
Performance, Area and Bandwidth Implications on
Large-scale CMP Cache Design

Abstract

Large-scale CMP (LCMP) platforms that consist of 10s
of cores for throughput computing will soon become
reality. The performance and scalability of these
architectures is highly dependent on the design of the
cache hierarchy. In this paper, our goal is to explore the
cache design space for LCMP platforms. We approach
this exploration problem by developing a constraint-
aware analysis methodology (CAAM). CAAM first
considers two important constraints and limitations that
the LCMP cache design needs to account for -- area
constraints and on-die / off-die bandwidth limitations.
Based on the approximate area constraints, we determine
a viable range of cache hierarchy options. We then
estimate the bandwidth requirements for these cache
hierarchy options by running server workload traces on
our LCMP performance model. Based on allowable
bandwidth constraints, we narrow the design space
further to highlight a few cache options that are indeed
viable for LCMP platforms. We then compare these
options based on performance and make specific
recommendations for future LCMP cache hierarchies.

1. INTRODUCTION

The momentum behind CMP architectures [10] is pushing
architects and designers to consider integrating more and
more cores on the die. Within this decade, we expect that
large-scale CMP (LCMP) architectures with 10s of cores
and several 10s to 100s of threads on the die will be a
reality. As compared to traditional single-core multi-socket
platforms, LCMP single-socket platforms seem to be an
attractive choice for throughput computing [7] because of
the potential for low latency and high bandwidth
communication on the die. However, for LCMP
architectures to be scalable, it is critical that the on-die
cache/memory hierarchy be designed to support many
cores / threads efficiently. In this paper, our focus is on
exploring the cache hierarchy design for LCMP platforms.

When investigating cache hierarchy design for LCMP
platforms, there are several important factors to consider.
One such factor is the implication of die area constraints.
While a significant fraction of the die is devoted to cache
area in single-core and dual-core processors, the addition
of more cores may limit the amount of die space that can
be devoted to cache. Another factor is the amount of on-
die and off-die bandwidth that is available in the platform.
Since the on-die interconnect will potentially carry the
communication between two levels of the cache hierarchy,

the amount of bandwidth it can support plays a critical role
in sizing the two levels of the caches. Off-die memory
bandwidth also plays a critical role in determining cache
design. If significant amounts of memory bandwidth can
be provided and long memory latencies can be tolerated,
then the cache size can be moderate. However, platform
constraints (pin count, power, packaging etc) tend to limit
the amount of memory bandwidth that can be supported. In
this scenario, it is important that sufficient cache space be
enabled on the die as a last line of defense [15] against the
memory bandwidth wall. In addition, the power
consumption of the caches [3] also plays a critical role in
determining the cache hierarchy and more specifically in
the policies that govern the operating modes of the caches.
Last but not least, the overall platform performance is an
indicator of the effectiveness of the cache hierarchy in
supporting the many simultaneous threads of execution. In
this paper, we focus on understanding the implications of
three of these vectors: area constraints, bandwidth
constraints and overall performance / scalability of the
platform.

Previous studies on cache design space exploration have
largely been focused on performance [6, 20, 23], with few
that have considered the implications of power and/or area
[3, 21]. This paper proposes a methodology to study area,
bandwidth and performance implications on cache design
space exploration in the context of LCMP platforms. In
this paper, we attempt to answer the following key
questions:
• How do we prune the LCMP cache design space?

What methodology needs to be put in place?
• How should the cache be sized at each level and

shared at each level in the hierarchy?
• How much on-die/off-die bandwidth is required?

We start by proposing a constraints-aware analysis
methodology to analyze the cache design space. We
employ existing tools for estimating the area required for a
given cache size. We develop a detailed performance
simulator to simulate the LCMP architecture with specific
emphasis on cache hierarchy and coherence protocols. We
conduct extensive sets of experiments running commercial
server workloads. Based on the resulting data, we prune
the cache hierarchy design space and make key
recommendations for future LCMP platforms.

