
Analyzing Performance Vulnerability due to Resource
Denial-of-Service Attack on Chip Multiprocessors

Dong Hyuk Woo Hsien-Hsin S. Lee
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA 30332

{dhwoo, leehs}@ece.gatech.edu

ABSTRACT
Due to the ever-increasing design complexity and physical con-
straint in frequency scaling, chip multiprocessors are considered
the de facto architecture baseline for future processor generation.
Through resource sharing, applications running on a CMP can
achieve better resource utilization and faster inter-core communi-
cation, leading to a higher overall throughput for the entire sys-
tem. From a different perspective, however, such architectures are
also more susceptible to Denial-of-Service (DoS) attacks on these
shared resources, increasing the vulnerability in performance. Fur-
thermore, as the number of cores increases, attacks similar to Dis-
tributed Denial-of-Service (DDoS) attacks on the Internet can be
employed to throttle these on-chip resources with the presence of
multiple malicious applications. In this paper, we design several
types of Denial-of-Service attacks and analyze their impact to the
performance of CMPs. We also suggest a few potential counter-
measure techniques to address these vulnerability for legitimate
applications.

1. INTRODUCTION
Continuously increasing design complexity and verification costs

are driving the microprocessor industry to abandon the conven-
tional frequency design strategy and make a paradigm shift toward
the design of chip multiprocessors (CMP) by placing multiple cores
on a processor die. In the meantime, the design of each proces-
sor core for these systems is also becoming simpler due to many
facts such as limited instruction-level parallelism in applications,
elongated on-die wire communication, and the growing concern of
power consumption and its ensuing thermal effect. While such de-
sign trend greatly alleviates the design constraints and continues to
expand Moore’s law, they are, however, less likely to achieve de-
sirable performance as a result of simplified hardware. Thus, to
realize the full performance potential provided by these systems,
one must exploit the parallelism at the software level as much as
possible with or without architectural support.

The concept of parallel processing is not new, however. Indus-
tries have been developing parallel systems from customized mas-
sively parallel machines for special purpose computing to solve
specific domain problems to smaller, more affordable systems based
on symmetric multiprocessors (SMP) for general-purpose applica-
tions. The programming models of these systems are often based
on MIMD-style. One major difference between the recent MIMD
CMP design and a traditional MIMD SMP system lies in the degree
of resource sharing among cores or processors. For example, pro-
cessors in a shared-bus SMP system are generally designed to share
the frontside bus (FSB), whereas cores in a CMP, for they are more
tightly coupled, can be designed to share the backside bus (BSB),

and their corresponding lower-level memory structures.1 Sharing
resources such as the L2 cache provides the advantage of reduced
inter-core communication overhead. On the other hand, compared
to private L2 cache design, which splits each resource evenly for
each core, sharing resources provides more flexibility to satisfy dy-
namic workload behavior, thus increasing the overall utilization ef-
ficiency [17].

Most of the existing or proposed CMP designs share the last level
caches, e.g. the L2 caches. By sharing instructions and data in the
L2 cache, one processor core can read the data value updated by
other cores by simply communicating through the L2 cache with a
shared backside bus that supports a snoop-based coherence pro-
tocol. As a result, all other architectural components (e.g. the
frontside bus and DRAM) below the L2 cache are all shared. These
shared resources, however, are never provided for free and must be
used with caution for performance assurance. For example, on-
chip bus bandwidth can be increased by multiplying the bus width,
yet it increases routing complexity at design time, the number of
metal layers at manufacturing time, and eventually the power con-
sumption of overall chip at run time. One can also increase the
bandwidth by increasing the bus frequency. Unfortunately, it can
worsen signal integrity, power consumption, etc. On the other hand,
the L2 cache capacity becomes even more restrained when shared
by several cores. Increasing the L2 cache size, while reducing the
capacity and conflict misses, can degrade the overall system perfor-
mance for a longer access latency. Given a fixed die area budget, a
larger L2 implies fewer cores on die, impairing the performance per
mm2, a popular metric for comparing the effectiveness of CMPs.
Another common barrier of enlarging an L2 cache is the increased
power, in particular, the leakage power.

Similar to the on-chip bus, the off-chip bus bandwidth can be
improved either by enlarging the bus width or by increasing the
bus frequency. Nevertheless, one major drawback of increasing the
off-chip bus width is the consequence of more I/O pads that do not
scale with Moore’s law. Increasing the off-chip bus frequency is
also likely to be limited by physical design constraint, which is not
considered as a scalable solution. Other design alternatives such
as optical or RF/wireless inter-chip interconnect [1, 19, 3, 5] were
recently investigated for overcoming this constraint.

Although different ways of sharing these resources can be sen-
sitive to system performance, there are not too many studies that
address issues with respect to how to share these resources more
resiliently. Most of the prior studies focused on the impact of L2
cache space partitioning on overall system performance [11, 12, 18,

1Frontside bus denotes the bus between the L2 cache and the main
memory while Backside bus represents the bus between L1 and L2
caches.

