
A V L I W A r c h i t e c t u r e f o r a T r a c e S c h e d u l i n g C o m p i l e r

Robert P. Colwell, Robert P. Nix, John J. O'Donnell, David B. Papworth, Paul K. Rodman

Multiflow Computer
175 North Main Street
Branford, CT. 06405

(203) 488-6090

1. Abstract

Very Long Instruction Word (VLIW) architectures were prom-
ised to deliver far more than the factor of two or three that
current architectures achieve £rom overlapped execution. Using
a new type of compiler which compacts ordinary sequential code
into long instruction words, a VLIW machine was expected to
provide from ten to thirty times the performance of a more con-
ventional machine built of the same implementation technology.

Multiflow Computer, Inc., has now built a VLIW called the
TRACE'" along with its companion Trace Scheduling" com-
pacting compiler. This new machine has fulfilled the perfor-
mance promises that were made. Using many fast functional
units in parallel, this machine extends some of the basic
Reduced-Instruction-Set precepts: the architecture is
load/store, the microarchitecture is exposed to the compiler,
there is no microcode, and there is almost no hardware devoted
to synchronization, arbitration, or interlocking of any kind (the
compiler has sole responsibility for runtime resource usage).

This paper discusses the design of this machine and presents
some initial performance results.

2. Background for VLIWs

The search for usable parallelism in code has been in progress
for as long as there has been hardware to make use of it. But
the common wisdom has always been that there is too little low-
level fine-grained parallelism to worry about. In his study of the
RISC-II processor, Katevenis reported Kate85 "...We found low-
level parallelism, although usually in small amounts, mainly
between address and data computations. The frequent
occurrence of conditional-branch instructions greatly limits its
exploitation."

This result has been reported before Tjad70,Fost72 and judging
from the lack of counterexamples, seems to have been inter-
preted by all architects and system designers to date as a hint
from Mother Nature to look elsewhere for substantial speedups
from parallelism.

Researchers at Yale, however, Fish83,Elli86 found that fine-
grained parallelism could be exploited by a sufficiently clever
compiler to greatly increase the execution throughput of a suit-
ably constructed computer. The compiler exploited statistical
information about program branching to allow searching beyond
the obvious basic blocks in a program (e.g., past conditional
branches) for operations that could be performed in parallel
with other possibly-unrelated operations. Fish79 Logical incon-
sistencies that were created by these motions were corrected by
special compensation code inserted by the compiler.

These researchers labelled their proposed architecture "Very-
Long-Instruction-Word", and suggested that a single-
instruction-stream machine, using many functional units in
parallel (controlled by an appropriately large number of instruc-
tion bits) would be optimal as an execution vehicle for the com-
piler. It was proposed that the most suitable VLIW should exhi-
bit four basic features.

oOne central controller issues a single long instruction word
per cycle.

sEach long instruction simultaneously initiates many small
independent operations.

• Each operation requires a small, statically predictable number
of cycles to execute.

sEaeh operation can be pipelined.

In the same spirit as RISC efforts such as MIPS Henn81 and the
IBM 801 Radi82 the microarchitecture is exposed to the compiler
so that the compiler can make better decisions about resource
usage. However, unlike those efforts, a VLIW provides many
more functional units that can be used in parallel; Multiflow's
Trace Scheduling compiler finds parallelism across basic blocks
to keep them busy.

Multiflow Computer, Inc., has now demonstrated the fundamen-
tal soundness of both the compiler and the architecture,
announcing a product based on these concepts. This paper will
discuss Multiflow's TRACE architecture. Some initial experi-
ence with programming a VLIW (bringing up UNIX on the
TRACE machine) will be recounted.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

T R A C E , Trace Scheduling, and Multiflow are trademarks of Multiflow
Computer, Inc. UNIX is a registered trademark of A T & T Technologies. V A X
and VMS are registered trademarks of Digital Equipment Corporation. IBM is
a registered trademark of International Business Machines Inc.

© 1 9 8 7 A C M 0 - 8 9 7 9 1 - 2 3 8 - 1 / 8 7 / 1 0 0 0 - 0 1 8 0 $ 0 0 . 7 5
180

3. Introduction to VLIW Computer Architecture

VLIW computers are a fundamentally new class of machine
characterized by

oA single stream of execution (one program counter,
and one control unit).

eA very long instruction format, providing enough
control bits to directly and independently control
the action of every functional unit in every cycle.

*Large numbers of datapaths and functional units,
the control of which is planned at compile time.
There are no bus arbiters, queues, or other hardware
synchronization mechanisms in the CPU.

Unlike a vector processor, no high level regularity in the user's
code is required to make effective use of the hardware. And
unlike a multiprocessor, there is no penalty for synchronization
or communication. All functional units run completely syn-
chronized, directly controlled in each clock cycle by the com-
pacting compiler.

The true cost of every operation is exposed at the instruction set
level, so that the compiler can optimize instruction scheduling.
Pipelining allows new operations to begin on every functional
unit in every instruction. This exposed concurrency' in the
hardware allows the hardware to always proceed at full speed,
since the functional units never have to wait for each other to
complete. Pipelining also speeds up the system clock rate.
Given that we can find and exploit scalar parallelism, there is
less temptation to try to do "too much" in a single clock period
in one part of the design, and hence slow the clock rate for the
entire machine. Judiciously used small scale pipelining of
operations like register-to-register moves and integer multiplies,
as well as the more obvious floating point calculation and
memory reference pipelines, helped substantially i n achieving a
fast clock rate.

The absence of pipeline interlock or conflict management
hardware makes the machine simple and fast. Hennessy HennS1
has estimated that building the MIPS chip without interlocked
pipeline stages allowed that machine to go 15% faster. In our
VLIW, given our large number of pipelined functional units,
pipeline interlocking and conflict resolution would have been
almost unimplementable, and the performance degradation
would have been far greater than 15%.

VLIWs exploit the same low-level, scalar parallelism that high-
end scalar machines have used for decades. Execute-unit
schedulers which look ahead in a conventional instruction
stream and attempt to dynamically overlap execution of multiple
functional units were incorporated in systems beginning with the
IBM 360/91T°ma82 and the Control Data 6600. Th°r70 These
"scoreboards, perform the same scheduling task at runtime that
Multiilow's Trace Scheduling compacting compiler performs at
compile time. Even with such ,'complex and costly hardware, ,

Acos86 Acosta et al. report that only a factor of 2 or 3 speedup in
performance is possible. This limitation, of course, is the same
as previously discussed: the hardware cannot see past basic
blocks in order to find usable concurrency.

Over the last two decades, the cost of computer memory has
dropped much faster than the cost of logic, making the con-
struction of a VLIW, which replaces scheduling logic with
instruction-word memory, practical and attractive. In conjunc-
tion with the global optimization ability of our compiler, we find

no remaining reasons to build run-time scheduling hardware.
The scheduling problem is much better solved in software at
compile-time. This "no control hardware" attitude permeates
the design of the TRACE architecture.

An obvious potential disadvantage to the VLIW approach is that
instruction code object size could grow unmanageably large,
enough so that much of the performance advantage would be
lost in extra memory costs and disk paging. We have addressed
this problem in the design of the TRACE, and have a very satis-
factory result to report in Section 9.