2. CACHE HIERARCHY FOR LCMPS

In this section, we introduce the LCMP architecture and
discuss the cache design considerations in more detail.

Li Zhao, Ravi Iyer, Srihari Makineni, Jaideep Moses, Ramesh Illikkal, Donald Newell
System Technology Lab, Intel Corporation

Contact authors: {li.zhao, ravishankar.iyer}@intel.com

2.1. Architecture Overview

Today’s server platforms employ multiple processor
sockets, each with one or two multithreaded cores. The
LCMP architecture employs many cores per socket and
fewer sockets per platform. Figure 1 illustrates the LCMP
platform architecture with a single socket. The on-die
architecture consists of several nodes (each with some
number of multi-threaded cores and a shared node cache),
an on-die fabric that interconnects the nodes, potentially a
shared last-level cache (L3), integrated memory controllers
and other external interfaces. Several companies [1, 12]
are already designing or have announced products that
resemble the LCMP architecture.

Figure 1: LCMP Architecture Overview:

As process technology advances, each new technology
generation is expected to provide a minimum of 0.6x
feature size scaling and an increase of ~2X in transistor
density [5]. As a result, we expect that LCMP architectures
with 16 and 32 light weight cores on the die will be a
reality within the end of this decade. Assuming 4 threads
per core, this enables as many as 64 and 128 threads per
socket in the near future. This study focuses on cache
hierarchy design of LCMP architectures with 32 quad-
threaded light weight cores. The scalar performance of
each core is assumed to be low, but many cores packed
together can provide a throughput computing advantage.

2.2. LCMP Cache Design Considerations

There are several design considerations to account for
when exploring cache hierarchy design for LCMP
platforms. Some of the key considerations are: (a) Area
constraints, (b) Bandwidth Constraints, (c) Power
Implications and (d) Performance of the cache hierarchy
and overall platform. In this paper, we study three of the
above four considerations (excluding power implications).

Area Constraints: The design of a microprocessor has
to adhere to a certain area budget [4]. Server processors
tend to have large dies in the order of 400 to 500 mm2.
Given that the die will contain 32 cores, an interconnect,
the integrated memory controller, external interfaces and
other glue logic, only a fraction of space (~40 to 60%)

may be available to the cache hierarchy to occupy. For
example, the Sun Niagara die is about ~380 mm2 [14] and
only 40%of it appears to be cache space (which allows
only 3MB of L2 for 32 executing threads). As a result, it is
important to take a hard look at the area constraints before
embarking upon designing a cache hierarchy. We assume
that the first level cache is an integral part of the core and
hence will limit our studies to mid and last level caches.

Bandwidth Constraints: The cache hierarchy is
designed to be a defense against memory latency and
bandwidth limitations. While enabling multithreading on
top of multiple cores allows for tolerating memory latency,
the sheer number of requests generated by these threads
may place a significant bandwidth demand on the memory
subsystem. The rate at which memory bandwidth increases
is far slower than the rate at which the compute power
(CPU frequency coupled with the increase in the number
of cores/threads) increases. With LCMP, it also becomes
important to consider the bandwidth available on the on-
die interconnect. The on-die interconnect is expected to
provide several 100 GB/s and perhaps up to a TB/s.
However, it is also possible that the communication
between L2 and L3 will be significant because of the sheer
number of cores/threads and the cache sizes. Therefore, it
is important to look at on-die interconnect bandwidth into
account when designing the cache hierarchy.

Application Performance: After considering the
constraints, the ultimate factor that influences the cache
hierarchy design is the level of performance it provides to
the applications.

