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Abstract

For a variety of reasons, branch-less regions of instruc-
tions are desirable for high-performance execution. In this
paper, we propose a means for increasing the dynamic
length of branch-less regions of instructions for the pur-
poses of dynamic program optimization. We call these
atomic regions frames and we construct them by replacing
original branch instructions with assertions. Assertion in-
structions check if the original branching conditions still
hold. If they hold, no action is taken. If they do not, then the
entire region is undone. In this manner, an assertion has no
explicit control flow. We demonstrate that using branch cor-
relation to decide when a branch should be converted into
an assertion results in atomic regions that average over 100
instructions in length, with a probability of completion of
97%, and that constitute over 80% of the dynamic instruc-
tion stream. We demonstrate both static and dynamic means
for constructing frames. When frames are built dynamically
using finite sized hardware, they average 80 instructions in
length and have good caching properties.

1 Introduction

An atomic region of code has the following properties:
execution of the region begins at a single instruction, ends
at a single instruction, and the region contains a single path
of execution. The region is considered atomic because if
one instruction in the region is committed to architectural
state, then all instructions are committed. A basic block, for
example, is an atomic region.

Atomic regions consisting of many instructions are de-
sirable for a variety of reasons. They allow a compiler
maximum flexibility for optimizations. Code scheduling in
atomic regions, for example, need not account for side en-

trances, side exits, or divergent paths of execution. Atomic
regions provide hardware with a sequential stream of in-
structions with no control flow. Instruction fetch mecha-
nisms can stream out an atomic region with a single PC and
a single branch prediction. Optimistic state recovery mech-
anisms need only save state at boundaries of atomic regions.

The nature of programs, however, is such that atomic
regions typically consist of very few instructions. Basic
blocks are the most familiar notion of atomic regions. The
data in Table 1 shows that dynamic basic block size for
a majority of the SPEC2000 integer benchmarks is below
9 instructions. The benchmarks were compiled using the
Compaq Alpha compiler with a high level (-O4) of opti-
mization including function in-lining and loop unrolling.

Benchmark Average block size
bzip 9.17
crafty 9.23
eon 7.45
gap 8.52
gcc 6.43
gzip 11.07
mcf 5.33
parser 5.30
twolf 7.36
vortex 7.20
vpr 8.56

Table 1. Dynamic basic block size.

In this paper, we present an effective technique for gen-
erating longer atomic regions with the use of control flow
assertions. An assertion is an instruction that verifies that
the original branching conditions still hold. If the condi-
tions are still true, then no action is taken. If they are not,
then the entire region is undone and control is diverted to an



original copy of the code.
The atomic regions formed using our technique are

called frames. A frame is a region of code where all in-
ternal branches have been promoted into assertions. Frame
creation can be done statically by a profiling compiler, or
dynamically with a hardware fill unit. We demonstrate that
with a dynamic technique using branch correlation, frames
can be very long—an order of magnitude longer than a basic
block—with several properties that make them very com-
pelling for further investigation.

In addition to the reasons mentioned earlier in the in-
troduction, long atomic regions are useful for low-level dy-
namic translation and optimization, as exemplified by sev-
eral recent proposals such as the rePLay Framework [10],
the Transmeta Code Morphing System [5], and HP Dy-
namo [1]. An atomic region can serve as the basic unit
of optimization. It can be as small as an instruction, but
longer regions are preferred in order to give a dynamic opti-
mizer greater opportunity for optimization. Further benefits
are had if recently optimized regions occur frequently—the
overhead costs of translation and optimization are amor-
tized over each occurrence. While the frame construction
techniques presented here are specifically tailored for re-
PLay, they can be extended for use by a variety of dynamic
optimization schemes.

In this paper, we contribute the following. We present
a technique for constructing logically atomic regions called
frames by using control flow assertions. We measure the
effectiveness of our construction technique when applied to
static code versus applying it dynamically using branch cor-
relation. We provide metrics for evaluating the effectiveness
of frame construction. We propose and evaluate a hardware
mechanism for constructing frames.

2 Basic concepts : assertions and frames

There are two basic concepts proposed in this paper: as-
sertions and frames. An assertions is a type of branch in-
struction that has no explicit control flow associated with
it [6]. An assertion verifies that certain conditions are true
during execution, and initiates a recovery action if they
are not. Frames are logically atomic blocks of instructions
where all internal control flow has been replaced by asser-
tions. In this section, we elaborate further on these con-
cepts.

