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Abstract 

Large-scale CMP (LCMP) platforms that consist of 10s 
of cores for throughput computing will soon become 
reality. The performance and scalability of these 
architectures is highly dependent on the design of the 
cache hierarchy. In this paper, our goal is to explore the 
cache design space for LCMP platforms. We approach 
this exploration problem by developing a constraint-
aware analysis methodology (CAAM). CAAM first 
considers two important constraints and limitations that 
the LCMP cache design needs to account for -- area 
constraints and on-die / off-die bandwidth limitations. 
Based on the approximate area constraints, we determine 
a viable range of cache hierarchy options. We then 
estimate the bandwidth requirements for these cache 
hierarchy options by running server workload traces on 
our LCMP performance model. Based on allowable 
bandwidth constraints, we narrow the design space 
further to highlight a few cache options that are indeed 
viable for LCMP platforms. We then compare these 
options based on performance and make specific 
recommendations for future LCMP cache hierarchies. 

1.  INTRODUCTION  

The momentum behind CMP architectures [10] is pushing 
architects and designers to consider integrating more and 
more cores on the die. Within this decade, we expect that 
large-scale CMP (LCMP) architectures with 10s of cores 
and several 10s to 100s of threads on the die will be a 
reality. As compared to traditional single-core multi-socket 
platforms, LCMP single-socket platforms seem to be an 
attractive choice for throughput computing [7] because of 
the potential for low latency and high bandwidth 
communication on the die. However, for LCMP 
architectures to be scalable, it is critical that the on-die 
cache/memory hierarchy be designed to support many 
cores / threads efficiently. In this paper, our focus is on 
exploring the cache hierarchy design for LCMP platforms.  

When investigating cache hierarchy design for LCMP 
platforms, there are several important factors to consider. 
One such factor is the implication of die area constraints. 
While a significant fraction of the die is devoted to cache 
area in single-core and dual-core processors, the addition 
of more cores may limit the amount of die space that can 
be devoted to cache. Another factor is the amount of on-
die and off-die bandwidth that is available in the platform. 
Since the on-die interconnect will potentially carry the 
communication between two levels of the cache hierarchy, 

the amount of bandwidth it can support plays a critical role 
in sizing the two levels of the caches. Off-die memory 
bandwidth also plays a critical role in determining cache 
design. If significant amounts of memory bandwidth can 
be provided and long memory latencies can be tolerated, 
then the cache size can be moderate. However, platform 
constraints (pin count, power, packaging etc) tend to limit 
the amount of memory bandwidth that can be supported. In 
this scenario, it is important that sufficient cache space be 
enabled on the die as a last line of defense [15] against the 
memory bandwidth wall. In addition, the power 
consumption of the caches [3] also plays a critical role in 
determining the cache hierarchy and more specifically in 
the policies that govern the operating modes of the caches. 
Last but not least, the overall platform performance is an 
indicator of the effectiveness of the cache hierarchy in 
supporting the many simultaneous threads of execution. In 
this paper, we focus on understanding the implications of 
three of these vectors: area constraints, bandwidth 
constraints and overall performance / scalability of the 
platform. 

Previous studies on cache design space exploration have 
largely been focused on performance [6, 20, 23], with few 
that have considered the implications of power and/or area 
[3, 21]. This paper proposes a methodology to study area, 
bandwidth and performance implications on cache design 
space exploration in the context of LCMP platforms. In 
this paper, we attempt to answer the following key 
questions: 
• How do we prune the LCMP cache design space? 

What methodology needs to be put in place? 
• How should the cache be sized at each level and 

shared at each level in the hierarchy? 
• How much on-die/off-die bandwidth is required?  

We start by proposing a constraints-aware analysis 
methodology to analyze the cache design space. We 
employ existing tools for estimating the area required for a 
given cache size. We develop a detailed performance 
simulator to simulate the LCMP architecture with specific 
emphasis on cache hierarchy and coherence protocols. We 
conduct extensive sets of experiments running commercial 
server workloads. Based on the resulting data, we prune 
the cache hierarchy design space and make key 
recommendations for future LCMP platforms. 