2.3. Constraints-Aware Analysis Methodology

In order to prune the cache design space, we propose a
constraints-aware analysis methodology (CAAM). This
methodology assumes that the area constraints and the off-
die bandwidth constraints are known. The CAAM
methodology consists of three major steps:
(1) Area-Constrained Options: This step essentially
attempts to prune the design space by the area constraints.
We first estimate the area required for L2, and then apply
the overall area constraints to this cache. All options that
exceed the area constraints are immediately discarded. For
the options that have more area available than consumed
by L2, L3 may be considered. For traditional inclusive
cache hierarchies, it should be noted that there actually
needs to be enough area available to allow at least 2x or
more of L2 in L3. This is required since having a cache at
the next level that is less than 2x of the cache size of the
previous level does not perform well if inclusion is
required [2]. The same process is repeated for each level
until the desired number of levels of cache has been
covered.
(2) Bandwidth-Constrained Options: This step attempts
to further prune the options of those already pruned by
area constrained as above by applying the on-die and off-
die bandwidth constraints. This requires estimation of the

C

L1

C

L1

L2

C

L1

C

L1

L2

L3

M
em

ory

Interconnect

IO Bridge

C

L1

C

L1

L2

C

L1

C

L1

L2

L3

M
em

ory

Interconnect

IO Bridge

number of requests generated by the caches at each level
and as a result depends on core performance and cache
performance for a given workload. Let us consider the
architecture described in Figure 1. An approach to
bandwidth estimation is to start by simulating each node.
Once the bandwidth demand for each is derived, the on-die
and off-die bandwidth constraint can be used to prune the
design options that require more bandwidth. In fact, it is
prudent to discard options that exceed more than 50% or
60% of the bandwidth constraint since it is preferable for
the memory utilization to be in this range.
(3) Overall Performance: Once the area and bandwidth
constraints are applied, we have a pruned set of design
options that are viable. The performance of these options
is then compared to determine the top two or three design
choices. Note that during the initial phases of the
architecture/design process, it is more likely that the area
and bandwidth constraints are a range as opposed to a
fixed value. If this is the case, then it is important to
conduct sensitivity studies. For example, when applying
the area constraint, it may appear that only 10MB of last
level cache can be provided in a certain design option. It is
important, however, to measure and compare the
performance per unit area of options that range from 8M to
16M. If increasing the cache size to 16M increase the area
by a modest amount, but provides a significant boost in
performance/area, then it may emerge as a potential design
choice at the expense of additional die area.

3. EVALUATION TOOLS AND WORKLOADS

In this section, we describe an overview of the simulation
environment, area estimation tools and the workloads
used.

3.1. LSIM Simulation Environment

We develop an in-house platform simulator called LSIM
to allow evaluation for varying degrees of fidelity. The
LSIM core simulation mimics the execution profiles
present in the traces and injects memory events into the
interconnect/cache subsystem. The cache models a
detailed invalidation-based coherence protocol. The cache
hierarchy is modeled to be inclusive by modeling the back-
invalidation messages required to evict L2 copies of a line
that is replaced in L3.The operating frequency (of the core,
interconnect, etc), queue sizes (interconnect interface and
cache controller structures), bandwidths (interconnect,
cache and memory) and latencies (delays between L2 and
L3s, etc) are all configurable in LSIM and allows us to
explore the design space sufficiently.

3.2. Workloads & Traces

As our focus in this study is on LCMP server platform
architecture and performance, we picked a few important
commercial server workloads: OLTP, SAP and SPECjbb.
For representing OLTP, we used traces of a TPC-C [22]

workload, which is an online-transaction processing
benchmark that simulates a complete computing
environment where a population of users executes
transactions against a database. For representing SAP
workloads, we used traces of a SAP SD 2-tier benchmark
[17], which is a sales and distribution benchmark to
represent enterprise resource planning (ERP) transactions.
For Java-based server benchmark, we use SPECjbb2005
[19] that models a warehouse company with warehouses
that serve a number of districts (much like TPC-C).

For all of these workloads, we collected long instruction
traces on real systems. Wherever sufficient number of
instruction traces is not available, we replicate the
execution profiles appropriately to feed the remaining
cores/threads. When replicating traces, we make sure that
the code memory accesses are shared, whereas data
accesses are privatized in order to not artificially inject any
incorrect data sharing. Based on detailed understanding of
the workloads as well as measurements to validate them,
we already know that SAP and SPECjbb have negligible
data sharing. TPC-C is known to have significant data
sharing (which we do not simulate sufficiently well due to
the nature of our tracing/simulation environment), but
newer databases seem to be trending towards reduced data
sharing to avoid synchronization penalties.

