss with a random picker, with larger effects in high-pi&Em
applications. In scheduler sizes or applications whereemeady
instructions bid for execution, the odds of randomly chogsa
non-critical instruction becomes more likely. With veryrda
schedulers (128 entries) age-criticality can drop someWwbeause
the perfect-age performance has saturated; however, tid®ma
age performance continues to creep up slowly since its pioks p
make it behave like a smaller scheduler. Regardless, cmirsigthe
evolution of desktop microprocessors towards larger wirgdand
the complexity of tracking a large number of ages, a solutan
scalable age tracking is clearly indicated.

3.3 Related Work

Early in the era of out-of-order execution, Butler and Péit [
studied the efficacy of different picker criteria such as hamof
dependents, whether the instruction feeds a branch, tledlaat
chain length, and others. They concluded that performarae w
largely independent of the heuristic used, and simpler Was t
better for real designs. Our results from the previous silmse
show that less aggressive machines like the kind studieduleB
have little sensitivity to picker heuristic. However, wevhaalso
shown that more aggressive machines with larger issue wisido
need some form of picker ordering.

However, determined industry and academic researchers hav

same resource on the same cycle, the picker chooses a pseudmttempted to address the monolithic complexity of the picRéne

random one. To make our experiments deterministic, therighgo
is actually choosing the instruction most towards the tophef
scheduler to win the conflict. After a very short startup ghas
the scheduler’'s out-of-order insertion and removal makgs &
sufficiently random choice in terms of relative instructiage. It
is important to note that randomly picking, or any pickingaithm
for that matter, is not at risk of incorrectness. Only readyructions
are eligible for picking, and eventually the oldest instioc will
have to get picked when it is the only ready instruction in the
window. Thus, poor picker heuristics cannot cause deadlock
Figure 8 plots the relative performance difference betwiben
perfect and pseudo-random picker (both the benchmarksiamd s
lator are described in further detail in Section 4). The fgsiows

most commonly published approach is to split up the picket an
thereby divide and conquer the problem. Partitions can bated

by several different heuristics [1, 22, 23, 26, 27], thoulg& most
common in industry is by execution resource. The cost of any
partitioning technique, however, is the inevitable losgffitiency,
shown in Figure 9 (simulation and benchmark parametersieta
later in Section 4). The baseline curve shows our defaulthinac
which has a unified issue queue serving six functional unitse
6-way partitioned curve shows the same machine, exceptewher
the total scheduler size has been hard-divided equally groan

6 functional units. Instructions are assigned to partgidiased
solely on their assigned unit, with a load-balancing alhoni used

to steer instructions with multiple entries in their carad&resource

14% - O 16ent

O32ent

0%
12% O64ent

B 96ent

10% A

O 128ent

8% A

6%

age confict sensitivity

4%

2% A

d]

0%

]

server fspec'00 ispec'00 spec'06¢ dig-home

games multimedia office wkstation average

Figure 8: Impact of age-based conflict resolution across sefuler sizes and benchmark categories.

2.00

1.80 A
1.60 A

(3]

S 1.40

)

~ 1.20 A

g

o 1.00

&

S 0.80

S o -

g 0.60 == Daseline M
0.40 e==fll==3-way partitioned [}
0.20 6-way-partitioned -

0 20 40 60 80 100 120 140

scheduler entries

Figure 9: Scheduler scaling curves for a unified scheduler,-8/ay
partitioned, and 6-way partitioned.

list. The 3-way partitioned curve is similar, except we d&ithe
total scheduler size into three equal segments, where egchent
serves two functional units each. The figure shows thattjmartid
schedulers require several more total entries for an elgnivaer-
cycle performance against a unified design. For instancerfarp
mance target of 1.60 micro-ops per cycle in our simulator ld/ou
require about 27 unified entries, 48 three-way partitiomgdes, or
60 six-way partitioned entries. Multilevel partitioningchniques
[4, 18] are a related approach which resemble cache higearbly
using a small, fast wait-match buffer backed by larger, sidvuffer.
Thus the critical scheduler loop can be tighter while allugvfar-
flung parallelism to be eventually discovered. Importanthese
techniques do not directly address wakeup scalability — tile s
need a way of communicating operand readiness betweetiquzsti

There have also been several commercial techniques foermpick
scaling. A generic technique found on many older out-oford
microprocessors is age estimation, sometimes called pselrD
in reference to cache replacement pseudo-FIFO technigOes.
proposal can also be considered pseudo-FIFO becausenitagssi
age, but we believe it to be a fundamentally different apgindaan
what is likely used in commercial microprocessors.