2.1 Assertions

A conditional branch instruction and an assertion in-
struction are similar in that they both test a condition. They
are different, however, in the actions taken after the con-
dition is tested. A conditional branch instruction will either
divert the instruction stream to the taken target of the branch

instruction if the condition is true, or allow the program to
progress sequentially if the condition is false. An assertion
does nothing if the condition is true. If the condition is false,
however, the assertion triggers a recovery action and diverts
control back to a recovery point. The recovery action in-
volves reverting the architectural state to that of the begin-
ning of the block that contains it. Essentially, an assertion
that fires causes its entire block to be undone. We discuss
the specifics of the recovery action later in this section.

This undoing of state creates an important distinction be-
tween a conditional branch and an assertion: subsequent in-
structions in the same block are not control dependent upon
the assertion. An assertion therefore requires no prediction
when fetched. An implicit prediction is made that the asser-
tion will follow the direction the original branch instruction
was biased towards.

We demonstrate the concept with an example. Figure 1
shows the difference between original code and code with
assertions. The original code contains three basic blocks:
BlockA, BlockFallThroughA, and BlockZ. BlockA con-
tains a conditional branch that is taken to BlockZ. BlockA
and BlockZ can be coalesced using an assertion. In Frame1,
the instructions in BlockZ are not control dependent on the
assertion, and can be safely moved ahead of the assertion. If
the condition checked by the assertion is true, nothing hap-
pens. If it is not true, the entire block is flushed (i.e., archi-
tectural state is recovered back to the beginning of Frame1),
and control is transfered to BlockA. We say that in this case,
the assertion has fired.

BlockA:
:
BRz r3, BlockZ ; BR 1

BlockFallThroughA:
:

BlockZ:
:
BRz r4, BlockK ; BR 2
:

Frame1:
:
<insts from Block A and Z>
:
ASSERTz r3, BlockA
:
BRz r4, BlockK ; BR 2

Figure 1. Example of a frame. BlockA, Block-
FallThroughA, and BlockZ constitute the orig-
inal control flow. Frame1 contains copies of
Blocks A and Z joined by an assertion. If the
assertion fires, control is diverted to BlockA.



We will demonstrate that using assertions in place of
highly biased branches allows for the creation of large
atomic regions (like Frame1). The objective is to promote
conditional branches into assertions in situations where they
are unlikely to fire.

The three general forms of a conditional assertion are
shown below.

ASSERT Rx, Ry, <cond>, assert_tgt
ASSERTi Rn, <imm>, <cond>, assert_tgt
ASSERTil Rn, <long_imm>, <cond>, assert_tgt

All three versions compare a register with either a regis-
ter, a short immediate value, or a long immediate value. A
PC-relative assertion target (assert tgt) specifies where con-
trol is to be redirected in the case the condition is not true.
The conditional field can be any standard relational compar-
ison (i.e., less than, less than or equal to, etc). Most ISAs
only support conditional branches that compare a register
with the value zero (i.e., the relational comparison is less
than zero, less than or equal to zero, etc.). This is to al-
low high-speed implementation of branch execution logic;
performing a register-to-register comparison and initiating a
possible misprediction recovery in a single cycle at high fre-
quencies can be problematic. Since the case of an assertion
firing is by design the uncommon case, we allow two regis-
ter values to be compared within assertions. As a result, the
recovery due to a fired assertion might start a cycle after the
comparison is done. There is no direct performance advan-
tage in doing this, and this can be done with branches also.
It does, however, allow the removal of an extra instruction
in certain situations when converting from basic blocks into
frames.

As we will show, our technique for converting branches
into assertions also allows indirect branches to be converted.
The third form shown above, ASSERTil, compares a reg-
ister with a 32-bit (or 64-bit) immediate value, and therefore
an ASSERTil takes the space of 2 (or 3) regular 32-bit in-
structions. Highly biased indirect branches or returns can
be converted into assertions and their target blocks encap-
sulated with a frame. The address of the expected target is
the immediate value field of the ASSERTil instruction.

2.2 Frames

A section of code in which all internal branches have
been promoted into assertions is called a frame. A frame is
an atomic region. If any instruction within the frame com-
mits, then they all commit. Figure 2 shows how a likely
path through a section of a program can be converted from
original basic blocks into a frame.

The frame in Figure 2 has four assertions. These asser-
tions test that the original branching conditions that would
have taken program control from block A to block B to
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Figure 2. A frame is a region where all internal
branches are promoted to assertions.

block C to block D to block E still hold. If they hold, then
the frame completes. If any one of them do not hold, then
an assertion will fire, the frame will be undone, and pro-
gram control will transfer to the original block A and pro-
ceed from there.