The workload characteristics described and/or traces
collected were not audited and the data presented in this
paper should not be misused to represent benchmark
performance of the architecture under evaluation.

3.3. Area Estimation Tools

For area estimation, we used CACTI (version 3.2), an
integrated cache access time, cycle time, area, aspect ratio,
and power model [18]. The parameters we held constant in
our evaluation is the line size at 64 bytes. We vary the
cache size, the number of banks and the associativity
depending on L2 or L3 caches. We assume that a
distributed shared L3 cache (somewhat like in NUCA
[11]) with independent controllers. All cache area
estimates are based on a 45nm process as our intention is
to look at architectures around the end of the decade.

Table 1: LCMP Configurations and Parameters

Parameters Values

Core
4GHz, In-order, 4 threads,
abstract model (core CPI varied)

L1 I/D cache 32 Kbytes, 4-way
L2 cache 128K-4M bytes, 8-way
L2 cache hit time 10 cycles (varied)
MSHR size 16

L3 cache
8 ~ 32M bytes, 16-way, 64-byte,
banked (1, 2, 4M) organization

L3 cache hit time 50 cycles (varied)
Interconnect BW 128GB/s ~ 512GB/s
Memory access time 400 cycles
Memory bandwidth 32GB/s ~ 128GB/s

0

100

200

300

400

500

600

1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4

128 256 512 1024 2048 4096

L2 cache size (KBytes) and Number of Cores per Node

A
re

a
(s

q
m

m
)

Potential L3 Area (A=300sqmm)
Potential L3 Area (A=200 sqmm)
L2 Area Consumed

12M 18M 20M

10M 13M

16M

8M

19M

12M

18M

10M

X

X X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

Figure 2. Area Considerations for a 32-Core LCMP Cache Design.

3.4. Baseline Configurations & Assumptions

The baseline architecture and associated simulation
configurations that we evaluate and the range of values
used is presented in Table 1. The simulated architecture
consists of 32 cores (with 4 threads each) at a frequency of
4GHz. The on-die architecture is made up of several
nodes. Each node may consist of 1, 2 or 4 cores. In LSIM,
we simulate L2 cache size per node that varies from 128K
to 4M. The L2 cache may be configured as either private
per core or shared between all of the cores in the node. For
configurations where an L3 cache appeared to be viable
(based on area constraints), we simulated an L3 cache with
size varied from 8M to 32M to a perfect L3 cache.

4. AREA AND BANDWIDTH IMPLICATIONS

In this section, we present our evaluation of the LCMP
cache hierarchy design space based on the constraints-
aware analysis methodology.

4.1. Implications of Area Constraints

We start applying the CAAM methodology to 32-core
LCMP cache design space exploration by first considering
area constraints. In Figure 2, the bottom bar summarizes
the L2 cache area estimates as a function of the L2 cache
size per node (128K to 4M) and the number of cores per
node (1 to 4). Note that as the number of cores per node
increases, the total number of nodes (which is the same as
the number of L2 caches) deceases, thus the total L2 area
decreases. We can see that as the cache size increases from
128K to 512K, the space consumed by the cache does not
increase linearly. However, as the cache size increases past
512K, the cache area starts showing closer to a linear
increase. Also note that as the cache size per core goes to
1M and beyond, the area consumed by the cache space is
about 400 mm2 or higher.

Due to manufacturing costs as well as form factor
limitations, it is important to keep the die size of the
processor as low as possible. Server chips are larger than
desktop processor chips and have been generally less than
400 mm2. The largest die in production today is an Itanium

2 processor (estimated to be around 432 mm2 [15]). In
order to keep the die area under 400 mm2, it is important
to keep the cache area to a reasonable fraction of the
overall area. In this paper we study the effect of
constraining the cache space to 50% (200 mm2) or 75%
(300 mm2). Figure 3 shows the constraint with the two
horizontal lines that represent the 200mm2 and 300mm2
constraints. It can be observed that if the LCMP die is
assumed to only possess L2 cache (no L3 cache), then all
configurations with up to 512K L2 per core seem to stay
within the constraint.

