
Better than the Two: Exceeding Private and Shared
Caches via Two-Dimensional Page Coloring

Lei Jin Sangyeun Cho

Department of Computer Science
University of Pittsburghfjinlei,chog@cs.pitt.edu

Abstract

Private caching and shared caching are the two con-
ventional approaches to managing distributed L2 caches in
current multicore processors. Unfortunately, neither shared
caching, nor private caching guarantees optimal perfor-
mance under different workloads, especially when many
processor cores and cache slices are provided on a switched
network. This paper takes a very different approach from
the existing hardware-based schemes, allowing data to be
flexibly mapped to cache slices at the memory page granu-
larity [4]. Using a profile-guided execution-driven simula-
tion method, we perform a limit study on the performance-
optimal two-dimensional page mappings, given a multicore
memory hierarchy and on-chip network configuration. Our
study shows that a judicious data mapping to improve both
on-chip miss rate and cache access latency results in sig-
nificant performance improvement (up to 108%), exceeding
the two existing methods. Our result strongly suggests that
a well-conceived dynamic data mapping mechanism will
achieve similarly high performance on an OS-managed dis-
tributed L2 cache structure.

1 Private Caching vs. Shared Caching

Multicore processors have hit the market at all fronts.
Processors with two to eight cores are available [5, 8, 10],
and they are widely deployed in PCs, servers and embedded
systems. While improving program performance in gen-
eral, the trend of integrating many cores on a single chip
can make performance more sensitive to how the on-chip
memory hierarchy is managed, especially at a lower level
(e.g., L2 caches).

The conventional L2 cache management schemes are
private cachingandshared caching. In the private caching
scheme, a local cache slice always keeps a copy of the ac-

cessed data, potentially replicating the same data in multi-
ple cache slices. This replication of data results in reduced
effective caching capacity, often leading to more on-chip
misses. The benefit of the private caching scheme is a lower
cache hit latency. On the other hand, the shared caching
scheme always maps data to a fixed location. Because there
is no replication of data, this scheme achieves a lower on-
chip miss rate than private caching. However, the average
cache hit latency is larger, because cache blocks are simply
distributed to all available cache slices.

To remedy the deficiencies in the two existing schemes,
many works have been done. Zhang and Asanović [11] pro-
posedvictim replicationin a shared L2 cache organization.
In their design, L2 cache slices can store a replaced cache
line from their local L1 caches as well as their designated
cache lines. Essentially, the local L2 cache slice providesa
large victim caching space for the cache lines whose home
is remote, similar to [7]. A downside of this approach hap-
pens on a local L1 cache miss or an external coherence re-
quest; both L1 cache and L2 cache (in parallel or in se-
quence) should be checked, because it is not readily known
if a (remote) cache block has been copied in the local L2
cache slice. Chishtiet al.[3] proposed a cache design called
CMP-NuRAPIDhaving a hybrid of private, per-processor
tag arrays and a shared data array. Based on the hard-
ware organization, they studied a series of optimizations,
such as controlled replication, in-situ communication, and
capacity stealing. Compared with a shared cache organi-
zation, however, CMP-NuRAPID requires a more complex
coherence and cache management hardware. For example,
it implements a distributed directory mechanism by main-
taining forward and reverse pointers between the private tag
arrays and the shared data arrays. Chang and Sohi [2] pro-
posed acooperative cachingframework based on a private
cache design with a centralized directory scheme. They
studied several optimizations such as cache-to-cache trans-
fer of clean data, replication-aware data replacement, and



Figure 1. An example of a 16-core tile-based
multicore processor. Each tile consists of a
processor core, a private L1 cache, a slice of
global shared L2 cache and a switch. Com-
munication among tiles are through a mesh-
based on-chip interconnection network.

global replacement of inactive data. Experimental results
show that the proposed optimizations effectively limit cache
block replication and thus result in a higher on-chip cache
hit rate. However, the optimizations come at the expense
of a more complex central directory than that of a baseline
private cache design.