9, 15, 14]. When this effect is intertwined with job scheduling from
the standpoint of an operating system, the problem will become
much more complicated [6]. This problem is difficult to solve, not
only because it is involved with so many parameters, but also it is
not even clear which performance goal we are tuning for [12, 9].
This problem is even more critical in the server farms where a ser-
vice provider is hosting several services for various customers who
pay different premiums.

In this paper, we investigate this resource sharing problem from
a different perspective. We evaluate how a cracker can exploit the
shared resources of a CMP by injecting malicious threads to de-
prive resources of legitimate applications and cause performance
degradation. In essence, we study the performance vulnerability
due to a variety of Denial-of-Service (DoS) attacks on CMPs. The
main contributions of this research include the following.
• Mimicking the mindset of crackers, we design malicious pro-

grams that voraciously exhaust shared resources including both
time (link bandwidth) and space (memory space) and examine
the performance degradation of other normal processes.

• We show that well-known hardware properties such as the LRU
algorithm and cache inclusion property can be manipulated by
crackers in succeeding in their malicious intention.

• We present that several malicious threads can cooperate with
each other to perform a microarchitectural Distributed Denial-
of-Service (DDoS) attack.

• We propose and discuss several preliminary solutions to penal-
ize the malicious code based on monitoring results on resource
utilization.

2. RELATED WORK
Iyer [11] proposed a new cache management framework to pro-

vide prioritized services on a CMP. He mainly focused on the de-
sign, implementation and performance evaluation of Quality-of-
Service (QoS) priority enforcement mechanisms including cache
set partitioning, selective cache allocation, and heterogeneous cache
regions. This work, however, lacked an in-depth investigation of
priority classification and assignment mechanism.

Kim et al. [12] focused on a cache partitioning algorithm to
provide fairness to the processes running on a CMP. They pro-
posed several metrics and studied relationship between fairness and
throughput. These metrics included absolute and relative numbers
of cache misses and cache miss rates.

Fedorova et al. [6] proposed an operating system scheduling al-
gorithm to minimize the cache contention among threads. They
monitored the memory re-use pattern for each thread and estimated
their cache miss rates to identify and schedule symbiotic threads
together for higher throughput.

Yeh and Reinman [18] proposed PDAS, a physically distributed
NUCA L2 cache design with an adaptive sharing mechanism, to
provide QoS on a CMP. They used miss rate and IPC as a metric
to determine the cache partitioning. Hsu et al. [9] compared differ-
ent policies on performance targets. They used several metrics to
evaluate these policies, including miss rates, misses per cycle, and
IPC. Unfortunately, they found that overall performance was seri-
ously dependent on the used metric, and it was very difficult to pick
one metric over the other. Rafique et al. [15] proposed an OS-level
management of shared caches in CMPs. They forced the cache to
choose the victim line based on OS-specified quotas. They, how-
ever, did not specify the metric to set the quota for each processes.
More recently, Qureshi and Patt [14] proposed utility-based cache
partitioning. They used sum of weighted IPCs, sum of IPCs, and
harmonic mean of normalized IPCs as a metric to determine cache
size allocated to each process.

Note that all above papers focused only on shared cache space,
i.e. the capacity issue. They failed to address the unfair sharing
problem in interconnection bandwidth. Considering that the band-
width of on-chip or off-chip interconnection becomes more scarce
for each core as the number of cores goes up in CMPs, unfair uti-
lization of the bandwidth will eventually become a roadblock to
scaling up performance. This paper focuses on both the cache ca-
pacity issue as well as the often ignored interconnection bandwidth
issue.

Furthermore, most of the crackers are very determined and smart
enough to exploit the vulnerability of partitioning algorithms pro-
posed by prior works. For example, the IPC can be easily fooled
by inserting dummy instructions, e.g. or r0 = r0, r0. The miss rates
can also be easily manipulated by concocting the working set de-
liberately. Thus, a partitioning algorithm based on these metrics
may result in a guarantee of a large space to the malicious thread
and make these attacks more effective.

In this paper, we are interested neither in fairness nor in QoS on
CMPs. In other words, we do not argue that the processor should
always provide its best services to meet all the requirements for
applications. Rather, we argue that we should have, at least, a hard-
ware mechanism that can detect and prevent the performance of
our system from suffering from intentional DoS attacks by well
premeditated malicious applications.

3. DENIAL-OF-SERVICE ATTACKS ON A
CMP

3.1 Generic DoS Attacks
Denial-of-Service is a common network attack method in which

a malicious user intentionally makes a flood of requests to a tar-
geted Internet service, rendering the victim server unavailable to
legitimate subscribers. With this type of attack, lots of packets
were sent to saturate one link, exhaust the memory or CPU time
of the server, overflow the buffer of the network interface card of
the victim server. Although link level fairness is strictly controlled
by Medium Access Control (MAC) layer protocol, packets from
one source can make packets from other sources unreachable to
the server, due to the vulnerability of the upper level transmission
control such as TCP SYN or UDP flood attack [4].