2. CACHE HIERARCHY FOR LCMPS 

In this section, we introduce the LCMP architecture and 
discuss the cache design considerations in more detail. 
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2.1. Architecture Overview 

Today’s server platforms employ multiple processor 
sockets, each with one or two multithreaded cores.  The 
LCMP architecture employs many cores per socket and 
fewer sockets per platform. Figure 1 illustrates the LCMP 
platform architecture with a single socket. The on-die 
architecture consists of several nodes (each with some 
number of multi-threaded cores and a shared node cache), 
an on-die fabric that interconnects the nodes, potentially a 
shared last-level cache (L3), integrated memory controllers 
and other external interfaces. Several companies [1, 12] 
are already designing or have announced products that 
resemble the LCMP architecture. 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 1: LCMP Architecture Overview: 
 
As process technology advances, each new technology 
generation is expected to provide a minimum of 0.6x 
feature size scaling and an increase of ~2X in transistor 
density [5]. As a result, we expect that LCMP architectures 
with 16 and 32 light weight cores on the die will be a 
reality within the end of this decade. Assuming 4 threads 
per core, this enables as many as 64 and 128 threads per 
socket in the near future. This study focuses on cache 
hierarchy design of LCMP architectures with 32 quad-
threaded light weight cores. The scalar performance of 
each core is assumed to be low, but many cores packed 
together can provide a throughput computing advantage. 
 

2.2. LCMP Cache Design Considerations  

There are several design considerations to account for 
when exploring cache hierarchy design for LCMP 
platforms. Some of the key considerations are: (a) Area 
constraints, (b) Bandwidth Constraints, (c) Power 
Implications and (d) Performance of the cache hierarchy 
and overall platform. In this paper, we study three of the 
above four considerations (excluding power implications). 

Area Constraints: The design of a microprocessor has 
to adhere to a certain area budget [4]. Server processors 
tend to have large dies in the order of 400 to 500 mm2. 
Given that the die will contain 32 cores, an interconnect, 
the integrated memory controller, external interfaces and 
other glue logic, only a fraction of space (~40 to 60%) 

may be available to the cache hierarchy to occupy. For 
example, the Sun Niagara die is about ~380 mm2 [14] and 
only 40%of it appears to be cache space (which allows 
only 3MB of L2 for 32 executing threads). As a result, it is 
important to take a hard look at the area constraints before 
embarking upon designing a cache hierarchy. We assume 
that the first level cache is an integral part of the core and 
hence will limit our studies to mid and last level caches. 

Bandwidth Constraints: The cache hierarchy is 
designed to be a defense against memory latency and 
bandwidth limitations. While enabling multithreading on 
top of multiple cores allows for tolerating memory latency, 
the sheer number of requests generated by these threads 
may place a significant bandwidth demand on the memory 
subsystem. The rate at which memory bandwidth increases 
is far slower than the rate at which the compute power 
(CPU frequency coupled with the increase in the number 
of cores/threads) increases. With LCMP, it also becomes 
important to consider the bandwidth available on the on-
die interconnect. The on-die interconnect is expected to 
provide several 100 GB/s and perhaps up to a TB/s. 
However, it is also possible that the communication 
between L2 and L3 will be significant because of the sheer 
number of cores/threads and the cache sizes. Therefore, it 
is important to look at on-die interconnect bandwidth into 
account when designing the cache hierarchy. 

Application Performance: After considering the 
constraints, the ultimate factor that influences the cache 
hierarchy design is the level of performance it provides to 
the applications.  