In summary, the central ideas found in these works are
to balance between the best on-chip miss rate (i.e., shared
caching) and the best cache access latency (i.e., private
caching). Unfortunately, none of these previous works di-
rectly answers the key question:what is the optimal point
between these two opponents?This work investigates the
optimal trade-offbetween the cache access latency and the
on-chip miss rate, given many distributed, non-replicating
L2 cache slices. This work is based on an OS-managed
distributed L2 cache structure [4] and profile-guided two-
dimensional data mapping at the page granularity.

In the remainder of this paper, we will briefly discuss the
OS-managed L2 cache framework first. The profile-guided
two-dimensional coloring algorithm with its results are then
presented.

2 OS-Managed Distributed L2 Cache

Data distribution becomes a critical performance fac-
tor in a multicore processor architecture, especially when
a non-uniform latency cache architecture (NUCA) is em-
ployed. Throughout this paper, we assume a tile-based 16-
core processor model as shown in Figure. 1. The data distri-
bution granularity in a conventional shared caching method
has been cache block [5,8,10], which is determined mainly
by the bandwidth requirement. This is no longer optimal in
a large-scale NUCA processor, however, where the cache

P

Tile 1

#Access #Miss

20

3

20

5

1

2500

Tile 4

Tile 5

Tile 6

Tile 9

cost

36000

30900

6000

61500

30300

Network Latency/Hop = 3 cycles
Memory Latency = 300 cycles

Prog

2500

2500

2500

2500

Figure 2. Program is running on tile 5. We
only consider neighboring tiles for simplic-
ity’s sake. Network latency on each hop is 3
cycles, while off-chip memory access takes
300 cycles. Page P can be placed in any tile,
with different expected resultant misses as
shown in a seperate table.

access latency can vary significantly depending on the data
location.

In our previous work [4], we proposed a flexible data to
L2 cache slice mapping scheme at the memory page gran-
ularity with help from the OS memory management frame-
work. The OS establishes mapping between a virtual page
and a physical page upon request. At the same time, the
OS assigns a home cache slice for the mapped page. Af-
terward, a cache miss targeting a cache block in the mapped
page will bring the cache block into the designated L2 cache
slice. Due to its flexibility, the proposed approach can
easily implement the conventional private caching scheme,
the conventional shared caching scheme, and other hybrid
schemes.

One possible strategy for exploiting the flexibility is to
choose between the two conventional schemes, private and
shared caches, depending on the program’s working set size
and its sensitivity to the cache access latency. A better idea
than this simple strategy is to find a mapping which takes
both the cache miss rate and the cache access latency into
consideration at the same time. By mapping a hot page to
a cache slice near to the program, for example, a reduction
of the cache access latency will be achieved. Likewise, by
not allocating a set of conflicting pages into a same cache
slice, a reduction of the cache miss rate can be obtained.
A simple example would make this point more clear. As
illustrated in Figure. 2, there is a new request to page P in
tile 5. If the access information of the page is available, we
can easily estimate the cost of placing the page on different
tiles. In this example, tile 5 is obviously the best choice
even though it has more severe cache contention. The table
in Figure. 2 shows that placing the page in a neighboring



0

50

100

150

200

250

300

350

400

450

Program location

N
u

m
b

e
r 

o
f 
a

ll
o

c
a

te
d
 p

a
g

e
s

Figure 4. The number of pages mapped to dif-
ferent cache slices in GCC.

tile leads to fewer L2 misses; however, the interconnection
network latency (2500�3 yles�4hops = 30000 yles)
overwhelms the benefit of fewer off-chip accesses.

3 Two-Dimensional Page Coloring

In order to assess the potential provided by an optimal L2
data placement, we assume an oracle memory system where
we can make data placement decisions based on the mem-
ory access information of the whole program execution.
The evaluation takes three steps: First, a detailed page refer-
ence trace with inter-page conflict information is collected.
Second, An off-line page coloring algorithm is then applied
on the collected trace. Finally, the program is re-executed
with the hints fed from the second step. Our page color-
ing algorithm is similar to the one proposed in Sherwoodet
al. [9], which studied a profile-based coloring scheme tar-
geting a single cache slice (“one-dimensional”). However,
we consider not only colors within a cache slice but also
colors among cache slices (i.e., different cache slices), thus
the nametwo-dimensional page coloring.