An optimization can be done in the mapping between
branches and assertions. Assertions need only check for the
most restrictive condition that must be true in order for a
frame to execute. For example, if the branch at the end of
block A tested for (x < 10) and the branch at the end of
block B tested for (x < 4) then only an assertion to verify
the condition (x < 4) is required (provided the value of
x does not change in the interim).

Because a firing assertion can have a higher execution
penalty than a mispredicted branch, frames should not be
constructed unless the paths that they encapsulate are deter-
mined to have high likelihood of execution. The penalty of
a firing assertion depends on two factors: (1) the dataflow
depth of that assertion and (2) the efficiency of the processor
in meeting that depth during execution.

Frames have a similarity to other types of regions identi-
fied by optimizing compilers, but are nonetheless different.
Hyperblocks, superblocks, and traces from a trace schedul-
ing compiler are not strictly atomic regions—all can have
side exits or divergent paths. The use of the control flow
assertion in frame construction alleviates an obvious lim-
itation to region size imposed by atomicity. We will also
demonstrate that frame construction can be carried out dy-
namically.

Recovery involves two things: (1) reverting architectural
state back to what it was before the frame started execution,
and (2) directing control back to the original (non-frame)
version of the code. Reverting state is done using a state re-



covery mechanism similar to what is required for a deeply-
pipelined dynamically-scheduled processor, such as check-
pointing or a reorder buffer. A large store buffer is required
to hold values stored to memory by instructions within a
frame. Once the frame is determined to execute completely,
the stores are committed to memory and the register values
produced by the frame are committed to the architectural
register set.

2.3 The rePLay Framework

The techniques presented in this paper can be applied
directly to a hardware/software framework for dynamic op-
timization called rePLay [10]. In rePLay, frames are con-
structed by hardware using some of the techniques de-
scribed in this paper. A software-driven optimization en-
gine optimizes each frame before storing it within the frame
cache. The atomic property of frames enables the optimiza-
tion engine to perform aggressive optimization with lower
overhead than if frames were non-atomic. A sequencer
speculates through the control flow, initiating fetches of
both frames and regular basic blocks. Figure 3 shows a
high-level diagram of the rePLay framework.

Optimization

Frame

Engine

Fetch Engine

Constructor
Frame

Execution Engine

Completing instructions

Sequencer
Cache

Figure 3. The rePLay Framework.

Since we are investigating frame construction for use
with dynamic optimization, we are faced with two com-
peting objectives: we want frames to be long in order to
boost the potential of optimization, and we want frames to
completely execute. In this paper, we examine frame con-
struction techniques that achieve both.

3 Related Work

The fundamental elements of this work are derived from
work done by Melvin and Patt on the Block-Structured
ISA [6]. They proposed the concept of developing an
ISA centered around atomic regions. In a similar vein to
frame construction, trace scheduling [3] exploits infrequent
branch paths by removing them from a trace and branch-
ing to compensation code if an infrequent path should have

been executed. Assertions (and dynamic branch correla-
tion) improve upon trace scheduling.

Much of this work builds upon previous trace cache
research [11, 12, 9], in particular that of Branch Promo-
tion [8]. Recently, Merten et al [7] have investigated iden-
tifying hot traces to focus the benefits of a trace cache-like
mechanism. The one key difference between most previous
trace cache work and this work is that here frames are con-
sidered atomic entities; traces in previous trace cache work
could have side exits. Furthermore, we consider frames for
dynamic optimization, and thus frames are required to be
long. Trace caches were primarily investigated to boost in-
struction fetch bandwidth.

The concept of dynamic compilation and optimization
is an emerging area. The desire to boost performance and
efficiency by exploiting run-time behavior has spawned sev-
eral alternative proposals [1, 5, 4, 10]. All of these systems
rely on identifying good candidate regions for optimization.
In this paper, we provide a region-identification mechanism
that can be used by most of these run-time systems.

4 Experimental Model

4.1 Benchmarks

For this study, we used all but one of the SPEC2000 in-
teger benchmarks. We omitted the benchmark perlbmk be-
cause of problems in running it within our simulation en-
vironment. All benchmarks were simulated to completion
except the benchmark vpr, which was simulated for 1B in-
structions∗. Table 2 shows the number of simulated instruc-
tions for each benchmark. For most benchmarks, we used
modified versions of the input sets provided by SPEC in or-
der to get benchmark instances that simulated completely in
a reasonable amount of time.

All benchmarks were compiled using the Compaq Alpha
C compiler DEC C V5.9 with optimization level 4. At this
level of optimization, the compiler performs in-lining, loop
unrolling, and code replication to eliminate branches.