4. Trace Scheduling Compacting Compilation
Multiflow's Trace Scheduling compacting compiler automatically
finds fine-grained parallelism throughout any appfication. It
requires no programmer intervention, either in terms of restruc-
turing the program so it fits the architecture or in adding direc-
tives which explicitly identify opportunities for overlapped exe-
cution. This is in sharp contrast to "coarse-grained" parallel
architectures, including vector machines, shared-memory mul-
tiprocessors, and more radical structures such as
hypercubes selt85 or massively-parallel machines, wurst The pro-
cess by which programs are converted into highly parallel wide-
instruction-word code is transparent to the user.

To detect fine-grained parallelism, the compiler performs a
thorough analysis of the source program. One subroutine or
module is considered at a time. After performing a complete
set of "classical" optimizations, including loop-invariant motion,
common subexpression elimination, and induction variable
simplification, the compiler builds a flow graph of the program,
with each operation independently represented.

Using estimates of branch directions obtained automatically
through heuristics or profiling, the compiler selects the most
likely path, or "trace", that the code will follow during execu-
tion. This trace is then treated as if it were free of conditional
branches, and handed to the code generator. The code genera-
tor schedules operations into wide instruction words, taking into
account data precedence, optimal scheduling of functional units,
register usage, memory accesses, and system buses; it emits
these instruction words as object code. This greedy scheduling
causes code motions which could cause logical inconsistencies
when branches off-trace are taken. The compiler inserts special
"compensation code" into the program graph on the off-trace
branch edges to undo these inconsistencies, thus restoring pro-
gram correctness.

This process allows the compiler to break the "conditional jump
bottleneck" and find parallelism throughout long streams of
code, achieving order-of-magnitude speedups due to compac-
tion.

The process then repeats; the next-most-likely execution path is
chosen as a trace and handed to the code generator. This trace
may include original operations and compensation code. It is
compacted; new compensation code may be generated; and the
process repeats until the entire program has been compiled.

A number of conventional optimizations aid the trace selection
process in finding parallelism. Automatic loop unrolling and
automatic inline substitution of subroutines are both incor-
porated in Multiflow's compilers; the compiler heuristically
determines the amount of unrolling and substitution, substan-
tially increasing the parallelism that can be exploited.

More information about the design of the compiler will be forth-
coming; interested readers may also find previous reported
research enilghtening. Fish79, Elli86, Fish81, Fish84, E11i84

181

Memory
I Register File

Figure 1. Block Diagram of an Ideal VLIW Execution Engine

5. The Ideal VLIW

The ideal execution vehicle for this compacting compiler would
be a machine with many functional units connected to a large
central register file. Each functional unit would ideally have two
read ports and one write port to the register file, and the register
file would have enough memory bandwidth (Very Large) to bal-
ance the operand usage rate of the functional units. A block
diagram of this ideal engine is shown in Fig. 1. A centralized
register file would simplify code generation; when scheduling
operations, the selection of functional unit would be unimpor-
tant, and the code generator would only have to worry about
when the operation was scheduled. The provision of a full set
of separate read/write ports for each functional unit would
guarantee the independence of each operation. As long as there
were enough registers, no extraneous data movement would ever
be needed.

However, any reasonably large number of functional units
requires an impossibly large number of ports to the register file.
Chip real estate and chip pinout limit the number of indepen-
dently controlled ports which can be provided on a single regis-
ter set. The only reasonable implementation compromise is to
partition the register files, in some way that minimizes the addi-
tional workload on the compiler and also minimizes data traffic
between the different register files.

Another problem in this "ideal VLIW" is the memory system.
All modem computers have to deal with a significant speed
mismatch between the logic used to build the processor and the
access time of the dynamic RAMs used to build the memory.
The memory architecture of our VLIW is perhaps the area
where the greatest advantage is gained over other approaches; it
is discussed in Section 6.4.

6. A Real VLIW

These were the goals for the TRACE processor design:

oA modular design, with an expandable number of functional
units;
oUse standard, high-volume, low-cost electronics;
oUse standard DRAMs for main memory for high capacity at
low cost;
oDeliver the highest possible performance for 64-bit
floating point intensive computations;
ePerform well in a multi-user environment.

The processor is built of five board types: integer boards (I),
floating point boards (F), a "global controller" (GC), memory

controllers (MC), and I/O Processors (IOP). Each board is an
18 by 18 inch, 8 to 10 layer printed circuit, interconnected via a
single 19-slot backplane. The backplane connectors provide 630
pins usable for signals, plus power and ground connections.
The core of the computational engine was built in 8000 gate
CMOS gate arrays with 154 signal pins. Advanced Schottky
TTL was used for "glue" logic and bus transceivers.

Research at Yale in machine architecture accompanied research
into compilation across basic blocks. The focus of efforts at
Yale was to develop bulldable, scalable, technology-independent
machine models which could be used to evaluate the success of
such a compiler. At Multiflow, the design team spent the first
year studying alternative partitionings, functional unit mixes, and
opeode repertoires, with a specific product and implementation
technology in mind. This allowed us to be much more aggres-
sive in hardware support for effective compilation, and come
much closer to an "ideal VLIW" structure than any machines
we considered at Yale. Architectural alternatives were
evaluated using a prototype easily-retargetable compiler and
simulator. ElliS6

Given the implementation constraints, we decided that a max-
imum of eight 32-bit buses could traverse the edge connector.
The number of buses we could support was one of the major
constraints on CPU expandability, given the required balance
between memory bandwidth and the rate of floating point opera-
tions to support general computations.

We partitioned the core processor into an Integer and a Floating
unit (the " I " and "F" boards), and provided separate physical
register files for the floating point functional units and the
integer ALUs. This makes intuitive sense, since there is little
need for performing integer operations on floating point
operands (and vice versa), while it is often the case that a chain
of floating point operations can proceed while the integer units
are performing the address computations in parallel.

The unit of processor expansion is this Integer-Floating board
pair. One, two, or four I-F pairs can be configured,
corresponding to a 256-bit, 512-bit, or 1024-bit instruction word.

Two 32-bit buses carry data traffic between the boards of a pair
(through a dedicated front-edge path, rather than the back-
plane). Each board carries its own register file/crossbar touch-
ing twelve 32-bit datapaths, handling four writes, four reads, and
four bus-to-bus forwards in each minor cycle, plus bypassing
from every write port to every read port. Sixty-four 32-bit regis-
ters are provided. This register file~crossbar is implemented in
nine gate arrays; each is a 4-bit slice (byte parity is carried
throughout the machine).

182

iiiii~ii:iiiii I~

ILoad Buses FLoad Buses

I I
I . I
I I t
I I I
* i
i i I
I I I
I I i

I ,,

I] i L ~ - - - ~ IBoard i ~ L . . . [I I - - I J F B°ard i

. T - ?
Phys Addr PC Store Buses

6.1. Integer Operations
Figure 2. I and F Board Block Diagrams

The integer instruction set comprises some 80-odd opcodes,
including arithmetic, logical, and compare operations; high per-
formance 16-bit primitives for 32-bit integer multiplication; an d
shift, bit-reverse, extract, and merge operations for bit and byte
field manipulations. The integer instruction set (excluding multi-
plication) is implemented in a single gate array, four copies of
which are included in a single I-F pair.