2.3. Constraints-Aware Analysis Methodology 

In order to prune the cache design space, we propose a 
constraints-aware analysis methodology (CAAM). This 
methodology assumes that the area constraints and the off-
die bandwidth constraints are known. The CAAM 
methodology consists of three major steps: 
(1) Area-Constrained Options: This step essentially 
attempts to prune the design space by the area constraints. 
We first estimate the area required for L2, and then apply 
the overall area constraints to this cache. All options that 
exceed the area constraints are immediately discarded. For 
the options that have more area available than consumed 
by L2, L3 may be considered. For traditional inclusive 
cache hierarchies, it should be noted that there actually 
needs to be enough area available to allow at least 2x or 
more of L2 in L3. This is required since having a cache at 
the next level that is less than 2x of the cache size of the 
previous level does not perform well if inclusion is 
required [2]. The same process is repeated for each level 
until the desired number of levels of cache has been 
covered. 
(2) Bandwidth-Constrained Options: This step attempts 
to further prune the options of those already pruned by 
area constrained as above by applying the on-die and off-
die bandwidth constraints. This requires estimation of the 
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number of requests generated by the caches at each level 
and as a result depends on core performance and cache 
performance for a given workload. Let us consider the 
architecture described in Figure 1. An approach to 
bandwidth estimation is to start by simulating each node. 
Once the bandwidth demand for each is derived, the on-die 
and off-die bandwidth constraint can be used to prune the 
design options that require more bandwidth. In fact, it is 
prudent to discard options that exceed more than 50% or 
60% of the bandwidth constraint since it is preferable for 
the memory utilization to be in this range.  
(3) Overall Performance: Once the area and bandwidth 
constraints are applied, we have a pruned set of design 
options that are viable. The performance of these options 
is then compared to determine the top two or three design 
choices. Note that during the initial phases of the 
architecture/design process, it is more likely that the area 
and bandwidth constraints are a range as opposed to a 
fixed value. If this is the case, then it is important to 
conduct sensitivity studies. For example, when applying 
the area constraint, it may appear that only 10MB of last 
level cache can be provided in a certain design option. It is 
important, however, to measure and compare the 
performance per unit area of options that range from 8M to 
16M. If increasing the cache size to 16M increase the area 
by a modest amount, but provides a significant boost in 
performance/area, then it may emerge as a potential design 
choice at the expense of additional die area. 

3. EVALUATION TOOLS AND WORKLOADS 

In this section, we describe an overview of the simulation 
environment, area estimation tools and the workloads 
used. 

3.1. LSIM Simulation Environment 

We develop an in-house platform simulator called LSIM 
to allow evaluation for varying degrees of fidelity. The 
LSIM core simulation mimics the execution profiles 
present in the traces and injects memory events into the 
interconnect/cache subsystem. The cache models a 
detailed invalidation-based coherence protocol. The cache 
hierarchy is modeled to be inclusive by modeling the back-
invalidation messages required to evict L2 copies of a line 
that is replaced in L3.The operating frequency (of the core, 
interconnect, etc), queue sizes (interconnect interface and 
cache controller structures), bandwidths (interconnect, 
cache and memory) and latencies (delays between L2 and 
L3s, etc) are all configurable in LSIM and allows us to 
explore the design space sufficiently.  

3.2. Workloads & Traces 

As our focus in this study is on LCMP server platform 
architecture and performance, we picked a few important 
commercial server workloads: OLTP, SAP and SPECjbb. 
For representing OLTP, we used traces of a TPC-C [22] 

workload, which is an online-transaction processing 
benchmark that simulates a complete computing 
environment where a population of users executes 
transactions against a database.  For representing SAP 
workloads, we used traces of a SAP SD 2-tier benchmark 
[17], which is a sales and distribution benchmark to 
represent enterprise resource planning (ERP) transactions. 
For Java-based server benchmark, we use SPECjbb2005 
[19] that models a warehouse company with warehouses 
that serve a number of districts (much like TPC-C).  

For all of these workloads, we collected long instruction 
traces on real systems. Wherever sufficient number of 
instruction traces is not available, we replicate the 
execution profiles appropriately to feed the remaining 
cores/threads. When replicating traces, we make sure that 
the code memory accesses are shared, whereas data 
accesses are privatized in order to not artificially inject any 
incorrect data sharing. Based on detailed understanding of 
the workloads as well as measurements to validate them, 
we already know that SAP and SPECjbb have negligible 
data sharing. TPC-C is known to have significant data 
sharing (which we do not simulate sufficiently well due to 
the nature of our tracing/simulation environment), but 
newer databases seem to be trending towards reduced data 
sharing to avoid synchronization penalties. 

The workload characteristics described and/or traces 
collected were not audited and the data presented in this 
paper should not be misused to represent benchmark 
performance of the architecture under evaluation.  

3.3. Area Estimation Tools 

For area estimation, we used CACTI (version 3.2), an 
integrated cache access time, cycle time, area, aspect ratio, 
and power model [18]. The parameters we held constant in 
our evaluation is the line size at 64 bytes. We vary the 
cache size, the number of banks and the associativity 
depending on L2 or L3 caches. We assume that a 
distributed shared L3 cache (somewhat like in NUCA 
[11]) with independent controllers. All cache area 
estimates are based on a 45nm process as our intention is 
to look at architectures around the end of the decade. 
 