4.2 Simulation Environment

Our simulation framework is built upon the Alpha
instruction-level simulator provided as the core of the Sim-
pleScalar 3.0 tool set. For the studies done in this paper,
we use an instruction trace analyzer that emulates a frame
constructor and models a frame cache and branch bias table.

∗The benchmark vpr undergoes to two phases of execution (placement
and routing). We cover all of the placement phase and part of the routing
phase in our simulations.



Benchmark Instructions Input Set
bzip2 289M modified SPEC test input
crafty 620M modified SPEC test input
eon 609M SPEC test input (cook)
gap 490M modified SPEC test input
gcc 283M jump.i -o jump.o
gzip 870M modified SPEC test input
mcf 413M modified SPEC train input
parser 508M modified SPEC test input
twolf 574M modified SPEC train input
vortex 265M modified SPEC train input
vpr 1000M SPEC test input

Table 2. Benchmarks used in simulations.

5 Evaluation

In this section we evaluate two techniques for frame con-
struction. The first technique is based on a simple static
analysis of branch behavior. Branches that are highly biased
above a particular threshold are promoted into assertions.
The second technique uses branch correlation to identify in-
stances of branches for promotion.

Since we are proposing a frame construction technique
for use with dynamic optimization, we have only considered
frames above a minimum size. Small frames are unlikely to
provide substantial benefit over basic blocks in terms of op-
timization opportunity, and instead can incur performance
overhead that cannot be recovered. We therefore discard
frames consisting of fewer than 3 basic blocks or fewer than
16 instructions from consideration. We also set an upper
limit on frame size to accommodate restrictions imposed by
real hardware (for instance, line size in the frame cache or
number of outstanding stores in a store queue). Frames are
truncated at the 256th instruction.

We use three primary metrics to evaluate our frame con-
struction techniques: average dynamic frame size, frame
completion rate, and coverage of the instruction stream. Av-
erage frame size is the average size in number of instruc-
tions of a frame measured over all committed frames. The
frame completion ratio measures how likely a frame is to
commit once issued. A frame does not commit if any of its
assertions fires. The completion rate therefore is a measure
of how often all assertions within a frame are correct. Frame
coverage measures the fraction of the dynamic instructions
that is derived from committed frames. For example, 80%
coverage indicates that 80% of the i-stream came from in-
structions encapsulated within a frame.

5.1 Static frame construction

Static frame construction is performed by using a profil-
ing compiler to first identify branches to promote into as-
sertions. The compiler then promotes candidate branches
and arranges their blocks into sequential frames, keeping
the original copies to handle a firing assertion. An example
of static frame construction is demonstrated in the example
in Figure 1.

We evaluated a scheme for static frame construction by
emulating an idealized compiler technique within our ex-
perimental framework. We first profiled each benchmark
on a training input set to identify branches that are 97%†

likely to go to a particular target. These candidate branches
are treated as assertions in subsequent simulations of each
benchmark on the measurement input sets listed in Table 2.
In effect, we are modeling a compiler that is ideally able to
promote every highly biased branch (conditional, indirect,
and return) into an assertion and construct frames out of all
paths containing sequences of 2 or more assertions.

Table 3 shows the average frame size, completion rate
and coverage for each of the benchmarks. Also included is
the number of unique frames generated by this static tech-
nique. With static frame construction, frames average 66
instructions in length, have a 97% probability of complete
execution, and cover 50% of the instruction stream.

Ave Frame Completion Coverage Assertions Unique

Size Rate per Frame Frames

bzip2 137 91% 61% 15.9 1412
crafty 64 98% 42% 3.2 3954
eon 78 99% 57% 3.1 7210
gap 48 95% 53% 3.6 3844
gcc 37 99% 40% 3.6 21720
gzip 98 95% 59% 5.9 1423
mcf 93 96% 33% 6.1 1092
parser 33 99% 50% 4.1 3835
twolf 39 99% 54% 3.4 4497
vortex 58 99% 82% 5.2 8178
vpr 42 99% 18% 2.7 3428
Ave 66 97% 50% 5.2 5508

Table 3. Effectiveness of Static Frame Con-
struction.

Figure 4 shows the distribution of frame sizes observed
during execution, averaged over all benchmarks. Each bar
represents a span of four sizes. For example the bar labeled
16 represents the dynamic frequency of frames of size 16,
17, 18, and 19 instructions. It indicates that frames of this

†We chose the 97% after investigating several thresholds. We selected
one that maximizes size while not compromising completion rates.



size account for slightly over 9% of all frames. The distri-
bution is wide, however the bulk of frames are between 16
and 48 instructions long.
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Figure 4. Distribution of statically-generated
frame sizes at run-time.