A naı̈ve DoS attack is relatively easier to identify than a Dis-
tributed DoS attack. Several mechanisms were proposed to detect
and battle against DoS attacks including complex algorithms based
on pattern matching through packet monitoring. A DDoS attack,
however, is very difficult to detect as in this case multiple hosts
(sometimes at different locations) are compromised to exhaust the
resources of the victim server by the same group of crackers. Each
connection established by the compromised machines behaves ex-
actly like a normal user making a legitimate request although aggre-
gated requests from these compromised machines can overwhelm
the capacity the victim server can sustain.

The conventional DoS attacks on the Internet exploit and devour
shared yet limited resources in an illegal, unexpected manner. The
network bandwidth, server CPU time, or server memory and buffer
space offered by the service providers are abused and completely
consumed by the crackers. This observation motivates our study on
a CMP which ensembles a scaled down replica with shared back-
side bus and frontside bus bandwidth, cache space, and CPU time.
When a malicious code is launched on one or multiple cores of a
CMP, the CMP will suffer from a similar availability issue. Note
that such an attack by nature is very different from fairness issue
during resource allocation. The problem is much more complicated
as the fairness must be guaranteed only for legitimate applications.

3.2 Microarchitectural DoS Attack
To the best of our knowledge, there are two related works re-

garding vulnerability of microarchitectural resources: the first one
exploits the shared resources in a simultaneous multithreading pro-
cessor (SMT) [7]; the second one discusses heat dissipation and its
implication on performance in a processor when a malicious code
continuously exercises the same portion of a processor to trigger a
thermal alarm and its protection mechanism such as throttling the
execution or scaling down the frequency [8]. Since an SMT is a
more tightly-coupled shared architecture than a CMP, a thread on
an SMT can harm the performance of other threads more seriously,
by occupying execution units aggressively, flushing the pipeline,
flushing the trace cache, etc [7]. However, lower-level shared re-
sources such as bus bandwidth and memory space has been ignored
in previous works. In this paper, we will show that attacks against
these resources on a CMP (and/or an SMT) can also be serious.

Furthermore, note that a DoS attack on a CMP is clearly different
from that on a shared-bus SMP system as follows:
• Higher level memory structure and interconnect are shared on

a CMP while they are isolated and dedicated to each processor
on an SMP. Consequently, a process running on a CMP needs
to access the shared resources more frequently. For example,
a process or thread running on a CMP will access the shared
backside bus upon every L1 cache miss. The same process run-
ning on an SMP, however, only accesses the shared frontside
bus upon every L2 cache miss, a much rarer event than a L1
cache miss. Thus, processes running on a CMP are more sus-
ceptible to DoS attacks.

• The main memory (a shared resource on an SMP) is a larger
structure than the last level cache (a shared resource on a CMP).
Thus, it is difficult for malicious threads on an SMP to occupy
a large amount of main memory space fast enough to perform
DoS attacks.

• Cores on a CMP share the last level cache, while processors on
an SMP share the main memory. The key difference is that the
allocation to and eviction from the last level cache of each cache
line is determined by the hardware, e.g. the LRU algorithm, yet
the allocation to and eviction from the main memory of each
memory page is fully handled by the operating system, which
is not precitable from the standpoint of malicious threads. Thus,
SMPs are less vulnerable to DoS attacks.

4. TYPES OF ATTACKS
In this section, we describe various malicious programs designed

by us to exploit the performance vulnerability. In our explanation,
we first define the processor architecture used in the experiments
and then show several attack mechanisms — attacks against the
backside bus bandwidth, the L2 cache, and the frontside bus band-
width. Furthermore, we present a few more elaborate methods —
LRU and inclusion property aware attacks and attacks that exploit
locking protocol.

4.1 CMP Model
Our CMP model, a quad-core system, is illustrated in Figure 1.

The L1 instruction and data caches are private, 32KB each. A 2MB
L2 cache is shared by all processor cores. Similar to the Intel R©

CoreTM microarchitecture, the backside bus is set to 256 bits run-
ning at full processor speed. The detailed specification is shown
in Table 1.

Each core accesses the shared backside bus upon every L1 cache
miss and we assume that bus arbitration is controlled by an arbiter
that is capable of providing bus access fairness to all cores. Each
core has its own Miss Status Handler Register (MSHR) for han-

MSHR MSHR MSHR MSHR MSHR MSHR MSHR MSHR

MSHR

I$ D$

Core 1

I$ D$

Core 2

I$ D$

Core 3

I$ D$

Core 0

Shared Backside Bus

Shared L2 Cache

Shared Frontside Bus

Figure 1: Experimental CMP Model

Clock frequency 2.0 GHz
Number of cores 4
Instruction issue width 3
L1 I$ (per core) 2-way set associative

32KB cache with 64B line
1 cycle hit latency

L1 D$ (per core) 2-way set associative
32KB cache with 64B line
1 cycle hit latency
8-entry MSHR

Data Bus bandwidth between 64 GBps
L1 D$ and L2$ (shared) (2GHz * 256bit)
L2$ (shared) 8-way set associative

2MB cache with 64B line
14 cycle hit latency
1 shared MSHR

Bus bandwidth between 16 GBps
L2$ and DRAM (shared)
DRAM latency (shared) 100 ns

Table 1: Processor configuration

dling L1 misses as in most conventional processors to provide non-
blocking cache functionality. The shared L2 cache contains its own
MSHR shared by all cores. The frontside bus is modeled similar to
the frontside bus of the IA-32 architecture.