Every operation specifies its destination register at the time of
initiation. A modifier ("dest..bank") specifies which register file
contains the target register: the local general register bank, the
general register bank in the paired F unit, the store file in the
paired F unit, a general register bank in another I unit, or a
branch bank on an I or F board. Branch banks are small 1-bit
register files used to control branching; see Section 6.5.2.

Substantial support was provided for injecting immediate con-
stants into the computation. Each ALU can get a &bit, 17-bit,
or 32-bit immediate provided on one operand leg, under the
control of the instruction word. A 32-bit immediate field is
flexibly shared between ALU0, ALU1, and a 32-bit PC adder
which generates branch target addresses.

Included in the I board instruction set are pipelined load and
store instructions for referencing memory. Memory addresses
are 32-bit byte pointers. The memory system hardware operates
only on 32-bit or 64-bit quantities; access to fields of other sizes
is provided via extract/merge/shift operations which are
arranged to accept the same 32-bit pointer, using the low bits to
specify the field position.

The I board also includes dynamic address translation hardware
and supports demand-paged virtual addressing. A Translation
Lookaside Buffer provides a cache of 4K virtual-to-physical
address translations on 8KB page boundaries. Simple paging is
used; no segmentation or other address translation is provided.
Traps are taken on TLB misses; trap-handling software manages
TLB refills. The TLB is process-tagged so that flushes are
unnecessary at context switches. Its indexing scheme includes a
process-ID hash to minimize conflicts between entries for multi-
pie processes.

Each instruction executes in two minor cycles, or "beats".
Each beat is 65ns. The I board ALUs perform unique opera-
tions, specified by new control words presented in both the early
and late beats.

Figure 3 shows the format of the instruction word for a single I-
F pair. This instruction word is replicated four times in a fully
configured processor.

6.2, Floating Operations

The F board (floating point) was optimized for 64-bit IEEE stan-
dard floating point computation. It uses the same register file
chips as the I board, providing sixt~four 32-bit registers (which
are used in pairs for 64-bit quantities). The floating functional
units each perform one new operation per instruction, or every
other beat. The 32-bit datapaths carry 64-bit data to and from
the floating point units in two beats.

A pipelined floating adder/ALU shares resources and opcodes
with an integer ALU; the integer ALU has one beat latency,
while the floating adder has six beat latency in 64-bit mode. A
floating multiplier/divider similarly shares resources with
another integer ALU. The multiplier has seven beat latency
doing 64-bit multiplication, and 25 beat latency doing 64-bit divi-
sion. New operations may be started on each functional unit in
each instruction (except on the multiplier while division is in
progress).

The integer instruction set, excluding memory references and
integer multiply, is available on both ALUs on the F board.
This was an implementation convenience. We found it desirable
to provide "fast move" paths to allow data moves without the
pipeline depth of the floating point units. We also included the
integer SELECT operation, which provides the semantics of the
C "?" operator without branching. It was simpler to include
copies of the already-designed integer ALU than to dedicate
another gate array to these more limited functions.

183

Word 0: I 0 A L U 0 , Early beat.

31. 25 24 19 18 1.6 15 13 i2 1.1 7 6 1. 0

[srcl [src2 ~[m~ opcode I dest I destbank Ibranc testl

Word 1: Immediate constant 0 (early).

31 0

immediate constant (early)]
J

Word 2: I 0 ALU 1, Early beat.

31. 25 24 1.9 18 1.6 1.5 1.3 12 11.

ak [branch_test[[srcX opcode I dest I dest_bank I I
7 6 1. 0

I src

Word 3: F 0 FA/ALUA control fields.

31 25 24 23 22 17 16 1_5 11 10 5 4 3 1. 0

[opcode 164 I [dest I I srcl [src2 I [d e s t - b a n k -] - - I

Word 4: I 0 ALU 0, Late beat.

31. 25 24 19 1.8 16 15 1.3 1.2 1.1 7 6 1 0

I °pc°de I dest I d°st-ban~l I srcl [s r c 2 - ~

Word 5: Immediate constant 0 (late).

31

I immediate constant (late)

0

1

15 13 12 11 7 6 1 0

I srcl I src2

Word 6: I 0 ALU 1, Late beat.

31 25 24 19 18 16

I opcode I dest I dest-bank [

Word 7: F 0 FM/ALUM control fields.

31 25 24 23 22 17

I °pc°de 1641 I dest I
16 15 11 10 6 5 3 1 0

I srcl [sre2 [[[dest-bank I]

Figure 3. Instruction Word Format for one I-F pair

The floating point functional unit pipelines are "self-draining";
the destination register is specified when the operation is ini-
tiated, and a hardware control pipeline carries the destination
forward, writing ~he target register when the operation com-
pletes. To allow interrupts to occur at any point in the pro-
gram, by convention the target register of any pipelined opera-
tion is "in use" from the beat in which the operation is initiated
until the beat in which it is defined to be written. If a trap or
interrupt occurs while the pipelined operation is in process, the
register gets written early, relative to the execution of the
instructions immediately following in the program text.

The F board also carries the Store Register File. When an I
board issues a Store opcode, i t also issues a "Store Read
Address" on a bus that all F boards monitor. Physical
addresses are generated on the I boards, and data to be stored
comes from the "Store Register File" on the F boards. The
Store Register File, implemented using the same register chip
used elsewhere, expands the number of register read ports and
eliminates pipeline conflicts between memory stores and other
operations.

6.3. System configuration
A fully configured TRACE processor incorporates four I-F
pairs. With a 1024-bit instruction word that initiates 28 opera-
tions per instruction, it has peak performance of 215 "VLIW
MIPS" and 60 MFLOPS. Figure 4 shows the top level architec-
ture and backplane interconnect for the system. The entire
CPU and its interconnect is synchronized to a single master
dock.

The ILoad Buses, FLoad Buses, and Store Buses are each a set
of 4 independently-managed synchronous 32-bit buses. The
Load buses are multidirectional, and the Store buses are uni-
directional. Each bus is independently scheduled by the com-
piler for each execution beat. Each Load bus carries a 10-bit
control field, or "tag", specifying the destination of the data car-
ried on the bus in that beat; the tags are derived from instruc-
tion words which specify data moves or memory references.
Because the "arbitration" is handled by the compiler, the buses
are fast, simple, and cheap. This is a major advantage versus
the complicated interconnects of a multiproeessor, where arbi-
tration, buffering, interlocking, and interrupts are required. Ptis85

184

I L O A D Buses I / F Buses

Physical Address Buses

ti

ti
64-bit
~z-o,t I

64-bit .- . - - - - -~
- ::;24~it

Q*

- - - - ~ - - : ~ T C I 0 l I / O channel

._ : ~ T C I 1 ~ I/O channel

S T O R E B ~ e s

|

|

FLOAD Buses

J

. _ _ . _ _ _ . _ _ . 2
z

~__. ._______.