Table 1: LCMP Configurations and Parameters 
 

Parameters Values 

Core 
4GHz, In-order, 4 threads, 
abstract model (core CPI varied) 

L1 I/D cache 32 Kbytes, 4-way 
L2 cache 128K-4M bytes, 8-way 
L2 cache hit time 10 cycles (varied) 
MSHR size 16 

L3 cache 
8 ~ 32M bytes, 16-way, 64-byte, 
banked (1, 2, 4M) organization 

L3 cache hit time 50 cycles (varied) 
Interconnect BW  128GB/s ~ 512GB/s 
Memory access time 400 cycles 
Memory bandwidth  32GB/s ~ 128GB/s 
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Figure 2. Area Considerations for a 32-Core LCMP Cache Design. 

 

3.4. Baseline Configurations & Assumptions 

The baseline architecture and associated simulation 
configurations that we evaluate and the range of values 
used is presented in Table 1.  The simulated architecture 
consists of 32 cores (with 4 threads each) at a frequency of 
4GHz. The on-die architecture is made up of several 
nodes. Each node may consist of 1, 2 or 4 cores. In LSIM, 
we simulate L2 cache size per node that varies from 128K 
to 4M. The L2 cache may be configured as either private 
per core or shared between all of the cores in the node. For 
configurations where an L3 cache appeared to be viable 
(based on area constraints), we simulated an L3 cache with 
size varied from 8M to 32M to a perfect L3 cache. 

4. AREA AND BANDWIDTH IMPLICATIONS 

In this section, we present our evaluation of the LCMP 
cache hierarchy design space based on the constraints-
aware analysis methodology. 

4.1. Implications of Area Constraints 

We start applying the CAAM methodology to 32-core 
LCMP cache design space exploration by first considering 
area constraints. In Figure 2, the bottom bar summarizes 
the L2 cache area estimates as a function of the L2 cache 
size per node (128K to 4M) and the number of cores per 
node (1 to 4). Note that as the number of cores per node 
increases, the total number of nodes (which is the same as 
the number of L2 caches) deceases, thus the total L2 area 
decreases. We can see that as the cache size increases from 
128K to 512K, the space consumed by the cache does not 
increase linearly. However, as the cache size increases past 
512K, the cache area starts showing closer to a linear 
increase. Also note that as the cache size per core goes to 
1M and beyond, the area consumed by the cache space is 
about 400 mm2 or higher. 

Due to manufacturing costs as well as form factor 
limitations, it is important to keep the die size of the 
processor as low as possible. Server chips are larger than 
desktop processor chips and have been generally less than 
400 mm2. The largest die in production today is an Itanium 

2 processor (estimated to be around 432 mm2 [15]). In 
order to keep the die area under 400 mm2, it is important 
to keep the cache area to a reasonable fraction of the 
overall area. In this paper we study the effect of 
constraining the cache space to 50% (200 mm2) or 75% 
(300 mm2). Figure 3 shows the constraint with the two 
horizontal lines that represent the 200mm2 and 300mm2 
constraints. It can be observed that if the LCMP die is 
assumed to only possess L2 cache (no L3 cache), then all 
configurations with up to 512K L2 per core seem to stay 
within the constraint.  

The next step is to identify design options where there is 
provision for a shared L3 cache. Figure 3 highlights the 
configurations where there is a potential for a L3 cache. 
Since we are considering traditional inclusive cache 
hierarchies, it is important that the area available to an L3 
cache allow for at least twice the size of the L2 cache area. 
By applying this criteria, we show L3 cache size estimates 
(numbers to the right of the bars) for both area constraints 
(200 mm2 and 300 mm2 in a 45nm process). For example, 
the very first bar in the figure shows that with the  
configuration of 128K per node, 1 core per node and a 
total of 32 cores, we cannot employ a suitable L3 cache if 
the area constraint is 200 mm2. This is because the amount 
of area available cannot accommodate an inclusive L3 
cache that is equal to or larger than twice the size of the L2 
cache size (which is 4M = 128K*32 in this case). 
However, if the area constraint is relaxed to 300 mm2, 
then a L3 cache that is roughly 12 MB in size can be 
accommodated.  

4.2. Implications of Bandwidth Constraints 

Another crucial step in the CAAM methodology is to 
apply on-die and off-die bandwidth limitations to the cache 
design space exploration. Note that unlike area constraints 
which can be applied independent of the workload running 
on the platform, the bandwidth constraints need to be 
considered along with a representative set of workloads 
that place bandwidth demand on the platform. For this 
exercise, we chose TPC-C as an example. 