4.2 Attack against BSB Bandwidth
The first malicious code is designed to thrash the bandwidth of

the backside bus. To saturate this bus, we need to generate L1 data
cache misses as frequently as possible, because this bus is used as
the communication channel between the L1 and the L2. To gener-
ate L1 misses as many and as frequently as possible, our malicious
code should be very efficient to be aggressive enough. In other
words, the MSHR of a core running the malicious code must be al-
ways fully occupied. To meet this requirement, the malicious code
is written with assembly language and well optimized by avoid-
ing L1 instruction cache miss, removing the side effect of branch
misprediction as much as possible, removing the instruction depen-
dency while generating an L1 data cache miss almost every cycle,
and minimizing response time from the lower level memory such as
page faults. Note that the last requirement is one of the most impor-
tant criteria. Without it, we will be unable to completely saturate
the backside bus even with a filled MSHR.

The pseudo code of this attack is listed in Figure 2. The code
constantly loads data from a 64KB array with a stride size of 64B,
which is equivalent to the L1 line size. Note that the entire data
memory footprint traversed by this code is 64KB, twice the L1 data
cache size. Ideally, the access pattern of this code will incur an
L1 data cache miss for each load instruction regardless of the set
associativity of the L1 data cache.

As we will show later in the discussion of the simulation results,
some interesting behavior of this code is observed. Even though

allocate 64KB array
mov $2, (pointer to this array)
mov $3, (pointer to this array + 32K)

L1:
lw $22, 0($2)
lw $22, 64($2)
lw $22, 128($2)
...
lw $22, 32704($2)
lw $22, 0($3)
lw $22, 64($3)
lw $22, 128($3)
...
lw $22, 32704($3)
jmp L1

Figure 2: Pseudo code for the attack against the backside bus

we hand-crafted this code to generate an L1 miss for each load in-
struction, this code does not generate cache misses as frequent as
we have expected. The reason is that the backside bus is often satu-
rated, leaving the processor incapable of posting incessant memory
requests on the bus. As such, the code not only degrades the perfor-
mance of itself, the bus thrashing also impairs the ability of other
CMP cores sharing the same backside bus from gaining bus access,
resulting in poor performance for all workloads.

4.3 Attack against the L2 Cache
The second malicious code is designed to sweep through the L2

cache space as quickly as possible. Using this attack, the malicious
thread generates a large number of L1 misses that wipe out the foot-
print of the victim process. Consequently, the victim process suf-
fers from a higher L2 miss rate. To make this attack effective, the
malicious code should generate L1 data cache misses fast enough
so that it obsoletes the the L2 cache lines loaded by the victim pro-
cess more quickly. To meet these requirements, we designed the
malicious code similar to the one described in Section 4.2. The
only difference is that a larger memory footprint is used — 2MB,
the size of the L2 cache. Because this code inherently saturates the
backside bus due to frequent L1 cache misses, the code is expected
to degrade the performance of the victim process more seriously.
Note that this attack might not behave exactly as what we have ex-
pected for most processors employ physically-indexed L2 cache.
Nevertheless, we do not expect it alleviates the vulnerability as in
typical situation the operating system does not allocate pages in
random order.

4.4 Attack against the FSB Bandwidth
Similar to the technique (or black art) in Section 4.2 that thrashes

the backside bus, to saturate the frontside bus, a malicious code
needs to generate L2 cache misses as frequently as possible. The
only difference from previous code is the memory footprint re-
quired, which is now 4MB, twice of the L2 cache size. Note that
this attack also sweeps through the entire L2 cache space, and could
saturate the backside bus bandwidth when contrived properly.

4.5 LRU and Inclusion Property Aware At-
tack

The fourth type of attacks is a variation of the second attack de-
scribed in Section 4.3. Instead of sweeping the cache with a stride
of 64B as shown in Figure 3(a), this attack successively sweeps
each cache set as shown in Figure 3(b). Note that, with the L2
cache configuration shown in Table 1, all memory accesses to the
address x + n ∗ 2

18 are mapped to the same set. For example, ac-
cesses to the address 0, 1∗218 , 2∗218 , 3∗218 , 4∗218 , 5∗218 , 6∗218 ,
and 7∗2

18 , are all mapped to set 0. The pseudo code for this attack
for our 8-way L2 cache, shown in Figure 4, successively loads data
from these addresses by using eight registers ($18 to $25), so that