- - i J l

Figure 4. The TRACE Major Datapaths

Up to eight memory controllers comprise the memory system.
Each controller carries up to 8 independent banks. Memory
addresses are interleaved among controllers and banks. Each
memory controller watehes all four physical address buses for
valid requests, and touches one Store bus, one I bus, and o n e F
bus. A fully populated memory system eompfises 512 MBytes
of physical storage.

6.4. The Memory Subsystem

The speed of the CPU/memory interconnection in a computer
system is a first order determinant of overall performance (the
legendary "yon Neumann bottleneck"). The designers of every
modem computer system, from the IBM PC to the Cray-2, have
had to deal with a substantial mismatch in speed between the
cycle time of the processor and the access time of the
memories. This mismatch ranges from a factor of 2 to a factor
of 59. Two major approaches have been taken by the designers
of these systems to handle the mismatch: caching and interleav-
ing.

185

Cache memories provide lower latency than main memory when
there is reasonable locality of reference in the access pattern.
They can be expensive to implement, and their cost grows
rapidly in systems attempting to issue more than one memory
reference per cycle. While instruction caches are universally
effective, data caches work poorly in many scientific applica-
tions, where very large arrays of data are repeatedly accessed;
hit rates fall off rapidly, and system performance degrades to the
performance of the backing store (main memory), snait82

Interleaved memories exploit parallelism among memory refer-
ences to address the speed mismatch in a different manner.
Memory addresses are spread across multiple independent
banks of RAMs. The memory system is pipelined; while one or
more new references may be initiated in each cycle, it takes
multiple cycles for a single reference to complete. During
several of those cycles, a single RAM bank will be tied up and
unable to accept new requests; achieving performance requires
that addresses be spread across multiple banks. Correctness
depends upon somehow managing the referencing pattern, and
avoiding references to banks that are busy.

When parallelism can be found in the memory referencing pat-
tern, an interleaved memory system will provide much higher
sustained performance for large scientific applications than any
cached scheme of comparable cost. However, the management
complexities and exposed parallelism of the interleaved
approach have prevented all but supercomputer designers from
building such memory architectures.

One major problem in building an interleaved memory system is
managing the status of several simultaneously outstanding refer-
ences. In a traditional scalar or scalar/vector computer, a
hardware bank scheduler, or "stunt box", is required to track
the busy status of each bank, watch each memory reference
address, and prevent conflicts (by temporarily suspending all or
selected portions of execution). Details such as out-of-order
data returns can complicate the picture further. The complexity
of such a scheduler grows as the square of the number of pend-
ing references to be managed.

Our VLIW computer system provides enormous memory
bandwidth using an interleaved memory system, without
memory-reference scheduling hardware and without a data
cache. This is a major advantage of the VLIW approach in
building a scientific computer.

6.4.1. Memory Implementation Details
Software sees a seven beat memory reference pipeline in the
TRACE. The pipeline stages look like this:

0. The program says LD R1, R2, R3. R1 and R2 are added
to form a virtual address. R2 may be replaced by a 6-, 17-,
or 32-bit immediate constant.

1. The virtual address is looked up in the TLB.
2. The physical address is sent over the buses to the memory

controller.
3. The desired RAM bank starts cycling.
4. RAM access continues.
5. Data is grabbed from the RAMs on the memory controller.
6: Data is sent over the buses to the CPU; simultaneously,

ECCis checked.
7. Data is written into the register file, and the CFU can use

the data in R3,

Like the floating point pipelines, the memory pipelines are
"self-draining"; loads specify the destination register when the
operation is initiated, and a hardware control pipeline carries
the destination forward, tagging a data bus with it in the cycle
when the data is sent to the CPU. This simplifies interrupt han-
dling and the generation of "compensation code" for off-trace
branch cases, when compared with the "pusher/catcher"
approach found in most horizontally microcoded attached pro-
cessors.

In a fully configured TRACE, four memory references may be
started in each beat, to four independently generated addresses
(one per I board). When each of these references is a 64-bit
reference, this corresponds to a memory bandwidth of 492
megabytes per second.

However, a number of restrictions must be met:

® At most one reference may be initiated on any individual
controller.
• No two references may be initiated which would require the
use of the same bus to return their data.
• No two references should be initiated to the same RAM bank
within four beats of each other:
• The total number of ILoad, FLoad, or Store buses used must
not exceed the number available.
® The available number of register file write ports must not
be exceeded.

In order to satisfy some of these requirements, the compiler
must know quite a lot about the memory addresses being gen-
erated by the program. For example, it must be able to guaran-
tee that the addresses for two simultaneously-issued LOAD
operations will never be equal modulo the number of memory
controllers.

6.4.2. The Disambiguator

The disarnbiguator is the module of the compiler which passes
judgment on the feasibility of simultaneous memory references.
Memory reference disambiguation - distinguishing between
references which can be to the same location and those which
cannot - is required in order to find parallelism among array
references. When a loop is unrolled, for example, the disambi-
guator is called upon to answer whether a store into c (I) can
be moved above a reCerence to C(I+J) . The disambiguator
builds derivation trees for array index expressions and attempts
to solve the diophantine equations in terms of the loop induc-
tion variables.

Relatively simple extensions to the disambiguator allow the code
generator, as it schedules memory references, to ask for any two
references, "can these conflict, modulo the number of memory
banks"? The answer can be "no", "yes", or "maybe". When
the answer is "no", references can be scheduled simultaneously,
at very high bandwidth, without any memory-bank management
hardware. When the answer is "yes", the operations will not be
scheduled simultaneously. When the answer is "maybe',, as in
the case of references to two arrays passed in as arguments to a
subroutine (so that their base addresses are unknown), the com-
piler has to treat this as a conflict for certain resources, but may
overlap the utilization of other resources, because the hardware
provides a "bank stall" mechanism (described below).

186

~J

6.4.3. Virtual Memory

Virtual memory posed a special challenge for a VLIW architec-
ture issuing multiple memory references in every beat. Given
that address translation is pipelined, TLB misses are not
detected until several beats after the memory reference has been
initiated. Since memory reference pipelining is exposed, this
presents no problem; no computation could possibly depend
upon the result, and we have several cycles in which to deter-
mine the correctness of the reference. On a TLB miss,
hardware aborts the reference, and signals the processor to
switch to Trap Mode to handle the failed reference. However,
trap handling code cannot just load the TLB with the appropri-
ate translation and return to the instruction; several more
instructions have executed since the original failing operation,
and they cannot be correctly reexecuted.

Each I board incorporates a "history queue" mechanism used
by the trap handling code, which records uncompleted memory
references and their virtual addresses (these memory accesses
must then be handled by the trap code). These queues are read
and the TLB contents are updated (or page faults are taken);
the references are then replayed via special instructions which
allow the queue contents to be reissued as new operations. As
the queues are four entries deep, up to sixteen independent TLB
misses can be pending on a single entry to the trap code.

The trap handling code is standard machine code resident at a
specific physical address. It is executed with instruction stream
virtual addrressing disabled, but is otherwise normal; early ver-
sions were written almost entirely in C. No "mierocode" is
present anywhere in the processor; this is as close as we come
to it. This provides great flexibility in the virtual architecture
exposed to processes. (For instance, "copy-on-write" is a very
simple change to the trap code, not a hardware change.)