Another commercial innovation in picker design is the cootpa
ing scheduler, disclosed by the DEC Alpha 21264 archité;tsq],
which provides an interesting alternative to expansivéepidogic.
The concept is simple — always allocate scheduler entri¢beat
top of the scheduler and constantly compact the instrustiomnards
the bottom into the deallocated slots. In this manner, thedualer
stays physically ordered by age despite allowing arbitchspatch
and deallocation. Thus the age comparison in this desigiplaced
with a simple priority arbiter (or tree of arbiters), whicakes in
bids and returns one grant for the bottom-most (oldest) Hide
advantage of the compacting scheduler is that it achievesgan
based pick without just-in-time age comparisons or theficiehcies
created by partitioning. On the negative side, constartiyffing
instructions downward combined with the massive numberridgw
ports creates obvious energy issues, especially for |atyedsilers.

3.4 Hardware Modifications

Rather than try to maintain the order of every instructioaiast
every other, we instead seek to produce a loose orderingoloyping
instructions. We will track which groups are older than ot@ups,
but within a group the age will not be tracked. Figure 10 shtives
hardware changes that we need to implement group ordering. T
approach uses an age matrix which allocates rows to eveeglatr
entry as normal, but allocates columns to instruction gsoés later
results will show, the number of picker matrix columns nekfte

There has also been academic work in attempting to reduce usegroup-age tracking can be 60-90% smaller than the baselithe w

of the picker. Select-free instruction scheduling [5] amangichild
scheduling [30] both move the picker into a separate pipedtage
from wakeup. Similarly, cyclone [8] proposes to replace pifeker
logic with a dataflow prescheduler which places instructiorto
timed execution queues. In all these works, execution besom
dataflow speculative — the instruction may not be ready when

minimal performance impact.

The most minor hardware change is a group counter which
could be implemented anywhere from decode down to scheduler
allocation. This logic simply assigns a group number to each
instruction, changing after a fixed number of instructionBhis
group number then indexes into a Picker Allocation TableT(PA

it is picked. Thus a recovery mechanism such as replay must somewhat similar to the Wakeup Allocation Table from thevjas

be present in these approaches to insure proper executi@my M
academic authors have implicitly addressed pickers inratiated
areas. Work on critical path discovery and exploitatiorsigezially

section. The PAT uses the group number as an index to lookup
which age-matrix column this group is assigned to. If no poiu
is assigned to this group yet (first instruction from growpgolumn

relevant to our discussion because it has shown that agetis nois pulled from the Picker Free List and assigned to the iotton

the optimal conflict-resolution heuristic [10, 11, 31]. @rlity
prediction, however, is quite complex and largely ineffextat
producing speedup.

and written into the PAT at that index. If the free-list is agphe
allocation must stall until a column becomes free. The resideuld
note the WAT and PAT are accessed in parallel to the numetbes o

Instrictlon checkpoints

PAT
. . group icker icker
allocation logic - counter > (p . picke
logic allocation free list

1| table) A

age vector f updates
opcode |

picker from

ependencies column issue

Vbcast vector

-

group :
picker [S
matrix :

A[A[AJAIAAIA[AIA[AIAS

YYYYYYYVVVVY

Figure 10: Hardware changes for a faster picker with group-aye conflict resolution (not to scale).