Set 3

Set N

Set 0

Set 1

Set 2

64 Bytes

(a) Normal stride attack

Set 3

Set N

Set 0

Set 1

Set 2

(b) LRU and inclusion property aware attack

Figure 3: LRU and inclusion property aware attack

allocate 2MB array
mov $7, (pointer to this array)
mov $10, (0)
add $11 = $10, 2

18

add $12 = $11, 2
18

...
add $17 = $16, 2

18

add $18 = $10, $7
add $19 = $11, $7
...
add $25 = $17, $7

L1:
lw $26, 0($18)
lw $26, 0($19)
...
lw $26, 0($25)
lw $26, 64($18)
lw $26, 64($19)
...
lw $26, 64($25)
...
lw $26, 4032($18)
lw $26, 4032($19)
...
lw $26, 4032($25)
offset increase or reset
jmp L1

Figure 4: Pseudo code for the LRU and inclusion property
aware attack

cache lines loaded by the victim process can be eventually evicted.
Once it successfully evicts those lines, it attacks the next set by
changing the offset.

Considering the facts that (1) the cache inclusion property should
be maintained for an efficient coherence protocol implementation,
and (2) the LRU policy always evicts the least recently accessed
cache line — if a cracker successively accesses the same cache
set with different address, he ensures that L2 cache lines of the
victim core is evicted, and that the L1 cache lines of the victim
core is also invalidated. Therefore, the victim core will access the
backside bus and the L2 cache much more often, which degrades
the performance of the application running on the victim core.

4.6 Attack Using Locked Atomic Operation
To implement the atomic operation, a Read-Modify-Write in-

struction is typically provided in commercial processors to implic-
itly lock the bus [10, 2]. If a malicious code can successfully lock
the bus, other processes running in other cores must wait until the

0
0.2
0.4
0.6
0.8

1

astar bzip2 dealII gobmk h264ref hmmer lbm libquantum mcf namd omnetpp sjeng soplex harmonic
mean

No
rm

al
iz

ed
 IP

C

L/B/1 A/B/1 L/L/1 A/L/1 L/I/1 A/I/1 L/F/1

Figure 5: DoS vulnerability due to different attacks

bus lock is released. In our experiments, we assume that the hard-
ware implementation of this operation locks the backside bus until
the data is returned from the L2. Normal load operations of the
first, second and third malicious codes discussed earlier are substi-
tuted with locked atomic operations to generate aggressive locked
atomic operations.

4.7 Microarchitectural DDoS Attack
Similar to the attack models found in conventional Internet, we

also foresee the possibility of the Distributed Denial-of-Service at-
tacks in a future many-core processor system. These malicious
codes can be scheduled simultaneously and cooperate with each
other. DDoS attacks are expected to increase the latency of acquir-
ing the backside bus, and may consume (and void) the L2 cache
space more aggressively. In our experiments, we run several threads
of codes discussed previously to simulate DDoS.

5. EXPERIMENTAL RESULTS
5.1 Simulation Environment

We experimented these attacks on the SESC simulator [16]. The
latest SPEC CPU2006 benchmark programs are used as victim ap-
plications to be attacked by the malicious codes.2 Our CMP model
was described in Section 4.1. Our simulation results were gathered
by executing 100 million instructions of each victim application af-
ter skipping the first five billion instructions. The link bandwidth
and contention of each bus are modeled with an assumption of the
arbitration latency to be zero. Note that this is an optimistic as-
sumption in terms of performance impact. In reality, the perfor-
mance degradation due to contention with malicious threads will
be greater due to the arbitration latency.

5.2 Simulation Results
Figure 5 shows the performance results on DoS vulnerability.

The baseline IPC was measured when only the victim application
is running on the CMP. In this case, 3 out of 4 cores are idle. The
graph shows the normalized IPC results for a victim application ex-
ecuted on one core together with one malicious code running on an-
other core under different attacking scenarios. We varied the types
of attacks to demonstrate the performance vulnerability of differ-
ent resources. For example, L/B/1 contains 1 malicious thread that
uses normal Load instructions to attack the Backside bus. Table 2
details the acronyms used in the legend.

As shown in Figure 5, by running one single malicious thread,
the performance of the victim application can be degraded by as
much as 91%. In general, the performance sensitivity is highly de-
pendent on the program behavior. For instance, mcf has been long
known for its poor memory performance on some particular indi-
rect load instructions. By attacking all memory-related resources
2Benchmark programs written in Fortran or using unsupported sys-
tem calls by SESC simulator are excluded from the simulation.

[instruction]/[resource]/[# of attackers]

[instruction]
L: attack using normal Load instruction
A: attack using locked Atomic instruction

[resource]
B: BSB attack
L: BSB and L2 space attack
F: BSB, L2 space and FSB attack

[# of attackers]
1: One malicious thread
2: Two malicious threads
3: Three malicious threads

Table 2: Attack Acronyms

such as the backside bus, frontside bus and L2 space can further
reduce its performance substantially as shown in Figure 5. Fig-
ure 6(a) shows the L1 miss rate of each baseline victim applica-
tion to provide more insight to the vulnerability. As expected, it
is clearly observed that the applications with higher L1 miss rates
are usually more vulnerable to the attacks as they need to access
the shared resources more often. In other words, those applications
demonstrate high locality and can better endure memory latency
will be less susceptible to such DoS attacks in CMPs. In addition,
we also found that our LRU and inclusion property aware attacks
can slightly, though not seriously, increase the L1 miss rates of the
victim process in most of the cases, making the victim application
more vulnerable to the attack. Future workloads containing larger
working set (e.g. RMS [13] advocated by Intel) will clearly be
more vulnerable to the DoS attack.