6.4.4. Memory Summary and Comparisons to Earlier Work

Several major advances in the memory system beyond earlier
research are incorporated in the Multiflow TRACE system:

• Only relative disambiguation is necessary. Unlike earlier pro-
posed VLIW architectures, the presence of a full crossbar
between address generators and memory controllers means that
the disambignator need only answer "is < e x p l > ever equal
<exp2> modulo N", and not "what is the value of < e x p l >
modulo N". This greatly improves the likelihood of successful
disambiguations, particularly in subprograms where array base
addresses cannot be known.

• The same datapaths are shared between intra-CPU and
Memory-to-CPU traffic. This concentrates the bandwidth and
better accommodates the bursty nature of computations, provid-
ing higher sustained performance without additional costs.

• A "bank-stall" mechanism was devised. When a given RAM
bank is accessed, that bank goes busy for four beats. In eases
when the disambiguator answers "maybe" to a bank conflict, the
compiler has the option of moving references into potentially
conflicting schedule positions. In this case the memory will
"bank-stall" the CPU if an actual conflict occurs, until the bank
busy time is satisfied. This "rolling the dice" can improve per-
formanee.

We believe that this software-managed parallel memory system
is an important architectural breakthrough. It allows much
higher memory performance than would otherwise be possible.

Although a run-time memory reference scheduler has more per-
feet information than a compile-time disambiguator (it sees no
"potential" conflicts, only the real ones) it can do less in the
way of scheduling its way around conflicts when they arise.
Compile-time scheduling, with a larger perspective on the
schedule, is more able to fill conflict times with useful work than
hardware schedulers, which typically can only suspend execution
until the conflict is resolved. Furthermore, it is dramatically
simpler and less expensive to build a highly parallel memory sys-
tem when no centralized control unit is required to verify the
memory reference pattern.

6.5. Instruction Fetch Considerations

Fetching and managing the execution of 1024-bit instructions in
a pipelined machine posed some interesting challenges.

We implemented a physically distributed, full-width instruction
cache. Bits of the instruction word are cached on the boards
that they control; the processor's master sequencer (the "GC")
contains the cache tag and control logic. The cache is built out
of 35ns 64K static RAMs, and holds 8K instructions with a total
bandwidth of 984 MB/second. In a fully configured machine,
this is 1 megabyte of cache. It is virtually addressed and pro-
cess tagged; flushing the cache is required only when we "run
out" of hardware process tag values, not when we context
switch.

Instruction virtual addresses are translated to physical addresses
during eaehe refill through a dedicated instruction-stream TLB.
This TLB has 4K entries, and is process tagged, with an
"Address Space ID" (ASID) hashing scheme (like data TLBs)
to improve multiple process hit rates.

Instruction fetch is fully overlapped with execution, and never
stalls or restrains the processor, except on cache misses. We
provided an extremely large cache to minimize the overall miss
rate, and took extreme care to ensure that we could refill the
cache at high speed on a miss.

6.5.1. The Instruction Encoding Format

Most programs contain sections which have lots of parallelism
that our compacting compiler can find. In these parts of the
code, many operations can be packed into each instruction. To
maximize performance, for these parts of the program, we want
a very wide instruction capable of independently expressing as
many operations as possible. However, other "suburbs" pro-
gram sections often have much less available parallelism, so that
only a few operations will be inserted into each instruction
word, and longer sequences of less filled instructions will be
generated. If we have optimized the computer for the highly
parallel sections, then in these suburbs we will have many func-
tional units idle for many instruction cycles. This means that
large portions of the instruction word will contain only no-ops,
and will substantially increase the memory size of the program
without contributing to its performance.

Machine designers have historically dealt with this dilemma by
compromising: compressing their instruction encodings by
preseleeting those combinations of operations that they expect
will be most commonly used. This then required the compiler
to find and use the "patterns" that the designers had provided,
if the highest performance was to be obtained. We believe these
encoding schemes work out poorly in conjunction with a com-
piler; we pursued a quite different solution.

187

. ' " . ~ r ' n ~ n i] a r l n r l [

We place no restrictions in the instruction on what combinations
of operations can be invoked simultaneously. Object code size
is minimized in a different way: we use a variable-length main
memory representation of the fixed-length machine instruction.
That is, the instruction cache outputs a fixed-length 1024-bit
instruction in each cloeLeycle; bits of the instruction word are
directly wired to the functional units that they control. The
architecture in this sense has a fixed-size instruction. However,
we use a main memory instruction representation that eliminates
the no-ops, affording a significant space savings.

Implementation of this variable-size memory instruction format
had to satisfy a number of serious constrMnts. One constraint
was that the instruction format not penalize execution of in-
cache instructions. When the instruction cache is loaded, the
control information for the functional units must be in the "right
places" so that the instruction fetch pipeline length remains
minimal.

A second constraint is that refilling the cache on a miss must
proceed at the highest possible rate, without a huge amount of
hardware dedicated solely for filling the cache. Since the
TRACE system possesses massive main memory bandwidth
through its use of an interleaved memory system and many
buses, this means that it must be possible to control the cache
refill without inspecting and interpreting each word as it comes
from memory.

The instruction set must facilitate an easy-to-implement
correspondence between the Program Counter, cache locations,
and main memory locations, so that variable-length instructions
can be "unpacked" quickly into a fixed-width cache.

Given that variable-length instructions are being fetched from a
parallel, interleaved memory system, the "schedule" of what
word will be on each bus in each cycle, and knowledge of which
field of the instruction cache is to receive that value, must be
produced by a control unit in real time as the data is returned
from main memory. For a practical implementation, this
requires that the schedule be precomputed by that control unit.
The instruction representation must be such that this control
unit is as simple and fast as possible.

We store instructions in main memory in blocks of four. Each
block is preceded by four 32-bit "mask" words, which specify
which 32-bit fields of the instruction are present in the block;
the others are filled in the cache with zeros (no-ops).

The cache refill engine fetches and interprets the mask words.
It never has to see or process actual instruction fields destined
for the various functional units. This engine decides upon the
schedule of buses to be used, initiates the instruction field
fetches, and then tags the fields as they fly by on the ILoad
buses so that they are steered to the proper functional units'
cache words. The real-time overhead of this scheme is very
low, since the actual cache refill proceeds at the maximum
memory bandwidth and cpu bus bandwidths (the same buses are
used in refill as are used for general computation).

This cache refill engine is perhaps the most complex piece of
hardware in the TRACE, starting up enormous numbers of
pipelined loads from memory and then directing them to the
various instruction cache memories distributed throughout the
machine. For sequential code, the mask interpretation is over-
lapped with the execution of the current block of instructions,
so the operation of this cache refill engine represents a low over-
head on the overall performance of the machine.