checks that occur during the allocate stage(s) of the pipetio we However, the picker also needs an arbiter to make a random

do not expect this logic to extend the critical path. choice when there is a conflict within a column. In the traitl
Though we could technically use the group ID (with rollovas) design this could never occur since only one instructiorsssgmed

the column ID and skip the translation logic, it is advantageto per column. There are several ways to choose randomly, but we

allow more live groups than columns. An illustrative exaeniglthat choose the priority arbiter used in the compacting scheddibis

column 1 is assigned to group 1, column 2 to group 2, etc.| alhti logic tree is designed specifically to give a fast grant bamdgt

columns are filled. The machine then stalls for lack of colsmn on the physical location of the input bids. This is a convenie
which is the correct behavior. Then suppose all the instmst circuit to use because, though the pick is ignorant of thecati
in groups other than group 1 issue. Intuitively we shouldehav path, the determinism of the heuristic makes hardware dghgg

several free columns to unstall allocation, but withoutugrto- tractable. Though this arbiter adds to the critical patingiwith the
column translation, the allocator has wrapped around tomrb two transistors above, we feel the deleterious impact ikt than
and will remained stalled. In other words, the lack of indiien the dramatic shrinking of the horizontal ready and grargdin

between groups and columns forces columns to be allocated in
order. This is unduly restrictive and causes large perfagearops 4. RESULTS
in our simulations. Thus we use a simple group counter and map

table to allow columns to allocate out-of-order. To evaluate our wakeup and picker techniques, we modify our
The picker matrix cells are also modified slightly. Figure 11 X86 platform simulation infrastructure to_model our two jposals,
shows a possible dynamic circuit implementation of a pickatrix first separately and then together. The simulator thorqugtddels

cell, with new additions shaded in grey. As with the wakeugrima @ microarchitecture of a hypothetical future microprooessith
diagram in Figure 6, there are several other equally valigsva ~@ccompanying chipset and memory. Key parameters of the Imode
of implementing this logic; the example shown is only ilkagive are shown in Table 1. The simulator executes Long Instroctio
of how minor the changes are. In the traditional square matri 1races (LITs) which are checkpoints of a complete machiatest
design, each entry is hard-coded to broadcast conflicts on it including memory, that can be used to initialize an executiased
transpose column (equal to the row number). For our grouingc performance simulator. LITs also include the interrupeations
functionality, however, we require each column to be coteweeo ~ Observed by a real machine executing the application, thus o
every column’s conflict line. As such, we need to handle tvgesa simulation environment allows us to model user-mode andeker

(1) the cell is on a row assigned to the current column, andh) mode instructions in the same manner that a real system does.

cell is on a row assigned to a different column. Thus the gircu Similar to the SimPoint methodology [15], each LIT runs for a
shown has two pull-down paths for the two different cases.emvh ~ Characteristic portion of the application (on average, @ioni

the cell is assigned to this column, we need to broadcasihéiat instructions) after warming up the caches and branch pxedic
up and down the vertical conflict line. We also need to kil the LITS are gathered from various categories, elaborated bieTa
outgoing grant if the arbiter (described below) indicatesoaflict with a total of 604 LITs being studied.

in this column — another instruction in this group has ptiorThe .

other case is the traditional case, where we Kkill the gratitéfage 4.1 WakGUp Side Results

bit is set — this group is older than another bidding groupei@, In order to determine the efficacy of wakeup subscriptions, w
we have added one SRAM cell indicating if this cell belongs to first analyze the number of wakeup columns we need for adziepta
this column, and three transistors gating the two diffebafiaviors. performance across a sweep of scheduler sizes. This exg#rim
These changes only lengthen the critical path by only twusistors aims to verify the statistics from Section 2 that few instiarts are
for the entire matrix since all cells compute their kills iargllel. using broadcast channels at any given time.

Figure 12 shows these results. The first bar is our baselme, a

VAN

A
]Fﬁ clock 4‘%
4
« grant A
grant;
. Kill my kill f‘O’ﬂ—

} grant kill grant other onflict
arbiter from my col kills in
kills in column [}—<—o

L
(]
=
2 age
© dep?
=
£ generate
[e] -
= conflicts out | conflict
P
L conflicts
% out
[e]
=
o \
T Py
© other ‘
z column?
= port
my column? conflicts
load
mycol
from
alloc
mycol
clock =
row ready
\/

Figure 11: Example picker matrix cell with new hardware
shaded in grey.

unaltered simulation using our default parameters. Theaiging
three bars use our wakeup subscription algorithm with 16 ah#l