Another clear trend is that the performance of the victim process
with a higher L2 miss rate (Figure 6(b)), e.g. astar and libquan-
tum, is not affected too much by the attack against the L2 cache
space. As these applications do not need the cache line again, once
it is evicted from the L1 cache, their performance is less sensitive
to the L2 cache space that they occupy.

Also from the figure, it is interesting to find that locked Atomic
operations are very destructive when they are improperly used by
the crackers. As suggested by Intel developer’s manual [10], fre-
quent use of these operations is not recommended for performance
reasons. Worse yet, crackers can deliberately exploit this property
to satisfy their goals.

As expected, attacking the backside bus bandwidth and the L2
space together degrades the performance more than simply attack-
ing the backside bus bandwidth. Nevertheless, attacks that target
the frontside bus bandwidth appear to be less effective in Figure 5.
Our analysis shows that it is due to the lower performance of the at-
tacking thread. Because the DRAM memory latency is fairly long,
the MSHR is quickly filled by these long latency operations. As
such, the attacking thread fails to thrash the backside bus band-
width and the L2 space more timely, making these resources more
available to the victim application.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

as
tar

bz
ip2 de

alII

go
bm

k

h2
64

ref

hm
mer lbm

libq
uan

tum mcf
na

md

om
ne

tpp
sje

ng
so

ple
x

M
is

s
ra

te

(a) L1 Miss rate

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

as
tar

bz
ip2 de

alII

go
bm

k

h2
64

ref

hm
mer lbm

libq
uan

tum mcf
na

md

om
ne

tpp
sje

ng
so

ple
x

M
is

s
ra

te

(b) L2 Miss rate

Figure 6: Miss rate of the baseline victim process

Simulations with more than one attacking thread are also per-
formed to investigate the vulnerability under a Distributed DoS at-
tack. Figure 8(a) shows the normalized IPC numbers as a result
of attacking the backside bus using one, two and three malicious
threads. First of all, we found the IPC results of different attacking
threads in each simulation scenario are almost same. This suggests
that each core accesses the bus in a fair manner in our simulation
environment. In spite of fair accesses, the victim process suffers
from the longer latency caused by the saturated backside bus band-
width. The simulation results show that all victim processes run
slower as the number of attacking threads increases. This is very
obvious because the probability that the victim process is allowed
to access the bus is getting smaller with more malicious threads
running.

Unlike the attack to the backside bus, it is not always true that a
DDoS attack is more effective than a DoS attack when the attack is
targeted to both the backside bus and the L2 cache space. For exam-
ple, as the number of malicious threads increases, the performance
degradation of sjeng decreases, but that of mcf increases, as shown
in Figure 8(b) and Figure 8(c). Note that this type of attack by a
single thread is already saturating the backside bus and evicting an
L2 cache line loaded by the victim process. Consequently, there
is no big advantage with more malicious threads. Considering the
fact that these attacks are more effective only when the malicious
threads evict a cache line, either from the L2 cache or from the L1
cache of the victim core, which the victim core needs to access, the
effect of each attack is not highly predictable. That is why a DDoS
attack cannot always be more effective than a DoS one.

A DDoS attack can work very well if the goal of the malicious
threads is to saturate the frontside bus and their higher level mem-
ory resources. As stated before, this attack done only by one ma-
licious thread suffers from an overflow in the MSHR, thus it can-

not exhaust the backside bus bandwidth and L2 cache space ef-
ficiently. As the number of malicious threads increase, however,
it becomes more difficult for the victim to receive enough use of
these resources. That explains why a DDoS attack works well in
bringing down the performance of the victim application shown
in Figure 8(d).

6. SUGGESTED SOLUTIONS
6.1 Monitoring Functionality on Utilization of

Shared Resources
Pure software solutions such as commercial virus scanner are not

effective for microarchitectural DoS or DDoS, because malicious
threads can degrade the performance of this software, too. Further-
more, it is very easy to write variations of these attacks, making
the signature-based detection mechanisms less useful. Rather, we
need an adaptive solution to solve this problem based on real-time
monitoring. To detect malicious, atypical behavior, the hardware
at least needs to monitor the utilization status of shared resources,
and provides appropriate information such as bus utilization, cache
sharing, etc. One major research challenge is to identify and differ-
entiate a malicious process from other normal workloads.

6.2 Dynamic Miss Status Handler Register
From our experiences of crafting malicious codes and observa-

tion on the simulation results, for malicious codes to succeed, the
backside bus should be saturated. This is evident since the backside
bus is the shared resource that every request to lower-level shared
resources such as the L2 or the frontside bus must go through. A
successful malicious code should generate L1 cache misses as fre-
quently as possible to dispatch enough requests to these shared re-
sources. Thus, to prevent DoS attacks, one possible solution is to
throttle the memory activity of the malicious code.