To understand the bandwidth demand on the on-die 
interconnect (between L2 and L3), we first measured the 
number of L2 misses  per  instruction (MPI).   Figures 3(a)  
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Figure 3. MPI and Bandwidth Characteristics of LCMP Server Platforms 

shows the respective L2 MPI data as a function of L2 
cache size per core. Note that there is a single L2 cache 
per node and all of the cores share the cache. For example, 
the data point corresponding to 128K L2 per core and 2 
cores/node represents the configuration that has a 256K 
cache shared by the 2 cores in the node.  

The data in the figures clearly shows that it is best to 
share the cache space across 4 cores in the node as 
opposed to having private caches per core. This is because 
at these small to moderate cache sizes, a large fraction of 
the cache is occupied by code which is shared by many 
threads. Replicating the code in private caches obviously 
wastes space; hence, shared caches provide significant 
performance/area benefit for CMP architectures [16]. In 
addition, it is worth noting that the L2 MPI reduces 
significantly when going from 256K to 512K. Therefore, 
the 512K cache size appears to be a sweet spot for this 
workload in such a configuration. 

Figures 5 (b) shows the on-die bandwidth demand with 
8 nodes and 4 cores per node (since this had the lowest 
MPI). We estimated the bandwidth demand for three 
cases: (i) with no L3, (ii) with a 32M L3 and (iii) with a 
perfect L3. The use of a perfect cache points to the 
maximum demanded on-die bandwidth. We can see that 
the maximum bandwidth demand for TPCC appears to be 
~180 GB/s. With a large L3 cache, the bandwidth demands 
reduce significantly to the range of 50 to 100 GB/s. Since 
it would be preferable that the interconnect utilization is 
low (avoiding high queuing delays or saturation), it is clear 
that an on-die interconnect with 200 GB/s sustainable data 
bandwidth or more would be sufficient for the LCMP 
architecture. 

Off-die memory bandwidth is also a key consideration 
when determining the cache hierarchy. For example, if 
sufficient interconnect bandwidth is available, but the 
memory bandwidth is meager, it is desirable to allocate 
more space to the L3 as opposed to the L2. Figure 5(c) 
shows the memory bandwidth demands for three 
configurations: (i) with no L3 cache, (ii) with a 16M L3, 
and (ii) with a 32M L3 cache. As we can see, TPC-C 
memory bandwidth demands range between 50GB/s and 
75 GB/s. With a 32 MB L3 cache, the memory bandwidth 
demands reduce down to 40 GB/s. 

In order to have a low memory utilization (< 50%), it is 
important that a 32-core LCMP memory subsystem (with a 
L3 cache) provide a sustainable bandwidth of over 100 
GB/s. Based on DDR/FBD memory trends [8, 9], we 
expect that towards the end of the decade (when 45nm is 
available), the peak memory bandwidth will be around 64 
to 128 GB/s. Applying a 64GB/s constraint essentially 
shows that the “no L3” options are not viable for TPC-C. 

 

4.3. Summary of Cache Hierarchy Options 

Based on the area and bandwidth constraints, we were able 
to prune the design space sufficiently and summarize a 
smaller set of configurations as listed in Table 2. The 
major factors that affected the pruning process are: 
• Applying area constraints showed that around 128K to 

256K per core seems viable.  
• Applying area constraints resulted in L3 sizes ranging 

from 8M to about 18M depending on the 
configuration being considered. 

• Applying bandwidth constraints essentially showed 
that configurations without L3 cache were not viable 
(due to memory bandwidth constraints). 

 
Table 2: LCMP Cache Options Summary 

 

5. LCMP CACHE HIERARCHY PERFORMANCE 

In this section, we study the performance of the LCMP 
cache hierarchy options summarized in Table 2. The 
metrics used in this section are both performance and 
performance/area, although area constraints have already 
been applied to prune the design space sufficiently. 

Cores per 
node 

Number 
of nodes 

L2 cache per 
node 

L3 Cache 
size 

1 32 128K ~ 12M 
2 16 256K – 512K 8M – 16M 
4 8 512K – 1M 10M – 18M 
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Figure 4. Detailed Comparison of the 32-core LCMP Cache Hierarchy Options  

 

5.1. Performance of LCMP Cache Options 

Figure 4 shows the performance data that we collected for 
various cache hierarchy options. The variation in the 
number of cores per node, the L2 cache size per node and 
the L3 cache size are shown on the x-axis. The on-die 
bandwidth is 512 GB/s and the maximum sustainable 
memory bandwidth is 64 GB/s. The vertical bars in Figure 
6 show the CPI broken down into the time spent in the 
core, between the core and L2, between the L2 and L3 and 
finally in the memory subsystem. A simple observation is 
that the dominating factors are the performance of the core 
and the performance of the memory subsystem as the time 
spent in L2 & L3 subsystems are fairly low. It should be 
noted that this observation may change if the interconnect 
and cache bandwidth levels in the platform are modified. 
This will be discussed in a subsequent section.  