6.5.2. Branching

The architecture includes compare-predicate operations, rather
than test operators and condition codes. We found it helpful to
include compare instructions which could write the general
registers, to allow evaluation of IF chains without branching.
The architecture includes a special one-bit-wide 7-element regis-
ter file, called the "branch bank", which can hold the result of
compare (and other) operations, and which can be used to con-
trol branching. This allows the compiler to perform register
allocation on branch bank elements, and move compare opera-
tions independently of the actual branches. A typical code
sequence would look like:

CEQ Ri, R2, BB(R3)

BRANCH (R3) LABEL

Write BB 3 with 1 if R1 == R2,
else write BB 3 with 0
The "branch_test" field selects R3

The branch operation can be issued in the early beat of every
instruction; part of the immediate field is used as the displace-
ment for the branch. The branch is taken if the selected branch
bank element is a 1. This branching structure resembles the
"delayed branch" of other RISC machines, in that operations
following the compare-and-branch areunconditionally executed
while the branch target is fetched.

Conditional branching becomes an interesting problem as we
attempt to fill Wider instructions. Fish83 Conditional branches
occur every five to eight operations in typical programs; if we try
to compact many more than five operations together, some
mechanism will be required to pack more than one jump into a
single instruction. We provided a multiway jump in the TRACE
processor with multiple independent targets, with a software-
controlled priority scheme.

Consider two jumps, with unique target addresses, which are ini-
tially sequential in the source program. If we want to pack them
into a single execution cycle, we must establish a priority rela-
tionship between them, which defines which target address to
branch to in the case that more than one of the simultaneous
tests are true. The "highest priority" test whose condition is
true provides the next address for execution. The priority rela-
tionship is driven by the original ordering of tests in the sequen-
tial program. The test that was originally first in the sequential
program must be the highest priority; in the original sequential
program, if the first test were true, then the second jump would
never have been executed. Therefore, when we pack them
together, we must arrange to ignore the results of the second
lower-priority test if the first higher-priority test is true.

Each I unit can perform one test per instruction. A 32-bit
"branch target adder" on each I board adds the current program
counter to an immediate field of the instruction word. This
computation yields a potential branch address. The branch arbi-
tration mechanism determines which of four tests being per-
formed simultaneously (on different I units) is the highest prior-
ity true test, and distributes the branch target associated with
that test (defaulting to PC+I when none of the four tests is suc-
cessful).

Each I unit has nine bits of instruction word that control
branching. Three bits ("branch._test") select an element from
branch bank 0; another three select an element from branch
bank 1. The values of the two selected bits are logically ORed
to determine if "this board wants to branch". Three more bits
(hidden in the immediate field) are defined by software to
specify the relative priority of this test versus that of the tests
being executed on the three other I units. These priority bits

188

i(

show which other I boards it can preempt if its branch is true
(which it does by sending "inhibit" signals to them directly). If
no I board has a TRUE branch condition, then a central system
controller board supplies a default PC value. Otherwise, the I
board which has a TRUE branch condition and no inhibits is
enabled to drive the new PC value onto the backplane.

This scheme is elegantly simple. It is fast, requiring only two
gate delays (and one backplane traversal) to effect the arbitra-
tion. It is software-controlled, so that the compiler can adjust
the relative priorities of the branches for each instruction. It
allows the rapid selection of one of five potential next-addresses
dur!ng every instruction; the fetching of the next instruction
from that address is fully overlapped with the execution of the
current instruction.

7. Except ions and Optimizations

Some things you might take for granted, like traps and inter-
rupts, have some subtle consequences when you try to rearrange
execution order. We found we needed some unusual architec-
tural features to enable more compiler code motion and optimi-
zation than a traditional approach to exception handling would
have allowed.

Consider a FORTRAN loop that contains an array reference
which is accessing across a row. If this loop is unrolled a
number of times, and we allow the code generator to move the
LOADs above the conditional branch that tests for the last
iteration of the loop, several LOADs may be issued to
addresses beyond the end of the program's current address
space. The conditional jump will be all set to exit the loop, so
that these references will be ignored (their data will never be
used); but a conventional virtual memory system would ter-
minate the program with a "Bus Error".

The architecture includes a special set of LOAD opcodes used
by the compiler in the ease when a LOAD moves above a con-
ditional branch. When trap handling code sees one of these
opcodes on a TLB miss, if no valid translation can be esta-
blished for the reference, execution continues; the target regis-
ter is loaded with a "funny number" to help catch bugs. These
special opcodes are used only when necessary; we don't give up
the helpful "Bus Error" traps when we don't have to, to assist
in program fault isolation. This technique enables the compiler
to be much more aggressive in code motions involving memory
references.

A similar problem exists in floating-point exception detection
and handling. Consider the fragment: IF (A .NE. 0) C

D/A. It 's very much in the interests of performance to move
divides up in the schedule; they take a long t ime, But i f we
want to detect division by zero, we must wait until the test has
completed before initiating division.

/

Here again, we provided some assistance in the architecture.
The processor has several floating exception modesi one of
which is called "fast mode". In fast mode, floating exceptions
cause traps only if the result is being written to the store file,
being used in a compare, or being converted to integer form.
Otherwise, a NaN ("Not-A-Number") or infinity will result from
the offending computation, but no exception will be generated.
As NaNs and infinities tend to propagate, any computation
using the offending result will eventually cause a fault (by writing
something to memory, for example). The trap will not occur at
the most perspicuous point, but overall execution speed will be
higher. (Note that floating underflows escape our notice in !~fast
mode", in that they are flushed to zero, We find this not to be a
problem for many programs, and provide lower performance
modes in which exceptions are detectable immediately.)

8. UNIX on the TRACE

A VLIW may appear to be an odd sort of CPU to make into a
virtual memory timesharing system. Indeed, the original
designers of the ELI-512 expected their machine to be useful
only as a number-crunching back-end processor. Fish83 The prob-
lems associated with making this heavily pipelined parallel
machine capable of servicing interrupts seemed daunting
enough, let alone all the rest: supporting virtual memory on a
CPU without microcode, the incredible number of registers that
would have to be context switched, extending the architecture
and compiler to support systems code in addition to its numeri-
cal chores, not to mention that long instruction words might
make all the utility programs consume gigabytes of disk space.

We've figured out ways around all of these problems, but it is
natural to wonder why we built the TRACE to run 4.3BSD
UNIX in the first place. The reason is simple: modern numeri-
cal applications programs do much more than perform floating
point calculations. They make the usual demands of a system
for disk, graphic, and terminal I /O, but they can make these
demands at rates far exceeding those of " I /O intensive" systems
programs. And scientific applications programmers have the
same desires for reasonable and friendly programming environ-
ments that system programmers do. Fulfilling all these
demands, particularly for performance, with a smoothly
integrated front-end/back-end processor seemed difficult and
unnecessary, so we built the operating system to run directly on
the CPU.

8.1. Support for a Multiple Process Environment

We have already described many of the architectural features
needed to support an operating system: the instruction and data
TLBs needed for virtual memory; mechanisms and constraints
for dealing with exceptions; and the desire for interruptability
that led to our pipeline handling philosophy.

The TRACE supports its multiuser operating system in the
usual way. Appropriate protection modes and privileged
instructions are provided so that the user process environment is
maintained. All accesses to mapping hardware, I /O stimulus
instructions, and the PSW are carefully protected. A limited set
of traps to system mode are provided for system calls and
breakpoints.

We were concerned about the effects of running multiple
processes, and the overall impact that context switching would
have on performance. Our goal was to support about as many
users as would be comfortable on a large supermini but to sup-
port order-of-magnitude larger computations than current super-
minis could support.