In a uni-processor environment, this bandwidth is dedicated to
only one process at a given time. Thus, the number of entries
of MSHR is typically designed to fully utilize the available band-
width. However, in a CMP where several cores (and several pro-
cesses) share the same bus, architects need to develop some mi-
croarchitecture level solutions to dynamically adapt the available
bandwidth for the legitimate processes.

One potential solution we are investigating is to adaptively adjust
the the number of outstanding memory requests based on the band-
width utilization and/or cache space utilization, which we call Dy-
namic MSHR (DMSHR).3 DMSHR, as shown in Figure 7(b), can
be implemented by adding some simple logic to a regular MSHR.
By monitoring the bus bandwidth utilization, the processor deter-
mines the number of MSHR entries dynamically. If a DMSHR
is servicing more requests than this decision, a full signal will be
set to the DMSHR to defer further requests to the processor. For
example, if it is monitored that the bus has been saturated, and a
suspicious thread consumes 90% of the bus bandwidth, the maxi-
mum number of DMSHR entries allowed to the core running the
suspicious thread can be decreased to throttle the aggressive mem-
ory accesses.

Because a late DoS detection does not affect the functional cor-
rectness, the new MSHR full signal does not need to wait for the
decision made at the current cycle. Thus, the new logic compo-
nents including the counter and the comparator should not affect
the latency of an MSHR full signal from the view of the processor.
Compared to a conventional MSHR full signal as shown in Fig-
3A centralized controller such as a bus arbiter might be able to do
this job too. But a centralized control will not be efficient when the
number of cores increases in the future.

Entry 0

Entry 2
Entry 3
Entry 4
Entry 5
Entry 6

Entry 1

Entry 7

MSHR full

Entry 0 filled Entry 7 filled

(a) Conventional MSHR

Entry 0

Entry 2
Entry 3
Entry 4
Entry 5
Entry 6

Entry 1

Entry 7

MSHR full

Entry 0 filled Entry 7 filled

Counter

Comparator
Decision from
monitoring functionality

(b) Dynamic MSHR

Figure 7: Dynamic MSHR

ure 7(a), DMSHR introduces only one additional OR gate latency,
which is not expected to affect the latency of the MSHR full signal.

The major challenge with this approach is how to accurately de-
tect the malicious code and how to adaptively control the number
of MSHR entries of the core running the malicious code. We are
presently investigating methods to achieve this.

6.3 OS Level Solution
This problem can also be supervised and mitigated by the op-

erating system. The system administrator may set some policies
on the limit of resource utilization, and let the OS preemptively
evict the processes that appear to be malicious. But this solution
cannot be free from the false alarm problem. For example, a nor-
mal, memory-bound process can be mistaken as a malicious thread.
Again, similar to what was discussed in Section 6.2, more research
is needed to realize a more accurate detection mechanism.

Another OS level solution is adopting different pools based on
resource usage pattern. For example, an OS can allot and dispatch
processes into two different pools by tracking the dynamic use of
resources by each process: one for the applications which require
a small amount of resources, and another for those which require
a large amount of resources. By having two separate pools, it can
guarantee a faster turnaround time for the processes that are less
resource bound.

7. CONCLUSION AND FUTURE WORK
Due to resource sharing among processor cores in a CMP, the

performance of each process is highly dependent on the amount of

resources allocated. Therefore, if these resources are exhausted by
malicious threads, the performance of the overall system will be
seriously degraded. The malicious threads we designed in this pa-
per degraded the performance of a legitimate application by up to
91% on a CMP. Furthermore, several threads can be organized in a
DDoS manner and degrade performance when running simultane-
ously.

DoS vulnerability on a different intra-chip interconnection topol-
ogy, such as embedded ring, or network-on-chip in future many-
core processors, would be worth researching. Due to distributed
arbitration nature of ring architecture, the bandwidth of the ring
would be more vulnerable to the attack. Network-on-chip, where a
large number of buffers are used in cores and routers, is also more
susceptible to DoS attacks. Techniques to identifying these mali-
cious attacks and solutions for different configurations of intra-chip
interconnection will be investigated in our future work.

8. REFERENCES
[1] International Technology Roadmap for Semiconductors. http://public.itrs.net.
[2] AMD. AMD64 Architecture Programmer’s Manual Volume 3:

General-Purpose and System Instructions, 2006.
[3] Alan F. Benner, Michael Ignatowski, Jeffrey A. Kash, Daniel M. Kuchta, and

Mark B. Ritter. Exploitation of optical interconnects in future server
architectures. IBM Journal of Research and Development, 49(4/5),
July-September 2005.

[4] CERT Coordination Center. Denial of Service Attacks.
http://www.cert.org/tech tips/denial of service.html.

[5] Mau-Chung Frank Chang, Vwani P. Roychowdhury, Liyang Zhang, Hyunchol
Shin, and Yongxi Qian. RF/Wireless Interconnect for Inter-and Intra-Chip
Communications. Proceedings of the IEEE, 89(4):456–466, 2001.