From a performance (CPI) perspective, it is not 
surprising that the configuration that performs the best is 
the one to the far right (with 4 cores per node, 1M L2 per 
node and 32 M of L3 cache). It should be noted that in all 
configurations except those with 32M, the area consumed 
remains between 170 mm2 and 350mm2. If we exclude the 
options with 32M L3 cache, then the high performance 
option is the 4-core node configuration with 16M L3 cache 
and either 1M or even 512K of L2 cache per node. 

However, this performance comes at the expense of 
additional area. In order to comprehend performance and 
area together, we first looked at performance per unit area 
(shown as a line with values on the 2nd y-axis). Placing 
equal emphasis on performance and area shows that the 
configuration with the least amount of cache area (4 cores 
per node, 512K per node, 8M L3) turns out to be the best 
configuration. However, this is primarily due to the fact 
that the difference in area dominates the comparison. In 
order to emphasize performance more than area, we then 
looked at performance3/area as a potential metric. The 
behavior of the two metrics (performance/area and 
performance3/area) is significantly different for TPC-C, 
but not as much for other two workloads. The reason for 
minimal change with other workloads is their insensitivity 
to cache size beyond 8M and minimal performance impact 
as a result. However, TPC-C is very memory-intensive (the 
former being more sensitive to cache size and latency, and 
the latter being very sensitive to memory bandwidth). As a 
result, the performance (CPI) is affected significantly for 
these workloads, thus placing less emphasis on area 
becomes important for these workloads. Overall, since the 
area constraints have already been applied (except for 
options with 32M L3 cache), the design option that 
provides good performance with low area overhead 
consists of 4 cores per node, 512K to 1M of L2 cache and 
16M L3 cache. 

(a) TPC-C 

(b) SAP 

(c) SPECjbb 



5.2. Summary of Recommendations 

Based on the constraints-aware analysis methodology and 
the results presented in this section as well as the previous 
one, our recommendation for LCMP architecture would be 
to design a 3-level cache hierarchy with 512K to 1M of L2 
cache per node, where each node consists of four cores. 
The L3 cache size is recommended to be a minimum of 
16M in order to minimize memory stall time as well as 
reduce the memory bandwidth pressure. We also did 
extensive sensitivity studies by varying core performance 
and bandwidth availability and data are not shown here 
due to space limitation. Based on the sensitivity studies, 
we recommend that the platform support at least 64GB/s 
of memory bandwidth and 512GB/s of interconnect 
bandwidth as shown by the sensitivity studies presented in 
the previous subsection. 

6. CONCLUSIONS AND FUTURE WORK 

In this paper, we performed the first study of performance, 
area and bandwidth implications on LCMP cache design 
exploration. We introduced a constraints-aware analysis 
methodology for exploring the LCMP cache hierarchy 
options. We applied this methodology to a 32-core LCMP 
architecture and showed how the pruning process works. 
Applying these constraints quickly narrowed down the 
design space to a small subset of viable options and helped 
us focus our attention on these. We then conducted an in-
depth performance/area evaluation of these options to 
summarize a set of recommendations for architecting 
efficient LCMP platforms. 

A summary of the observations made in our LCMP 
cache design space study is as follows: 
• Applying area constraints showed that around 128K 

per core seems viable for 32-core LCMP, whereas 
between 128K and 256K L2 per core seems viable for 
16-core configurations 

• Applying area constraints resulted in L3 sizes ranging 
from 8M to about 20M depending on the 
configuration being considered. 

• Applying bandwidth constraints essentially showed 
that configurations without L3 cache were not viable 
(due to memory bandwidth constraints) 

• A deeper study of the performance/area comparison of 
the area/bandwidth-viable options shows that the best 
performance option that does not exceed the area 
constraints is that of 4 cores per node, 512K to 1M 
cache per node and 16M of L3 cache. 
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