3.1 Optimal page coloring algorithm

The goal of our optimal page coloring algorithm is to
find a color assignment for each page, balancing between
miss rate and cache access latency for optimal resultant per-
formance. We note that it is not practical to derive the op-
timal coloring decision, since the coloring problem is NP-
complete [9]. Hence, we take a heuristic approach as fol-
lows.

First is to profile a target program and collect the page
conflict information. Two references are deemed conflict-
ing if referenced addresses are different from each other and
mapped to the same cache line. However, we do not know
whether these two references will be conflicting before their

pages are allocated. Therefore we make an assumption that
if two pages A and B are referenced in order and there is
no reference to page B in between, these two references
can cause a conflict miss. Our algorithm is based on this
assumption to calculate the number of misses between any
pair of pages. Note that this number tends to over-estimate
the actual number of misses since two potentially conflict-
ing pages may not actually interfere with each other if they
are put in different colors, or references are made to dif-
ferent portions of the same color. The algorithm is given
below.While trae is not empty fPN = page number of next refereneP i = the array index of page PNfor(i = 0; i < total number of pages; i++) fReferene[i℄[Pi℄ = 1if (Referene[PI℄[i℄ == 1) fConflit[PI℄[i℄ = Conflit[PI℄[i℄ + 1Referene[PI℄[i℄ = 0ggg

Now, assume that theConflict[.][.] matrix carries the
inter-page conflict information between any two pages. Ev-
ery row or column corresponds to a page. The value at the
cross section of a row and a column indicates the number of
conflicts between these two pages. We define the maximum
number in each row as theconflict capacityfor that page.
The algorithm evaluates a cost function from a page with
the largest conflict capacity and proceeds in a decreasing
order. The cost of assigning a particular colorc to a pageP
is computed by the cost function:Cost(P; ) = �� Total onflits(P )�Memory lateny+ (1� �)� Total aesses(P )� (L2 lateny +NoC delay())Total onflits(P ) =XConflit[Pi℄[Xi℄for any page X already mapped to :
In the above,Total aesses(P ) is the total number of

accesses of pageP . Pi andXi are the array indices of
pageP andX . NoC delay includes routing and wire de-
lay, and it varies depending on the relative location of the
program and the assigned color. The parameter� ranges
between 0 and 1, which controls the page aggregation den-
sity. With a smaller�, more weight is put on the NoC delay,
thereby placing pages closer to the program location. When� is 0, the algorithm will simulate a private cache. On the
other hand, with� equal to1, the algorithm will simulate
a shared cache, ignoring network latency. For each page,
the cost of assigning every color is calculated and a color
with the smallest cost is picked. This process is repeated



0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

remote

local

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

ammp art bzip2 crafty eon equake gap gcc gzip mcf mesa mgrid parser twolf vortex vpr wupwi

miss

hit

Figure 3. Proportions of local and remote accesses (upper gr aph) and proportions of on-chip hits
and misses (lower graph). Results with � ranging from 132 to 12048 (from left) are shown.

until all pages are colored. The derived color assignment
information is then used to direct OS page coloring.

3.2 Results

We use a simulator derived from the SimpleScalar tool
set [1], which models a tile-based 16-core processor with 2-
cycle 32KB L1 I/D caches and a 8-cycle 256KB shared L2
cache slice per tile. The NoC delay is 3 cycles per hop. The
main memory latency is 300 cycles. In this study, we only
assume a simple program on the multicore chip, without any
network contention. The optimal page coloring algorithm is
performed with different� values (12 � 12048 ), and the best
results are chosen for presentation.

Figure. 3 shows that with a smaller�, more references
become local. Also shown is that careful data placement
keeps the miss rate at the same level even with a smaller�. In some cases such asgap and mgrid, the number of
misses decreases with a smaller�. This may result from the
greedy nature of our heuristic algorithm and the page gran-
ularity we use when computing conflict information. Fig-
ure. 4 shows an optimal page distribution forgcc. Clearly,
most pages are allocated local to the program location. This
“condensed” mapping reduces the average cache access la-
tency tremendously while hardly impacting the miss rate.