The next step is to identify design options where there is
provision for a shared L3 cache. Figure 3 highlights the
configurations where there is a potential for a L3 cache.
Since we are considering traditional inclusive cache
hierarchies, it is important that the area available to an L3
cache allow for at least twice the size of the L2 cache area.
By applying this criteria, we show L3 cache size estimates
(numbers to the right of the bars) for both area constraints
(200 mm2 and 300 mm2 in a 45nm process). For example,
the very first bar in the figure shows that with the
configuration of 128K per node, 1 core per node and a
total of 32 cores, we cannot employ a suitable L3 cache if
the area constraint is 200 mm2. This is because the amount
of area available cannot accommodate an inclusive L3
cache that is equal to or larger than twice the size of the L2
cache size (which is 4M = 128K*32 in this case).
However, if the area constraint is relaxed to 300 mm2,
then a L3 cache that is roughly 12 MB in size can be
accommodated.

4.2. Implications of Bandwidth Constraints

Another crucial step in the CAAM methodology is to
apply on-die and off-die bandwidth limitations to the cache
design space exploration. Note that unlike area constraints
which can be applied independent of the workload running
on the platform, the bandwidth constraints need to be
considered along with a representative set of workloads
that place bandwidth demand on the platform. For this
exercise, we chose TPC-C as an example.

To understand the bandwidth demand on the on-die
interconnect (between L2 and L3), we first measured the
number of L2 misses per instruction (MPI). Figures 3(a)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

128 256 512 1024

Cache size per core (KBytes)

M
P

I

1 core/node

2 cores/node

4 cores/node

0

20

40

60

80

100

120

140

160

180

200

128 256 512 1024

L2 cache size (KBytes)

B
an

d
w

id
th

 (
G

B
/s

)

L3 = 0M
L3 = 32M
L3 = Inf

0

10

20

30

40

50

60

70

80

128 256 512 1024
L2 cache size (KBytes)

B
an

d
w

id
th

 (
G

B
/s

)

L3 = 0M
L3 = 16M
L3 = 32M

 (a) TPC-C L2 MPI (b) TPC-C On-Die Bandwidth (c) TPC-C Off-Die Bandwidth

Figure 3. MPI and Bandwidth Characteristics of LCMP Server Platforms

shows the respective L2 MPI data as a function of L2
cache size per core. Note that there is a single L2 cache
per node and all of the cores share the cache. For example,
the data point corresponding to 128K L2 per core and 2
cores/node represents the configuration that has a 256K
cache shared by the 2 cores in the node.

The data in the figures clearly shows that it is best to
share the cache space across 4 cores in the node as
opposed to having private caches per core. This is because
at these small to moderate cache sizes, a large fraction of
the cache is occupied by code which is shared by many
threads. Replicating the code in private caches obviously
wastes space; hence, shared caches provide significant
performance/area benefit for CMP architectures [16]. In
addition, it is worth noting that the L2 MPI reduces
significantly when going from 256K to 512K. Therefore,
the 512K cache size appears to be a sweet spot for this
workload in such a configuration.

Figures 5 (b) shows the on-die bandwidth demand with
8 nodes and 4 cores per node (since this had the lowest
MPI). We estimated the bandwidth demand for three
cases: (i) with no L3, (ii) with a 32M L3 and (iii) with a
perfect L3. The use of a perfect cache points to the
maximum demanded on-die bandwidth. We can see that
the maximum bandwidth demand for TPCC appears to be
~180 GB/s. With a large L3 cache, the bandwidth demands
reduce significantly to the range of 50 to 100 GB/s. Since
it would be preferable that the interconnect utilization is
low (avoiding high queuing delays or saturation), it is clear
that an on-die interconnect with 200 GB/s sustainable data
bandwidth or more would be sufficient for the LCMP
architecture.