8 columns respectively. Per-cycle slowdown from the baseli
are shown at the top of each bar. It is clear we are taking
advantage of the low demand for broadcast-wakeup comnmtigica
channels shown in Figure 4, and thus very few columns areeakeed
even with very large schedulers. A wakeup matrix of only 12

Parameter | Value

Front End Width | 4 wide

Commit Width 4 wide

Execution Units | 3 heterogeneous int/FP units [12]
Memory Units 2 load/store units

Reorder Buffer | 256 entries

Load Queue 96 entries

Store Queue 64 entries

L1l Cache 32KB, 8 way, 64B line, 4 cycles
L1D Cache 32KB, 8 way, 64B line, 4 cycles
L1TLB 128 entries, 4 way

L2 Cache 512KB, 8 way, 8 cycles

L2TLB 512 entries, 4 way

L3 Cache 4096KB, 16 way, 20 cycles
Memory 32GB/s DDR2 timings

Branch History | 2048 entries, 4 way

Branch Targets | 4096 entries, 8 way

Table 1: Primary parameters for machine simulation model.

Benchmark Class | Example Applications

Server SpecJBB, TPCC
FSPEC 2000 wupwise, ammp
ISPEC 2000 gzip, gcc

SPEC 2006 candidates gromacs, mysq|l

Digital Home video encode, decode

Games shooters, realtime strategy
Multimedia photo filter, raytracer

Office word processor, spreadsheet
Productivity file compression, doc rendering
Workstation CAD, compiler

Table 2: Benchmark suites used for performance analysis.

scheduler size, as large strides allow enough additionallphsm

to outweigh the errant load effect. This effect is at work éveral
benchmarks across our suite, mostly concentrated in ISBBGO
FSPECO00. Wakeup subscriptions make the scheduler apjaglysl
smaller when columns are in high demand, thus these benkemar
profit from errant loads being excluded from the scheduler.

We also observe the effect of column reallocation on peréorca.
Often with a free-list approach, microarchitectural reses are
not available for reallocation on the cycle after they areeft.
Signal propagation delay, combined with careful bookkegpo
avoid losing resources, means it might be a few cycles befose

columns produces less than a percent slowdown regardless ofresource is ready for allocation. Figure 14 shows the Seitgit

scheduler size. Larger schedulers need more columns tdaimin
a constant slowdown, but only slightly more are needed. ahitite
marginal gain of additional scheduler entries diminisisest is with
additional wakeup columns.

of our algorithm to delays between a wakeup column becoming
free (producer and/or consumers leave scheduler) and when i
available for allocation to an incoming instruction. We lege this

on a 64-entry scheduler over a range of 0 to 3 reallocatiotesyc

As each bar in Figure 12 is an average of approximately 600 for various column counts. Figure 14 shows that performaraze
benchmarks, much detail is abstracted away. So we break downdrop noticeably if the number of reallocation cycles groa large

the 64-entry bars and plot the slowdown for each benchmat& su
in Figure 13. Here we can see a great deal of variation, ealpeii
the 8 wakeup column case, being hidden by the large avenagies i
previous figure. Digital home benchmarks, with their higerage
IPC (or micro-ops per cycle in our case), are highly susbépto
anything that decreases the effective issue window sizePEES
which also has a high IPC, has relatively few producer-coresu
relationships within the scheduler, thus making cons@amabf
wakeup columns less relevant to this suite.

with too few wakeup columns. As increasing the reallocatlelay
effectively reduces the effective number of wakeup columrmscan
compensate for additional delay with more columns. For @tam

the data shows that 12 wakeup columns with 2 reallocatiolesys
equal performance with 16 columns with 3 reallocation cycle

These small IPC losses shown are offsets against the reduced

critical path distance through the wakeup matrix. The altpath

for a wakeup matrix is a grant to the top-most entry, whictdsem
broadcast on the first column down to a consumer at the battost-

Interestingly, the FSPECO00 suite speeds up from the use of entry, which then becomes ready and flips its row-ready lihikv

wakeup subscriptions. On the face this is counter-intitas
our algorithm can only add stalls, not remove them. However,
sometimes a larger scheduler combined with an idle and daagr
unit will allow more errant loads to be issued, tying up intpot
memory subsystem resources (cache ports, miss statusirtgandl
registers, etc.) even after the mispredicted branch is sgo
Usually this slowdown effect is most apparent with smallndes in

heads back to the picker. In other words it is a line aroundethr
sides of the matrix perimeter, shown by the shaded line inrgi§.