5.2 Dynamic frame construction

A variety of basic research in branch prediction [14,
2] has provided substantial insights into the relationships
among dynamic branch instructions. These studies have
identified two types of basic correlation: local correla-
tion, where a branch’s current direction is highly correlated
to its previous directions, and global correlation, where a
branch’s current direction is highly correlated to the direc-
tion of any previous branch or branches.

The dynamic techniques we explore in this section rely
upon global correlation between branches to guide promo-
tion from branches to assertions. Figure 5 provides a high-
level view of the construction technique.

The frame constructor hashes (using XOR) the fetch ad-
dress of each incoming block of committed instructions
with the committed branch history to index into the branch
bias table [8]. The bias table keeps track of whether the
branch ending the block has gone in the same direction for
a particular number of successive occurrences. If it has, the
bias table indicates that the branch should be promoted. In
our experiments, the bias table is configured to promote if
the branch repeats its direction 32 consecutive times. Fig-
ure 6 shows the structure of the bias table. Once the 5-
bit counter has saturated, the branch is promoted and the
entire block is added to the frame construction buffer and
the pending frame continues to grow. Once a branch is en-
countered that is not promoted, the block is added and the
pending frame is considered complete. A separate bias ta-
ble is maintained for indirect branches and returns. For such
branches, a single bit for last direction does not suffice. A
target address must be kept in each entry.

frame branch hist

curr branch hist

Branch

Table
Bias 

Promote?

Block
Incoming

Frame Construction Buffer

Block addressFrame
Pending

Committed instruction stream

the frame is completed.

frame continues to grow.

If the incoming block has

If the branch is not promoted,

a promoted branch, the pending

Figure 5. A hardware-based constructor that
utilizes branch correlation.

Promote

Block address XOR history

n−bit saturating counter

# Consecutive occurrencesPrevious outcome

n

dir

Branch Bias Table

Figure 6. Branch bias table for conditional
branches.

We also demote assertions back into branches when we
detect that their behavior has changed. Using the branch
bias table, we also track firing assertions to determine if
they should be demoted back into branches. An assertion
is allowed to fire once before it is demoted. A demoted
assertion causes the frame containing it to be discarded.

The starting branch history of each frame (i.e., the com-
mitted history at the first branch in the frame) is kept with
each frame. This history is essentially a prefix that identifies
the instance of each promoted branch within a frame. For
example, if the history of frame ABCDE is XYZ, then XYZ
was used to decide whether or not to promote branch A,
YZA was used to decide the promotion of B, and so forth.
The starting history XYZ forms a signature for the frame
and specifies when it should be invoked. Whenever the cur-
rent history contains XYZ and the current fetch address is



A, the frame sequencing mechanism attempts to fetch the
frame ABCDE.

The crux of this frame construction technique hinges on
the observation that a branch can be separated into instances
based on the path leading up to the branch. Once separated
this way, a greater number of branches tend to exhibit biased
behavior. This is the same phenomenon exploited by two-
level branch predictors. Said another way, the outcome of a
branch tends to be correlated to the outcomes of branches,
or path, before it. The history used in the promotion deci-
sion helps separate branches into these biased instances.

We gathered branch information in two ways: global his-
tory and path history. Global history is a recording of the n
most recent conditional branch outcomes. Path history is
a recording of the n most recent branch target addresses.
Global history can more compactly represent branch his-
tory because only a single bit is required to encode a branch
direction. Path history is less compact. It requires more
bits per target in order to uniquely identify the target from
all others. In this way, the information stored in the path
history can completely identify paths in cases where global
history would be ambiguous. Also, path history can capture
targets of indirect branches whereas global history cannot.

First we measure the fraction of all dynamic branches
that are promoted into assertions as a function of path his-
tory length. Figure 7 demonstrates that as path history is
increased beyond 6 targets, fewer than 20% of all dynamic
branches actually remain as branches. The rest are pro-
moted into assertions. Of these assertions, less than 0.5%
ever fire. This data was collected using a bias table that
promoted after 32‡ consecutive similar occurrences.
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Figure 7. Fraction of dynamic branches con-
verted into assertions. Bias threshold = 32.