Off-die memory bandwidth is also a key consideration
when determining the cache hierarchy. For example, if
sufficient interconnect bandwidth is available, but the
memory bandwidth is meager, it is desirable to allocate
more space to the L3 as opposed to the L2. Figure 5(c)
shows the memory bandwidth demands for three
configurations: (i) with no L3 cache, (ii) with a 16M L3,
and (ii) with a 32M L3 cache. As we can see, TPC-C
memory bandwidth demands range between 50GB/s and
75 GB/s. With a 32 MB L3 cache, the memory bandwidth
demands reduce down to 40 GB/s.

In order to have a low memory utilization (< 50%), it is
important that a 32-core LCMP memory subsystem (with a
L3 cache) provide a sustainable bandwidth of over 100
GB/s. Based on DDR/FBD memory trends [8, 9], we
expect that towards the end of the decade (when 45nm is
available), the peak memory bandwidth will be around 64
to 128 GB/s. Applying a 64GB/s constraint essentially
shows that the “no L3” options are not viable for TPC-C.

4.3. Summary of Cache Hierarchy Options

Based on the area and bandwidth constraints, we were able
to prune the design space sufficiently and summarize a
smaller set of configurations as listed in Table 2. The
major factors that affected the pruning process are:
• Applying area constraints showed that around 128K to

256K per core seems viable.
• Applying area constraints resulted in L3 sizes ranging

from 8M to about 18M depending on the
configuration being considered.

• Applying bandwidth constraints essentially showed
that configurations without L3 cache were not viable
(due to memory bandwidth constraints).

Table 2: LCMP Cache Options Summary

5. LCMP CACHE HIERARCHY PERFORMANCE

In this section, we study the performance of the LCMP
cache hierarchy options summarized in Table 2. The
metrics used in this section are both performance and
performance/area, although area constraints have already
been applied to prune the design space sufficiently.

Cores per
node

Number
of nodes

L2 cache per
node

L3 Cache
size

1 32 128K ~ 12M
2 16 256K – 512K 8M – 16M
4 8 512K – 1M 10M – 18M

0

0.2

0.4

0.6

0.8

1

1.2

8M 16M 8M 16M 16M 8M 16M 32M 16M 32M

1Core, 128K 2Cores, 256K 2Cores, 512K 4Cores, 512K 4Cores, 1M

N
o
rm

al
iz

ed
 C

P
I

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

P
er

f
&
 A

re
a

C
o
m

p
ar

is
o
n

Core L2 L3 Mem Perf/Area Perf 3̂/Area

0

0.2

0.4

0.6

0.8

1

1.2

8M 16M 8M 16M 16M 8M 16M 32M 16M 32M

1Core, 128K 2Cores, 256K 2Cores, 512K 4Cores, 512K 4Cores, 1M

N
o
rm

al
iz

ed
 C

P
I

0%

20%

40%

60%

80%

100%

120%

140%

160%

P
er

f
&
 A

re
a

C
o
m

p
ar

is
o
n

0

0.2

0.4

0.6

0.8

1

1.2

8M 16M 8M 16M 16M 8M 16M 32M 16M 32M

1Core, 128K 2Cores, 256K 2Cores, 512K 4Cores, 512K 4Cores, 1M

N
o
rm

al
iz

ed
 C

P
I

0%

20%

40%

60%

80%

100%

120%

140%

160%

P
er

f
&
 a

re
a

co
m

p
ar

is
o
n

Figure 4. Detailed Comparison of the 32-core LCMP Cache Hierarchy Options

5.1. Performance of LCMP Cache Options

Figure 4 shows the performance data that we collected for
various cache hierarchy options. The variation in the
number of cores per node, the L2 cache size per node and
the L3 cache size are shown on the x-axis. The on-die
bandwidth is 512 GB/s and the maximum sustainable
memory bandwidth is 64 GB/s. The vertical bars in Figure
6 show the CPI broken down into the time spent in the
core, between the core and L2, between the L2 and L3 and
finally in the memory subsystem. A simple observation is
that the dominating factors are the performance of the core
and the performance of the memory subsystem as the time
spent in L2 & L3 subsystems are fairly low. It should be
noted that this observation may change if the interconnect
and cache bandwidth levels in the platform are modified.
This will be discussed in a subsequent section.