To quantify this value, we count the number of cell hops on
the critical path through the matrix with and without wakeup
subscriptions. This is clearly a crude metric, but the austircuit,
floorplan, and process variations affecting schedulergdesmake
more specific numbers hazardous. Figure 15 shows the refsult o

Obaseline
2.20 1+ H16 columns
E12 columns
°
2.00 1+ MO8 columns g £ $ S g S EY
o £ ©93 _S%a S
51.80 o0 .
2 %3
3 - | |
o 1.60
& . I I
: 2R
o S 3 <
§1e0 555
N :.]: I I
1.00 -
16ent 32ent 64ent 96ent 128ent

Figure 12: Performance impact of various wakeup column
counts.

DObaseline
2.40 H16columns [
220 _ B 12columns | |
[| O8columns
S 2.00
o
g 1.80
[%2]
S 1.60 B
°
L2 1.40 B
5
1.00 - = = L
s N O @ 3 RN @
& & & L S v<\\°b & &
K K 8 ¢ ¢ » &
N
Figure 13: Per suite performance slowdown for 64-entry

scheduler with 16 wakeup columns.

this critical path analysis for different scheduler sized avakeup
matrix widths. The top line is the baseline machine with ditranal
square wakeup matrix. The unscalability of the square deisig
clear — the critical path increases proportionately with tumber
of entries. It is difficult to justify this delay increase evavith
the IPC improvements that larger schedulers afford. Theinrging
lines show the critical paths of a rectangular matrix withioas
widths. It is evident that these delays scale far better tihen
traditional square matrix design. This allows us to desidarge
scheduler with the critical path delay of a much smaller oRer
instance, a 64-entry 12-column configuration has simildaydé&
that of a traditional 32x32 configuration, yet it has a 7.5%hker
performance. Similarly a 32-entry 8-column configuraticas la
similar delay to a traditional 16x16 but 26.5% higher parfance.

4.2 Picker Side Results

00 cycles
2.00 E1 cycle
02 cycles .
o
1.90 < W 3 cycles S § Sy & 2
2 @ s 4 ¥ © S 3
> < ! <t
o [N
s b
[
o
1%2]
Q
Q
o
<]
L
€
8 columns 12 columns 16 columns

number of wakeup columns on a 64RS

Figure 14: Sensitivity to wakeup column reallocation delayfor
a 64-entry scheduler.

450

——|raseline
e=fll==16 columns
12 columns

350 1 /
= e=3 columns

300 1+
==¥==6 columns 7
250 1 O~4 columns
200 /

150 A
100 A
50 1

0

400 1

matrix critical path hops

0 20 40 60 80 100 120 140
scheduler entries

Figure 15: Critical path hops through wakeup matrix for
various heights and widths.

we use a 64-entry scheduler, though other scheduler siles fo
similarly. Figure 16 (top) plots the performance of varigsup-

size and column-count configurations. This simulator haaszline
wakeup matrix, but alters the picker so that groups are edibut
instructions within a group are not. Figure 16 (bottom) shidhis
same data as a surface map so we can more clearly see the sweet
spot for number of instructions per group. The reader shoate

this quantity is essentially a free-choice; that is, the sthosen
only affects the size of the group counter, a trivial concefine
number of columns, however, is far more important. The dbjec

of group-based picking is to reduce the number of pickerrooki
while maintaining acceptable performance. The map in Eid&
(bottom) shows us that we can use fewer columns if we choose
the proper number of instructions per group. Thus we should
choose the group size where the saddle of the white-shadgtbét
performance) area is, because that is where we need thetfewes

The first step in evaluating the group picking technique is to number of columns for a given performance level.

determine how to divide up our groups. Groups are the quantum

that will be ordered in our picker. If the groups are too bige t
selection will degrade to the random picker, which we haemnss
not acceptable. If the groups are too small, then we will meede
columns to track all the instructions in the taller scheduleOur
first intuition was to divide at basic block boundaries, thé high
variance in block size created fragmentation in our piclesigh,
dramatically reducing performance. So we instead cut gratfiter
a constant number of instructions, regardless of controhtaries.