Using an ideal version of this frame construction tech-
nique (i.e., a bias table that suffers no interference and an

‡We use a threshold of 32 throughout this paper. After extensive studies
on promotion thresholds, we determined that a threshold of 32 produces
large frames with low assertion rates.
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Figure 8. Average dynamic frame size as a
function of history used in frame construc-
tion. Bias threshold = 32.
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Figure 9. Frame coverage of the i-stream as a
function of history. Bias threshold = 32.

ideal hardware frame cache), we measured the effects of
branch correlation on frame construction.

Figure 8 demonstrates the average size of frames as mea-
sured on the benchmark set using both global branch his-
tory and path history. Figure 9 shows the coverage of the
instruction stream. In these experiments, the bias table was
configured to promote branches into assertions after 32 con-
secutive similar outcomes. The important trend is that even
adding a small amount of branch correlation to the promo-
tion decisions causes the size and coverage of the instruc-
tion stream increase. The completion rate of the frames re-
mains nearly constant at 97% (this indicates that the per-
assertion fire rate actually decreases because the average
number of assertions per frame increases).

The data in Figures 7 and 8 indicate that decreasing
the total dynamic branch count by even a small percent-



age causes a significant increase in frame size. This is be-
cause, after a certain critical number of branches have been
promoted into assertions, promoting more branches causes
adjoining frames to be coalesced into larger frames.

Average frame size serves as a gross summary of behav-
ior. Firstly, this is because frame size has a wide distribution
as demonstrated in Figure 10. There are small frames and
very large frames (almost 12% of all frames are the maxi-
mum 256 instructions long). Also, each benchmark has its
own characteristic distribution. Due to space constraints we
have omitted the per benchmark distribution data here.
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Figure 10. Distribution of dynamic frame sizes
constructed using a 9 element path history.

We do however include a per benchmark average of the 9
element path history scheme on the three important metrics,
plus the average number of assertions per frame, and the
overall number of dynamically generated frames. Included
for reference is the overall average of the static scheme and
the dynamic scheme utilizing a 9-bit global history.

The frame properties resulting from path-history based
frame construction are superior. One particular item of note
is the relatively high number of unique frames generated via
global history. We suspect this has to do with the ambiguity
surrounding global history.

Overall, the results are promising. With a dynamic frame
construction utilizing a 9 element path history, we are able
to construct frames that span an average of 102 instruc-
tions, encapsulate over 9 branches, and have a 97% chance
of complete execution. These frame characteristics make
atomic frame construction useful for optimization. The
reduction in dynamic branches opens opportunity for less
complex fetch hardware. In the next section, we demon-
strate that even with the simulated effects of finite hardware,
our frame constructor is able to sustain good results.

While we have been calling this frame construction tech-
nique a dynamic frame construction technique because of
its use of run-time branch information, Young et al [15] pro-
posed a mechanism that can be adapted to exploit such dy-

Ave Frame Completion Coverage Assertions Unique

Size Rate per Frame Frames

bzip2 180 89% 79% 18.9 1108
crafty 88 96% 85% 6.7 15432
eon 179 98% 89% 8.6 1515
gap 155 98% 96% 15.4 5662
gcc 70 96% 77% 8.2 24687
gzip 89 95% 79% 5.6 1505
mcf 52 96% 71% 6.7 2097
parser 46 98% 78% 6.2 7629
twolf 66 99% 82% 6.8 2533
vortex 135 99% 94% 13.4 3273
vpr 61 99% 74% 4.8 2656
path 102 97% 82% 9.2 6191
global 82 97% 79% 7.4 13324
static 66 97% 50% 5.2 5508

Table 4. Per benchmark statistics for a con-
structor using a 9 element path history.

namic information statically by creating duplicate versions
of branches specific to an execution path.

5.3 Hardware for frame construction

In this section, we examine the effects of using a finite
sized branch bias table and a finite sized frame cache on the
frame constructor.

In the first experiment, we examine the effects of bias
table size. The data plotted in Figure 11 demonstrate the
effects on frame size of using 16KB, 32KB, and 64KB bias
tables. Also, each configuration uses a 4KB indirect branch
bias table. The threshold for promotion was set to 32.

The bias table uses a 9 element path history maintained
as suggested by Stark et al [13]. They proposed maintain-
ing path history by XORing new targets into the path history
and XORing old targets out. Along the way, each target is
rotated to encode each target’s position within the history.
The number of bits selected from each target address de-
pends on the size of the bias table. For example, a 32KB
bias table uses 15 bits from each target address in forming
the path history.

The frames generated by using finite sized bias tables
peak at slightly over 80 instructions. The drop in frame
length between a 64KB bias table and a 16KB bias table is
significant but not severe.