Context switching is often considered to be simply the cost of
saving and restoring registers. But the actual cost of a context
switch also includes the interrupt time, scheduling overhead,
and any penalty for cache purging and cold-start. ¢1a~85 On
many machines, the cost of purging the virtual address transla-
tion and instruction caches dominates register saving, The
TRACE provides very large instruction and translation Caches
(see Sections 6.4 and 6.5), which are process tagged with an 8-
bit "Address Space ID", or ASID. /qo purging of the instruc-
tion cache or translation buffers is necessary on a context
switch; caches must be purged only every 255 address space
mapping changes, when the set of ASIDs overflows.

189

Updating the ASID registers is cheap, so the high available
memory bandwidth in the system permits a complete context
switch in 15 microseconds. This figure holds in any machine
configuration, because usable memory bandwidth increases as
the number of registers. This performance is comparable to
other machines that are trying to support our number of users.

8.2. Interrupts

Interrupt handfing is almost entirely conventional. There is a
priority interrupt system, with maskable interrupts from each
device. When an enabled interrupt request arrives, execution
suspends, the processor changes state, and execution resumes at
a " trap" address. Since the pipeLines are self-draining, after the
maximum pipe depth time, all of the state of the processor is
either in general registers or in main memory. A few hand-
coded instructions begin saving registers while the pipelines
drain; after several instruction times we enter C code to process
the event.

8.3. Input/Output

Given an exposed architecture where the compiler knows about
the machine resources being used throughout the system, it 's
difficult to allow UO to "cycle steal" or otherwise share
hardware resources on a fine-grained basis with program execu-
tion.

A memory-mapped I /O scheme would have required the CPU's
memory interface to deal with devices with two distinct speeds:
fast (to memory) and slow (to I /O devices). We chose not to
implement our I /O this way. Instead, the CPU interacts with its
devices through a surrogate called the I /O Processor (IOP).
The IOP is based on an MC68010 with a multiported high
bandwidth buffer memory and a " D M A engine" which can read
and write blocks of main memory at half of peak memory
bandwidth. The IOP interfaces to a VMEbus, a standard 32-bit
asynchronous bus where the device controllers reside.

When the DMA engine wants to read or write main memory, it
signals the GC. The GC suspends processor execution and
allows pipelines to drain. The D M A engine then talks directly
to memory at high speed; for example, I0 MB/s of I /O con-
sumes only 4% of the machine's cycles in the largest CPU
eonfignration. Execution resumes as soon as a burst of data has
been transferred.

The I /O processor talks to the CPU using a bidirectional inter-
rupt and a channel command protocol in main memory. Device
drivers run on the I /O processor, a scheme which minimizes
interrupts and CPU involvement in UO operations. The IOP is
also responsible for bringing the system up. A small operating
system on the IOP supports execution of diagnostic and
bootstrap programs.

We have devised a generic set of drivers on the T R A C E side for
each class of device on the IOP (disk, tape, ethernet, and termi-
nal) which are very small, and which interface to device-specific
drivers on the IOP. We have also implemented an I /O
configuration syste m where all possible drivers are present (at a
small cost in memory) and system device configuration is
changed by editing a file on the diagnostic file system before
booting UNIX.

8.4. Systems Code on a VLIW

The hundreds of thousands of lines of code which make up the
UNIX kernel and utilities do not know they're running on a
VLIW. One of our compilers is for the C language. Nearly all
of the UNIX utilities, and a large chunk of the kernel, are writ-
ten in portable C. (By actual count: 300 lines of assembly and
64K lines of C in the kernel; 1100 lines of assembly and 700
lines of C in the trap handlers.) The fact that our compiler
performs exotic optimizations like inter-block compaction and
transforms the code into a parallel form is irrelevant. We com-
pile these programs and they do what they're supposed to do;
grep doesn't know it's stretching the frontiers of technology, it
just greps along at a terrific rate.

Trace Scheduling compacting compilation was originally con-
ceived for numerical applications; we expected to run into prob-
lems handling systems code. The systems code in UNIX differs
in several respects from numerical code. Systems code makes
pervasive use of pointers, which leads to more difficult compiler
optimization problems. The code tends to have even smaller
basic blocks than numerical code. And most important, sys-
tems code has proportionately many more procedure calls than
numerical code.

Pointers and small basic blocks have not been a problem. In
fact, procedure call overhead seems to be the only issue that has
required special attention. Performance on systems code is
quite good (the C and Fortran compilers share a common back
end).

The TRACE provides no special architectural support for pro-
eedure calls (other than the large memory bandwidth already
built in). During the design, we considered several hardware
mechanisms intended to minimize procedure call/return over-
head, but none of them was both a clear performance win and
clearly feasible. We decided to rely on the compiler to be
clever with its use of registers and procedure inlining, and to
develop a global register allocating linker, which builds a global
call graph and minimizes register saves (currently in the
works), wans6 We expect this work to be complete by the time of
the conference presentation, and will report on it there.

When we initially debugged UNIX on the TRACE, we restricted
traces to basic blocks, and disabled loop unrolling; compiler
heuristics for how much unrolling to perform had not yet been
installed, and code grew unmanageably. Those heuristics are
now in place, and their performance is remarkably good. The
full compacting compiler optimizations work well for a wide
variety of systems code, including the kernel itself, without
undue code growth.

This result surprised us somewhat; we hadn ' t anticipated as
much improvement on systems code as we got. Good perfor-
mance on systems code is very desirable, as it restrains the pro-
portionate growth of operating system overhead that is usually
encountered on a parallel machine. Unlike "coarse-grained"
architectures where systems code runs on a single scalar unit
(and can become a substantial bottleneck), we retain the same
OS-to-user balance found on more traditional systems.

9. Code Size: Initial Results

The"no-op" fields of an instruction are not represented in main
memory, so the object code size of a program is directly propor-
tional to the number of operations in the compiled program.
There are thus three components to consider when comparing
VLIW code density to that of other architectures:

190

o the number of bits required within the instruction set to
express a given operation;

• the succinctness, or lack thereof, with which common high-
level operations (like procedure call) can be expressed in the
instruction set; and

o the number of new operations introduced through compiler
optimizations and loop unrolling.

The VI.IW encoding of each operation is roughly on par with
other RISC machines. It is a three address architecture, all
loads and stores are explicit, and there is minimal instruction
encoding. The code expansion per operation is probably around
30 - 50% when compared to a tightly encoded machine like the
VAX or Motorola 68000. The variable-length main memory
instruction encoding has an associated overhead of a few bits
per operation, which coupled with main memory alignment con-
straints adds roughly an additional 5 - 10%.

Operations that cannot be initiated in a single instruction cycle
are broken down into constituent sub-operations. These consti-
tuents are usually substituted inline, although certain operations
such as the block register save and restore associated with pro-
cedure call are implemented via special subroutines. The
overall code expansion due to this, as compared to a machine
like the VAX that has an extensive library of microcoded "sub-
routines", is difficult to quantify, but is probably in the neigh-
borhood of 10 - 20%.