To determine the optimal number of instructions per group, w
need to observe the relationship between the number of picke

columns and the number of instructions per group. As artiition

Interestingly, the optimal number of instructions per gras
around 10-14 for all scheduler sizes in our simulationss tive
choose 12 instructions per group for all our performancesegxp
ments. Figure 17 shows these performance results acrosgeg/va
of scheduler sizes. The first bar in each group is the baseline
picker, a configuration with perfect age resolution. The amer
of the bars show group picking with a reduced number of cokimn
Configurations which do not allow the full capacity of the aghler
to be reached are omitted. For instance, at 12 instructiens p
group, 128 scheduler entries requires at least 11 columtradhk
all entries. Thus we do not include smaller column countster
taller schedulers.

-3.0%
-3.0%
-2.9%

H| -1.4%

-1.7%

2.4 B 16ent (8W 8P)

<S8 | O3zent (12w 12pP) £ER
22 | do B 64ent (16W 16W) w0
B % E96ent (16W 16P) HE
)] é % [128ent (1L6W 16P) g 3
o N sze TR
o ﬁ h —N O / \
2 i an U
1.6 4 S 5 S =S4 S B E
g > JE g HE
£ £8 ¥ i sl N = DN
ez o A AN A R
144 S = N E EFES
M l= ﬁ * * f \ f ﬁ
AN EH DN 4 AN < AN B IR
1 HUE ‘El L
1213 FAH H HE N HE H AR
AR H B R H
. JELERE H ERES HERE Bl R

server fspec ispec spec06¢c dig-hom

-2.09

R R R R R AR
Wmm'
.

L]
Wmmfm‘

L

s I

-2

wkstation

office

games multimedia average

Figure 18: Performance of wakeup and picker techniques comhed for different benchmark suites.

B 8col
O12col

1.82 1

1.80 1+
M 16col

1.78

1.76

1.74

micro-ops per cycle

1.72

1.70 A

1.68 -
12insns 16insns

64RS

8insns

01.775-1.8
01.75-1.775
01.725-1.75
B1.7-1.725

16col

sweet spot

g

8insns 12insns 16insns

12col

Figure 16: Chart (top) and surface map (bottom) plotting the
performance (micro-ops per cycle) at different column couts
(col) and micro-ops per group (insns) for a 64-entry schedr.

We can see from the results that group picking is highly ¢iffec
at reducing the amount of age tracking needed, though tha ide
number of columns is still related to scheduler size. A 18yen
scheduler loses only 0.7% per cycle performance by trackieg
relative age of only 4 groups of instructions rather than 14l
individual instructions. The 128 entry scheduler losey dé by
tracking 16 group ages rather than all 128. For brevity wet @mi
analysis of picker column reallocation delay, but the ressarle quite
similar to the wakeup side (see Figure 14): additional delayrs
marginal performance costs but can be compensated for with a
extra couple of columns. Even with these additional colurgrsup
picking reduces the size and latency of the matrix signifittyafrom

2.20 1

B group (16)
HEgroup (12)
B group (8)
B group (6)
1B group (4)

2.00

.0%

-] -1.0%
1.59
.0%
1.69
2%

] -0.9%
1.0%
-] -0.9%

1.60

1.40

micro-ops per cycle

1.20 A

1.00 -

16ent

32ent 64ent 96ent 128ent
Figure 17: Performance of group picking across a range of
scheduler sizes. Group size is 12 instructions in all group-

picking configurations.

the baseline picker design. This latency reduction mightdboser
timing in the wakeup phase.

Alternatively, scheduler height can be added without $icpunt
impact on the critical path through the picker. This pathitisilar
to the wakeup side path — a line across the bottom, up thesfgtrth
side, and back across the top. Thus we can use the same nedenix d
estimates from in Figure 15 to track the number of hops thioug
the picker matrix. As with the wakeup matrix, cell hop coungti
is a crude metric but is agnostic to process, floorplan, aralici
variations. Given the need for only 8-16 columns, the datégare
15 indicates a similar improvement in delay on the pickee sislon
the wakeup. For instance, a 64-entry 16-column picker lesdame
number of hops as a 32-entry square picker, but has 7.3%rhighe
performance.