From a performance (CPI) perspective, it is not
surprising that the configuration that performs the best is
the one to the far right (with 4 cores per node, 1M L2 per
node and 32 M of L3 cache). It should be noted that in all
configurations except those with 32M, the area consumed
remains between 170 mm2 and 350mm2. If we exclude the
options with 32M L3 cache, then the high performance
option is the 4-core node configuration with 16M L3 cache
and either 1M or even 512K of L2 cache per node.

However, this performance comes at the expense of
additional area. In order to comprehend performance and
area together, we first looked at performance per unit area
(shown as a line with values on the 2nd y-axis). Placing
equal emphasis on performance and area shows that the
configuration with the least amount of cache area (4 cores
per node, 512K per node, 8M L3) turns out to be the best
configuration. However, this is primarily due to the fact
that the difference in area dominates the comparison. In
order to emphasize performance more than area, we then
looked at performance3/area as a potential metric. The
behavior of the two metrics (performance/area and
performance3/area) is significantly different for TPC-C,
but not as much for other two workloads. The reason for
minimal change with other workloads is their insensitivity
to cache size beyond 8M and minimal performance impact
as a result. However, TPC-C is very memory-intensive (the
former being more sensitive to cache size and latency, and
the latter being very sensitive to memory bandwidth). As a
result, the performance (CPI) is affected significantly for
these workloads, thus placing less emphasis on area
becomes important for these workloads. Overall, since the
area constraints have already been applied (except for
options with 32M L3 cache), the design option that
provides good performance with low area overhead
consists of 4 cores per node, 512K to 1M of L2 cache and
16M L3 cache.

(a) TPC-C

(b) SAP

(c) SPECjbb

5.2. Summary of Recommendations

Based on the constraints-aware analysis methodology and
the results presented in this section as well as the previous
one, our recommendation for LCMP architecture would be
to design a 3-level cache hierarchy with 512K to 1M of L2
cache per node, where each node consists of four cores.
The L3 cache size is recommended to be a minimum of
16M in order to minimize memory stall time as well as
reduce the memory bandwidth pressure. We also did
extensive sensitivity studies by varying core performance
and bandwidth availability and data are not shown here
due to space limitation. Based on the sensitivity studies,
we recommend that the platform support at least 64GB/s
of memory bandwidth and 512GB/s of interconnect
bandwidth as shown by the sensitivity studies presented in
the previous subsection.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we performed the first study of performance,
area and bandwidth implications on LCMP cache design
exploration. We introduced a constraints-aware analysis
methodology for exploring the LCMP cache hierarchy
options. We applied this methodology to a 32-core LCMP
architecture and showed how the pruning process works.
Applying these constraints quickly narrowed down the
design space to a small subset of viable options and helped
us focus our attention on these. We then conducted an in-
depth performance/area evaluation of these options to
summarize a set of recommendations for architecting
efficient LCMP platforms.

A summary of the observations made in our LCMP
cache design space study is as follows:
• Applying area constraints showed that around 128K

per core seems viable for 32-core LCMP, whereas
between 128K and 256K L2 per core seems viable for
16-core configurations

• Applying area constraints resulted in L3 sizes ranging
from 8M to about 20M depending on the
configuration being considered.

• Applying bandwidth constraints essentially showed
that configurations without L3 cache were not viable
(due to memory bandwidth constraints)

• A deeper study of the performance/area comparison of
the area/bandwidth-viable options shows that the best
performance option that does not exceed the area
constraints is that of 4 cores per node, 512K to 1M
cache per node and 16M of L3 cache.

REFERENCES
[1] Azul Compute Appliance,” Azul Systems, can be found at

http://www.azulsystems.com/products/cpools_cappliance.html
[2] J. Baer, and W. Wang, “On the inclusion properties for

multi-level cache hierarchies,” 15th Annual international
Symposium on Computer Architecture (ISCA), 1988.