The compiler performs an enormous number of optimizations,
most of which reduce the number of operations in the program,
but some of which increase the number of operations with the
goal of increasing parallel execution. The three most notorious
code-expanders are inter-block trace selection (which can pro-
duce compensation code), loop unrolling, and inline procedure
substitution. All three of these are currently automatic and
have been tuned to avoid undue code growth. These optimiza-
tions can increase the size of some small fragments of code by a
large factor, but their overall effect seems to be to increase code
size by a factor of around 30 - 60%, although the user can
increase or decrease these factors arbitrarily through the use of
compiler switches.

Several large (100K - 300K lines) FORTRAN programs have
been built on the TRACE. After unrolling and trace selection,
the code size is approximately 3 times larger than VAX object
code (compiled with the VAX/VMS FORTRAN compiler).

The concern about code size led us to implement a shared-
libraries facility very early in our UNIX development. This has
substantially reduced the size of the UNIX utilities images. The
UNIX utilities consume approximately 20MB of disk space on a
VAX, and approximately 60MB on our VLIW using shared
libraries.

UNIX has been running on the TRACE and supporting its own
development for some time. The principal advantage of
Multiflow's parallel processing technology is that it is tran-
sparent to its clients. Thus, most of the ehailenging problems in
developing an operating system and programming environment
for the TRACE come not from its VLIW nature but from our
intention to make the system into a first rate environment for
high performance engineering and scientific computation. A
thorough discussion of our approach is beyond the scope of this
paper.

10. Summary and Future Work

This paper has introduced the Multiflow TRACE Very-Long-
Instruction-Word architecture. Before this machine was built,
some designers and researchers predicted that the negative side-
effects of the VLIW/compacting compiler approach (object
code size, compensation code, context swap time, and pro-
cedure call/return overhead) would likely swamp the machine's
performance gains. These predictions were wrong: we slew
some of these dragons with cleverness, tamed a few, and
couldn't even find the rest.

It is too early to be able to separate out all the different contri-
butions to performance in the TRACE. Our future work will
concentrate on quantifying the speedups due to trace scheduling
vs. those achieved by more universal compiler optimizations.
We will also be examining the efficacy of memory-bank disambi-
guation, speed/size tradeoffs of the fixed and variable instruction
encoding schemes, and instruction cache usage statistics.

Our conclusion should be unsurprising: given an implementa-
tion technology, the best way to use it is to build a VLIW. If
you build a standard scalar machine instead, you pass up
significantly higher performance at only slightly higher cost; the
extra functional units are cheap compared to the overhead of
building the computer in the first place (memory, control, etc.).
If you build a vector machine instead, the parallel hardware you
build "turns on" only occasionally, 'and the speed of some vec-
tor code is all that will be improved. And if you build a mul-
tiprocessor instead, you pay the full overhead of instruction exe-
cution and run-time synchronization per functional unit, without
getting the fine-grained speedups a VLIW can offer.

11. Acknowledgements

Thanks go to Chris Genly and Ben Cutler for help with the
diagrams in this paper, and to Helen Spontak for easing
scheduling constraints.

References

Kate85.
Manolis Katevenis, Reduced Instruction Set Computer
Architectures for VLSI, MIT Press, Cambridge, Mass.,
1985.

Tjad70.
G.S. Tjaden and M.J. Flynn, "Detection and parallel exe-
cution of independent instructions," Transactions on Com-
puters, vol. C-19, no. 10, pp. 889-895, IEEE, October
1970.

Fost72.
C.C. Foster and E.M. Riseman, "Percolation of code to
enhance parallel dispatching and execution," Transactions
on Computers, vol. C-21, no. 12, pp. 1411-1415, IEEE,
December 1972.

Fish83.
Joseph A. Fisher, "Very Long Instruction Word Architec-
tures and the ELI-512," Proceedings of the lOth Symposium
on Computer Architectures, pp. 140-150, IEEE, June, 198.3.

Elli86.John R. Ellis, Bulldog: A Compiler for VLIW Architec-
tures, MIT Press, Cambridge, Mass., 1986.

Fish79.
Joseph A. Fisher, "The Optimization of Horizontal Micro-
code Within and Beyond Basic Blocks: An Application of

191

Processor Scheduling with Resources," Technical Report
C00-3077-161, Courant Mathematics and Computing
Laboratory, New York University, October 1979.

HennS1.
John L. Hennessy, N. Jouppi, F. Baskett, and J. Gill,
"MIPS: A VLSI processor architecture," Proceedings of
the CMU Conference on VLSI Systems and Computations,
pp. 337-346, Computer Science Press, October 1981.

Radi82.
George Radin, "The 801 Minicomputer," Proceedings
SIGARCH/SIGPLAN Symposium on Architectural Support
for Programming Languages and Operating Systems, pp.
39-47, ACM, March 1982.

Toms82.
Robert M. Tomasulo, "An Efficient Algorithm for
Exploiting Multiple Arithmetic Units," Computer Struc-
tures: Principles and Examples, pp. 293-305, McGraw-Hill,
1982.

Thor70.
James E. Thornton, Design of a Computer: The Control
Data 6600, Scott, Foresman & Company, Glenview, Illi-
nois, 1970.

Acos86.
R.D. Acosta, J. Kjclstrup, and H.C. Torng, "An Instruc-
tion Issuing Approach to Enhancing Performance in Multi-
ple Functional Unit Processors," IEEE Transactions on
Computers, vol. C-35, no. 9, pp. 815-828, September, 1986.

Seit85.
Charles Seitz, "The cosmic cube," Communications of the
ACM, vol. 28, no. 1, pp. 22-33, ACM, January 1985.

Walt87.
.David L. Waltz, "Applications of the Connection
Machine," Computer, vol. 20, no. 1, pp. 85-97, IEEE,
January 1987.

Fish81.
Joseph A. Fisher, "Trace Scheduling: A technique for
global microcode compaction," Transactions on Comput-
ers, vol. C-30, pp. 478-490, IEEE, July, 1981.

Fish84.
Joseph A. Fisher and John J. O'Donncll, "VLIW
Machines: Multiprocessors We Can Actually Program,"
CompCon 84 Proceedings, pp. 299-305, IEEE, 1984.

Elli84.John R. Ellis, Joseph A. Fisher, John C. Ruttenberg, and
Alexandru Nieolau, "Parallel Processing: A Smart Com-
piler and a Dumb Machine," Proceedings of the SIGPLAN
84 Symposium on Compiler Construction, ACM SIGPLAN
Notices, June 1984.

Plis85.Gregory F. Pfister and V. Alan Norton, "Hot-Spot Con-
tention and Combining in Multistage Interconnection Net-
works," Transactions on Computers, vol. C-34, pp. 943-
948, IEEE, October 1985.

Smit82.
Alan Jay Smith, "Cache Memories," ACM Computing Sur-
veys, ACM, September 1982.

Clar85.
Douglas W. Clark and Joel S. Emer, "Performance of the
VAX-I1/780 Translation Buffer: Simulation and Measure-
ment," ACM Transactions on Computer Systems, vol. 3,
no. 1, pp. 31-62, February 1985.

Wall86.
David W. Wall, "Global Register Allocation at Link
Time," Proceedings of the SIGPLAN 86 Symposium on
Compiler Construction, ACM SIGPLAN Notices, July
1986.

192