4.3 Combined Results

We have shown so far, separately, that the wakeup and picker
enhancements allow significant improvement in the scatalof
the two scheduler segments. In our final analysis, we combine
the techniques into a single scheduler configuration andoaoen
against our baseline matrix scheduler. Figure 18 plotsahgbined
performance numbers for various scheduler sizes. Errar dad
data labels indicate performance loss from our baselinedsdar
with complete wakeup and picker matrices, and the legeridateb
the number of wakeup and picker columns used for each satredul

900

800 {—| e==m==haseline

700 1 emsllile==mx reloaded
600

matrix critical path hops

scheduler entries

Figure 19: Critical path hops through total baseline matrix
scheduler and thin matrix scheduler for various scheduler
heights and widths.

the opinion of the authors, a good use for such width and dspth
simultaneous multithreading, for which a large scheddesiearly

useful. A study of our wakeup and picker techniques with SMT
workloads is on-going work.

6. REFERENCES

[1] AMD software optimization guide for AMD64 processorsilp25112, rev 3.06,
www.amd.com.

[2] E.Borch, E. Tune, E. Manne, S. Emer, Loose loops sinkghipProceedings of
HPCA-8 Feb. 2002.

[3] A.Bracy, A. Prahlad, P. Roth, Dataflow mini-graphs: Aiifyohg superscalar
capacity and bandwidth, iroceedings of MICRO-32005.

[4] E.Brekelbaum, J. Rupley, C. Wilkerson, B. Black, Hietaal scheduling
windows, inProceedings of MICRO-32002.

[5] M. Brown, J. Stark, Y. Patt, Select-free instruction edhling logic, in
Proceedings of MICRO-32001.

[6] M. Butler, Y. Patt, An investigation of the performancevarious dynamic
scheduling techniques, Proceedings of MICRO-28.992.

[7] D. Ernst, T. Austin, Efficient dynamic scheduling thréutag elimination, in
Proceedings of ISCA-22002.

height. The graph shows that most configurations have betwee [8] D.Ernst, A. Hamel, T. Austin, Cyclone: a broadcast frgeamic instruction

1 and 2% average performance loss from the baseline — the

equivalent of cutting the baseline scheduler by few entries

However, Figure 19 shows that the wakeup and picker thinning

scheduler with selective replay, roceedings of ISCA-3@003.

[9] J. Farrell, T. Fischer, Issue logic for a 600-Mhz outenéler execution
microprocessor, IEEEE Journal of Solid State Circuit§ol. 33, No. 5, May
1998.

techniques decrease the scheduler |OOp Iatency much mane th [10] B. Fields, S. Rubin, R. Bodik, Focusing processor petiavia critical-path

dropping a few entries would.
cell hop count, decreases from 33% with a 16-entry schedaler
58% with a 128-entry scheduler. Interestingly, the pathaykl
are nearly identical for a baseline 32-entry scheduler arfdl-a

entry scheduler with thin wakeup and picker matrices, aetrad

producing an average 8.3% performance gain for similamigsui
Even accounting for slightly more complex cells in both ras,
the efficiency improvement is clear.

5. CONCLUSION

Our goal in this work is to provide greater published under-

standing of matrix schedulers, to reveal their design ahems

and scalability weaknesses, and improve on the basic agproa

through simple indirection techniques. On the wakeup swe,
have shown that the all-to-all tag broadcast in a traditiomatrix
is over-design: only a handful of tags need broadcast, evéarge
schedulers. By conservatively subscribing to broadcaahméls

(wakeup columns) we can reduce the size and wire-delay ghrou

the matrix significantly. An additional structure is reaqdrto map
registers to columns, but it likely amortizes its own costégucing
the matrix size and eliding the need for the large bank ofiticathl

allocation comparators. Similarly, we have shown that tiokgy

matrix is over-designed for providing full age resolutiomdeed,
some level of age tracking is needed, but ordering smallggmi
instructions appears to be adequate. IPC drops by less thengent
if the number of groups in-flight (picker columns) is keptgenable.