Finally, Figgure. 5 shows the performance improve-
ment of the profile-guided page coloring techniques (one-
dimensional and two-dimensional). The baseline configu-
ration is a shared caching scheme with conventional page
coloring scheme [6]. It is clearly shown that the profile-
guided two-dimensional page coloring achieves higher per-
formance. It obtains 150.6% and 141.6% improvement for
mcf andmgrid, which have relatively intense L2 accesses,
with an average of 11.0% speedup over 17 programs simu-

lated. Compared with shared caching with the same profile-
guided page coloring, it achieves up to 107.6% improve-
ment (mgrid), with an average of 6.4%. The results un-
der the private caching scheme is not shown because they
are generally worse than the shared caching results. We
observed that the improvements achieved with the two-
dimensional page coloring over the private caching is over
130% on average, which is significant. In certain cases,
such asart, twolf andvpr, the improvement is as high as3� to even6�.

4 Final Remarks

This paper presented a study on optimal data to cache
slice mapping under an OS-based distributed L2 cache man-
agement framework. When pages are optimally mapped,
the observed performance improvement is 11% (over shared
caching) and 130% (over private caching) on average.
The result suggests that there is a large room for perfor-
mance improvement over the existing two hardware-based
cache management schemes. It also suggests that a well-
conceived dynamic data mapping scheme (e.g., without
static profile information) will achieve similarly high per-
formance on an OS-managed distributed L2 cache orga-
nization. Naturally, we have the following directions for
future work. First, dynamic page mapping algorithms to
achieve high performance and low power will be investi-
gated. Next, we will consider multiprogrammed, multi-
threaded, and server workloads.

References

[1] T. Austin, E. Larson, and D. Ernst. “SimpleScalar: An Infrastructure
for Computer System Modeling,”IEEE Computer, 35(2):59–67, Feb.



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ammp art bzip2 crafty eon equake gap gcc gzip mcf mesa mgrid parser twolf vortex vpr wupwise

line.color

page.color

150.6% 141.6%

Figure 5. Performance improvement of profile-guided colori ng schemes over a conventional shared
caching scheme with simple page coloring.

2002.

[2] J. Chang and G. S. Sohi. “Cooperative Caching for Chip Multiproces-
sors,” Int’l Symp. Computer Architecture, June 2006.

[3] Z. Chishti et al. “Optimizing Replication, Communication, and Ca-
pacity Allocation in CMPs,”Int’l Symp. Computer Architecture, June
2005.

[4] S. Cho and L. Jin. “Managing Distributed, Shared L2 Caches through
OS-Level Page Allocation,”Int’l Symp. Microarchitecture, Dec. 2006.

[5] Intel Corp. “A New Era of Architectural Innovation Arrives with Intel
Dual-Core Processors,”Technology@Intel Magazine, May 2005.

[6] R. E. Kessler and M. D. Hill. “Page Placement Algorithms for Large
Real-Indexed Caches,”ACM Trans. Computer Systems, 10(4), Nov.
1992.

[7] J. Kong and G. Lee. “Relaxing the Inclusion Property in Cache Only
Memory Architecture,”Proc. Euro-Par, pp. 435–444, August 1996.

[8] P. Kongetira, K. Aingaran, and K. Olukotun. “Niagara: A 32-Way
Multithreaded Sparc Processor,”IEEE Micro, 25(2):21–29, Mar.
2005.

[9] T. Sherwoodet al. “Reducing Cache Misses Using Hardware and
Software Page Placement,”Int’l Conf. Supercomputing, June 1999.

[10] J. M. Tendleret al. “POWER4 System Microarchitecture,”IBM J.
Res. & Dev., 46(1):5–25, Jan. 2002.

[11] M. Zhang and K. Asanović. “Victim Replication: Maximizing Ca-
pacity while Hiding Wire Delay in Tiled Chip Multiprocessors,” Int’l
Symp. Computer Architecture, June 2005.