Two things of note: First, the hardware frame constructor
mechanism uses committed branch information and there-
fore requires no recovery mechanism for misspeculations
as would a branch predictor in the frontend of a processor.
Second, our bias table suffers from negative interference (as
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Figure 11. Dynamic frame size for various
sized hardware bias tables.

demonstrated by the degradation from ideal to finite-sized).
Many of the proposed interference reduction techniques ex-
plored for branch predictors such as filtering and agree pre-
diction can be applied here to improve performance of the
bias tables.

Next, we evaluate the effects of a finite sized frame
cache. The data presented in Table 5 lists the results of using
a 256 element frame cache with a 32KB branch bias table
and a 4KB indirect branch bias table. Frame construction
uses a 9 element path history. Promotion threshold is again
set to 32 consecutive occurrences.

The data indicate that the constructor is able to coalesce
almost 8 basic blocks together to form atomic regions of
over 80 instructions, 7 of which are assertions. Almost
70% of the dynamic instruction stream is covered by these
frames. These characteristics of frames not only present
useful opportunity for dynamic optimization, but the in-
crease in the span of branchless regions makes the job of
a processor’s fetch engine much simpler. A single fetch can
produce 80 instructions with only a single branch predic-
tion.

To give further context to the frame characteristics pre-
sented in Table 5, we also include the branch prediction ac-
curacy of a small 4KB gshare using 14-bits of global branch
history. Frame completion rates are high even though
branch prediction accuracy is not. However, most bench-
marks that suffer from low branch prediction accuracies
also have smaller average frame sizes.

We measure frame cache size by the number of elements
cached rather than number of bytes of storage because
frame size is dependent on optimizations performed by an
optimizer. Hand optimizations of high frequency frames in
the SPECint95 benchmarks suite resulted in considerably
smaller frames than we started with. When smaller frame
cache sizes are evaluated, the primary change in metrics is

a reduction in coverage. A 64 element frame cache gets a
coverage of 58%, a 128 element frame cache gets 64%, and
a 256 element frame cache gets 67%. Frame size remains
nearly constant.

Degradation from ideal hardware is significant, but there
is opportunity for increasing the effectiveness of a frame
cache using the hot spot identification techniques of Merten
et al [7]. They have determined that the behavior of frame-
like regions of the control flow exhibit hot-cold behavior.
At certain regions of execution, some frames are likely to be
more frequently utilized than others. Using their technique
it is possible to only cache frames that are detected to be
hot, and to drop cold frames, and thereby use the limited
capacity of the frame cache more effectively.

6 Analysis

In this section, we provide some insight into the frame
construction techniques. We provide some ancillary data to
shed light on the types of program behavior that are being
exploited by the frame constructor.

6.1 Rationale behind what is happening

Frame construction, both dynamic and static, exploit bi-
ased branches. Based on our experimentation, we found
that via profiling approximately 55% of all branches are cat-
egorized as promotable biased branches using the criterion
we mention in Section 5.1. This number increases to 67%
when the classification is done dynamically using a bias ta-
ble. The number increases to over 80% when branch corre-
lation is added to the classification.

The phenomenon being captured by the dynamic frame
constructor is very similar to the phenomenon captured by
a 2-level branch predictor. Take for example a string of cor-
rect predictions made by a 2-level predictor such as gshare.
The initial correct prediction is made by indexing the pre-
dictor with the starting global branch history and a fetch
address. At the end of the cycle the fetch engine provides a
fetch block of instructions, a new global history, and a new
fetch address. In the next cycle, the new history and fetch
address index the fetch mechanism to produce another fetch
block, history, and fetch address. This cycle continues un-
til an event such as a branch misprediction, or BTB miss,
or cache miss causes a disruption. The process begins with
an initial history and an initial fetch address. The frame
constructor unfurls this process by prepackaging the fetch
blocks with the predictions; both can be known a priori by
traversing history information stored in the bias table. Since
the cost of an assertion can be higher than that of a branch
misprediction, we use larger counters in the bias table than
in the standard pattern history table (5-bit as opposed to 2-
bit) to gain more confidence about branch behavior. The



Average Completion Coverage Assertions Unique 4KB gshare

Frame Size Rate per Frame Frames

bzip2 179 89% 78% 18.9 1151 97.4
crafty 75 96% 61% 5.3 13643 92.4
eon 87 98% 46% 4.1 1613 97.1
gap 114 96% 88% 11.1 7569 98.0
gcc 51 97% 36% 5.7 21033 89.4
gzip 89 95% 77% 5.6 1579 90.7
mcf 53 96% 68% 6.6 2051 90.1
parser 43 99% 69% 5.9 6946 93.1
twolf 56 99% 67% 5.6 3569 90.4
vortex 89 98% 76% 8.4 5769 97.6
vpr 52 99% 75% 4.1 3085 85.0
Average 81 97% 67% 6.9 6182
Ave - Ideal Dynamic 102 97% 82% 9.2 6191
Ave - Ideal Static 66 97% 50% 5.2 5508

Table 5. Frame stats with 256 entry frame cache, 32KB+4KB bias tables, and 9 element path history.

starting address and starting branch history serve as a fetch
signature for a frame created with this technique.