By reducing the width of the both matrices by 60-90%, theltota

critical path latency is greatly shortened and possiblgufeacy and
power improvements can be realized.

It is important to note that, though the machine chosen for

our simulations represents a reasonable future core, Hatiese
approaches are already useful in current microprocesé@ slo not
require large out-of-order monolithic pipelines to reap benefits
of more scalable issue windows. If architects do wish togase
machine width and depth, though, we hope that techniquésasic
ours assure that schedulers do not become scalabilitgbettks. In

Our latency estimation metric

prediction, inProceedings of ISCA-282001.

[11] B. Fields, R. Bodik, M. Hill, Slack: maximizing perforamce under
technological constraints, iroceedings of ISCA-22002.

[12] A. Fog, The microarchitecture of Intel and AMD CPUs,
www.agner.org/optimize/microarchitecture.pdf, Aug T®8a.

[13] A. Gonzales, M. Valero, Virtual Physical RegistersPiroceedings of HPCA;4
1998.

[14] M. Goshima, K. Nishino, Y. Nakashima, S. Mori, S. Tomifahigh-speed
dynamic instruction scheduling scheme for superscalargssors, in
Proceedings of MICRO-3Dec 2001.

[15] G. Hamerly, E. Perelman, J. Lau, B. Calder, SimPoint &éter and more
flexible program analysisiournal of Instruction Level ParallelispSep 2005.

[16] 1. Kim, M. Lipasti, Half-price architecture, iffroceedings of ISCA-3@003.

[17] K. Krewell, Intel Looks to Core for Success,Microprocessor ReportMar 27
2006.

[18] A. Lebeck, J. Koppanalil, T. Li, J. Patwardhan, E. Rdtery, A large, fast
instruction window for tolerating cache missesPiroceedings of ISCA-22002.

[19] D. Leibholz, R. Razdan, The Alpha 21264: a 500MHz oubafer execution
microprocessor, iProceedings of IEEE Compcph997.

[20] E. Marques, C. Kirner, Design of the matching unit of assieely parallel
dataflow computing system, Proceedings of IEEE Conference on Massively
Parallel Computing Systemilay 1994.

[21] P. Michaud, A. Seznec, Data-flow prescheduling fordairgstruction windows in
out-of-order processors, Proceedings of HPCA;2001.

[22] S. Palacharla, N. Jouppi, J. Smith, Complexity-effecsuperscalar processors,
in Proceedings of ISCA-24997.

[23] J. Parcerisa, J. Sahuquillo, A. Gonzlez, J. Duato, Bip-mterconnects and
instruction steering schemes for clustered microarchites,|EEE Transactions
on Parallel and Distributed Systeméol. 16, No. 2, Feb 2005.

[24] P. Sassone, D. Wills, Dynamic strands: collapsing sfetive dependence chains
for reducing pipeline communication, Proceedings of MICRO-32005.

[25] P. Sassone, D. Wills, G. Loh, Static strands: safelfapsing dependence chains
for increasing embedded power efficiencyProceedings of the ACM
Conference on Languages, Compilers, and Tools for Embe8igstems2005.

[26] J. Shen, M. LipastiModern Processor DesigiMcGraw Hill, 2003.

[27] B. Sinharoy, R. Kalla, J. Tendler, R. Eickemeyer, J.nlyy"POWERS5 system
microarchitecture,” IBM Journal of Research and Developiyiéol 49, No. 4/5,
July 2005.

[28] J. Smith, A. Pleszkun, Implementing precise intersuiptpipelined processors,
Proceedings of Computer Architectufeé85.

[29] S. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, M. Upt@ontinual flow
pipelines, inProceedings of ASPLOS-1Qct 2004.

[30] J. Stark, M. Brown, Y. Patt, On pipelining dynamic insttion scheduling logic,
in Proceedings of MICRO-32000.

[31] E. Tune, D. Liang, D. Tullsen, B. Calder, Dynamic préitin of critical path
instructions, inProceedings of HPCA;2001.