[6] Alexandra Fedorova, Margo Seltzer, Christopher Small, and Daniel Nussbaum.
Performance Of Multithreaded Chip Multiprocessors And Implications For
Operating System Design. In Proceedings of the USENIX 2005 Annual
Technical Conference, April 2005.

[7] Dirk Grunwald and Soraya Ghiasi. Microarchitectural denial of service:
insuring microarchitectural fairness. In Proceedings of IEEE/ACM 35th
International Symposium on Microarchitecture, pages 409–418, November
2002.

[8] Jahangir Hasan, Ankit Jalote, T. N. Vijaykumar, and Carla Brodley. Heat
Stroke: Power-Density-Based Denial of Service in SMT. In Proceedings of the
Eleventh Annual Symposium on High Performance Computer Architecture,
pages 166–177, February 2005.

[9] Lisa R. Hsu, Steven K. Reinhardt, Ravishankar Iyer, and Srihari Makineni.
Communist, Utilitarian, and Capitalist Cache Policies on CMPs: Caches as a
Shared Resource. In Proceedings of the 2006 International Conference on
Parallel Architectures and Compilation Techniques, September 2006.

[10] Intel. Intel Architecture Software Developer’s Manual Volume 3: System
Programming Guide, 2006.

[11] Ravi Iyer. CQoS: A Framework for Enabling QoS in Shared Caches of CMP
Platforms. In Proceedings of the 2004 International Conference on
Supercomputing, pages 257–266, June 2004.

[12] Seongbeom Kim, Dhruba Chandra, and Yan Solihin. Fair Cache Sharing and
Partitioning in a Chip Multiprocessor Architecture. In Proceedings of the 2004
International Conference on Parallel Architectures and Compilation
Techniques, pages 111–122, September 2004.

[13] Bob Liang and Pradeep Dubey. Recognition, Mining and Syntesis. Intel
Technology Journal, 09(02), May 2005.

[14] Moinuddin K. Qureshi and Yale N. Patt. Utility-Based Cache Partitioning: A
Low-Overhead, High-Performance Runtime Mechanism to Partition Shared
Caches. In Proceedings of IEEE/ACM 39th International Symposium on
Microarchitecture, December 2006.

[15] Nauman Rafique, Won-Taek Lim, and Mithuna Thottethodi. Architectural
Support for Operating System-Driven CMP Cache Management. In
Proceedings of the 2006 International Conference on Parallel Architectures and
Compilation Techniques, September 2006.

[16] Jose Renau, Basilio Fraguela, James Tuck, Wei Liu, Milos Prvulovic, Luis
Ceze, Smruti Sarangi, Paul Sack, Karin Strauss, and Pablo Montesinos. SESC
simulator, January 2005. http://sesc.sourceforge.net.

[17] Ofri Wechsler. Inside Intel R© CoreTM Microarchitecture: Setting New Standards
for Energy-Efficient Performance. Technology@Intel Magazine, March 2006.

[18] Thomas Y. Yeh and Glenn Reinman. Fast and Fair: Data-stream Quality of
Service. In Proceedings of the 2005 International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems, September 2005.

[19] Ian Young. Intel introduces chip-to-chip optical I/O interconnect prototype.
Technology@Intel Magazine, pages 3–7, April 2004.

0
0.2
0.4
0.6
0.8

1

astar bzip2 dealII gobmk h264ref hmmer lbm libquantum mcf namd omnetpp sjeng soplex harmonic
mean

No
rm

al
iz

ed
 IP

C

L/B/1 A/B/1 L/B/2 A/B/2 L/B/3 A/B/3

(a) Performance degradation of the victim due to attacks against the backside bus bandwidth

0
0.2
0.4
0.6
0.8

1

astar bzip2 dealII gobmk h264ref hmmer lbm libquantum mcf namd omnetpp sjeng soplex harmonic
mean

No
rm

al
iz

ed
 IP

C

L/L/1 A/L/1 L/L/2 A/L/2 L/L/3 A/L/3

(b) Performance degradation of the victim due to attacks against the backside bus bandwidth and L2 space

0
0.2
0.4
0.6
0.8

1

astar bzip2 dealII gobmk h264ref hmmer lbm libquantum mcf namd omnetpp sjeng soplex harmonic
mean

No
rm

al
iz

ed
 IP

C

L/I/1 A/I/1 L/I/2 A/I/2 L/I/3 A/I/3

(c) Performance degradation of the victim due to LRU and inclusion property aware attacks against the backside bus bandwidth and L2
space

0
0.2
0.4
0.6
0.8

1

astar bzip2 dealII gobmk h264ref hmmer lbm libquantum mcf namd omnetpp sjeng soplex harmonic
mean

No
rm

al
iz

ed
 IP

C

L/F/1 L/F/2 L/F/3

(d) Performance degradation of the victim due to attacks against the backside bus bandwidth, L2 space, and the frontside bus bandwidth

Figure 8: Distributed DoS vulnerability due to different attacks