[3] R.I. Bahar, G. Albera, and S. Manne. ”Power and
performance tradeoffs using various caching strategies”, In

Proc. of Int'l Symposium on Low-PowerElectronics and
Design, 1998.

[4] D. Bhandarkar. “Billion Transistor Chips in Mainstream
Enterprise Platforms of the Future,” Keynote Speech, 9th
International Symposium on High-Performance Computer
Architecture (HPCA'03), Feb 8-12, 2003.

[5] M. Bohr, “Intel’s 90nm technology: Moore’s law and
more,” Intel Developer’s Forum, available at
ftp://download.intel.com/technology/silicon/Bohr_IDF_090
2.pdf

[6] Z. Chishti, M. D. Powell, and T. N. Vijaykumar,
“Optimizing Replication, Communication, and Capacity
Allocation in CMPs,” In Proceedings of the 32nd
International Sympoisum on Computer Architecture
(ISCA), June 2005.

[7] S. Choudhary, P. Caprioli, et al. “High Performance
Throughput Computing,” IEEE Micro 2005.

[8] R. Faramarzi, “High Speed Trends in Memory,” available at
http://www.jedex.org/images/pdf/reza_hynix_keynote.pdf

[9] “FBDIMMS – A Revolutionary New Approach to Memory
Modules,” available at
 http://www.micron.com/products/modules/ddr2sdram/fbdimm.html

[10] Intel Corporation. “Intel Dual-Core Processors -- The First
in the Multi-core Revolution,”
 http://www.intel.com/technology/computing/dual-core/

[11] C. Kim, D. Burger, S. W. Keckler, “Nonuniform Cache
Architectures for Wire-Delay Dominated On-Chip Caches,”
IEEE Micro 23(6): 99-107 (2003)

[12] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A
32-Way Multithreaded Sparc Processor,” IEEE Micro 25,
21-29, Mar. 2005

[13] K. Krewell, “Best Servers of 2004: Where Multicore is
Norm,” Microprocessor Report, Jan 2005.

[14] J. Laudon, “Performance/Watt: The New Server Focus,” 1st
Workshop on Design, Architecture and Simulation of CMP
(dasCMP), Nov 2005.

[15] C. Liu, A. Sivasubramaniam, and M. Kandemir,
“Organizing the Last Line of Defense before Hitting the
Memory Wall for CMPs,” 10th IEEE Symposium on High-
Performance Computer Architecture, Feb. 2004.

[16] K. Olukotun, B. A. Nayfeh , et. al., “The case for a single-
chip multiprocessor,” Proceedings of the 7th International
Conference on Architectural support for Programming
Languages and Operating Systems, October 01-04, 1996.

[17] Sap America Inc., “SAP Standard Benchmarks,”
http://www.sap.com/solutions/benchmark/index.epx

[18] P. Shivakumar and N. Jouppi, “CACTI 3.0: An Integrated
Cache Timing, Power,and Area Model,” WRL Research
Report 2001/2, August 2001.

[19] SPECjbb2005, http://www.spec.org/jbb2005/
[20] E. Speight, H. Shafi, L. Zhang, R. Rajamony, “Adaptive

Mechanisms and Policies for Managing Cache Hierarchies
in Chip Multiprocessors,” 32nd International Sympoisum on
Computer Architecture (ISCA), June 2005.

[21] C. Su and A. M. Despain “Cache design trade-offs for
power and performance optimization: a case study,” In
Proceedings of the 1995 international Symposium on Low
Power Design (ISLPED '95), April, 1995.

[22] “TPC-C Design Document”, http://www.tpc.org/tpcc/
[23] M. Zhang and K. Asanovic, “Victim Replication:

Maximizing Capacity while Hiding Wire Delay in Tiled
Chip Multiprocessors,” 32rd International Symposium on
Computer Architecture (ISCA-32), Madison, 2005.