6.2 Is it simply loop unrolling?

One phenomenon that both static and dynamic frame
construction may be capturing is loop unrolling. For all
data presented thus far, the loop unrolling option was en-
abled when the benchmarks were compiled using the Com-
paq Alpha compiler, so frame construction was able to boost
atomic region size beyond the loop unrolling performed by
a production C compiler.

We explored the effects of compiler loop unrolling on the
frame constructor by running an experiment with binaries
generated with loop unrolling disabled. Table 6 presents
the results. The table contains the average across all bench-
marks for a frame constructor utilizing a 9 element path
history. The first two data rows of the table present the re-
sults with compiler unrolling enabled and with it disabled.
The data in the third row was measured using a frame con-
structor that was inhibited from adding duplicate blocks to
a pending frame (i.e., if a frame already contained block
X, then the frame would be considered complete if another
copy of X were attempted to be added). This is a very se-
vere way of restricting the effects of loop unrolling because
it factors out loops that would be otherwise difficult for a
compiler to unroll, such as loops with complex control paths
or function calls. This test was run on binaries generated
with compiler unrolling enabled.

Based on the data collected with loop unrolling disabled,
the effect of compiler unrolling on frame construction is
minimal. The frame constructor exploits loops, as demon-
strated by the sharp drop in frame size and coverage when

Ave Frame Completion Coverage Unique

Size Rate Frames

W/ unrolling 102 97% 82% 6191
W/o unrolling 105 96% 90% 6774
No duplicates 74 98% 71% 4581

Table 6. The effects of loop unrolling on frame
construction using a 9-element path history.

duplicate blocks are inhibited. Nonetheless, frame size and
coverage is still substantial.

6.3 Phased behavior

Static construction relies on profiling and is therefore
brittle to the difference in behavior between the execution
profiles and actual execution. Dynamic construction, with
extra hardware costs, can adapt to actual execution behav-
ior.

Another benefit of dynamic frame construction over
static construction is the ability for frames to be gener-
ated and destroyed depending on the dynamic behavior. A
branch may be biased during a section of a program, and not
biased during another. Such phased behavior is more easily
exploited by a dynamic mechanism than a static one.

We measured the dynamic variation in branch promo-
tions throughout the execution of each benchmark. For ev-
ery branch instance (branch preceded by specific path) that
executed at least 3200 times (this number was chosen be-
cause our promotion threshold is 32, thus the warmup cost
is a smaller factor), we counted how often the branch in-



stance was observed as an assertion and how often it was
not. We found that a majority of such branches were en-
countered as promoted only between 90% and 95% of the
time, indicating that there are periods of execution where
these branches have irregular behavior.

7 Conclusion

Frame construction using assertions creates large atomic
regions of instructions that have a very high probability
of complete execution. We demonstrate that incorporating
branch correlation into the branch promotion decision re-
sults in larger frames with a larger degree of coverage of
the instruction stream, even when finite sized hardware is
used for frame construction and frame caching.

We submit that the dynamic frame constructor is
pre-packaging the instructions associated with easy-to-
predict branches into a frame, leaving the harder-to-predict
branches as the connective branches between one frame and
the next. From a hardware standpoint, this is good because
with a single fetch, several cycles worth of instructions can
be streamed out of the frame cache allowing multiple cycles
for the prediction of these connective branches.

Our analysis demonstrates that the frame constructor is
able to unroll loops and in-line function calls in situations
difficult for a compiler to exploit. In addition to unrolling,
the frame constructor is able to exploit run-time control sta-
bility in paths that contain no loops as well.

We view these results as preliminary; they are the first
step for rePLay, which is a hardware/software framework
for dynamic optimization. Frames serve as the regions of
optimization within rePLay in the same way that a trace is
the basic unit within a trace scheduling compiler. Frames
are different from superblocks and hyperblocks in that they
contain only a single path of execution and no side entrances
or side exits. This gives a dynamic optimizer with greater
leeway in performing low-overhead optimizations.
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